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Structural phase transitions in two-dimensional
Mo- and W-dichalcogenide monolayers
Karel-Alexander N. Duerloo1, Yao Li1,2 & Evan J. Reed1

Mo- and W-dichalcogenide compounds have a two-dimensional monolayer form that differs

from graphene in an important respect: it can potentially have more than one crystal

structure. Some of these monolayers exhibit tantalizing hints of a poorly understood struc-

tural metal-to-insulator transition with the possibility of long metastable lifetimes. If con-

trollable, such a transition could bring an exciting new application space to monolayer

materials beyond graphene. Here we discover that mechanical deformations provide a route

to switching thermodynamic stability between a semiconducting and a metallic crystal

structure in these monolayer materials. Based on state-of-the-art density functional and

hybrid Hartree–Fock/density functional calculations including vibrational energy corrections,

we discover that MoTe2 is an excellent candidate phase change material. We identify a range

from 0.3 to 3% for the tensile strains required to transform MoTe2 under uniaxial conditions

at room temperature. The potential for mechanical phase transitions is predicted for all six

studied compounds.
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T
he discovery of a mechanical exfoliation method1 for two-
dimensional (2D) crystals has led to the discovery of
fundamentally new physics, and it was a watershed in the

search for the materials that will take the centre stage in
tomorrow’s technology. Among the layered crystals amenable to
isolation of atomically thin monolayers is a large family of
transition metal dichalcogenides (TMDs) having the chemical
formula MX2, where M is some transition metal and X stands for
S, Se or Te. The mostly semiconducting2 subset of TMDs where
the transition metal M is Mo or W (both in group VI) has
received the greatest amount of attention in the pursuit of
applications, including ultrathin flexible electronics2–8 and
valleytronics9,10. In an energy context, these materials hold
promise as hydrogen evolution catalysts when certain features are
exposed to the reacting environment11–16.

A special but often overlooked feature of group VI TMD
monolayers is that they have more than one possible 2D crystal
structure. This polymorphism sets group VI TMD monolayers
apart from other 2D materials such as graphene and hexagonal
BN17–19. Intriguingly, one of these structural phases is
semiconducting, whereas the others are metallic, unlike in the
case of group V TMDs, where electrically activated metal-to-
metal structural phase transitions have been demonstrated in
multilayer TaS2 (ref. 20) and TaSe2 (ref. 21).

It has been suggested that coexistence of metallic and
semiconducting regions on a monolithic MX2 nanosheet can be
used to make electronic devices18, and metallic regions have
been associated with catalytic activity leading to hydrogen
evolution12,16,22. Moreover, materials with dynamic metal-to-
insulator transitions close to ambient conditions are exceedingly
rare and worth pursuing because of their nonvolatile information
storage potential. Because the TMD metal-to-insulator transition
is structural in nature, considerable metastability and hysteresis
are expected to occur. This useful feature is absent in approaches
where band gap closure is achieved by (and conditional on) large
macroscopic strains to a fixed and normally semiconducting
TMD structural phase23. Phase transitions are even more exciting
in monolayers, which also provide opportunities for flexible, low-
power and transparent electronic devices.

Despite the clear motivation for doing so, it has thus far
proven to be challenging to transform semiconducting MX2

compounds to a stable metallic phase. A process of lithium-based
chemical exfoliation of bulk crystals has been shown to be a
successful route to obtain a metastable metallic phase of the group
VI TMDs18,24–26. It is, however, uncertain that this phase would
persist under all realistic operating conditions, and reversible
switching is not demonstrated in this case. One would like to know
under what thermodynamic conditions (if any) metallic phases of
TMDs are expected to be stable rather than just metastable. This
insight would point in a direction of dynamic phase switching and
large-area synthesis of the elusive metallic phase using standard
chemical growth techniques, such as chemical vapour deposition.
Chemical growth techniques are an area of rapid progress in recent
years27–32. One would furthermore like to know what TMD
compounds are nearest to the phase boundaries at ambient
conditions, and therefore most amenable to applications involving
transformations between phases or mixed-phase regimes.

Here we use density functional theory (DFT) and DFT-based
methods to determine the phase diagrams of TMD monolayers as
a function of strain. We find that equibiaxial tensile strains of 10–
15% are required to observe the metallic phase for most TMDs,
but MoTe2 may transform under considerably less tensile strain,
o1.5% under appropriate constraints. We further discover that
mixed-phase regimes can be thermodynamically stable under
certain thermodynamic constraints that are readily achievable in
the laboratory.

Results
Monolayer crystal structures. Under ambient conditions, all
group VI TMDs (except WTe2) are reported to exist in a layered
bulk crystal structure composed of monolayers wherein the X
atoms are in trigonal prismatic coordination around the M
atoms17. The atomic stacking sequence within a single XMX
monolayer is bAb. In keeping with prior literature, we will refer
to this as the 2H phase, even though the prefix ‘2’ is irrelevant in
monolayers because it refers to a bulk stacking mode. Group VI
MX2 monolayers in the 2H structure are semiconducting with
band gaps between 1 and 2 eV (refs 2,33,34). 2H TMDs are
promising semiconductors for flexible electronics applications2–8.
The 2H structure gives rise to metallic edge states that
are associated with electrocatalytic activity11. The primitive unit
cell of the 2H phase is hexagonal. For reasons of consistency
between different phases, our calculations on 2H use a non-
primitive rectangular unit cell whose axes align with zigzag and
armchair directions of the structure. These special axes can be
experimentally identified using second harmonic generation35,36,
and possibly also using the intrinsic piezoelectricity predicted to
exist in these materials37. Figure 1 shows the 2H structure within
a rectangular unit cell having lattice constants a and b.

When one of the 2H structure’s X layers is shifted (for instance,
bAb-bAg), the X atoms are in octahedral coordination around
the M atoms, and the crystal becomes metallic. This phase is
referred to as 1T and is observed in group IV and group V TMD
compounds (for example, TiS2 and TaSe2 (ref. 17)). Its atomic
structure is also shown in Fig. 1. We have calculated the atomic
vibrational normal modes (!-phonons) within the relaxed
rectangular 1T unit cell of all six group VI TMDs. In all cases,
one of the optical phonon modes has an imaginary vibrational
frequency. This result asserts that the high-symmetry 1T structure
is unstable (saddle point in 18D atomic potential energy surface),
at least in the absence of external stabilizing influences.

The group VI TMDs do have a stable metallic structure with
octahedral-like M–X coordination. This lower-symmetry phase,
which we will refer to as 1T0, is a distorted version of the 1T
structure12,17,38. This phase has recently been shown to enhance
electrocatalytic activity in WS2 (ref. 12). A rectangular (as well as
primitive) 1T0 unit cell is displayed in Fig. 1. The 1T0 phase is
observed in WTe2 under ambient conditions17, MoTe2 at high
temperature39 and as a metastable phase in instances of
chemically exfoliated18 and restacked38 MX2 monolayers.

Phase energetics in the absence of mechanical stress. Figure 2
shows the calculated equilibrium (that is, stress-free) relative
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Figure 1 | The three crystalline phases of 2D group VI TMDs. Each can be

represented in a rectangular unit cell with dimensions a� b. All three

phases consist of a metal (Mo/W) atom layer sandwiched between two

chalcogenide (S/Se/Te) layers. The semiconducting 2H phase is often

referred to as the trigonal prismatic structure, and the metallic 1Tand 1T0 are

called octahedral and distorted octahedral, respectively. The 1T0 phase can

be thought of as 1T after a symmetry-reducing distortion.
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energies of the phases (2H, 1T and 1T0) of the group VI MX2

monolayer materials. These values are calculated using DFT
under the generalized gradient approximation (GGA) for elec-
tronic exchange and correlation effects, using the Perdew–Burke–
Ernzerhof40 (PBE) functional. The results are consistent with the
experimental observation for bulk crystals that only WTe2 is 1T0

under ambient conditions17. It is also evident from these data that
the energy associated with the 1T to 1T0 relaxation is
considerable: several tenths of an eV per MX2 formula unit.
The three phases’ equilibrium lattice constants and energies are
tabulated in Supplementary Table 1.

Phase energetics under biaxial strain. Thermodynamics asserts
that a system will seek to minimize whichever thermodynamic
potential is appropriate for the prevailing mechanical and thermal
boundary conditions41. The simplest example of such a
thermodynamic potential is the internal energy U. In the low-
temperature limit, any system will seek to minimize U when it is
constrained to a given shape. Under these conditions, an MX2

monolayer constrained to be described by a rectangular unit cell
with dimensions a� b is expected to be in the lower-U phase for
those values of a and b.

Experimentally, relevant phase diagrams of monolayers differ
from those of bulk materials at high pressure in at least one
important respect: the monolayer can be mechanically coupled to
a substrate with friction, enabling the independent control of a
and b lattice parameters (Fig. 3). Another key distinction is that
large elastic deformations in monolayers can be reached through
tensile strain42,43, whereas large elastic deformations in most
bulk materials are accessible only under compression. Large
compressive stresses are problematic in TMD monolayer
materials due to the spontaneous ripple formation that has
been studied in MoS2 (refs 44,45).

For the six group VI MX2 monolayers, we use GGA–DFT to
calculate the energies U(a,b) of the three monolayer crystal
structures on a 7� 7 grid in (a,b) space, giving a total of 49 points
of (a,b)-values around the minimum-energy equilibrium lattice
constants a0 and b0 (listed in Supplementary Table 1). U is
obtained after allowing the ions to relax their positions within
each unit cell. Intermediate values for each phases’ U(a,b) are
subsequently approximated using the Lagrange46 interpolation

method:

U a; bð Þ ¼
X

i;j

U ai; bj
� �

Y

k 6¼ i;l 6¼ j

a� akð Þ b� blð Þ

ai � akð Þ bj � bl
� �

� �

ð1Þ

Lagrange interpolation is chosen because it contains no
physical assumptions about the shape of the U(a,b) energy
surface over a large range of tensile and compressive strains. It
also greatly facilitates the approximation of local derivatives
(which we need later) without suffering from conditioning
problems found in other high-order polynomial methods.

Using this approach, we discover that the 2H and 1T0 U(a,b)
energy surfaces intersect for sufficiently large strains. Figure 4
shows the contours that follow the intersection of the 2H and 1T0

energy in (a,b) space. The changes in a and b required to change
the relative energies U of the 2H and 1T0 phase range from 13%
(MoS2) to 3% (MoTe2). Because many bulk materials begin to
dissipate strain energy through fracture or dislocations at strains
on the order of 0.1% (roughly 10� 5 eV per atom), these threshold
strains may at first appear to be prohibitively large. However,
it has been experimentally demonstrated that monolayer TMDs
are exceedingly strong: Bertolazzi et al.42 have performed atomic
force microscopy (AFM) experiments where 2H-MoS2
monolayers are shown to reversibly withstand in-plane tensile
stresses up to 15Nm� 1, corresponding to B10% of the
material’s in-plane Young’s modulus. Such deformations
correspond to an elastic energy of order 0.1 eV per atom. From
the local derivatives of the 2H phase’s U(a,b) at the equibiaxial
transition strain, we find that the 2H stresses (in Nm� 1) at this
point are 12.8 (MoS2), 10.8 (MoSe2), 6.9 (MoTe2), 13.6 (WS2) and
10.5 (WSe2). This suggests the possibility that a transition
between 2H and 1T0 might be observable below but near the
breaking threshold.

From Fig. 4, we can also see that WTe2, which is usually in the
1T0 phase, can be pushed into a 2H regime under compression,
which is complementary to all the other cases where one would
go from 2H to 1T0 through tension. While this is interesting, we
will not focus on it since in-plane compression in monolayer
WTe2 may be experimentally challenging to achieve without
incurring any buckling response.

1

0.8

M
o

S
2

M
o

S
e

2

M
o

T
e

2

W
S

2

W
S

e
2

W
T
e

2

0.6

0.4

U
�
=
0
 (

e
V

 p
e

r 
M

X
2
)

0.2

0

–0.2

2H

1T′

1T

Figure 2 | Ground-state energy differences between monolayer phases of

the six studied materials. The energy U is given per formula unit MX2 for

the 2H, 1T0 and 1T phases. Its value is computed at the equilibrium (zero

stress, r) lattice parameters for each phase. Because r¼0, these values for

U are equivalent to the enthalphy H. Vibrational energy is not included in

these values.
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Figure 3 | Substrate-based application of strain to a TMD monolayer.

One way in which the lattice parameters a and b of an MX2 monolayer may

be tuned is by virtue of an underlying substrate (shown in blue). Because

the substrate and the monolayer have a preferred crystallographic

alignment, the deformation of the substrate can be transferred to the TMD

monolayer. If the values of the lattice constants a and b affect which of the

phases is thermodynamically stable, the application of strain (or chemical

growth of the monolayer on a strained substrate) can be used to select a

particular phase.
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From the contours in Fig. 4, it is also apparent that a 2H-1T0

transition might be most easily accessible in MoTe2
under tension along the b axis. The remainder of the Results
section will find that the predicted phase boundary for MoTe2
moves even closer to ambient conditions when including
thermal effects, more advanced treatments of electronic
exchange and correlation, and by generalizing the governing
thermodynamic constraints beyond the case of fixed lattice
constants.

Thermal corrections in MoTe2. The data shown in Figs 2 and 4
derive from the DFT-calculated potential energy U¼Ucrystal,
and therefore omit the vibrational component of free energy.
This vibrational component can be important when the
energy difference between phases is o0.1 eV, on the order of
kBT. Figure 2 shows that the 1T0-2H energy offset thus
calculated for MoTe2 is sufficiently small (43meV) such that
vibrational effects could have a role in the energetic ordering
of phases. For a temperature-controlled experiment, the
Helmholtz free energy A(a,b,T) replaces U(a,b) as the relevant
thermodynamic potential. We perform this calculation
for MoTe2 by treating the DFT-calculated vibrational normal
modes as quantum mechanical harmonic oscillators47. We
shall see that these effects in MoTe2 have a considerable impact,
even in the idealized T-0 K case because of contributions
from the vibrational zero-point energy, which can be regarded
as a manifestation of the partially wavelike nature of the
atomic nuclei.

In the case of 2H- and 1T0-MoTe2, we calculate a temperature-
dependent vibrational free-energy correction based on the
frequency spectrum of the 15 nonzero !-point phonons
belonging to the rectangular cell of each phase. These phonon
frequencies are obtained by applying linear-response theory to
the forces in perturbed unit cell configurations for all 7� 7 (a,b)
grid points. We then add the quasi-harmonic vibrational free-
energy correction Avib¼Uvib–TSvib to the potential energy

Ucrystal:

Aða; bÞ ¼ Ucrystalða; bÞþAvibða; bÞ � Ucrystalða; bÞ

þ
X

15

i¼1

1
2
‘oiða; bÞþ kBT ln 1� e� ‘oiða;bÞ=kBT

� �

� �

ð2Þ

Since this approach samples 15 discrete values of oi at !, it does
not take into account the full dispersion of phonon frequencies
for arbitrary wave vectors in the Brillouin zone. Large supercell
calculations that sample the vibrational spectrum more finely (up
to 159 values of oi in a 3� 3 supercell) reveal that the use of 15
phonons in equation (2) leads to errors under 3meV per MoTe2
formula unit when comparing 2H and 1T0 free energies
(Supplementary Fig. 1). This error is significantly smaller than
the 1T0-2H’ Ucrystal energy difference of 43meV.

Proceeding with the results of equation (2), the Lagrange
interpolation procedure is carried out again at intermediate values
of a and b. The top three curves in Fig. 5 show that the vibrational
correction Avib moves the PBE-calculated (a,b)-space free-energy
crossing in MoTe2 to smaller strains. Indeed, a 0-K zero-point
free-energy correction lowers the threshold strain by up to 0.01 in
some regions, and increasing the temperature from 0 to 300K
produces another shift of up to 0.02 in the same regions.

Kinetic aspects of the MoTe2 phase transition. Thus far, our
purely thermodynamic analysis does not provide information
regarding the timescales required to observe a transition between
the 2H and the 1T0 phase. Experimental observation of a ther-
modynamically allowed transformation might not be feasible if a
large kinetic barrier renders it inaccessible. A Climbing-Image
Nudged Elastic Band48 calculation within GGA–DFT reveals a
2H-1T0 energy barrier of 0.88 eV per formula unit in MoTe2 at
the equilibrium lattice constants of the 2H phase. In the
Arrhenius kinetics picture with a characteristic frequency of
10 THz, the timescale associated with this barrier is 50 s at room
temperature. Although other factors such as interfaces, substrate,
temperature, strain and impurities are likely to alter the
transformation kinetics, this timescale suggests that this
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transformation is likely to be observable in the room temperature
laboratory.

Hybrid functional applied to MoTe2. Like many contemporary
computational materials studies, our results presented thus far
rely heavily on the generalized gradient PBE40 functional for
electronic exchange and correlation effects. The development of
new exchange–correlation functionals is a highly active field, and
a Hybrid PBE/Hartree–Fock approach known as the Heyd–
Scuseria–Ernzerhof HSE06 (ref. 49) functional has recently
shown superior agreement with experimental results in
structural metal–insulator transition phase boundaries in Si50.
To explore how HSE06- and PBE-based predictions differ in a
MoTe2 context, we recalculate the Ucrystal component of
equation (2) using the HSE06 functional on the 7� 7 grid of
PBE-relaxed geometries. The HSE06-based phonon spectrum is
not recalculated for this work because of the formidable
computational demands presently posed by high-quality HSE06
calculations. Instead, the PBE-calculated frequencies are
reintroduced on top of the HSE06-calculated Ucrystal. The
bottom three curves in Fig. 5 show that use of the HSE06-
calculated Ucrystal brings the 2H-1T0 threshold strains even closer
to the origin. At 300K, the transition is predicted to be within 2%
strain of the equilibrium 2H lattice constants.

Alternative thermodynamic constraints. Some careful con-
sideration of the relevant thermodynamic constraints is war-
ranted here for the case of monolayers. The thermodynamic
constraint of fixed lattice constants used in Figs 4 and 5 is an
unusual one (different from constant volume or area) that is
perhaps most applicable when crystallographic coherence is
maintained with a strongly binding substrate. At some fixed
temperature T, the Helmholtz free energy A(a,b,T) is the ther-
modynamic potential whose minimization determines which
crystal phase (or coexistence of phases) will exist in a crystal
possessing a rectangular unit cell with dimensions a� b. How-
ever, this fixed-cell constraint certainly need not apply when
friction with the substrate is weak, or when the monolayer is
freely suspended. In analogy with the important distinction
between constant-pressure and constant volume experiments in
bulk materials, we now show how to generalize our MoTe2 results
to other thermodynamic constraints with stable two-phase
coexistence regions.

Perhaps the simplest thermodynamic constraint occurs when
both in-plane principal tensions are equal, such that sxx¼syy.
This isotropic-tension condition is analogous to the isotropic
constant-pressure case in three dimensions. The natural thermo-
dynamic potential governing this isotropic-load system (that is,
the potential that is minimized) is a ‘hydrostatic’ Gibbs free
energy Ghydro, where the surface tensions sxx¼ syy�s and
sxy¼ 0:

Ghydro s;Tð Þ ¼ A� abs ð3Þ

The previously independent variables (a,b,T) used in A¼A(a,b,T)
are now a function of (s,T) through the definition of a 2D
hydrostatic contour {a,b}¼ {a(s,T),b(s,T)}. This contour is
determined directly from the interpolated A(a,b,T) surface and
its local derivatives (for example, using sxx¼ (1/b)qA/qa).

Another physically relevant constraint is that of constant area.
This is closely related to a constant volume constraint for bulk
materials. Such a constraint can lead to mixed-phase regimes.
Constant area is a macroscopic constraint that might be
applicable when the edges of a freely suspended monolayer are
clamped in place to fix the area, independent of stress.

A very useful constraint applies when one of the principal
tensions is zero, for example, when sxx¼sxy¼ 0 and syy is
nonzero. This condition might hold for a ribbon suspended over
a trench. Considering the 2H-1T0 energy landscape in Fig. 4, it
would appear promising to apply a uniaxial stress along the b axis
of MoTe2 in order to observe a phase transition. We therefore
study a system that is subjected to a specified uniaxial-load
Fy¼ qA/qb along the crystal’s special y axis, whereas the x-face is
treated as a free surface (that is, qA/qa¼ 0). Applying the
appropriate Legendre transform to A for this case yields another
Gibbs-like free energy Gy that acts as the governing thermo-
dynamic potential.

GyðFy;TÞ ¼ A� Fyb ð4Þ

In our data, the independent variables (Fy,T) can be mapped
to a uniaxial-load contour {a,b}¼ {a(Fy,T),b(Fy,T)}, derived from
the interpolated A(a,b,T) surface and its local derivatives. This
approach carries the microscopic assumption that both the 2H
and the 1T0 phases’ b axes point in the y direction.

A closely related case is that of fixed macroscopic uniaxial
strain. In the macroscopic uniaxial-strain case, one assumes that
the lattice constant a remains fixed at the same value for both
phases, such that strain occurs along both phases’ b axis.
Macroscopic uniaxial strain allows for two-phase coexistence
regimes with crystallographic coherence between the 2H and 1T0

phase. Macroscopic uniaxial strain is also relevant if the
substrate–TMD interaction is strongly anisotropic. The strain
eyy¼/bS/b0� 1 is termed macroscopic because b is the
weighted average over two different lattice constants /bS when
strained 2H and 1T0 phases coexist. In an experiment, changes in
b are proportional to the macroscopic extension of the sample.

Additional thermodynamic ensembles may be applicable for
monolayers. For example, when a monolayer is weakly bound to a
substrate with friction, the atoms are allowed to move to some
limited extent and restricted by contact with the surface. The
thermodynamic potential of the TMD monolayer will be some
intermediate case between the constant-force case (applicable to a
frictionless substrate) and the fixed-(a,b) case where friction is
large enough to inhibit significant movement of the metal atoms.

Alternative thermodynamic constraints applied to MoTe2. Both
the hydrostatic and uniaxial-load contours are displayed in Fig. 6a
(PBE-calculated Ucrystal) and Fig. 6b (HSE06-calculated Ucrystal).
When increasing Fy or s, at some point the Gibbs free energies of
the 2H and 1T0 phases cross. When that happens, the resulting
phase transition can be seen as a discontinuous jump in (a,b)-space
from the 2H to the 1T0 contour. It is interesting to note that at
precisely this transition load, any mixed-phase coexistence of both
phases ranging from 100% 2H to 100% 1T0 is thermodynamically
stable. Figure 7 illustrates the general concept of mixed-phase
regimes when a monolayer is progressively tensioned, for example,
by increasing Fy or /bS (for the uniaxial stress/strain case), or by
increasing hydrostatic stress s or the unit cell area ab.

In the uniaxial-load case for MoTe2, the calculated strains
eyy¼ b/b0–1 required to enter the 2H end of this transition regime
are shown in Fig. 8a. It is striking that the choice of exchange–
correlation functional and the treatment of atomic vibrations
have a large impact on this number: eyy ranging from 0.5%
(HSE06, 300 K) to 2.4% (PBE, no vibrational free energy).
Figure 8b shows that the strain on the 2H end of the hydrostatic
transition is similarly sensitive to temperature and electronic
exchange–correlation functional. The discrepancy between PBE
and HSE06 shows a clear path towards experimentally addressing
the question of which functional is better suited for 2D materials
studies.
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The accuracy of these predictions of small transition strains
based on 2D interpolation is validated using additional calcula-
tions in the case of MoTe2. We run a 10� 10 grid of PBE, phonon
and HSE06 calculations in a region in (a,b)-space with axial
strains ranging from � 5 to 10%. This new data set is three times
as fine as the 7� 7 grid and also includes PBE-calculated
phonons. Coexistence regimes are extracted from a series of 1D
fits on this refined grid, as illustrated in Supplementary Fig. 2. The
typical difference between uniaxial-load transition strains from
this approach and the equivalent strains from the 2D Lagrange-
interpolating method used throughout the main text is 0.002 for
HSE06 and 0.005 for PBE (Supplementary Fig. 3).

In the case of macroscopic uniaxial strain at 300K (not shown
in Fig. 8), the HSE06 functional predicts an onset of the
coexistence regime at 1.6% strain, whereas PBE predicts 3.0%.

These strains are obtained from 1D cubic fits (illustrated in
Supplementary Fig. 4) on the refined 10� 10 grid of DFT-
calculated energies, at fixed lattice constant a¼ 3.550Å and
varying b. Supplementary Figure 5 summarizes all uniaxial-load
and uniaxial-strain results based on this 10� 10 grid.

Discussion
Recent calculations and AFM experiments43 have demonstrated
that a MoS2 monolayer can be subjected to 20% equibiaxial strain.
In these experiments, a pre-tensioned MoS2 sheet is pushed into a
circular cavity by means of an AFM probe. These experiments
report no evidence of a phase transition, but do report the
presence of sufficiently large equibiaxial deformations (Fig. 4) in
the small region under the AFM tip. The indentation timescale
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(B1 s) may be too short to observe a transition, perhaps even
more so because the AFM tip may increase the 2H-1T0 transition
energy barrier. On the other hand, this reference43 does note that
the majority of samples show a significant force–displacement
hysteresis that is attributed to slipping, but which might indicate a
phase transition in light of the present study.

Although widely studied today, MoS2 monolayers are not
ideally suited for phase transitions because MoS2 has the greatest
1T0-2H energy difference of all group VI TMDs. 2H-1T0

structural phase transitions are closest to ambient conditions in
the case of MoTe2. This property makes MoTe2 more suitable for
technological applications and is hoped to motivate further
advances in telluride TMD growth techniques.

In the case of MoTe2, certain classes of strain states are more
likely to yield a phase transition than others. Based on the local
characteristics of the MoTe2 phases’ energy landscape, our
research identifies the application of tension along the 2H phase
b axis (armchair) as a fertile route to observing a phase transition.
As a general trend, the deformations associated with this
transition appear to be brought closer to zero with increasing
temperature. At room temperature, we predict that the lowest
strain eyy needed to render the 1T0 phase stable lies between 0.3%
(HSE06, uniaxial load) and 3% (PBE, uniaxial strain). The values
quoted above are computed from the refined 10� 10 grid of DFT
calculations. We note that the calculated insulator-to-metal
strains in monolayer MoTe2 compare favourably with insulator-
to-insulator transition strains reported for bulk VO2 (ref. 51),
which has no known 2D form.

Stress and strain could be applied to a TMD monolayer via
deformation of a flexible substrate. Another approach, which
might yield more quantitative evidence of the transition process,
is to perform an experiment where an AFM probe pushes down
a freely suspended MoTe2 monolayer with its armchair axis
pointing across a trench as shown in Fig. 7.

As with all DFT calculations, the equilibrium 2H and 1T0

lattice constants calculated in this work are expected to exhibit
discrepancies with experimental lattice constants on the order of
1%. For example, our DFT-calculated 2H-MoS2 monolayer lattice
constant a of 3.18 Å is within 2% of measured values from 3.1 to
3.2 Å in chemically grown MoS2 (ref. 27). A discrepancy in the
actual location of energy minima in (a,b)-space will offset the
strains needed to achieve phase transitions by a similar amount in

percentage points. The error in our calculated MoTe2 lattice
constants is unknown because no experimental lattice constants
for 2H and 1T0 monolayers have been reported (to the best of our
knowledge). Since our research compares crystal structures
having the same chemical composition, we believe that the DFT
error in lattice constants will be systematic across different
phases, leading to a partial cancellation of errors in transition
strains.

Spontaneous ripple formation has been observed in MoS2
(refs 44,45). These ripples (which are expected to exist in other
TMDs as well) render the presence of significant compressive
principal stresses in monolayers unlikely, reducing the possibility
of observing a 1T0 to 2H transition in WTe2 (Fig. 4). Another
technical consequence of pre-existing ripples is that some
additional strain may be required before the mechanical stresses
needed for a phase transition are present.

The goal of this study is to investigate the possibility of a
mechanical route to thermodynamically driven phase transfor-
mations between metal and semiconducting crystal structures in
all group VI TMDs. Our results show that these mechanical
transformations are in fact possible and most easily accessible in
the case of MoTe2. With this information, we are optimistic that
mechanically induced phase transitions can be achieved using
flexible substrates, AFM techniques and other standard experi-
mental approaches. This thorough understanding of phases and
phase boundaries in TMD monolayers is a critical step towards
building our understanding of the rich physics of 2D materials.
Furthermore, the existence of multiple phases in monolayers is an
exciting feature beyond graphene that undoubtedly has broad
implications for electronic, Nanoelectromechanical systems
(NEMS), thermal, energy and myriad other devices that can all
benefit from the flexible, transparent nature of monolayers.

Methods
Electronic structure calculations. DFT and hybrid DFT calculations were per-
formed using the Projector-Augmented Wave52,53 pseudopotential implementation
of the Vienna Ab Initio Simulation Package54, version 5.3.3. In the DFT
calculations, electron exchange and correlation effects are described by the GGA
functional of PBE40. Wave functions are expanded in a plane-wave basis set with a
kinetic energy cutoff of 350 eV on an 18� 18� 1 Monkhorst-Pack55 k-point grid
using a Gaussian smearing of 50meV. The convergence thresholds were
0.5� 10� 6 eV per MX2 and 0.5� 10� 5 eV per MX2 for electronic and ionic
relaxations, respectively. The linear-response phonon calculations use an electronic
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threshold of 0.5� 10� 8 eV per MX2. The Hybrid DFT calculations use the
screened hybrid functional by Heyd, Scuseria and Ernzerhof49 (HSE06). The
electronic convergence threshold used for HSE06 calculations is 0.5� 10� 5 eV/
MX2. A total of 26 valence electrons per MX2 are treated by HSE06, whereas the
PBE calculations only treat 18 valence electrons. The computational cell height
along the z-axis is 16 Å.

Our computational unit cells of the 1T0 structure (shown in Fig. 1) belong to
plane group pm. This plane group symmetry seems to be present or only very
slightly broken in experimental data17,38. Our phonon analysis of this unit cell
indicates that pm reflection symmetry is stable under ambient conditions. We
recalculate 1T0 energies and intersection contours such as in Fig. 4 using the a� b
cell but with broken symmetry (p1). All except the highest-strain cases simply
revert to the pm-symmetric case when the atoms are allowed to relax within the
strained unit cell. We find that the 2H-1T0 intersection contours were virtually
unaltered after allowing for broken pm-symmetry.

Interpolation and fitting. The Lagrange interpolation used to calculate forces and
stresses for the hydrostatic and uniaxial-load trajectories was carried out on a 6� 6
grid instead of the usual 7� 7 grid, leaving out only the highest-strain points. In
order to get uniaxial-load transition strains without Lagrange interpolation, we fit
both 2H and 1T0 Helmholtz free energies along each ‘row’ i (having a fixed lattice
constant bi) in the 10� 10 or 7� 7 grid to a 1D cubic polynomial in the lattice
constant a, Ai(bi, a). The minima of Ai(bi, a) are the points where qA/qa¼ Fx¼ 0,
satisfying the uniaxial-load constraint. For each phase, these minimum free ener-
gies are then re-fitted as a cubic function A(b). The resulting curves are used to
compute the relevant Gibbs free energies, leading to new values for the uniaxial-
load transition strains. The procedure is illustrated in Supplementary Fig. 2.
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