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Abstract

This paper analyzes a buy-back contract in the Stackelberg setting of a manufacturer (leader) selling to a price sen-

sitive, newsvendor retailer (follower). We primarily focus our analysis on a stochastic multiplicative demand form,

and contrast our model with a price insensitive framework. In the latter case it is known that the manufacturer’s

profit function is not well-behaved, but a buy-back contract can coordinate the chain and the channel-coordinating

decisions are independent of the demand distribution. We show that in our setting, though buy-backs are not able

to attain coordination, the profit functions for both channel partners are unimodal under relatively mild condi-

tions. Moreover, we identify the necessary and sufficient conditions under which: i) the manufacturer’s optimal

wholesale and buy-back prices are independent of the demand uncertainty in spite of being exposed to it, and

ii) a no-return contract is optimal for the manufacturer, i.e., the optimal buy-back price is zero. The conditions

depend only on the structure of the deterministic price-sensitive part and are satisfied by many demand functions

used in the literature. The optimal performance measures for the decentralized channel, like the profit division

among the partners and the degree of channel efficiency, for distribution-free buy-back contracts are also shaped

by the form of the deterministic element. Moreover, these measures are equivalent to those for the corresponding

optimal deterministic price-only contracts. A particular transformation technique enables us to prove that all our

results hold true for any non-decreasing hazard rate distribution. However, we also demonstrate that when the

price sensitive stochastic demand is of the additive form, none of our structural results remain valid anymore.

Key Words: Price sensitive newsvendor, Buy-back contracts, Supply chain performance.
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1 Introduction

Recent operations management literature has focussed a great deal on developing effective contracting schemes

between channel partners in a decentralized setting. Especially, there is a growing interest in analyzing the

performance of realistic contracts like price-only, buy-back and consignment/revenue-sharing (refer to Wang, et

al. 2004, Cachon, 2003, and Pasternack, 2002, for a detailed discussion). While these contracts might not be able

to attain coordination1, their widespread use can be attributed to the simplicity and cost-effectiveness in terms of

administration, compared to complex coordinating contracts. One particularly interesting feature of some of these

contracting models is that they are based on the framework of price sensitive stochastic end customer demand

(Yano and Gilbert, 2004). The particular demand characteristic obliges the retailers to simultaneously decide on

the optimal pricing and inventory policies. This is in sharp contrast with the traditional operations literature

where the underlying assumption is of stochastic, but price insensitive, end customer demand, with order quantity

as the only retail decision (Pasternack 1985; Lariviere 1998; Lariviere and Porteus 2001).

The most commonly observed contract in practice is a wholesale price only type, which involves the manufacturer

charging a per unit wholesale price for the quantity ordered by the retailer. It is well-known that coordination of

a two-echelon decentralized channel in a price insensitive newsvendor framework cannot be achieved through such

price-only contracts. The optimal decision and performance of the individual parties, as well as the channel effi-

ciency (i.e., the ratio of the optimal total profit of a decentralized system to that of a centralized one) then depends

crucially on the co-efficient of variation of the random demand (Lariviere and Porteus 2001). Consequently, a num-

ber of contracts have been proposed in the literature that can attain coordination in price insensitive newsvendor

settings (Cachon 2003, Section 2).

One of the most popular such coordinating contracts is the buy-back type. In buy-back contracts, the retailer still

pays the wholesale price, but is assured of some financial restitution in the form of a per unit buy-back price (<

wholesale price) for returning the unsold items at the end of the season to the manufacturer. Obviously, contrary to

price-only contracts, the manufacturer is then exposed to the risk of a poor demand outcome. Pasternack (1985),

Lariviere (1998) and Tsay, et al. (1998) have analyzed this contract in price-taking newsvendor settings. The profit

function of the manufacturer is complicated and not well-behaved under such a framework (Theorem 6, Lariviere,

1Coordinating contracts allow a decentralized chain to attain the profit performance of a centralized system and arbitrarily

allocate the gains among the channel partners.
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1998). However, the risk-sharing mechanism induces the retailer to order the same as the centralized system,

resulting in coordination. Depending on the values of the contract parameters, the total optimal channel profit

can also be allocated arbitrarily among the partners. Moreover, the channel-coordinating parameters (wholesale

and buy-back prices) are independent of the demand distribution. Buy-backs have been used extensively in sectors

like publishing, fashion apparel and cosmetics (Kandel 1996; Emmons and Gilbert 1998).

In this paper, we also analyze a buy-back contract in a two-echelon Stackelberg context, but for a price-setting

newsvendor facing stochastic and price sensitive end customer demand. The retailer (follower) then needs to decide

both on the retail price and the order quantity before any uncertainty is resolved, based on the wholesale and

buy-back prices offered by the manufacturer (leader). It has already been shown that a buy-back contract cannot

attain coordination in this setting (Bernstein and Federgruen 2002; Cachon 2003). Hence, we do not address that

issue in our paper. Rather, we concentrate on identifying some structural properties of the optimal decentralized

system. In that sense we address fundamentally different issues compared to Pasternack (1985) and Lariviere

(1998) in a comparatively enlarged setting. Additionally, our framework extends the performance analysis of

“selling to a newsvendor under a price-only contract” model of Lariviere and Porteus (2001) by incorporating

retail pricing and buy-backs. We first demonstrate the parallels and contrasts in the behavior of the optimal

decision variables and profit functions in our setting to that of a price insensitive one. Subsequently, we assess the

performance of the optimal buy-back contract. Specifically, we study the following issues:

1. Is there any change in the behavior of the manufacturer’s profit function as we move from a price insensitive

to a price sensitive framework?

2. Is it ever optimal for the manufacturer not to offer a buy-back opportunity to the retailer when demand is

price sensitive, i.e., set the optimal buy-back price to zero?

3. More generally, are there any conditions under which the manufacturer’s optimal decisions, even though

exposed to uncertainty, are independent of the demand distribution?

4. If indeed there are certain conditions under which the above two properties hold true, how does the supply

chain perform under those settings? For example: i) how do the optimal decision variables and profits of

the decentralized system compare to that of a centralized one?, and ii) how do the optimal profits of the

two channel partners in a decentralized setting compare to each other?

3



The analysis in this paper primarily focusses on a multiplicative demand form, with a quite general random

element. Under these assumptions, we show that the profit function for the manufacturer (and the retailer), in

contrast to the price insensitive setting, is well-behaved under relatively mild conditions. Moreover, we develop

the necessary and sufficient conditions on the demand function under which: i) a no buy-back contract is optimal

for the manufacturer, and ii) the manufacturer’s optimal decisions are independent of the customer demand

uncertainty. Since we obtain closed form expressions for the optimal decisions and profits, we are able to evaluate

the performance of the decentralized chain under the necessary and sufficient conditions. We note that some of

the optimal decisions and performances for stochastic buy-back scenarios are equivalent to optimal deterministic

price-only settings. Subsequently, we study an additive demand function, the analysis of which turns out to be

quite complicated. In general, none of our insights from the multiplicative demand hold true anymore.

Buy-back contracts in price sensitive settings, like ours, have previously also been analyzed in the literature. For

example, Kandel (1996) notes that the resulting problem is quite complicated, and indicates that buy-backs might

not be able to achieve coordination. Padmanabhan and Png (1997) study the joint effect of demand uncertainty

and retail competition on manufacturer profitability in such settings. Marvel and Peck (1995) deal with both

valuation uncertainty and demand (number) uncertainty simultaneously in their model. Gurnani and Sharma

(2004) not only discuss how demand uncertainty affects the optimal contract, but also the issue of information

asymmetry. Recently, Bernstein and Federgruen (2002) have formally shown that buy-backs cannot coordinate a

newsvendor with price-dependent demand unless the manufacturer’s decisions are made contingent on the retail

price chosen. Nevertheless, Emmons and Gilbert (1998) demonstrate that if the wholesale price is set high enough

both the retailer and the manufacturer might be better off with buy-backs than price-only contracts. However,

these papers do not, in general, address the structural characterization of the manufacturer’s optimal decision

variable values/profit function and/or the performance of the optimal decentralized system, like we do.

Rather, our framework is more closely related to Wang, et al. (2004), Petruzzi (2004) and Granot and Yin (2004,

G&Y). This paper is similar to the first two from the objective perspective, as they also analyze the supply chain

performance for a particular contract in a price setting newsvendor setup. However, Wang, et al. and Petruzzi

study consignment2 and price-only contracts, respectively, whereas we focus on buy-backs. Contrasting our results

with Wang, et al., we are able to demonstrate that the form of the deterministic part of the demand plays a more

2In such contracts, the retailer offers to deduct a percentage from the selling price and remit the balance to the manufac-

turer, based on which the manufacturer decides on the end customer price and order quantity.
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important role in buy-back contracts than consignments. Moreover, the results of those two and this paper jointly

establish under what conditions consignment, price-only and buy-back contracts all become equivalent. On the

other hand, our basic model setting is similar to that of G&Y, though their analysis is based on a more restrictive

demand setting. For example, the random part of the demand is uniformly distributed in G&Y, but can be any

IFR distribution in this paper (our deterministic part is also less restrictive). More importantly, our distinct

contribution is to be able to synthesize the results from specific demand forms to identify a general condition

under which the optimal buy-back contract exhibits some interesting structural properties. Methodologically also

we differentiate our work by utilizing a transformation technique that considerably simplifies the derivation and

analysis. Overall, we feel that our research generates analytical insights with greater range and applicability

compared to G&Y (refer to Section 4 for more details about the contributions of this paper).

1.1 Model Framework

The basic modelling framework is a manufacturer selling to a price-setting newsvendor retailer in a decentralized

Stackelberg setting. The retail demand function X(p, ε) comprises of two elements: a riskless part which is a

deterministic decreasing function of the retail price p, d(p), and a non-negative random variable ε having support

on (L,U) with mean µ(> 0), density f(u) and distribution F (u). Any unmet demand is lost. The buy-back

contractual agreement between the two parties consists of the manufacturer offering to charge a per unit wholesale

price w for the quantity ordered and pay a per unit buy-back price b for return of any leftover inventory at the end

of the selling season, to the retailer. Based on these contract parameters, the retailer then decides on its optimal

retail price p and ordering quantity y before the start of the selling season. Note that w and b cannot explicitly

depend on p; furthermore, p > w > c > 0 and w > b ≥ 0 for realistic solutions. Suppose that there is no salvage

cost or value for the leftover stock. Building on the above framework, we address the issues discussed before for a

multiplicative X(p, ε) = d(p)ε (Wang, et al. 2004, and references therein) in Section 2. Subsequently, in Section

3, we study whether the results are valid for another widely-used X(p, ε) form: X(p, ε) = d(p) + ε.

Before proceeding to the detailed analysis, we present one assumption and one lemma about ε which are used

throughout the paper (we do not repeat them subsequently).3

Assumption 1 Let r(z) = f(z)
1−F (z) (hazard rate). We assume that r(z) is non-decreasing for z ∈ (L, U).

3Note that L(≥ 0) can be 0, and U can be infinity.
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As indicated in Petruzzi and Dada (1999), the above non-decreasing hazard rate property (represented throughout

as IFR) of ε is a mild requirement which is satisfied by almost all theoretical distributions used in the operations

management literature including Uniform, Gamma with shape parameter ≥ 1, Beta with both parameters ≥ 1,

Weibull with shape parameter ≥ 1, Normal, Exponential, Left-truncated (at 0) Normal, and Left-truncated (at

0) Logistic. Furthermore, we can show that (all proofs are provided in the Appendix):

Lemma 1 Let Θ(z) =
∫ +∞
z (u − z)f(u)du and V (z) = µ−Θ(z)∫ z

0
uf(u)du

for any z ∈ (L,U). Under Assumption 1, we

have V (z) is decreasing for z ∈ (L,U). 2

2 Analysis for Multiplicative Demand, X(p, ε) = d(p)ε

In this section, we first characterize the optimal profit functions and the optimal decision variable values for both

parties of the decentralized system, as well as that of the centralized one, when the demand is multiplicative, i.e.,

X(p, ε) = d(p)ε. Later on we also assess the optimal performance for the decentralized system. Without loss of

generality, let the mean of the random variable, µ, be 1 for multiplicative demand.4 We further assume that the

demand function d(p) exhibits the following properties:

Assumption 2 The elasticity η(p) = pd′(p)
d(p) < 0 of the demand function is non-increasing in p ∈ (0, +∞).

Furthermore, p
η(p) is monotone and concave, while p(1 + 1

η(p)) is increasing on (0, +∞).

Normally, we would indeed expect the percent change in demand due to a percent change in price to be equal or

higher at higher prices (i.e., absolute value of price-elasticity to be non-decreasing in p). In fact, a large family

of d(p)s used in the literature satisfies the above assumption. Examples include, d(p) = ap−k, a > 0, k > 1,

d(p) = (a − kp)γ , a, k, γ > 0, d(p) = ae−kp, a, k > 0, d(p) = ak−p, a > 0, k > 1, d(p) = a − pk, a > 0, k > 1,

d(p) = a − ekp, a > 0, k > 0 and d(p) = a − kp, a > 0, k > 1. Hence, Assumption 2 is quite broad in terms of its

scope and applicability.

4All our results hold true for µ 6= 1, with some minor modifications of expressions.
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2.1 Characterization of the Profit Functions

For any given buy back contract (w, b) offered by the manufacturer, the retailer needs to determine its optimal y

and p. The retailer’s profit is given by

Γ(p, y) = pd(p)[1−Θ(
y

d(p)
)] + bΛ(

y

d(p)
)d(p)− wy, (1)

where Λ(z) =
∫ z
0 (z − u)f(u)du and Θ(z) =

∫ +∞
z (u− z)f(u)du. In the above expression, the first term represents

the consumer revenue, the second term denotes the buy-back revenue, and wy represents the purchase cost. It is

possible to characterize Γ(p, y) making use of the following expressions for Λ(z) and Θ(z):

Λ(z) = zF (z)−
∫ z

0
uf(u)du and Θ(z) = 1−

∫ z

0
uf(u)du− z[1− F (z)]. (2)

Taking the partial derivatives of the profit function with respect to p and y, we get

∂Γ(p, y)
∂p

= d(p)
∫ y

d(p)

0
uf(u)du{V (

y

d(p)
) + (p− b)

d′

d
},

∂Γ(p, y)
∂y

= p[1− F (
y

d(p)
)] + bF (

y

d(p)
)− w.

Theorem 1 Under Assumptions 1 and 2, for any given ordering quantity y(≥ 0), the retailer’s expected total

profit function Γ(p, y) is unimodal in p. Hence, there exists a unique retail price p(y), solution of ∂Γ(p,y)
∂p = 0,

which maximizes Γ(p, y), and p(y) is non-increasing. Furthermore, Γ(p(y), y) is concave. 2

So for any given (w, b), the corresponding optimal (p, y) should satisfy the first order conditions ∂Γ(p,y)
∂p = 0 and

∂Γ(p,y)
∂y = 0. These two equations can be simplified to express (w, b) in terms of optimal (p, y) as follows:




w

b


 = p




1 + 1
η(p)F ( y

d(p))V ( y
d(p))

1 + 1
η(p)V ( y

d(p))


 . (3)

From the manufacturer’s perspective, the goal is to maximize its expected total profit π(w, b) = (w − c)y −
bd(p)Λ( y

d(p)) by optimally selecting the wholesale price w and the buy-back price b, keeping in mind the retailer’s

optimal actions. Researchers normally strive to solve the manufacturer’s maximization problem directly in terms

of w and b (Granot and Yin 2004). This involves using ∂Γ(p,y)
∂p = 0 and ∂Γ(p,y)

∂y = 0 to express the optimal p and y

in terms of w and b, substituting them in π, and then optimizing over w and b. The process is quite cumbersome,

and oftentimes results in a messy analysis. In order to get around this problem, we decided to use (3) to transform
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the manufacturer’s maximization problem in terms of p and y. Substitution of (3) in π(w, b) and simplification

yields the following tractable form of π.

π(p, y) = pd(p)[1−Θ(
y

d(p)
)](1 +

1
η
)− cy. (4)

Taking partial derivatives with respect to p and y, we get the following first order conditions for π(p, y).

∂π(p, y)
∂p

= d(p)
∫ y

d(p)

0
uf(u)du{[1 + (

p

η(p)
)′]V (

y

d(p)
) + (1 + η(p))}, (5)

∂π(p, y)
∂y

= p[1− F (
y

d(p)
)](1 +

1
η(p)

)− c. (6)

Theorem 2 Under Assumptions 1 and 2, for any given y(≥ 0) there exists a unique P (y), solution of dπ(p,y)
dp = 0,

which maximizes π(p, y). Furthermore, π(P (y), y) is concave, y ∈ (0,+∞). Hence, there exists a unique (pD, yD)

which maximizes π(p, y). 2

Note that the determinant of the hessian of the manufacturer’s profit function is always negative when demand

is price insensitive, implying that it is not well-behaved (Lariviere 1998). However, when the demand is price-

dependent and the overall demand function is of the multiplicative form, the profit function exhibits a “nice”

unimodal structure for almost all usual randomness distributions and a sufficiently large family of deterministic

demand functions. Clearly, price sensitivity of demand plays a major role in determining the characteristics of the

manufacturer’s profit function. The above property, contrary to price insensitive settings, allows us to identify

the optimal contract through standard optimization approaches as we will see in the next section.

In a centralized system there is a single decision maker for both the retailer and the manufacturer, and there are

no financial transactions between the two parties. The channel as a whole has to decide on the following: the

optimal retail price pC , and the optimal ordering quantity yC . The expected total profit of the centralized system

can be expressed as Π(p, y) = pd(p)[1−Θ( y
d(p))]− cy, which is similar to the retailer’s profit function in (1) with

b = 0 and w = c. Hence, following Theorem 1 we have (refer also to Petruzzi and Dada 1999):

Theorem 3 Under Assumptions 1 and 2, for any given ordering quantity y(≥ 0), the centralized system’s expected

total profit function Π(p, y) is unimodal in p. Hence, there exists a unique retail price p̃(y), solution of ∂Π(p,y)
∂p = 0,

which maximizes Π(p, y), and p̃(y) is non-increasing. Furthermore, Π(p̃(y), y) is concave. 2
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2.2 Optimal Decision Variable Values

Based on Theorems 2 and 3 we can determine the following optimal decision variable values:

Corollary 1 The optimal decisions for the centralized system are to charge a retail price pC , and order a quantity

yC , where (pC , yC) can be obtained from the simultaneous solutions of ∂Π(p,y)
∂p = 0 and ∂Π(p,y)

∂y = 0.

On the other hand, the optimal contract from the manufacturer’s perspective and the optimal retail response in the

decentralized system are given by:

• Retailer: Charge a retail price pD to the customers, and order yD from the manufacturer, where yD is the

solution to dπ(P (y),y)
dy = 0, and pD = P (yD).

• Manufacturer: Offer the contract (wD, bD) to the retailer, where the optimal wholesale price wD and the

optimal buy-back price bD can be determined by substituting (pD, yD) in (3).2

In what follows, we study the behavior of the optimal contract (wD, bD). As indicated before, according to Paster-

nack (1985) and Lariviere (1998), the channel-coordinating contract is independent of the demand distribution

when demand is price insensitive. Moreover, Kandel (1996), Marvel and Peck (1995), Granot and Yin (2004) and

Gurnani and Sharma (2004) provide examples of the optimality of a no buy-back contract, i.e., bD = 0, from the

manufacturer’s viewpoint. We are interested in identifying a general condition under which the distribution-free

nature of the optimal contract and/or the optimality of no buy-back contracts are valid for our multiplicative

price sensitive framework. This issue has not been analyzed before in the literature. Assuming that the optimal

solutions are interior points, we can indeed show that:

Theorem 4 The manufacturer’s optimal contract parameters are independent of the demand distribution iff the

demand elasticity η(p) = p
A+Bp , where A and B are constants, i.e., d(p)

d′(p) is linear in terms of p.

Moreover, a no buy-back contract is optimal from the manufacturer’s viewpoint iff η(p) = constant, i.e., A = 0.

In other words, bD = 0 iff d(p) is iso-elastic.2

Both results are somewhat counter-intuitive. Traditionally, buy-backs are supposed to render the manufacturer

more vulnerable to demand uncertainty, but improve its profitability, when compared to price-only contracts. The
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above result shows that (only) demand functions of the form d = constant[(p + A
B )

1
B ] or d = constant[e

p
A ] result

in distribution-free optimal buy-back contracts. In other words, for such demand functions the manufacturer can

set the optimal contract without any knowledge about the distribution of ε. Note that the optimal price-only

contracts in those scenarios might still be dependent on the distribution of ε (refer to Section 2.4). Obviously, the

optimal contract parameters for any d(p) for which d(p)
d′(p) is not linear in p will depend on the demand distribution

(e.g., d(p) = a−kln(p), a, k > 0). Though the condition in the theorem seems restrictive, many demand functions

used in the literature for studying joint pricing-inventory decisions indeed are special cases of the two demand

forms. Examples include d(p) = ap−k, a > 0, k > 1, d(p) = (a − kp)γ , a, k, γ > 05, d(p) = ae−kp, a, k > 0,

d(p) = ak−p, a > 0, k > 1 (Gilbert and Emmons, 1998; Petruzzi and Dada, 1999, 2002; Wang, et al. 2004;

Petruzzi 2004; Granot and Yin 2004). It seems that η(p) = p
A+Bp is the common thread which connects the demand

functions in the literature. However, only when d = constant[(p)
1
B ], i.e., iso-elastic d(p) = ap−k, a > 0, k > 1, it

makes sense for the manufacturer not to offer any buy-back opportunities to the retailer, and the optimal buy-

back contract becomes equivalent to a price-only contract (and even to an optimal consignment contract; refer

to Petruzzi, 2004, and Section 4). It is worthwhile to point out that when demand is multiplicative, the usual

assumption about d(p) is indeed iso-elastic (Petruzzi and Dada 1999; Wang, et al. 2004).

Since η(p) = p
A+Bp or equivalently d(p)

d′(p) = A + Bp < 0 is not too restrictive, we would assume it to hold true for

our subsequent analysis of the multiplicative demand function (rest of Section 2). In order to satisfy Assumption

2 we need A ≤ 0, B + 1 > 0. Depending on the values of A and B we can determine the following closed form

expressions for the optimal decision variables/contract parameters based on Corollary 1.

Proposition 1 For η(p) = p
A+Bp , A ≤ 0, B + 1 > 0, the optimal decision variable/contract parameter values are

given by the expressions in Table 1, where Z1 ∈ (L,U) is the unique solution of [1−F (z)] + c
A( 1

V (z) + B) = 0 and

Z2 ∈ (L,U) is the unique solution of 1 + BV (z) = 0.2

The optimal values for the most commonly used demand functions in the literature can be easily deduced by

substituting for A and B in Table 1. For example:

• If the demand function is iso-elastic, i.e., d(p) = ak−p, a > 0, k > 1, then A = 0 and B = − 1
k < 0 (1+B > 0).

• If d(p) is exponential, i.e., d(p) = ae−kp, a, k > 0, then A = − 1
k < 0 and B = 0.

5In the literature γ is usually 1, i.e., linear d(p); however, our demand form includes any γ > 0.
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Table 1: Optimal Decision Variable Values for X(p, ε) = d(p)ε and η(p) = p/(A + Bp) 

• If d(p) = (a− kp)γ , a, k, γ > 0 (γ = 1 implies linear demand), then A = − a
kγ < 0 and B = 1

γ > 0.

We only present the detailed expressions for the last case in Table 2 where Z1 ∈ (L, U) is the unique solution of

[1− F (z)]− ckγ
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Table 2: Optimal Decision Variable Values for X(p, ε) = d(p)ε and d(p) = (a – kp)γ, a, k, γ > 0 
 

2.3 Performance of the Optimal Contract

In this section we compare the optimal decision variables and profits of the decentralized system to that of the

centralized one for a multiplicative model. Furthermore, we also compare the optimal profits of the two channel

partners in the decentralized system. Let ΠC = Π(pC , yC) and ΠD = πD + ΓD = π(pD, yD) + Γ(pD, yD) be the

optimal expected total profits in the centralized and the decentralized system, respectively. In addition, assume

πD and ΓD to represent the optimal profits for the manufacturer and the retailer, respectively, in the decentralized

scenario. Then we can show that:
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Proposition 2 For η(p) = p
A+Bp , A ≤ 0, B + 1 > 0, the optimal decision variable/profit comparisons are given

by the expressions in Table 3.6 2

   

BpA

p

+
=η  

D

C

p

p
 D

C

y

y
 

D

C

Π
∏  

D

D

Γ
π  

A ≤ 0, 1 + B > 0, B ≠ 0 1
1)()1(

)()1(

1

1 <
++

+
ZVB

ZVB
 1)1(

1

>+ BB  )
2

,1(
2

)1(
1

1
e

B

B B

∈
+

+
+

 B+1  

A < 0, B = 0 1
1)(

)(

1

1 <
+ZV

ZV
 1>e  1

2
>e

 1 

 
Table 3: Comparisons of Optimal Decision Variable Values and Profits for  

X(p, ε) = d(p)ε and η(p) = p/(A + Bp)  
 

There are a number of points worth noting from the above table. First, under the condition η(p) = p
A+Bp , A ≤

0, B + 1 > 0, the decentralized system is clearly not coordinated by the optimal buy-back contract. Second, the

popular performance measures of the decentralized system, ΠC

ΠD and πD

ΓD , are independent of the distribution of ε.

Rather, the performances are influenced solely by B, the slope of the line representing d
d′ . In fact, depending on

whether B is positive or negative, either of the channel partners might be more profitable. Specifically note that:

Corollary 2 Since B ∈ (−1,∞), the ratio ΠC

ΠD lies in the range (1, e
2 ] and is unimodal. It initially increases

from 1 (ΠC

ΠD tends towards 1 as B tends towards -1), attains its maximum as B tends towards 0 (limit ΠC

ΠD , as

B → 0 = e
2 ≈ 1.359) and then decreases asymptotically approaching 1 as B tends towards ∞.

On the other hand, πD

ΓD lies in the range (0,∞) and is linearly increasing in B.2

Clearly, when d
d′ is decreasing (−1 < B < 0) like iso-elastic d(p) = ap−k, k > 1, the retailer’s profit is more than

the manufacturer. For a highly decreasing slope (B ≈ −1), which translates to lower k, the channel does not loose

much from decentralization, but almost all of it is captured by the retailer. As B increases (or equivalently k

increases), the decentralized channel becomes less efficient but the manufacturer’s relative performance improves.

When B ≈ 0, i.e., k ≈ ∞, the channel tends to loose the most from decentralization, but the two partners share

the optimal decentralized profit almost equally. In particular, when d
d′ is horizontal, i.e., B = 0, which is the

exponential demand function, the two partners make exactly equal profits and the decentralized channel is the

6When A = 0, B < 0 and (1 + B) > 0, then 1 + BV (z) = 0, which implies pC

pD = 1 + B, as evident from Table 1.
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most inefficient. The optimal centralized profit in that case is e
2 ≈ 1.359 times more than the total optimal

profit of the decentralized system. As soon as d
d′ is increasing, i.e., B > 0, like d(p) = (a − kp)γ , a, k, γ > 0, the

manufacturer becomes more profitable compared to the retailer. For small B values (high γ) the decentralized

channel is still quite inefficient. The higher the slope of d
d′ (higher B or equivalently lower γ), the more is the profit

allocation skewed towards the manufacturer, but the decentralized system as a whole starts performing better.

For B ≈ ∞, i.e., γ ≈ 0, the total decentralized channel is almost as profitable as the centralized one, but nearly

the entire profit now comes from the manufacturer. Obviously, we can once again substitute the different values

of B to evaluate the performance of the widely-used deterministic demand functions.

2.4 Illustrative Numerical Examples

Our main goal in this section is to show that many of the distribution-free properties of the optimal buy-back

contracts do not hold true for an optimal price-only contract under our setting. In the interest of space, we

just focus on a specific demand form for illustrative numerical examples. Suppose that X(p, ε) = d(p)ε, where

d(p) = 500− 20p and ε ∼ U(A,B). Moreover, c = 1, and wW , pW and yW are the optimal wholesale price, retail

price and ordering quantity for a price-only contract, respectively.

The optimal prices for both channel partners are presented in Fig. 1. The figure clearly indicates that wD

and bD are independent of the distribution, while wW is not so. However, when the demand function is almost

deterministic (the variance decreases over the horizontal axis, while the mean remains constant), the retailer will

seldom use the buy-back option even when offered, and the buy-back and price-only contracts become similar.

Hence, when variance tends towards 0, wW → wD and pW → pD. Also, we noted that yC > yD > yW , and

(yD − yW ) decreases as variance decreases. Even the optimal performances of the decentralized chain for a price-

only contract ( ΠC

ΠW and πW

ΓW , where the W superscript is for the price-only contract setting) are dependent on the

distribution of ε. So are the changes in the optimal profits for the two parties due to inclusion of buy-backs in

a price-only contract ( πD

πW , ΓD

ΓW ). We noted similar behavior when ε and/or d(p) is exponential. Obviously, when

d(p) is iso-elastic, buy-back contracts are equivalent to price-only ones since bD = 0 (Section 2.2).
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Figure 1: Optimal Prices for Buy-back & Price-only Contracts, X(p, ε) = (500−20p)ε, ε ∼ U(A,B)

3 Analysis for Additive Demand, X = (a− kp) + ε

We now shift the focus of our analysis from multiplicative to additive price sensitive stochastic demand of the

form X = d(p) + ε, where d(p) = a− kp(a > 0, k > 0) (Petruzzi and Dada 1999). We assume the mean of ε, µ, to

be positive, but not necessarily equal to 1. The retailer’s expected total profit can then be written as

Γ(p, y) = p[y − Λ(y − d)] + bΛ(y − d)− wy, (7)

where (w, b) is the contract offered by the manufacturer based on which the retailer decides on the optimal price p

and the optimal order quantity y. Chen et al. (2004) have shown that there exists a unique (p, y) which maximizes

Γ(p, y) for any IFR ε. This (p, y) must satisfy the first-order conditions ∂Γ(p,y)
∂p = 0 and ∂Γ(p,y)

∂y = 0, i.e.,

y − Λ(y − d)− kpF (y − d) + kbF (y − d) = 0 and p[1− F (y − d)] + bF (y − d)− w = 0.

We can then express the buy-back contract (w, b) in terms of optimal (p, y) as (like in Section 2):



w

b


 =




p− y−Λ(y−d)
k

p− y−Λ(y−d)
kF (y−d)


 . (8)

Substitution of the above expressions in the manufacturer’s expected profit function π(w, b) = [w(p, y) − c]y −
b(p, y)Λ(y−d) results in π(p, y) = [y−Λ(y−d)][p− yF (y−d)−Λ(y−d)

kF (y−d) ]− cy. Let z = y−d(p) be the riskless leftovers

at the end of the period. The manufacturer’s expected profit can then be rewritten as

π(p, z) = [d(p) + z − Λ(z)][p− d

k
− zF (z)− Λ(z)

kF (z)
]− c[d(p) + z]. (9)
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The overall analysis of the above profit function turns out to be considerably more complicated than multiplicative

demand. We can only conclude the following:

Theorem 5 Under the assumption ε is IFR (Assumption 1), for any given z, there exists a unique p(z) which

maximizes π(p, z). Moreover, if F (u) is uniform on (0, B), π(p(z), z) is unimodal in z.

The retailer’s optimal decisions are (pD, yD), where yD = zD+d(pD) and (pD, zD) are obtained from simultaneously

solving the first order conditions of π(p, z). On the other hand, the manufacturer’s optimal action is to offer the

buy-back contract (wD, bD), where wD = w(pD, zD) and bD = b(pD, zD) based on the transformation in (8). 2

In fact, the manufacturer’s optimal contract is now a function of the distribution of ε, even when ε ∼ U(A,B).

Since the profit function of the centralized system is similar to that of the retailer (substituting w = c and b = 0),

based on Chen et al. (2004) we can determine the unique optimal decisions, pC and yC . However, when we

compare the optimal decisions and profits of the centralized and decentralized systems, none of the interesting

insights of the multiplicative demand hold true anymore (Granot and Yin, 2004, also indicate likewise).

Illustrative Numerical Examples

Fig. 2 uses X(p, ε) = (500−20p)+ ε, ε ∼ U(A,B) and c = 1. The notation for the price-only contract remains the

same as in Section 2.4. Clearly, the optimal buy-back price is positive and wD, bD and wW are now all dependent

on A and B. Though we do not show, ΠC

ΠD and πD

ΓD are also functions of the stochasticity of the demand function.

It seems that the manufacturer can retain its “leadership” in terms of profit (πD

ΓD > 1). Moreover, pD > pW > pC

and wW < wD (yC > yD > yW also holds true). Obviously, as the variance tends to zero, the optimal buy-back

and price-only contracts start becoming similar.

4 Concluding Discussion

In this paper, we have investigated a buy-back contract for a serial two-echelon decentralized supply chain. The

newsvendor retailer in our setting faces price sensitive stochastic demand, while the manufacturer is the Stackelberg

leader offering the contract. Our analysis is able to shed light on a number of structural properties of the optimal

contract. Specifically, we are able to identify the major role that the form of the deterministic part of the demand
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Figure 2: Optimal Prices for Buy-back/Price-only Contracts, X(p, ε) = (500−20p)+ε, ε ∼ U(A,B)

plays in shaping some of the properties. All our results have been developed for a comprehensive family of

uncertainty distributions satisfying the mild condition of non-decreasing hazard rate.

We focus most of our analysis on a multiplicative demand form. In this particular framework our main results

are as follows:

• We prove that the profit functions for both parties are unimodal for quite a general form of the riskless

(deterministic) part of the demand function, d(p). In fact, the price-dependent demand induces the man-

ufacturer’s profit function to be quite well-behaved compared to price insensitive settings. Moreover, note

the transformation technique of (3). This enables us to considerably streamline the overall analysis of the

paper by focussing on the “inverse” problem of the manufacturer’s profit function. Our experience suggests

that this technique can be a powerful analytical tool in solving similar multi-echelon supply chain prob-

lems, especially where both echelons have the same number of decision variables (refer also to Lariviere and

Porteus, 2001).

• The manufacturer’s optimal contract decisions are independent of the uncertainty of customer demand iff

the elasticity of the demand function is of the form p
A+Bp , where A(≤ 0) and B(B + 1 > 0) are constants.

Most of the widely-used demand functions in the literature satisfy the condition, a common trait that has

not been reported before. However, counter-examples are also not rare, e.g., d(p) = a−kln(p), a, k > 0. The

advantage of the distribution-free property is the fact that a manufacturer can design an optimal contract
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for multiple independent retailers based only on the form of their riskless demand functions, and without

any knowledge of their market uncertainty. However, note that if the manufacturer is going to offer the

contract based on this information, it means that it is acceptable to the particular manufacturer to enter

into a contract without exactly knowing what the optimal profit would be, since the manufacturer’s profit

is still dependent on the extent of uncertainty (Lariviere 1998; Tsay, et al. 1998). Even when buy-back

contracts are distribution-free, the optimal wholesale price in relatively simpler price-only contracts might

be dependent on the demand distribution. Hence, quite interestingly, buy-backs simultaneously expose and

shield the manufacturer from the effects of demand uncertainty.

• There is only one riskless demand function, iso-elastic, under which the value of the distribution-free optimal

buy-back price is zero. That is, only for an iso-elastic d(p) the manufacturer would not offer any buy-back

opportunities to the retailer even when allowed to do so and buy-back contracts become equivalent to price-

only ones. Petruzzi (2004) has shown that iso-elastic riskless demand is also the only scenario when optimal

price-only contracts are equivalent to optimal consignment contracts of Wang, et al. (2004), i.e., the two

channel partners make the same profit from both contracts and the price charged to the consumers are

the same. Hence, if (and only if) the riskless demand in a multiplicative price sensitive setting is of the

iso-elastic form, the three contracts - price-only, buy-back and consignment - are equivalent. Under that

condition managers of both parties are indifferent to the type of contract in use.

• As explained in Section 2.3, the optimal performances (ΠC

ΠD and πD

ΓD ) of the distribution-free optimal buy-

back contracts are also distribution-free. They are driven only by the form of the riskless demand function,

especially the slope of d
d′ , i.e., B ∈ (−1,∞). The retailer is better off when the slope is decreasing, while

the manufacturer is better off for an increasing slope (they make exactly equal profit when B = 0). On

the other hand, the total decentralized channel makes almost the same profit as the centralized one for

extreme values of B, i.e., ≈ −1 or ≈ ∞, but is most inefficient for a horizontal d
d′ , i.e., B = 0. Note that

for price-only contracts the stochasticity of the demand function normally plays a more active role in the

optimal performances. Moreover, as per Wang, et al. (2004), the performance of the optimal consignment

contract is not affected much by the value of B. For example, in that case the retailer is always better

off compared to the manufacturer, irrespective of the value of B. Hence, the form of the riskless demand

function might be more relevant in buy-back contract settings than consignments.
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• It is worthwhile to point out that many of the distribution-free properties mentioned above can be determined

by solving a deterministic wholesale price only contract. Specifically:

Theorem 6 If η(p) = p
A+Bp(A ≤ 0, B + 1 > 0), and X(p, ε) = d(p)ε (IFR ε), the optimal wholesale

price, and the optimal ratio of the profits between the manufacturer and the retailer as well as that between

the centralized and the total decentralized system for the buy-back contract are equivalent to those for the

corresponding optimal price-only contract for a deterministic model.

In particular, the optimal wholesale price for the buy-back contract is exactly the same as the optimal retail

price for the deterministic price-only contract.2

But the optimal wholesale prices for price-only contracts are not equivalent in price sensitive and insensitive

settings even if η(p) = p
A+Bp (except when A = 0).

Three remarks are in order here. First, all our results hold true for any IFR ε. In fact, while we assume that ε

is IFR, this particular property is only used for proving the unimodality of the profit functions, not the insights.

Hence most of our results will hold true for multiplicative demand even if ε is not IFR, as long as there are unique

optimal decision variables for both parties and the riskless demand function is “well-behaved”. Second, while

operations literature tends to thrive on analyzing the effects of uncertainty, for certain stochastic buy-back models

the deterministic price-sensitive part might be the driver of many of the insights. Hence, manufacturers need to

understand (maybe empirically) the form of the riskless part under these circumstances. It has implications in

terms of what type of contract to offer, the role of uncertainty, as well as the profit allocation and the channel

efficiency. Third, we would like to reiterate our contributions compared to Granot and Yin (2004, G&Y). G&Y’s

model setting and objective are indeed similar to ours. However, their analysis is based on specific forms of d(p)

- iso-elastic, linear and exponential - and ε ∼ U(0, 2). Evidently, our analysis is considerably more general. In

addition, our distinguishing contributions are: i) characterizing the profit functions for both channel partners for

a quite general d(p) and any IFR ε, ii) developing the necessary and sufficient conditions under which the optimal

buy-back contract demonstrate certain specific structural properties (e.g., distribution-free or no buy-back), iii)

identifying the parameter (B) which drives the performance of the decentralized chain, iv) equivalence result in

Theorem 6 for stochastic buy-back contracts and deterministic price-only contracts under certain forms of d(p)

and any IFR ε, and v) the transformation technique which greatly simplifies the analysis.
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4.1 Future Research Opportunities

The most important extension to our modelling framework would be to investigate the performance of an optimal

buy-back contract when the random component of the demand is an additive term to the deterministic part. We

have shown that none of the major insights from the multiplicative structure remain valid under that scenario.

Obviously, demand uncertainty then becomes an integral component of the optimal decisions for both parties.

As Petruzzi and Dada (1999) have pointed out, any change in price affects the two most common measures of

uncertainty, variance and coefficient of variation, differently for additive and multiplicative demand functions. This

naturally entails some structural differences in the behavior of the two models, which need to be studied. It might

also be argued that analysis of buy-backs makes greater sense when the risk-profiles (averseness) of the parties are

taken into consideration, rather than in risk-neutral frameworks. Similarly, it is important to understand whether

our results remain valid in presence of competition and/or for multi-period models.

Appendix

Proof of Lemma 1:

We need to show that V ′(z) < 0, i.e., (1 − F )
∫ z
0 uf(u)du − (1 − Θ)zf < 0. By (2), the above inequality is

equivalent to [1− zr(z)]
∫ z
0 uf(u)du − z2f < 0. Since [1 − zr(z)]

∫ z
0 uf(u)du − z2f at z = L is −L2f(L)(< 0), in

order to prove this inequality, it is sufficient to show that the first derivative of the left hand side is non-positive,

i.e., −(r + zr′)
∫ z
0 uf(u)du− zf − z2(1− F )r′ ≤ 0. This is obviously true. 2

Proofs of Theorems 1 and 3:

We first show that for any given y(≥ 0), there is a unique p(y) which maximizes Γ(p, y). Taking partial derivative

with respect to p and using (2), we get

∂Γ(p, y)
∂p

= d(p)
∫ y

d(p)

0
uf(u)du{V (

y

d(p)
) + (p− b)

d′

d
}.

It is easy to check that if y
d(p) ≤ L, Γ(p, y) is increasing with respect to p. Hence, without loss of generality, we

assume that y
d(p) > L in the following analysis. From Assumption 2, we know that d

d′ is monotone, hence d′
d is

also monotone. In the following, we consider two cases.
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Case 1: d′
d is non-decreasing.

From Lemma 1 we know that V (z) is non-increasing for z ∈ (L,+∞). We can see that (p − b)d′
d = pd′

d − bd′
d is

non-increasing as pd′
d is non-increasing by Assumption 2. Hence, for any given y, there exists a unique p(y) which

maximizes Γ(p, y). As p(y) satisfies

V (
y

d(p)
) + p

d′

d
− b

d′

d
= 0, (10)

taking derivative with respect to y on both sides, we get {V ′( y
d(p))(− yd′

d(p)2
) + (pd′

d )′ − b(d′
d )′}p′ + V ′( y

d(p))
1

d(p) = 0.

Hence, p′ ≤ 0, i.e., p(y) is non-increasing on (0, +∞). Rewriting the above equation about p′, we get y
d(p(y)) is

non-decreasing on (0, +∞), i.e., 1
d − d′y

d2 p′ ≥ 0.

Taking the derivatives of Γ(p(y), y) with respect to y, we get dΓ(p(y),y)
dy = p[1−F (y

d)]+ bF (y
d)−w and d2Γ(p(y),y)

dy2 =

p′[1− F (y
d)]− f(y

d)(p− b){1
d − d′y

d2 p′} < 0. The last inequality results from 1
d − d′y

d2 p′ ≥ 0 and p(y) ≥ b by (10).

Case 2: d′
d is non-increasing: Note that both V (z) and d′

d are non-increasing. The remaining proof of this case is

almost identical to the first case, and hence is not shown.

The proof of the centralized system is exactly the same as above with b = 0 and w = c.2

Proof of Theorem 2:

As ∂π(p,y)
∂p = d(p)

∫ y
d(p)

0 uf(u)du{[1+( d
d′ )

′]V ( y
d(p))+1+pd′

d }, under Assumption 2, we can see that [1+( d
d′ )

′]V ( y
d(p))+

1 + pd′
d is decreasing with respect to p. Hence, for any given y there exists a unique P (y) which maximizes

π(p, y). As in Theorem 1, we can show that P (y) is non-increasing and y
d(P (y)) is non-decreasing on (0, +∞). As

dπ(P (y),y)
dy = [1− F ( y

d(p))](P + d
d′ )− c, under Assumption 2, it is clear that d2π(P (y),y)

dy2 ≤ 0. 2

Proof of Theorem 4:

From the first order conditions of π(p, y), i.e., ∂π(p,y)
∂p = 0 and ∂π(p,y)

∂y = 0, we get

V = −1 + pD d′
d

1 + ( d
d′ )

′ and F = 1− c

pD + d
d′

.

Note that at optimality both V and F are functions of pD. By (3), bD is constant iff pD + d
d′V is constant.

Substituting the above expression of V , we get bD = pD −
d
d′+pD

1+( d
d′ )

′ . Clearly, bD is a constant iff the first derivative

of the above function is zero, i.e.,

(
d

d′
)′′(pD +

d

d′
) = 0. (11)
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Similarly, wD is a constant iff the following condition is satisfied.

(
d

d′
)′′(pD +

d

d′
− c) = 0. (12)

From the above discussion, the sufficient condition is obvious. Now we show the necessary part. As pD is a

function of the distribution F (this can be easily shown to be true using uniform distribution) and not a constant,

bD is distribution-free iff (11) is satisfied, and wD distribution-free iff (12) is satisfied. If (11) is satisfied, we claim

that ( d
d′ )

′′ = 0. Suppose that ( d
d′ )

′′ is non-zero on some open interval, then we get p+ d
d′ = 0 on this interval. This

is a contradiction. Hence, we get d
d′ is linear in terms of p. Similarly, if (12) is satisfied, we also get d

d′ is linear in

terms of p.

The optimality of no buy-back, i.e., bD = 0, is a special case of the above. Note that bD = pD −
d
d′+pD

1+( d
d′ )

′ . Since

d
d′ = A + BpD, bD = −A

1+B . Hence, bD = 0 only when A = 0. 2

Proof of Proposition 1:

First we focus on the case A,B 6= 0. It is obvious that the optimal (pD, yD) should satisfy the first order conditions

(FOCs) ∂π(p,y)
∂p = 0 and ∂π(p,y)

∂y = 0. When d(p)
d′(p) = A + Bp < 0, A ≤ 0, B + 1 > 0, the FOCs ((5) and (6)) result in

[1 + B]V (
y

d
) + 1 +

p

A + Bp
= 0 and (1− F (

y

d
))[(B + 1)p + A]− c = 0. (13)

From the first equation in (13), we get p = − A
(1+B)

(1+B)V ( y
d
)+1

(1+BV ( y
d
))

. Substituting this into the second equation in (13),

we get [1−F (y
d)]+ c

A [B+ 1
V ( y

d
)
] = 0. As V (z) is non-increasing, it is then easy to show that the above equation has

an unique solution Z1 on (L,U). Hence, yD

d(pD)
= Z1 and pD = − A

(1+B)
(1+B)V (Z1)+1
(1+BV (Z1)) . Obviously, yD = d(pD)Z1.

Note that the transformation in (3) now simplifies to



w

b


 =




p + (A + Bp)F ( y
d(p))V ( y

d(p))

p + (A + Bp)V ( y
d(p))


 . (14)

Substituting pD into the second equation in (13), we get F (Z1) = 1 + c
A

1+BV (Z1)
V (Z1) . Then, substituting the

expressions of both pD and F (Z1) into the first equation in (14), we get the expression for wD in Table 1. On

the other hand, based on the first equation in (13) and the second equation in (14), we get the expression for bD.

The expressions for pC and yC can be deduced similarly. However, the first order conditions would be

V (
y

d
) +

p

A + Bp
= 0 and (1− F (

y

d
))p− c = 0, (15)

though the optimal Z1 is still the solution of [1− F (z)] + c
A [B + 1

V (z) ] = 0.
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The case B = 0 follows directly from the above though we need to be a bit careful about the the expression of d,

which results in exponential demand function. However, when A = 0 the proof is somewhat different. The first

order conditions are then

(1 + B)(1 + BV (
y

d
)) = 0 and (1− F (

y

d
))p(1 + B)− c = 0. (16)

Since we know that (1 + B) > 0 so from the first equation we get that Z2 is the solution to 1 + BV (z) = 0.

The expression for pD comes directly from the second equation by substituting Z2. The expressions for yD, wD

and bD then follows (e.g., since bD = p + BpV and BV = −1, bD = 0). In the centralized case also the optimal

Z2 is the solution to 1 + BV (z) = 0 and pC can be directly obtained by substituting Z2 in ∂Π(p,y)
∂y = 0, i.e.,

p(1− F (Z2))− c = 0. Obviously, yC = d(pC)Z2.2

Proof of Proposition 2:

All the ratios for pC

pD follow from Table 1. As far as yC

yD is concerned, first let us focus on the case when A,B 6= 0.

We know that in that case the general demand function can be written in the form d(p) = constant[(p+ A
B )

1
B ]. So

we focus on the term (p + A
B ). Substituting the expressions for pC and pD from Table 1 we can easily show that:

pD +
A

B
=

A

B(1 + B)(1 + BV (Z1))
and pC +

A

B
=

A

B(1 + BV (Z1))
. (17)

This implies that yC

yD = (1 + B)
1
B . As far as the comparison between the profit functions of the channel partners

are concerned, let us substitute wD and bD from Table 1 in the retailer’s profit function (1) and simplify using

the relations in (2). Then we get (recall that d
d′ = A + Bp), Γ(pD, yD) = 1

1+B π(pD, yD), where Γ(p, y) and π(p, y)

are given by the expressions in (1) and (4), respectively. Hence, πD

ΓD = 1 + B.

Now we compare ΠC and ΠD. Note that yD

d(pD)
= yC

d(pC)
= Z1; hence, ΠC

ΠD = pCd(pC)[1−Θ(Z1)]−cyC

pDd(pD)[1−Θ(Z1)]−cyD = yC

yD

( pC

Z1
[1−Θ(Z1)]−c)

( pD

Z1
[1−Θ(Z1)]−c)

.

By substituting the expressions for pC , pD and yC

yD into the above ratio expression (note that from the first order

conditions we know that 1+BV (Z1)
AV (Z1) = −1−F (Z1)

c ), we get

ΠC

ΠD
= (1 + B)

1
B

1−Θ(Z1)
[1−F (Z1)]Z1

− 1
[1−Θ(Z1)][1+(1+B)V (Z1)]
[1−F (Z1)]Z1(1+B)V (Z1) − 1

.

Further simplifications using the relations in (2) result in

ΠC

ΠD
= (1 + B)

1
B

∫ Z1
0 uf(u)du

∫ Z1
0 uf(u)du + 1−Θ(Z1)

(1+B)V (Z1)

.

Now from the definition of V (z) in Lemma 1, we know that 1−Θ(Z1)
V (Z1) =

∫ Z1
0 uf(u)du. Hence, ΠC

ΠD = (1+B)
1+ 1

B

2+B .
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The proof for A = 0, 1 + B > 0, B < 0 is exactly the same as above except that the first order condition is

1 + BV (Z2) = 0 and we should take proper note of the optimal prices from Table 1. When A < 0, B = 0, the

demand function would be of the form d(p) = constant[e
p
A ]. The optimal retail prices, pC and pD, from Table 1

then result in yC

yD = e. We can then use the same technique to prove the expressions for πD

ΓD and ΠC

ΠD .2

Proof of Theorem 5:

Note that z − Λ = µ − Θ, zF − Λ =
∫ z
0 uf(u)du and µ − Θ =

∫ z
0 uf(u)du + z[1 − F ]. Let T (z) =

∫ z

0
uf(u)du

F (z) . By

using the above expressions, we get (9). For any given z, taking the partial derivatives of π(p, z) with respect to

p, we get ∂π(p,z)
∂p = −k[2p − a

k − T (z)
k ] + 2[µ − Θ(z) + d(p)] + kc and ∂2π(p,z)

∂p2 = −4k. Thus, for any given z there

exists a unique p(z) which maximizes π(p, z), where

p(z) =
1
4k

[(3a + kc) + 2(µ−Θ) + T (z)] and p′ =
1
4k

[2(1− F ) + T ′]. (18)

Differentiating the manufacturer’s expected profit π(p(z), z) and substituting the above p(z), we get dπ(p(z),z)
dz =

1
4k [(a− kc) + 2(µ−Θ)− T ][2(1− F )− T ′]− cF . If dπ(p(z),z)

dz = 0,

(a− kc) + 2(µ−Θ)− T =
4kcF

2(1− F )− T ′
. (19)

Thus, d2π(p(z),z)
dz2 |{ dπ(p(z),z)

dz
=0} = 1

4k[2(1−F )−T ′]{[2(1 − F ) − T ′]3 − 8kcf − 4kcFT ′′ + 4kcfT ′}. In particular, if F is

uniform on (0, B),
d2π(p(z), z)

dz2
|{ dπ(p(z),z)

dz
=0} =

1
4k(3

2 − 2
B z)

{[3
2
− 2

B
z]3 − 6kc

B
}. (20)

From (19), we get 2(µ − Θ) − T ≤ 4kcF
2(1−F )−T ′ . If F is uniform on (0, B), this equation simplifies as (3

2 − 2
B z)2 ≤

4kc
B . Substituting this into (20) and noting that 3

2 − 2
B z > 0 from (19), we get d2π(p(z),z)

dz2 |{ dπ(p(z),z)
dz

=0} ≤
1

4k( 3
2
− 2

B
z)

[−8kc
B z] < 0. 2

Proof of Theorem 6:

In a deterministic setting with price-only contracts the profit function for the retailer, for a given wholesale price

w, can be written as Γ(p) = (p − w)d(p). For d
d′ = A + Bp, A ≤ 0, B + 1 > 0, we can show that dΓ

dp = 0 has

a unique solution and the optimal retail price (for a given w) is given by p(w) = w−A
B+1 or w(p) = A + (B + 1)p.

Replacing it into the manufacturer’s profit function, we have π(p) = (w(p) − c)d(p). Differentiating this with

respect to p and equating to zero we can show that the optimal retail price is given by p∗ = c−A(B+2)
(B+1)2

. Replacing

it in w(p), we obtain the optimal wholesale price for a price-only contract in a deterministic setting as w∗ = c−A
B+1 ,
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same as wD. The ratio between the retailer’s and the manufacturer’s optimal profit in a deterministic price-only

contract setting is equivalent to w∗−c
p∗−w∗ . Substituting the values of p∗ and w∗, and simplifying we get the ratio to

be (1+B). We can also show that the centralized system in the deterministic price-only case results in the unique

optimal retail price of p̃∗ = c−A
B+1 = w∗ = wD. The comparison between the optimal profits of the centralized and

decentralized system in the deterministic price-only case is given by (p̃∗−c)d(p̃∗)
(p∗−c)d(p∗) . Note that when A < 0, B +1 > 0,

d = constant[(p + A
B )

1
B ]. Substituting the values of p̃∗ and p∗ and simplifying we get the ratio as (1 + B)

1
B

1+B
2+B .2
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