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46, rue Barrault, 75634 Paris Cedex 13 - France

lobstein@infres.enst.fr

Submitted: Jan 31, 2006; Accepted: Dec 21, 2006; Published: Jan 29, 2007
Mathematics Subject Classification: 05C75, 05C35

Key Words: Graph Theory, Identifying Codes, Trees, Paths

Abstract

Consider a connected undirected graph G = (V,E), a subset of vertices C ⊆ V ,
and an integer r ≥ 1; for any vertex v ∈ V , let Br(v) denote the ball of radius r

centered at v, i.e., the set of all vertices linked to v by a path of at most r edges.
If for all vertices v ∈ V , the sets Br(v) ∩C are all nonempty and different, then we
call C an r-identifying code. A graph admits at least one r-identifying code if and
only if it is r-twin-free, that is, the sets Br(v), v ∈ V , are all different.

We study some structural problems in r-twin-free graphs, such as the existence
of the path with 2r + 1 vertices as a subgraph, or the consequences of deleting one
vertex.
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1 Introduction

Given a connected, undirected, finite graph G = (V, E) and an integer r ≥ 1, we define
Br(v), the ball of radius r centered at v ∈ V , by

Br(v) = {x ∈ V : d(x, v) ≤ r},

where d(x, v) denotes the number of edges in any shortest path between v and x.
Whenever d(x, v) ≤ r, we say that x and v r-cover each other (or simply cover if there

is no ambiguity). A set X ⊆ V covers a set Y ⊆ V if every vertex in Y is covered by at
least one vertex in X.

Two vertices v1, v2 ∈ V such that Br(v1) = Br(v2) are called r-twins or twins. If G
has no r-twins, that is, if

∀ v1, v2 ∈ V (v1 6= v2), Br(v1) 6= Br(v2), (1)

then we say that G is r-twin-free or twin-free.
A graph with one vertex is trivially twin-free, and generally we consider graphs with

at least two vertices.
Twin-free graphs are of interest because they are strongly connected with identifying

codes, which we now define.
A code C is a nonempty set of vertices, and its elements are called codewords. For

each vertex v ∈ V , we denote by

KC,r(v) = C ∩ Br(v)

the set of codewords which r-cover v. Two vertices v1 and v2 with KC,r(v1) 6= KC,r(v2)
are said to be r-separated, or separated, by code C.

A code C is called r-identifying, or identifying, if the sets KC,r(v), v ∈ V , are all
nonempty and distinct [11]. In other words, all vertices must be covered and pairwise
separated by C.

Remark 1. For given G = (V, E) and integer r, the graph G admits at least one r-
identifying code if and only if it is r-twin-free. Indeed, if for all v1, v2 ∈ V , Br(v1) and
Br(v2) are different, then C = V is r-identifying. Conversely, if for some v1, v2 ∈ V ,
Br(v1) = Br(v2), then for any code C ⊆ V , we have KC,r(v1) = KC,r(v2). This is why
r-twin-free graphs are also called r-identifiable. For instance, there is no r-identifying
code in a complete graph (or clique) with at least two vertices.

Remark 2. If G is not connected, we simply consider each of its connected components,
and apply the above definitions.

We recall that an induced subgraph of G = (V, E) is a graph G1 = (V1, E1) where V1 ⊆ V
and E1 is the set of edges in E which have both ends in V1, whereas a subgraph is a graph
G2 = (V2, E2) where V2 ⊆ V and E2 is included in the set of edges in E which have both
ends in V2.
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For X ⊆ V , we denote by GX the induced subgraph with vertex set V \ X, and for
x ∈ V , we set Gx = G{x}.

In the following, n will denote the number of vertices of G. For any integer q > 0, Pq

will denote the path on q vertices, and the length of Pq will be equal to q − 1, its number
of edges. Moreover, if v1, v2, . . ., vq denote the vertices in Pq, we shall assume that these
vertices are numbered in such a way that the edges in Pq are {vi, vi+1} for 1 ≤ i < q. The
cycle of length q, Cq, with q vertices and q edges, consists of Pq to which we add the edge
{vq, v1}.

The motivations for identifying codes come, for instance, from fault diagnosis in multipro-
cessor systems. Such a system can be modeled as a graph where vertices are processors
and edges are links between processors. Assume that at most one of the processors is
malfunctioning and we wish to test the system and locate the faulty processor. For this
purpose, some processors (constituting the code) will be selected and assigned the task
of testing their neighbourhoods (i.e., the vertices at distance at most r). Whenever a
selected processor (i.e., a codeword) detects a fault, it sends an alarm signal, saying that
one element in its neighbourhood is malfunctioning, and we require that we can uniquely
tell the location of the malfunctioning processor based only on the information which ones
of the codewords gave the alarm.

Identifying codes were introduced in [11], and they constitute now a topic of their own,
studied in a large number of various papers, investigating particular graphs or families
of graphs (such as certain infinite regular grids, trees, chains, cycles, or the k-cube),
dealing with complexity issues, or using heuristics such as the noising methods for the
construction of small codes. See, e.g., [2], [3], [4], [5], [6], [10], [13], and references therein,
or [14].

In Section 2, we show that any connected r-twin-free graph contains the path P2r+1 as a
subgraph; we conjecture that any connected r-twin-free graph contains the path P2r+1 as
an induced subgraph (and we prove this for the path Pr+2).

In Section 3, we study the consequences of the deletion of a vertex in a connected
r-twin-free graph; the results differ according to the values of r. In particular, we prove
that all connected r-twin-free graphs remain r-twin-free after deleting one appropriate
vertex when r = 1, and that the same is true for all trees, except P2r+1.

Some of these results were already stated without proofs in [7].

2 The existence of P2r+1 in r-twin free graphs

In this section, we prove that any connected r-twin-free graph G contains P2r+1 as a
subgraph, for all r ≥ 1. We conjecture that G even contains P2r+1 as an induced subgraph,
and prove it for Pr+2.

Theorem 1 Let r ≥ 1 and G be any connected r-twin-free graph with at least two vertices.
Then P2r+1 is a subgraph of G.
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Figure 1: The path P ∗ is in dashed line, the path Pr+1 is in plain line.

Proof. Let G fulfill the conditions of Theorem 1. Consider a longest path P ∗ of G, with
p vertices, v1, v2, . . . , vp, and assume that p ≤ 2r. We set q = ⌊p/2⌋.

Since G is r-twin-free, for any two vertices w and z, there is at least one vertex which
r-covers exactly one of them; we shall say that such a vertex separates w and z.

It is easy to check that the vertices of P ∗ cannot separate vq and vq+1, because the
length of P ∗ is too small. Therefore, there is a vertex x /∈ P ∗ which separates vq and vq+1.
Then two cases occur.

Case (1): x covers vq, not vq+1.
Thus we have d(x, vq) ≤ r and d(x, vq+1) ≥ r + 1. Since vq and vq+1 are adjacent, we

have d(x, vq) = r and d(x, vq+1) = r + 1. Let Pr+1 be a path of length r between x and
vq. The paths P ∗ and Pr+1 have at least vq in common. Let vk be the vertex belonging
simultaneously to P ∗ and Pr+1, and which is the closest to x (see Figure 1): the vertices
of Pr+1 between x (included) and vk (excluded) do not belong to P ∗. We have now two
subcases, according to the value of k with respect to q.

Subcase (1.a): 1 ≤ k ≤ q:
vk is on P ∗ between v1 and vq (see Figure 1.a). Consider the path P obtained by the

concatenation of the part of Pr+1 between x and vk and the part of P ∗ between vk and vp

(note that, thanks to the definition of vk, there is no cycle and P is indeed a path; this
will also hold in all other cases). The length of P is at least r + p − q = r + ⌈p/2⌉ (there
are r edges from x to vq and p − q edges from vq to vp); hence a contradiction: P would
be longer than P ∗ (the length of P ∗ is equal to p − 1 and we assumed that p is less than
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Figure 2: The path P ∗ is in dashed line, the path Pr+1 is in plain line.

2r + 1).

Subcase (1.b): q + 1 ≤ k ≤ p:
Now vk is on P ∗ between vq+1 and vp (see Figure 1.b; it is obvious that k cannot

be equal to q + 1, but this does not matter). Consider the path P obtained by the
concatenation of the part of P ∗ going from v1 to vk and the part of Pr+1 going from vk

to x. The length of P is greater than or equal to q + r + 1: there are q edges from v1 to
vq+1 and at least r + 1 edges from vq+1 to x, since d(x, vq+1) = r + 1. So P is longer than
P ∗, a contradiction with the definition of P ∗.

Case (2): x covers vq+1, not vq.
As vq and vq+1 play similar roles if p is even, we may assume that p is odd; otherwise,

see Case (1). Hence, p = 2q + 1. Similarly to Case (1), we have d(x, vq) = r + 1 and
d(x, vq+1) = r. As above, let Pr+1 be a path of length r between x and vq+1 and let vk

be the vertex belonging simultaneously to P ∗ and Pr+1, and which is the closest to x (see
Figure 2). Again, we have two subcases, according to the value of k with respect to q.

Subcase (2.a): 1 ≤ k ≤ q:
vk is on P ∗ between v1 and vq (see Figure 2.a; similarly to Subcase (1.b), k cannot

be equal to q, but this still does not matter). Consider the path P obtained by the
concatenation of the part of Pr+1 between x and vk and the part of P ∗ between vk and vp.
Because d(x, vq) = r + 1, the length of P is greater than or equal to r + 1 + p − q, which
is greater than the length of P ∗, hence a contradiction.

Subcase (2.b): q + 1 ≤ k ≤ p:
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Now vk is on P ∗ between vq+1 and vp (see Figure 2.b). Consider the path P obtained
by the concatenation of the part of P ∗ going from v1 to vk and the part of Pr+1 going
from vk to x. The length of P is greater than or equal to q + r (there are q edges from
v1 to vq+1 and at least r edges from vq+1 to x, since d(x, vq+1) = r). So P is again longer
than P ∗, a contradiction.

So we have seen that in all cases, P ∗ contains at least 2r + 1 vertices. △

As an immediate consequence, we obtain a result which was proved in [12].

Corollary 2 [12, Prop. 4.1] Let r ≥ 1 and G be any connected r-twin-free graph with
n > 1 vertices. Then we have n ≥ 2r + 1. △

The bound of Corollary 2 is the best possible, since, for any r ≥ 1, the paths Pn are
r-twin-free for any n ≥ 2r + 1 (see [2] for a study of r-identifying codes on paths). We
conjecture that a statement stronger than that in Theorem 1 holds:

Conjecture 3 Let r ≥ 1 and G be any connected r-twin-free graph with at least two
vertices. Then P2r+1 is an induced subgraph of G.

This conjecture is true for r = 1, as we now show, using the following lemma.

Lemma 4 Let r ≥ 1 and G be any connected r-twin-free graph with at least two vertices.
Then Pr+2 is an induced subgraph of G.

Proof. Consider two distinct vertices a and b with d(a, b) = 1. Since they are not twins,
there exists (without loss of generality) a vertex x (x 6= b) such that x ∈ Br(b) and
x /∈ Br(a). Because a and b are adjacent, we have d(b, x) = r and d(a, x) = r + 1, which
means that a and any vertices forming a shortest path between b and x constitute a path
with r + 2 vertices and no chord. △

Corollary 5 Let G be any connected one-twin-free graph with at least two vertices. Then
P3 is an induced subgraph of G. △

3 Induced subgraphs with one vertex less

Let r ≥ 1 and G = (V, E) be a connected, r-twin-free graph with at least two vertices;
we say that G is r-terminal if for all vertices x ∈ V , Gx is not r-twin-free, and that G is
not r-terminal if there exists a vertex x ∈ V such that Gx is r-twin-free. We denote by
Tr the set of r-terminal graphs.

Thanks to Corollary 2, we need only to consider graphs with n ≥ 2r + 1. Using
Theorem 1, it is easy to see that if n = 2r+1, the only r-twin-free graph is the path P2r+1,
for r ≥ 1, and the only r-terminal graph is P2r+1, for r > 1 (the case of P3 is particular,
because removing the middle vertex yields two isolated vertices which constitute a one-
twin-free graph — see Remark 2).

In this section, we address the following issue: are the paths P2r+1 (with the exception
of P3) the only r-terminal graphs?
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The answer to this question is multifold: it is positive if r = 1 (Corollary 7), or if we
restrict ourselves, for any r, to trees (Corollary 11); it is negative if r ≥ 3 (Theorem 12).
The case r = 2 remains open.

3.1 The case r = 1

The following lemma can be found in [1], [9], [8].

Lemma 6 Let n ≥ 3 be an integer, and G be any connected one-twin-free graph with n
vertices. Then there exists a one-identifying code in G with n − 1 vertices.

Proof. We refer to [9], which gives an elegant proof of a more general result. △

An easy consequence of Lemma 6 is that T1 = ∅:

Corollary 7 Let n ≥ 3 be an integer, and G = (V, E) be any connected one-twin-free
graph with n vertices. Then G is not one-terminal.

Proof. If n = 3, G = P3, so we can assume that n ≥ 4. By Lemma 6, there is a
one-identifying code C of size n − 1 in G. Consider Gx with {x} = V \ C (Gx may be
connected or not); obviously, C is still one-identifying in Gx, because removing x does
not cut connexions of length r (= 1) between pairs of vertices not containing x itself (this
explains why the cases r = 1 and r > 1 are different). Therefore, Gx is one-twin-free. △

The following theorem sharpens Corollary 7.

Theorem 8 Let n ≥ 4 be an integer, and G = (V, E) be any connected one-twin-free
graph with n vertices. Then there exists a vertex x ∈ V such that Gx is one-twin-free and
connected.

Proof. In this proof, we use twin, twin-free and terminal for one-twin, one-twin-free and
one-terminal, respectively. By Corollary 7, we know that G is not terminal. If Theorem 8
were not true, let G = (V, E) be the smallest counter-example, that is, G satisfies:

(i) G is connected,
(ii) G is twin-free,
(iii) for all x ∈ V , Gx twin-free ⇒ Gx not connected,
(iv) n ≥ 4, and
(v) among all graphs satisfying (i)–(iv), |V | is the smallest possible.

We show that such a graph cannot exist.
Let x ∈ V be such that Gx is twin-free (such a vertex x exists because G is not

terminal). By (iii), Gx consists of at least two connected components, F and H , see
Figure 3.

If G is a star centered at x with at least four vertices, i.e., G = (V, E) where V =
{x, v1, . . . , vn−1}, E = {{x, vi} : 1 ≤ i ≤ n−1}, 4 ≤ n, then for any i between 1 and n−1,
Gvi

is twin-free and connected, contradicting (iii). Threrefore we assume from now on
that at least one connected component in Gx, say H , has at least two vertices.
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Figure 3: The vertex x and the connected components of Gx.

Step 1. We show that there are at least two edges between x and H . Assume on the
contrary that there is only one, say {x, y} (see Figure 3).

We construct the graph G′ = (V ′, E ′) by contracting the vertices x and y into one
vertex xy: V ′ =

(

V \ {x, y}
)

∪ {xy}, E ′ =
(

E \ {{x, y}} \ {{x, t} : {x, t} ∈ E} \ {{y, t} :
{y, t} ∈ E}

)

∪ {{xy, t} : {x, t} ∈ E or {y, t} ∈ E}.
It is easy to see that G′ is connected and twin-free, because G is. We now show that

G′ satisfies (iii). Let z ∈ V ′ be such that G′
z is twin-free (such a z exists, because, by

Corollary 7, G′ is not terminal).
If z = xy, then G′

z is not connected.
If z 6= xy, Gz is twin-free, because G′

z is. Then, by (iii), Gz is not connected. This in
turn implies that G′

z is not connected.
Therefore G′ satisfies (i)–(iii) and has fewer vertices than G, a contradiction, unless

n = 4. In this case however, we would have G′ = P3 and necessarily, since G is twin-free,
G = P4, but P4 does not satisfy (iii).

This proves that there are at least two edges between x and H . This also shows that
there are at least three vertices in H : if y and z were the only vertices in H and since
they are connected, they would be twins (both in G and Gx).

Step 2. We still consider the connected component H , which by assumption is twin-free
and has at least three vertices.

If H has exactly three vertices, then H = P3 and it is easy to see from Figure 4 that,
no matter how the vertices in H are linked to x in G, it is possible to find a vertex u in
H such that Gu is twin-free and connected, again contradicting (iii).

If H has at least four vertices, then, since H has fewer vertices than G, H cannot
satisfy simultaneously (i)–(iii). But H is connected and twin-free, by assumption. So H
does not satisfy (iii): there is a vertex u in H such that Hu is connected and twin-free.
It is not difficult now to see that Gu is connected and twin-free, again contradicting (iii).
Indeed, Gu is connected because x is connected to a vertex other than u in H , as seen
in Step 1; and Gu is twin-free, because Hu and Gx are twin-free and obviously x is not a
twin in Gu.
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Hx Hx Hx

Figure 4: The case H = P3. Vertices in black can be removed.

In all cases, we see that a graph G satisfying (i)–(iv) does not exist, which proves Theo-
rem 8. △

3.2 Trees

We now consider the case of trees. We first give an easy lemma.

Lemma 9 Let r ≥ 1 and n ≥ 2r + 2 be integers, and T = (V, E) be any (connected)
r-twin-free tree with n vertices. If β ∈ V has degree at least three, and if C1, C2, . . . , Cp

are the connected components of Tβ, then at least p−1 components Ci have, as an induced
subgraph, a path with at least r vertices which has one end adjacent to β.

Proof. Let ci,1 ∈ Ci be at distance one from β. Since the p sets Br(ci,1) are different and
nonempty, at least p − 1 of the vertices ci,1 have a vertex at distance at least r − 1 in Ci.

△

In other words, we have just proved that at least p− 1 components contain (at least) one
leaf f (that is, a vertex with degree one) with d(f, β) ≥ r.

Theorem 10 Let r ≥ 1 and n ≥ 2r + 2 be integers, and T = (V, E) be any (connected)
r-twin-free tree with n vertices. Then there exists a leaf x ∈ V such that Tx is r-twin-free
(and connected).

Proof. If T is a path, removing one of its ends gives a path with at least 2r + 1 vertices,
which is still r-twin-free. So we assume that there is at least one vertex with degree at
least three.

In the rest of this proof, we shall say that a vertex separates two vertices v1 and v2 if
it covers exactly one of them, which means that v1 and v2 are not twins.

For any leaf α ∈ V , let βα be its closest vertex with degree at least three; among
all leaves, we choose a leaf which has the smallest possible d(α, βα). We call this leaf
x, we set d = d(x, βx) (so the distance between any leaf and any vertex with degree at
least three is at least d), and we claim that Tx is r-twin-free. Since all the vertices that
are r-covered by x are also r-covered by the (only) vertex at distance one from x, all we
have to show is that, if x r-separates two vertices, v1 and v2, belonging to V \ {x}, then
there is another vertex, z, that also separates them. For the same reason, without loss
of generality, we can assume that d(x, v1) ≤ r and d(x, v2) is equal to r + 1 (otherwise,
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v1v2

(a)(ii)

Cv1

z

f

xβ

x
βc=

f

x

(a)(i)

v1v2
c

Cx

z

x

Figure 6: How to find a vertex x such that Tx is twin-free (2).

the vertex at distance one from x would separate v1 and v2). We can also assume that
d(v1, v2) ≤ r: otherwise, v1 /∈ Br(v2) and v1 and v2 are not twins.

Consider the two paths between x and v1 on the one hand, x and v2 on the other hand.
Two cases occur, depending on whether they both contain v1 or not (see Figure 5).

Case (a): the two paths diverge before reaching v1. Let c be the vertex where the two
paths diverge; it is clear that βx is between x and c. Two subcases occur: (i) βx 6= c,
(ii) βx = c (see Figure 6).

(i) βx 6= c : from now on, for a vertex y ∈ V \{βx}, let Cy be the connected component
containing y in Tβx

. By the definition of βx and d, there is a connected component in Tβx
,

different from Cx and Cc, which contains a leaf f with d(f, βx) ≥ d. This shows that on
this path, the vertex z at distance d from βx plays the same role as x with respect to v1

and v2: z r-covers v1, not v2.
(ii) βx = c : then in Cv1

, there is at least one leaf, f , which is linked to βx by a path
going through v1, and we know that d(f, βx) ≥ d. On this path, the vertex z at distance
d from βx plays a role similar to x: it r-covers v1, not v2.

Case (b): the path going to v2 goes through v1. There are four subcases: (i) βx is between
x and v1, (ii) βx is between v1 and v2 with d(βx, v1) 6= d(βx, v2), (iii) βx is between v1

and v2 with d(βx, v1) = d(βx, v2), (iv) βx is on the other side of v2 (see Figure 7).
(i) βx is between x and v1 (and βx can be equal to v1):

this case is actually the same as Case (a)(i), with v1 = c : let f be a leaf in a connected
component in Tβx

which is neither Cx nor Cv2
. Again, d(f, βx) ≥ d, and between βx and f ,

there is a vertex z at distance d from βx, which plays the same role as x.
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Figure 7: How to find a vertex x such that Tx is twin-free (3).

(ii) βx is between v1 and v2, with d(βx, v1) 6= d(βx, v2) (and βx can be equal to v2, not
to v1):
among the connected components in Tβx

which are not Cv1
(if v2 = βx), and are neither Cv1

nor Cv2
(if v2 6= βx), let f be a leaf with the property that the distance between f and βx is

the largest possible. If d < r, then by Lemma 9, d(f, βx) ≥ r; if d ≥ r, then d(f, βx) ≥ r,
because d(f, βx) ≥ d. Then, since d(v1, v2) ≤ r, it is easy to find, between f and βx,
a vertex z which r-covers v1, not v2 (respectively, v2, not v1), if d(βx, v1) < d(βx, v2)
(respectively, d(βx, v1) > d(βx, v2)), i.e., a vertex other than x which also separates v1

and v2.
(iii) βx is between v1 and v2, with d(βx, v1) = d(βx, v2) = δ:

let f be a leaf on the other side of v2; again, d(f, βx) ≥ d = δ + d(x, v1) > δ. Let z
be the vertex between f and v2 at distance d from βx. Then d(x, v1) = d(z, v2) and
d(x, v2) = d(z, v1), which means that z also separates v1 and v2.

(iv) βx is on the other side of v2 (and is not equal to v2):
by Lemma 9, there is a leaf f in a connected component in Tβx

which is not equal to Tv2
,

which is at distance at least r from βx. Between f and v2, there is a vertex z at distance r
from v2, which therefore separates v2 and v1.

In all cases, there is a vertex z, other than x, which separates v1 and v2. Therefore, Gx is
twin-free. Moreover, since x is a leaf, Gx is connected. △

We therefore have the following corollary, the first part of which is already contained in
Corollary 7.
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Corollary 11 There is no one-terminal tree. For a given r > 1, the only r-terminal tree
is the path P2r+1. △

3.3 The case r ≥ 3

We now consider general graphs, for r ≥ 3.

Theorem 12 For each integer r ≥ 3, there is a graph G, G 6= P2r+1, which is r-terminal.

Proof. We search for a connected r-twin-free graph G = (V, E), with |V | ≥ 2r+2, r ≥ 3,
such that for all x ∈ V , Gx is not r-twin-free.

In this proof, calculations are carried modulo 2r. Take a cycle of length 2r with
vertices ci (i = 0, 1, . . . , 2r− 1), and add one vertex si (which we shall call the spike of ci)
together with the edge {ci, si}, for every value of i except one.

The resulting graph G is clearly r-twin-free. A cycle point ci r-covers all the vertices
except the spike si+r diagonally across — and of course there is one cycle point which
r-covers all the vertices in the graph. In particular, each point in the cycle r-covers all
the vertices in the cycle. Each spike si r-covers all the cycle points except ci+r (the one
diagonally across); so, indeed, the graph is r-twin-free.

It is also r-terminal. If we remove one spike, then there is another cycle point that
r-covers all the vertices in the graph. If we consider one cycle point, ci, then (since
r ≥ 3), both ci+1 and ci+2 — or both ci−1 and ci−2 — have spikes; say, si+1, si+2 are in
the graph G. If now we remove ci, then ci+1 and si+2 trivially r-cover the same vertices
because r ≥ 3. △

Other constructions can be thought of. We give, without proof, one example which gives
smaller graphs than the ones in the proof of Theorem 12. In this example, calculations
are carried modulo 2r + 1. We consider a cycle of length 2r + 1 (r ≥ 3) with vertices ci

(i = 0, 1, . . . , 2r), and add the spike si for every value of i except
• 3k and 2r + 1 − 3k, for 0 ≤ k ≤ m, if r = 3m or 3m + 1,
• 2 + 3k and 2r + 1 − (2 + 3k), for 0 ≤ k ≤ m, if r = 3m + 2,

see Figure 8 for r ∈ {3, 4, 5, 6}.

3.4 Large terminal graphs and open problems

The above example as well as the construction of Theorem 12 do not work for r = 2.
Other constructions have been tested and failed, and the problem remains open: apart
from P5, do two-terminal graphs exist?

When r ≥ 6, the set Tr is infinite, as shows the following theorem.

Theorem 13 For each integer r ≥ 6, there are infinitely many r-terminal graphs.

Proof. Assume first that r ≥ 7.
For each i = 1, 2, . . . , m (m ≥ 3) let Ci be a 2r-cycle with vertices ci(j) (indices j

modulo 2r). Connect the cycles together by adding an edge from ci(r) to ci+1(0) for all
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Figure 8: Different r-terminal graphs.

i = 1, 2, . . . , m − 1 and from cm(r) to c1(0); in fact, it is convenient to consider indices i
modulo m.

For all i add spikes si(j) to all the vertices ci(j) with j = 1,−2, 3,−4, . . . , (−1)r(r−1).
There are m(r − 1) such vertices, see Figure 9.

We claim that this graph G with n = m(3r − 1) vertices is r-terminal.
We first prove that G is r-twin-free. Assume that we know Br(v) for an unknown

vertex v. We show that we can deduce v.
Clearly, Ci ⊆ Br(v) if and only if v ∈ Ci. Assume that this is the case. For j =

0, 1, . . . , r− 1, the vertices ci(±j) both r-cover 2r− 1− 2j vertices of Ci−1, and ci(r) does
not cover any vertices of Ci−1, and, moreover, for j = ±1,±2, . . . ,±(r − 1), exactly one
of ci(j + r) or ci(−j − r) (the points diagonally opposite to ci(j) and ci(−j)) has a spike
attached to it and this spike r-separates ci(j) and ci(−j), so we can identify v.

If v does not belong to any Ci, then it is one of the spikes. Given Br(v), we find
out which is the cycle Ci of which Br(v) contains 2r − 1 vertices (there is only one). If
the vertex of Ci which is missing from Br(v) is ci(j), then we know that v is the spike
diagonally opposite, i.e., v = si(j + r).

It suffices now to prove that G is r-terminal. If we delete one of the spikes, say si(j),
then by the construction si(−j) is not a spike either, and ci(j + r) and ci(−j − r) are
r-twins.

Assume finally that we delete a vertex ci(j) ∈ Ci for some i and j.
If j = 0, then ci(−1) and si(−2) are twins. The case j = r is symmetrical.
Assume that j ∈ S := {±1, . . . ,±(r − 1)}. Because r ≥ 7, we know that j − 1, j −

2, j − 3 ∈ S or j + 1, j + 2, j + 3 ∈ S; say the latter. By the construction, ci(j + 2) has a
spike or ci(j +1) and ci(j +3) both have spikes. If ci(j +2) has a spike, then ci(j +1) and
si(j + 2) are twins; if ci(j + 1) and ci(j + 3) both have spikes, then ci(j + 2) and si(j + 3)
are twins.
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Figure 9: The r-terminal graph constructed in the proof of Theorem 13.

Assume finally that r = 6. We can use the same argument, if we add spikes to ci(j) with
j = 1,−2,−3, 4,−5 (instead of what we did in the general case). △

Therefore, another open problem is the situation for r = 3, 4, 5: there exist r-terminal
graphs, but are they in finite or infinite number?

Observe that, whether they are in finite or infinite number, if we could prove that, for a
given r > 1, all r-terminal graphs contain the path P2r+1 as an induced subgraph (which
is the case for all r-terminal graphs described in Section 3.3), then Conjecture 3 would
hold: simply consider a graph G which is not r-terminal, and delete vertices in G until
you get a graph G′ which is r-terminal; if G′ contains P2r+1 as an induced subgraph, so
does the initial graph G.
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