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Structural dynamic modification is a popular approach to obtain desire frequencies and dynamic characteristics. It has been
observed that reanalyzing the modified structure usually involves complicated calculations when modifications are concerned
with numerous degrees of freedom (DOFs), especially adding substructures to these DOFs. .is paper proposed a method to
reanalyze the frequency response functions (FRFs) of structures with multiple co-ordinates modifications. Two different cases are
taken into consideration in the modifications, including adding (or decreasing) masses, stiffness, and damping, as well as adding
spring-mass substructures, which makes the method more practical. .is method is developed by employing Sherman–Morrison
and Woodbury (SMW) formula based on the FRFs related to the modifications coordinates of the original system. .e advantage
of this method is that neither a physical model nor amodal model is required; instead, it needs only the FRFs, which can be directly
measured by experimental modal testing. Another salient feature of this proposed strategy is that the FRFs of the modified
structure can be calculated in only one step. Validation of this proposed method is demonstrated using various numerical
examples. It is shown that the method is very effective and can be considered for real applications.

1. Introduction

Structural dynamic modification has been applied widely in
practical engineering. In many engineering cases, structural
dynamic modifications are used to obtain better dynamic
characteristics of structures. Generally speaking, structural
dynamic modification refers to a method to get certain
structural dynamic characteristics by changing the local
physical parameters (masses, stiffness, and damping), such
as the need to avoid resonance or assignment of certain
frequencies on desired locations. Structural dynamic
modification is an economical and effective means of im-
proving the dynamic characteristics of mechanical struc-
tures. .is approach is widely used in aerospace, marine,
automotive, civil engineering, bridge, and machinery
industries.

.e problems involved in structural dynamic modifi-
cation can be divided into two categories: “forward problem”
and “inverse problem.” .e former aims to predict exact

change to the structure’s dynamic properties when known
modifications are made at a given location [1, 2]. .e latter
mainly studies how to modify an existing structure in order
to achieve the expected dynamic characteristics (such as
natural frequency and mode shape) [3–6]. .e forward
structural dynamic modification is also called structural
reanalysis in early studies. In structural reanalysis, the dy-
namic effects of a modification on a structure are treated as
an analysis problem involving the known dynamic prop-
erties of the original structure rather than a complete re-
analysis of the modified structure [7]. .is approach could
avoid the blindness of the design, which reduces the design
cost and has practical engineering application value.

Many works and literatures had conducted a compre-
hensive analysis of reanalysis methods. Reanalysis methods
can be generally divided into two categories: direct methods
and approximate methods..e approximate methods can be
divided into three categories [8]: global approximation, local
approximation, and combined approximation.
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For the development of direct methods, early studies of
structural reanalysis were reviewed and summarized by
Baldwin and Hutton [7]. Several approaches such as Ray-
leigh quotient [9], sensitivity analysis [10], and perturbation
approach [11] were used to address forward modification
problems without a complete reanalysis of the whole
structure.

.is important issue has also been extensively discussed
in recent years, and part of the relevant literature is sum-
marized as follows. .is problem was explored in [12] using
developed successive matrix inverse method based on
symmetry of corresponding stiffness matrix after constraint
modification of the boundary..e numerical examples show
that this method could quickly give accurate reanalysis re-
sults. In the same year, Liu et al. [13] proposed an approach
for structural static reanalysis with unchanged number of
degrees of freedom. .is approach was based on a new
preconditioner constructed by updating the Cholesky fac-
torization of the original stiffness matrix, which could
achieve fast convergence and accurate results. After two
years, Song et al. [14] suggested using a direct reanalysis
algorithm based on finding updated triangular factorization
in sparse matrix solution to solve this problem. .is algo-
rithm is suitable for local modification, and the examples
show that the algorithm improves reanalysis efficiency
significantly, especially for high-rank structural modifica-
tion. Later on, a “cheap” algorithm, named independent
coefficients method, was put forward to reanalyze structures
with local modification, which leads to a low-rank change in
the stiffness matrix [15]. Considering that previous work
[13] suffers limitation of a structure as added degrees of
freedom, a new and efficient reanalysis method [16] had
been proposed by the same author. Another advantage of
this method is that the Cholesky factorization of the stiffness
matrix of the modified structure can be used as the initial
information for reanalysis when the structure is further
modified. In the work of [17], the issue was suggested using a
nonlinear reanalysis method based on structural modifica-
tion of residual incremental approximations. In contrast to
other existing nonlinear reanalysis methods, which were
based on the evaluation of changed stiffness matrices, only
residual vectors need to be computed and stored. Kim and
Eun [18] studied coupling and recoupling reanalysis
methods. .ese methods were performed by using the
concept of compatibility conditions at interface nodes be-
tween the substructures or between the original structure
and the substructures. .e most recent theory proposed in
[19] offered a new method for free-vibration reanalysis after
structural topological modifications with added degrees of
freedom. .e implementation of this approach involved
only LDLT factorization of shifted substiffness matrices
corresponding to the newly added DOFs, and the proposed
method consists of matrix-matrix operations.

As for approximate methods, the combined approxi-
mation method is an effective solution method that com-
bines the high efficiency of the local approximation method
with the high quality of the global approximation method.
.e solution process of the method is based on the results of
an accurate single-point analysis, and it is also a reanalysis

method that has developed very fast in recent years. .e
original purpose of studying the CA method is to accelerate
the optimization design. CAmethod has been widely used in
many fields such as linear or nonlinear static analysis, dy-
namic analysis, modal analysis, and sensitivity analysis [8].

For the combined approximation method of reanalysis,
Kirsch [20] first used forward and reverse substitution
calculations to calculate the terms used as the basis vector
binomial sequence in the CAmethod solving process. A new
set of uncoupled basis vectors are generated and normalized
by using the Gram–Schmidt orthogonalization process. .is
method can achieve an effective and accurate approximation
for very large design changes. By 2006, Kirsch et al. [21] used
combined approximation method to overcome the repeated
eigenproblem solution of nonlinear dynamic reanalysis and
solved its main problem. .e method is based on the in-
tegration of several concepts and methods, including the
basis of matrix factorization, series expansion, and reduc-
tion. In order to solve the frequency-constrained structural
optimization problem, Zuo et al. [22] proposed an adaptive
eigenvalue reanalysis method based on genetic algorithm for
structural optimization. .e modified impulse analysis
method is a combination approximation method from
Kirsch, and it has a high level for repeated eigenvalue
problems accuracy. Considered to integrate the Kirsch’s
method into the result optimization process, a new adaptive
method [23] that used the K condition number to determine
the minimum number of basis vectors was proposed. Be-
sides, on the reanalysis of sensitivity, Zuo et al. [24] proposes
a new method for arbitrarily changing static displacement
sensitive design variables. .is method uses Taylor series
expansion to approximate the current displacement of the
modified sensitivity equation and then solves the direct
sensitivity equation by a combined approximation method.
One year later, the same author [25] conducted a sensitivity
analysis of eigenvalues and eigenvectors using a combina-
tion approximation method, and the eigenvectors were
solved by the Nelson method. .is method can greatly
improve the efficiency of sensitivity analysis and can ac-
celerate the gradient-based structural optimization con-
straints with frequency and mode shape.

All these researches mentioned above are primarily
based on the physical model, which requires the knowledge
of mass, stiffness, and damping matrices. In practical en-
gineering, however, these parameters matrices of vibration
system structures are not easy to obtain. .is is because the
structure to be modified is usually a complex structure with
multiple DOFs. Furthermore, in the process of reanalysis
calculation, it is usually not very difficult to solve the single-
element change problem. When it comes to multiple-ele-
ment change structures, however, the calculation becomes
more complicated. .erefore, these problems limit the ap-
plication of the above methods to some extent.

.is paper proposed a method for reanalyzing FRFs of
the modified structure. .is method is developed by
employing SMW formula [26, 27] based on the FRFs related
to modifications coordinates of the original system. .e
advantage of this FRFs-based method is that the FRFs can be
directly measured by model testing, without knowledge of
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the systemmatricesM, C,K, which are usually unavailable in
practical engineering. Another salient feature of this pro-
posed strategy is that the FRFs of a structure with multiple-
elements changing can be calculated in only one step, which
improves the efficiency of reanalysis.

2. Theoretical Development

.e equation of motion of a free-vibration damping multi-
degree-of-freedom system can be expressed as

M€x + C _x + K � 0. (1)

.e dynamic stiffness matrix of original structure can be
given by

Z � K − Mω2 + jωC, (2)

where Z is the dynamic stiffness matrix of original structure;
ω represents the frequency variable and j �

���
− 1

√
.

2.1. Adding Masses, Stiffness, and Damping to the Original
Model Structure. It is assumed that the local modification of
the structure involves n coordinate points, labeled 1, 2, . . ., n.
.e additional masses, stiffnesses, and damping at these
points are denoted as Δm1, Δm2, . . ., Δmn; Δk1, Δk2, . . ., Δkn;
Δc1, Δc2, . . ., Δcn, respectively. .e values of these additional
stiffnesses, additional masses, and additional damping can
be positive or negative. If the value is positive, then addi-
tional parameters are added to the original structure, while a
negative value means that additional parameters are reduced
from the original structure.

.e above additional masses, stiffnesses, and damping
can be expressed as the diagonal matrix of (3), (4), and (5),
respectively.

ΔM �
Δm1

⋱
Δmn

 , (3)

ΔK �
Δk1
⋱
Δkn

 , (4)

ΔC �
Δc1
⋱
Δcn

 . (5)

After adding additional masses ΔM, additional stiff-
nesses ΔK, and additional damping ΔC,
Z∗ � K + ΔK − (M + ΔM)ω2 + jω(C + ΔC) � Z + ΔZ,

(6)
where Z∗ is the structure dynamic stiffness matrix after
adding additional parameters to original structure.

ΔZ � ΔK − ΔMω2 + jωΔC. (7)

To make ΔZ more intuitive, it is expressed by the fol-
lowing formula:

ΔZ � ∑n
k�1
UkV

T
k , (8)

where Uk is a column vector of n × 1 in which element of the
kth row is 1, and the other elements are zero. Vk represents a
column vector of n × 1 in which element of the kth row is and
the other elements are zero. .en the column vectors U and
V can be given by

U1 �

1

0

⋮
0


, . . . , Un �

0

0

⋮
1


V1 �

Δk1 − Δm1ω
2 + jωΔc1

0

⋮
0


, . . . , VN �

0

0

⋮
Δkn − Δmnω

2 + jωΔcn


. (9)

According to SMW formula [28], the dynamic stiffness
Z∗− 1 of modified structure with multielement change is
simply written as

Z∗− 1 �(Z + ΔZ)− 1 � Z− 1 − Z− 1 U1 · · · UN[ ]W− 1

· VT1 · · · VTN[ ]TZ− 1,

(10)

where

W �

1 + VT1HU1 VT1HU2 · · · VT1HUn
VT2HU1 ⋱ ⋮
⋮ ⋱

VTnHU1 · · · 1 + VTnHUn


. (11)

Since the dynamic stiffness matrix of structure and the
FRFs matrix are inverse matrices of each other, then

Z∗− 1 � H∗ � H − H U1 · · · UN[ ]W− 1
VT1 · · · VTN[ ]TH,

(12)
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where H is FRFs matrix of original structure; H∗ is FRFs
matrix of the structure after adding additional masses,
stiffnesses, and damping.

It is obvious that the FRFs matrix H∗ can be calculated
according to (12) when the FRFs H of original structure and
added masses matrix ΔM, stiffnesses matrix ΔK, and
damping matrix ΔC are known.

It should be noted that the FRFs matrices H and H∗

mentioned above are displacement FRFs matrices. In the
practical engineering cases, acceleration sensors are usually
used to measure the response, so accelerance Ha is directly
obtained. .e relationship between H and Ha can be de-
scribed as

Ha � − ω2H. (13)

.erefore, once accelerance matrix Ha of the original
structure is obtained in practical application, the receptances
H can be calculated according to (13), then substituting it
into (10) and (11) to calculate receptancesH∗ of the modified
structure, where H∗ could be expressed as

H∗ � H − H U1 · · · UN[ ]W− 1
VT1 · · · VT1[ ]TH. (14)

Finally, the obtained H∗ is substituted into (13) to cal-
culate accelerances Ha∗ of the modified structure.

2.2. Adding Spring-Mass Substructures to the Original
Structure. In many engineering cases, the vibration system
structures are designed to be immutable. When original
structure does not satisfy the dynamic characteristics, adding
spring-mass substructures to the original structural system is
not a bad idea..e added spring-mass substructure is shown
in Figure 1.

For the reason of adding a spring-mass substructure, the
DOFs of original system has been changed, and one DOF is
added to original system..e above calculated method is not
suitable for this kind of condition anymore, and thus
transforming the DOFs of modified structure to ones of
original structure is needed [29].

.e equation of motion of a linear undamped multi-
degree-of-freedom system can be expressed as

M€x + Kx � f. (15)

Assuming that the mass and stiffness modification of
original system are ΔM, ΔK, then (15) can be written as

(M + ΔM)€x +(K + ΔK)x � f. (16)

Assuming harmonic response x � ueiωt and substituting
it into (15), dynamic stiffness matrix Z and FRFs H of the
system can be written as follows:

Z(ω) � − ω2M + K,

H(ω) � − ω2M + K( )− 1
.

(17)

.en (16) yields

H− 1u � ω2ΔM − ΔK( )u + f. (18)

It is assumed that a spring-mass substructure is added at
the ith freedom of original structure. .e mass and stiffness
are Δm, Δk and the relative amplitude of vibration is Δu.
Since one substructure is added to the original system
structure, an extra freedom is added. .e DOFs of original
structure are changed from n to n+ 1, and the matrices in
(18) are enlarged by one row and column..en, the equation
of motion of the modified system is described by

H− 1
n×n 0

0 0
( )

u1

u2

⋮

ui

⋮

un

Δu





�

0 0 · · · 0 · · · 0 0

0 0 · · · 0 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 · · · − Δk · · · 0 Δk

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 0 · · · 0 0

0 0 · · · Δk · · · 0 − Δk + ω2Δm





u1

u2

⋮

ui

⋮

un

Δu





+

f1

f2

⋮

fi

⋮

fn

0





. (19)

.e last row of above equation is

Δkui + − Δk + ω2Δm( )Δu � 0. (20)

Substitute Δu with ui

Δu � Δk
Δk − ω2Δm( )ui. (21)

Substituting (21) into (19), the right matrix of (19) can be
written as follows:
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0 0 · · · 0 · · · 0 0

0 0 · · · 0 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 · · · − Δk · · · 0 Δk

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 0 · · · 0 0

0 0 · · · Δk · · · 0 − Δk + ω2Δm




u1

u2

⋮

ui

⋮

un

Δk
Δk − ω2Δm( )ui





+

f1

f2

⋮

fi

⋮

fn

0





.

(22)

Considering the ith and (n+ 1)th row of (22), one can
obtain

− Δkui +
(Δk)2
Δk − ω2Δm( )ui + fi � ω2ΔmΔk

Δk − ω2Δm( )ui + fi
Δkui +

ω2Δm − Δk
Δk − ω2Δm( )Δkui � 0.

(23)

.en (19) can be written as follows:

H− 1
n×n

u1

u2

⋮
ui

⋮
un




�

0 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · ω2ΔmΔk
Δk − ω2Δm · · · 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 · · · 0 · · · 0





u1

u2

⋮
ui

⋮
un





+

f1

f2

⋮
fi

⋮
fn




.

(24)
It is easy to observe from (24) that when adding one

spring-mass substructure at the ith freedom of the original
structure, element in the ith row represented by Vk in the (8)
is − (ω2ΔmkΔkk/Δkk − ω2Δmk) in this situation, and the
other elements of Vk are zero; namely,

V1 �

− ω2Δm1Δk1
Δk1 − ω2Δm1

0

⋮

0




, · · · , Vn �

0

0

⋮

− ω2ΔmnΔkn
Δkn − ω2Δmn




.

(25)
Without changing original structure of the system and

adding one substructure to a certain coordinate of the system,
after added one substructure, the DOFs of original system
structure are changed from n to n+1. According to a series of
numerical operations, the DOFs of the system structure after
adding one substructure are transformed from n+1 to n, which
could meet the calculation approach proposed in this paper.

3. Verification of the Method

In this section, three simulated examples are analyzed by the
proposed method.

m1

k12 k23

m2

mi

mn

k(i–1)i

∆ki

∆mi

ki(i+1) k(n–1)n

Figure 1: Adding a spring-mass substructure on the ith coordinate of the n DOF system.
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3.1. Numerical Experiment Setup. To verify the accuracy of
the above method, a cantilever beam modal test model is
constructed as shown in Figure 2. .e physical parameters
are shown in Table 1. .e cantilever beam is discretely di-
vided into 6 equal parts along the length direction, and 6
measuring points are evenly distributed.

As shown in Figure 3. Ha-ori-lp are the accelerances
curves of original structure, where Halp are calculated
accelerances relating points l and p.

Two kinds of examples are given to prove this approach
proposed in this paper: one is to directly increase or decrease
masses, stiffnesses, or damping on original structure. .e
other is to add a spring-mass substructure to a certain
coordinate or multiple coordinates to the original structure.
What should be pointed out is that the substructures are
added in the vertical direction of the cantilever. For com-
parison purpose, exact accelerancesHa′ corresponding with
modified structure are also numerically calculated.

3.2. Adding Mass, Stiffness, and Damping to the Original
Model Structure. As shown in Figure 4, the additional
stiffness and damping are added at coordinates 2 and 4,
stiffnesses Δk2 and Δk4 are 6000N/m and 8000N/m, re-
spectively, and damping Δc2 and Δc4 are 30Ns/m and 20Ns/
m, respectively. Additional masses are added at coordinates
2, 4, and 6, respectively, and the additional masses Δm2, Δm4

and Δm6 are 0.38Kg, 0.42Kg, and 0.4 Kg, respectively.
Response points are chosen at coordinates 2, 4, and 6.
Hammer impact is moving sequentially from points 2, 4 to 6

for “measuring” accelerances Ha �
Ha22 Ha24 Ha26
Ha42 Ha44 Ha46
Ha62 Ha64 Ha66

 .
.e goal of this example is to calculate the accelerances

Ha∗ �
Ha∗22 Ha∗24 Ha∗26
Ha∗42 Ha∗44 Ha∗46
Ha∗62 Ha∗64 Ha∗66

 .
According to (3), (4), and (5), the additional mass

matrix, stiffness matrix, and damping matrix in this example
are

ΔM �

m2

m4

m6


 �

0.38

0.42

0.4


,

ΔK �

k2

k4

k6


 �

6000

8000

0


,

ΔC �

c2

c4

c6


 �

30

20

0


.

(26)

Expression of vector V obtained by (9) can be given as
follows:

U2 �
1

0

0

 ,

V2 �
− ω2Δm2 + jωΔc2 + Δk2

0

0

 ,

U4 �
0

1

0

 ,

V4 �
0

− ω2Δm4 + jωΔc4 + Δk4
0

 ,

U6 �
0

0

1

 ,

V6 �
0

0

− ω2Δm6 + jωΔc6 + Δk6

 .

(27)

According to (13), receptances H of original structure
can be obtained.

H � − Ha
ω2

�

H22 H24 H26

H42 H44 H46

H62 H64 H66


. (28)

.e accelerances H∗ of modified structure can be cal-
culated by (11) and (14).

H∗ � H − H U2 U4 U6[ ]W− 1 V2 V4 V6[ ]TH,
W �

1 + VT2HU2 VT2HU4 VT2HU6

VT4HU2 1 + VT4HU4 VT4HU6

VT6HU2 VT6HU4 1 + VT6HU6

 . (29)

It can be seen from the above that all the FRFs H
(corresponding to original structure) required for

1 62 543

Figure 2: Cantilever beam modal test model.

Table 1: Cantilever beam physical parameters.

Parameter l (m) b (m) h (m) ρ (kg m− 3) E (MPa)

Value 1.5 0.05 0.012 7547 2.07∗105
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calculating H∗ (corresponding to modified structure) are
related to the modification coordinates. .en, accelerances
Ha∗ of modified structure can be directly calculated by (13).

Ha∗ � − ω2H∗ �
Ha∗22 Ha∗24 Ha∗26

Ha∗42 Ha∗44 Ha∗46

Ha∗62 Ha∗64 Ha∗66

 . (30)

Although nine FRFs are calculated, only three of them
are shown for the sake of brevity, as can be seen in Figure 5.

As shown in Figure 5, “exact” represents the exact
accelerances curves obtained directly by numerical cal-
culation. “Measured” represents the accelerances curves
obtained by the method this paper proposed. “Original”
represents the accelerances curves of original structure.
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Figure 3: Accelerances of original structural, (a) original acceleranceHa22, (b) original accelerance Ha24, and (c) original accelerance Ha26.

1 2 6543

Δk2 Δk4Δc2

Δm2 Δm4 Δm6

Δc4
x

Figure 4: Adding mass, stiffness, and damping.
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It is obvious from Figure 5 that, after dynamic modifi-
cation to the original structure of vibration system, the
accelerances curves “Measured” as a whole are in quite
good agreement with those of target accelerances curve
“exact”, which indicates that the results of these two
methods are consistent and accuracy of the method is
verified.

3.3. Adding Spring-Mass Substructure to the Original
Structure. One and multiple spring-mass substructures are,
respectively, added to the original structure to calculate the
FRFs of the modified structure for verification of the pro-
posed method.

3.3.1. Adding One Spring-Mass Substructure to the Original
Structure. As shown in Figure 6, a spring-mass substructure
is added to the original structure at coordinate 1, where the
stiffness Δk1 of the substructure is 6000N/m, and the mass
Δm1 of the substructure is 0.5 kg. For the accelerances of the
structure after adding this spring-mass substructure, 4 natural
frequencies are obtained within the range of 0–70Hz. Re-
sponse points are chosen at coordinates 1, 3, and 5. Hammer
impact is moving sequentially from points 1, 3 to 5 for

“measuring” accelerances Ha �
Ha11 Ha13 Ha15
Ha31 Ha33 Ha35
Ha51 Ha35 Ha55

 . .e

goal of this example is to calculate the nine accelerances
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Figure 5: Comparison of exact, original, and “measured” accelerances, (a) accelerances Ha22′ , Ha22 andHa∗22, (b) accelerances
Ha24′ , Ha24 andHa∗24, and (c) accelerances Ha26′ , Ha26 andHa∗26.
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Ha∗ �
Ha∗11 Ha∗13 Ha∗15
Ha∗31 Ha∗33 Ha∗35
Ha∗51 Ha∗35 Ha∗55

 . Similarly, only three of them

are shown for the sake of simplicity, as can be seen in Figure 7.

As shown in Figure 7, as one spring-mass substructure is
added to the original structure, the exactly calculated
accelerances curves of the modified structure and the ones
calculated by the proposed method completely coincide.

1 2 6543

Δm1

Δk1
x

Figure 6: Adding one spring-mass substructure to the original structure.
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Figure 7: Comparison of exact, original, and “measured” accelerances, (a) accelerances Ha11′ , Ha11 andHa∗11, (b) accelerances
Ha13′ , Ha13 andHa∗13, and (c) accelerances Ha15′ , Ha15 andHa∗15.
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.is result indicates that, in the condition of adding one
spring-mass substructure, modified accelerances can be
accurately calculated by the proposed method.

3.3.2. Adding 4ree Spring-Mass Substructures to the Orig-
inal Structure. Figure 8 is a cantilever beam model after
adding substructures. .ree spring-mass substructures are

added at coordinate points 2, 4, and 6, respectively. .e
masses Δm2, Δm4, and Δm6 of these substructures are
0.35 kg, 0.42 kg, and 0.39 kg, respectively, and stiffness Δk2,
Δk4 and Δk6 of these substructures are 3000N/m, 4000N/m,
and 5000N/m, respectively.

According to (24) and (25), the vector U and V can be
written as follows.

1 2 6543

Δm2
Δm4 Δm6

Δk2 Δk4 Δk6
x

Figure 8: Adding three spring-mass substructures to the original structure.
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Figure 9: Comparison of exact, original, and “measured” accelerances, (a) accelerances Ha22′ , Ha22 andHa∗22, (b) accelerances
Ha24′ , Ha24 andHa∗24, and (c) accelerances Ha26′ , Ha26 andHa∗26.
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U2 �

1

0

0


,

V2 �

− ω2Δm2Δk2
Δk2 − ω2Δm2

0

0




,

U4 �

0

1

0


,

V4 �

0

− ω2Δm4Δk4
Δk4 − ω2Δm4

0




,

U6 �

0

0

1


,

V6 �

0

0

− ω2Δm6Δk6
Δk6 − ω2Δm6




.

(31)

Response points are chosen at coordinates 2, 4, and 6.
Hammer impact is moving sequentially from points 2, 4 to 6.

.en accelerances Ha �
Ha22 Ha24 Ha26
Ha42 Ha44 Ha46
Ha62 Ha64 Ha66

  can be

“measured”. .e accelerances to be calculated are

Ha∗ �
Ha∗22 Ha∗24 Ha∗26
Ha∗42 Ha∗44 Ha∗46
Ha∗62 Ha∗64 Ha∗66

 . Only the curves ofHa∗22,Ha
∗
22

andHa∗22 are shown for the sake of brevity, as can be seen in
Figure 9.

As shown in Figure 9, after adding three spring-mass
substructures to the original structure, accelerances curves
obtained by the proposed method coincide with the exactly
values, which proves the accuracy of this method.

4. Conclusion

.e work presented in this paper dealt with the problem of
reanalyzing FRFs of a modified structure. A method is
developed by employing SMW formula based on the FRFs
related to the modification coordinates of original system.
.is method can solve the calculation problem of FRFs of
modified structure in only one step. .e accuracy and ef-
ficiency of this method are proved according to the simu-
lated modal testing of cantilever beam model.

Two kinds of examples are used in verification. One is
directly adding additional masses, stiffnesses, and damping
to the cantilever beam. .is kind of modification is mainly
for the case that internal structural parameters matrices are
changed. .e other is adding spring-mass substructures to
the cantilever beam. .is condition is suitable for models
whose original structure is immutable. Both numerical
examples demonstrated good performance in the simulation
verification. .e results show that this approach is suitable
for multiple-element change situation of structural modi-
fication and could improve the efficiency of structural
reanalysis.
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