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Structural reducibility of multilayer networks
Manlio De Domenico1,*, Vincenzo Nicosia2,*, Alexandre Arenas1 & Vito Latora2,3

Many complex systems can be represented as networks consisting of distinct types of

interactions, which can be categorized as links belonging to different layers. For example, a

good description of the full protein–protein interactome requires, for some organisms, up to

seven distinct network layers, accounting for different genetic and physical interactions, each

containing thousands of protein–protein relationships. A fundamental open question is then

how many layers are indeed necessary to accurately represent the structure of a multilayered

complex system. Here we introduce a method based on quantum theory to reduce the

number of layers to a minimum while maximizing the distinguishability between the multi-

layer network and the corresponding aggregated graph. We validate our approach on

synthetic benchmarks and we show that the number of informative layers in some real

multilayer networks of protein–genetic interactions, social, economical and transportation

systems can be reduced by up to 75%.
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Catania I-95123, Italy. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to M.D.D.
(email: manlio.dedomenico@urv.cat) or to V.N. (email: v.nicosia@qmul.ac.uk).

NATURE COMMUNICATIONS | 6:6864 |DOI: 10.1038/ncomms7864 |www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:manlio.dedomenico@urv.cat
mailto:v.nicosia@qmul.ac.uk
http://www.nature.com/naturecommunications


N
etwork science has shown that characterizing the stucture
of a complex system is fundamental when it comes to
understanding its dynamical properties1–3. In particular,

the basic units of most real-world systems are subject to different
types of interactions occurring at comparable time scales. For
instance, this is the case of social systems, where individuals can
have political or financial relationships4, or can be interacting
using different communication channels, including face-to-face
interactions, e-mail, Twitter, Facebook, phone calls and so on5,6.
Similarly, in biological systems basic constituents such as proteins
can have physical, co-localization, genetic or many other types of
interactions. Recently, it has been shown that retaining such
multi-dimensional information7 and modelling the structure of
interdependent and multilayer systems respectively through
interdependent8 and multilayer networks9–12 reveals new non-
trivial structural properties13–20 and relevant emergent physical
phenomena21–27.

However, some of the interaction layers considered in the
multidimensional representation of a system can be redundant or
uninformative. Then, a simple question arises about the
possibility of reducing the structure of a multilayer network, that
is, of considering a smaller number of layers, while retaining as
much information as possible about the whole system. This
problem has both theoretical and practical implications. From a
theoretical point of view, it is always desirable to find the most
economical description of a phenomenon, that is, the one which
retains all the salient aspects of the system avoiding unnecessary
redundancy. From a practical point of view, the computation
of even basic structural descriptors for interdependent and
multilayer networks, such as clustering coefficient, centrality,
motifs abundance and all the measures based on paths and walks,
scales superlinearly or even exponentially with the number of
layers17 and can thus result unfeasible already for medium-sized
networks. Therefore, finding an optimal configuration consisting
of a minimal number of layers becomes a fundamental
requirement when dealing with real-world systems.

Inspired by a similar question arising in quantum physics
when one needs to quantify the distance between mixed
quantum states28, we propose here a method to aggregate some
of the layers of a multilayer system while maximizing its
distinguishability from the aggregated network. The method is
based on a purely information theoretic perspective, which
makes use of the definition of Von Neumann entropy of a
graph. We test our procedure on synthetic and real-world
multilayer networks, showing that different levels of structural
reduction are possible, depending on the overall organization of
the network.

Results
Von Neumann entropy of a multilayer network. In quantum
mechanics, there are pure states, describing the system by
means of a single vector in the Hilbert space, and mixed states,
corresponding to statistical ensembles of pure states. The most
general quantum system can then be described by the so-called
density operator q, a semidefinite positive matrix with
eigenvalues summing up to 1, which encodes all the information
about the statistical ensemble of pure states of the system29. The
Von Neumann (entanglement) entropy, which is the natural
extension of the Shannon information entropy to quantum
operators, is a widely adopted descriptor to measure the
mixedness of a quantum system, although other measures,
satisfying extensivity or non-extensivity, have been lately
introduced and studied30. The Von Neumann entropy is
defined for any density operator q. In particular, if the Von
Neumann entropy is zero the system is in a pure state, otherwise

it is in a mixed state. In general, the larger the Von Neumann
entropy, the more mixed the state is.

It has been recently shown that the Von Neumann entropy can
also be used to characterize (single layer) graphs31,32. Given a
graph G represented by the adjacency matrix A, the Von
Neumann entropy of G is defined as the Shannon entropy of the
spectrum of the rescaled combinatorial Laplacian LG associated
to G (see Methods). This entropy has been interpreted as the
entanglement of the statistical ensemble of pure states where each
pure state is one of the edges of the graph33. According to this
interpretation, a graph is in a pure state if and only if it consists of
exactly one edge, corresponding to a Von Neumann entropy
hA¼ 0, and is in a mixed state otherwise, yielding hA40.

Here we use a similar formalism to characterize multilayer
networks, where we assume that each layer represents one
possible state of the system, that is, a network state. We propose
to use the Von Neumann entropy to quantify the distinguish-
ability between a multilayer network (or a reduced configuration
of its original layers) and the network obtained by aggregating all
its layers in a single-layer graph.

Let us consider a multilayer network with the N nodes
replicated along the different layers12. Such a network can be
represented by the set A ¼ A 1½ �;A 2½ �; . . . ;AM½ �� �

, whose
elements are the N�N adjacency matrices of the M layers11,17.
This particular multilayer structure is known as multiplex in the
literature12. We define the Von Neumann entropy H Að Þ of a
multilayer network as the sum of the Von Neumann entropies
of its M layers, that is, H Að Þ ¼

PM
a¼1 hA a½ � where h

A a½ � ¼
�

PN
i¼1 l

a½ �
i log2ðl

a½ �
i Þ and l a½ �

i are the eigenvalues of the
rescaled Laplacian matrix associated to the adjacency matrix
A[a] of layer a (see Methods). In the case of more general
multilayer networks, where more complicated patterns of
interlayer connections are allowed, it is still possible to calculate
the Von Neumann entropy by considering the supra-adjacency
matrix introduced by Gomez et al.21, obtained as a special
flattening of the rank-4 adjacency tensor, an even more general
representation of multilayer networks10.

Quantifying the reducibility of a multilayer network. The
Von Neumann entropy of a multilayer network A ¼
A 1½ �;A 2½ �; . . . ;AM½ �� �

explicitly depends on the actual number of
layers M and on the structure of each layer, so that in general its
value will change if we consider a reduced multilayer network in
which some of the layers of the original system have been com-
bined together by means of an appropriate aggregation method. A
particular case is represented by the aggregated graph associated
to A, which is the one-layer network whose adjacency matrix
A is obtained by summing the adjacency matrices of all the
M layers of A, that is, A¼A[1]þA[2]þyþA[M]. The Von
Neumann entropy of the aggregated graph is hA. In general, if we
start from an M layer multiplex network A ¼ A 1½ �; . . . ;AM½ �� �
and aggregate some of the original layers of A, we obtain a
reduced multilayer network C ¼ C 1½ �;C 2½ �; . . . ;C X½ �� �

with
XrM layers, where the adjacency matrix C[a], where a¼ 1,y, X
is either one of the adjacency matrices of the original layers of A
or the sum of two or more of them. We then consider the entropy
per layer of the multilayer network C:

�H Cð Þ ¼ H Cð Þ
X

¼
PX

a¼1 hC a½ �

X
ð1Þ

and we propose to quantify the distinguishability between the
multilayer network C and the corresponding aggregated graph A
through the relative entropy:

q Cð Þ ¼ 1�
�H Cð Þ
hA

ð2Þ
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The larger q Cð Þ, the more distinguishable is the multilayer net-
work C from the corresponding aggregated graph A. It is worth
noting that if all the layers of the multilayer network C are
identical, then q Cð Þ ¼ 0, as C and the aggregated graph are totally
equivalent. Conversely, a value q Cð Þ40 indicates that the repre-
sentation with X layers is distinguishable from the aggregated
one; hence the multilayer structure must be preserved. Intuitively,
if the aggregation of two layers does not result in a decrease of the
relative entropy with respect to the multiplex in which the two
layers are kept separated, then one would prefer the reduced
configuration, which is more compact. However, it is possible to
show (see Methods) that if we consider a multilayer C with X
layers and the reduced configuration C0 with X–1 layers obtained
from C by aggregating two of its layers, then in general q C0ð Þ can
be smaller than, equal to, or even larger than q Cð Þ. This is due to
the fact that the entropy per layer �H Cð Þ can either increase or
decrease as a consequence of the aggregation of two layers (see
Supplementary Fig. 1 and Supplementary Table 1). As we show in
detail in Methods, our goal is to find argmax q Cð Þ½ �, that is, the
optimally reduced multiplex Cmax yielding the maximum value of
distinguishability from the aggregated graph. If we denote byMopt

the number of layers corresponding to the maximum value of
relative entropy max[q(�)], we can then define the reducibility of
a multilayer network A as:

w Að Þ ¼ M�Mopt

M� 1
; ð3Þ

which is the ratio between the number of reductions (M–Mopt)
and the total possible number of potentially reducible layers
(M–1). It is worth noting that w Að Þ ¼ 0 if the system cannot be
reduced, that is, whenMopt¼M, while w Að Þ ¼ 1 only ifMopt¼ 1,
that is, if the M layers can indeed be reduced into a single one
(that is, the aggregated network).

The optimal configuration of aggregated layers is the one that
maximizes the relative entropy q(�), but finding such a
configuration would in general require the enumeration of all
the possible partitions of a set of M objects (the layers), which is a
well-known NP-hard problem (that is, its solution requires a
computational time that scales at least exponentially with M). To
overcome this problem, we adopt a greedy agglomerative
hierarchical clustering algorithm34 to explore the space of
partitions, based on a concept of distance similar to the one
adopted in quantum physics to quantify the distance between
mixed quantum states28. More specifically, capitalizing on the
concept of Von Neumann entropy of a graph, we use the
quantum Jensen–Shannon divergence to quantify the (dis-)
similarity between all pairs of layers of a multilayer network
(see Methods). At each step of the algorithm, we consider the pair
of layers having the smallest value of quantum Jensen–Shannon
divergence and we aggregate them, obtaining a new multilayer
network with one layer less. The rationale behind this choice is
that the aggregation of a pair of similar layers is more desirable
than the aggregation of two very dissimilar layers, as the latter can
introduce artificial structural patterns. The result of this
procedure is a dendrogram (see Fig. 1), that is, a hierarchical
diagram where each of the M leaves is associated to one of the
original layers of the system, each internal node indicates the
aggregation of layers (or of clusters of layers) together and the
root corresponds to the fully aggregated graph. At the mth step of
the algorithm, we obtain a multilayer with M–m layers, for which
we can compute the associated value of relative entropy q(�). The
cut of the dendrogram corresponding to the maximal value of
q(�) identifies the (sub-)optimal configuration of layers in terms
of distinguishability with respect to the aggregated graph. The
whole procedure proposed is sketched in Fig. 1 and can be
summarized as follows: (i) compute the quantum Jensen–
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Figure 1 | Layer aggregation and structural reducibility of multilayer networks. Given a multilayer network (a), we compute the Jensen–Shannon

distance DJS between each pair of its layers (b), which is a proxy for layer redundancy. Such resulting distance matrix allows to perform a hierarchical

clustering, whose output is a hierarchical diagram (a dendrogram) whose leaves represent the initial layers and internal nodes denote layer merging (c). At

each step, the two clustered layers (or group of layers) corresponding to the smallest value of DJS are aggregated and the quality of the new layer

configuration in terms of distinguishability from the aggregated graph is quantified by the global quality function q(�), shown by the curve on the left-hand

side of c. The best partition is the one for which q(�) is maximal (d).
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Shannon distance matrix between all pairs of layers; (ii) perform
hierarchical clustering of layers using such distance matrix and
use the relative entropy q(�) as the quality function for the
resulting partition; (iii) finally, choose the partition that
maximizes the relative entropy, that is, the distinguishability
from the aggregated graph.

Reduction of synthetic multilayer networks. To shed light on
the impact of the structural properties of a multilayer network
on the results obtained through the proposed layer reduction
procedure, we considered different synthetic multilayer
benchmarks. Each benchmark consists of several layers char-
acterized by specific features or by a given amount of correlation.
In Fig. 2 we report the case of a multilayer network in which the
layers are obtained by rewiring different percentages of the
edges of the same original layer. The layers of the resulting
multilayer network are characterized by an increasing amount of
edge overlap (see Methods). As shown in the figure, the
hierarchical clustering procedure first aggregates layers char-
acterized by smaller rewiring, which are more similar to each
other, and then proceeds to the aggregation of layers obtained
for larger values of rewiring. The monotonically decreasing
behaviour of the relative entropy q(�), shown in Fig. 2c, confirms
that in this case the best representation of the system is the
one in which all the layers are kept distinct. In fact, independently
of the fraction of edges actually rewired, on average a pair of
layers exhibits a relatively small redundancy, as each of the
rewired layers carries some information that is not included
in the other layers (this multilayer has an overall edge overlap
smaller than 5%).

The results obtained on several other synthetic multilayer
networks suggest that layers with high edge overlap and similar
structure, for example, characterized by highly overlapping
communities, tend to be aggregated earlier (see Supplementary
Note 1, Supplementary Figs 2,3 and 4).

Reduction of multilayer biological networks. To test the use-
fulness of our method on real-world systems, we consider here
the multilayer networks obtained by taking into account different
types of genetic interactions in 13 organisms of the Biological
General Repository for Interaction Datasets (BioGRID35). This is
a public database that stores and disseminates genetic and protein
interaction information about simple organisms and humans
(http://thebiogrid.org), and currently holds over 720,000
interactions obtained from both high-throughput data sets and
individual focused studies, as derived from over 41,000
publications in the primary literature. We use BioGRID 3.2.108
(updated to 1 Jan 2014). In this data set, the networks represent
protein–protein interactions and the layers correspond to
interactions of different nature, that is, physical (labelled ‘Phys’
in the following), direct (‘Dir’), co-localization (‘Col’), association
(‘Ass’) and suppressive (‘GSup’), additive (‘GAdd’) or synthetic
genetic (‘GSyn’) interaction. The number of layers identified for
each organism ranges from three to seven.

In Fig. 3 we show the results obtained on three organisms
(Caenorhabditis elegans, Mus and Candida). Despite the multi-
layer networks corresponding to these organisms have a similar
number of layers (six for C. elegans, seven for Mus and Candida),
each of them is characterized by a peculiar level of structural
reducibility. In particular, in the case of C. elegans no layer
aggregation is possible at all, as the maximum value of q(�) is
obtained for the multilayer in which all the six layers are kept
distinct. Hence, the reducibility is w ¼ 0. Conversely, in the case
of Mus and Candida some pairs of layers carry redundant
structural information and can be thus aggregated. Remarkably,
the reducibility for Candida is w ¼ 0:5, corresponding to three
redundant interaction layers out of seven. Here, the layer
associated to genetic synthetic interactions is first aggregated
with the layer encoding genetic additive interactions, while direct
interactions are aggregated with physical ones. For other
organisms, the value of reducibility can be as high as w ¼ 0:75
(see Table 1 for details).
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Figure 2 | Multilayer benchmark. We considered a benchmark multilayer network with N¼ 5,000 nodes and M¼ 20 layers. The first layer is a scale-free

graph with P(k) Bk� 3, whereas the other layers are obtained by rewiring an increasing percentage of the edges of the first layer, from 5% up to 95%. By

doing so, each pair of layers is characterized by a different amount of edge redundancy (the total overlap of the multilayer is o5%). (a) The heat map

shows the Jensen–Shannon distance between the 20 layers, where each layer is identified by the corresponding percentage of rewiring. (b) The hierarchical

clustering procedure successively merges layers with a decreasing percentage of redundant edges. (c) In this case q(�) is a decreasing function of m, as

each layer has some unique edges that are not present in the others. The best representation of the multilayer is that in which all the layers are kept

separated, even if q(�) remains almost constant in the first few aggregation steps (corresponding to the aggregation of pairs of layers with a rewiring

smaller than 15%).
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In Fig. 4 we summarize the results obtained by applying the
proposed layer aggregation procedure to all the 13 multilayer
genetic interaction networks of the BioGRID data set. This
particular visualization allows to compare the structural reduci-
bility of all organisms simultaneously. Not all multilayer networks
can be reduced to a smaller number of layers, suggesting that for
some organisms layer aggregation should be avoided. For
instance, this is the case of C. elegans (nematode), Arabidopsis
thaliana (cress) and Bos taurus (mammal), where no global
maximum is present, except for m¼ 0, that is, the initial
multilayer in which all layers are kept distinct. In other
cases, some of the layers are clearly redundant, as happens for

instance in Saccharomyces cerevisiae (yeast) and Drosophila
melanogaster (common fruit fly), where a maximum of q(�) is
present at m¼ 2.

Note that the reducibility values obtained for the above
mentioned biological networks are conditioned to the complete-
ness of the corresponding data sets. As a matter of fact, although
the protein interactions of some organisms are well known and
thoroughly characterized as in the case of S. cerevisiae or D.
melanogaster, for some other organisms the information is only
partial or incomplete. Hence, we cannot estimate a priori how the
partial information contained in these networks is indeed
affecting the values of reducibility that we observe.
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Figure 3 | Layer aggregation of protein–genetic interaction networks. The multilayer protein–genetic networks of different species have different levels of

reducibility. We show the heat map of the Jensen–Shannon divergence, together with the dendrogram resulting from hierarchical clustering and the

corresponding values of q(�), in 3 of the 13 species considered in this study. The dashed red lines identify the maximum of the global quality function q(�).
For some organisms (such as C. elegans, reported in a), such maximum is obtained by leaving all the layers separate and no aggregation is possible,

whereas for some other species a few layers carry redundant information, for example, in (b) Mus and in (c) Candida.
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Discussion
Nowadays, larger and more detailed data sets describing diverse
natural and man-made systems are being produced at an
increasingly fast rate. This data deluge has provided an
unprecedented amount of information about social, biological

and technological phenomena, allowing a better characterization
of the structure of different complex systems and a more in-depth
understanding of the mechanisms underpinning their function-
ing. On the one hand, multilayer networks represent a natural
framework to properly take into account all the different kinds of
relationships connecting the units of a system, in a coherent
manner. On the other hand, dealing with multilayer graphs
introduces new computational challenges, which might limit the
applicability of the multilayer approach to large systems. As a
matter of fact, the evaluation of the multilayer version of even the
most basic network descriptors, such as average shortest path
length, node clustering coefficient, node betweenness and
network motifs, tend to scale exponentially with the number of
layers of the system and might become too computationally
demanding already for medium-sized systems.

A fundamental observation is that not all the available levels of
interaction among the constituents of a complex system have the
same importance and some of them might be redundant,
irrelevant or uninformative, with respect to the overall structure
of the system. Hence, comes the idea of providing a consistent
way to aggregate some of the layers of a multilayer network
according to their similarity, as measured by the quantum
Jensen–Shannon divergence, and of looking for configurations of
layers that guarantee the maximum possible distinguishability
from the fully aggregated graph and still use a minimal number of
layers. The proposed approach allows to effectively reduce the
redundancy of a multilayer network, as extensively shown in the
paper for the case of the protein–genetic interaction networks of
several different species.

However, the applicability of this method is not limited to
biological systems. As an example, we have applied it also
to social17 and economical systems, coauthorship networks36,
metropolitan transportation networks24 and continental air trans-
portation systems20 (see Table 1). A particularly interesting case
is that of the FAO (Food and Agriculture Organization of the
United Nations) worldwide food import/export network, an
economic network in which layers represent products, nodes are
countries and edges at each layer represent import/export
relationships of a specific food product among countries. We
collected the data from http://www.fao.org and built the
multilayer network corresponding to trading in 2010. In Fig. 5
we show the distance matrix and the network visualization of
three representative layers. The hierarchical clustering procedure
reveals that up to 158 out of the 340 available layers can indeed be
reduced, yielding a value of w close to 50%. Intriguingly, the layers
that are aggregated in the earlier stages of the clustering
procedure correspond to products characterized by similar
import/export patterns, as happens for instance for the layers
associated to nuts, cocoa, dried and prepared fruits, roasted
coffee and coffee-related products, which mainly involve export
from Australia, China and Africa to European countries and the
United States.

Conversely, the number of layers in the multilayer networks of
airline transportation systems cannot be substantially reduced
(the few allowed aggregations correspond to layers associated to
very small companies, operating on just one or two routes), in
agreement with the fact that airline companies tend to minimize
the overlap of routes with other operators, to avoid strong
competition. This result indicates that the connectivity among
airports is practically not redundant for any airline, as expected
for a modern large-scale transport infrastructure. Similar results
are obtained for the London metropolitan transportation net-
work, in which the overlap among different lines is purposely
avoided to guarantee a more efficient coverage of the metropo-
litan area. In this case, the optimal solution corresponds to the
multiplex network in which all the transportation lines are kept

Table 1 | Reducibility of empirical multilayer networks.

Network N M Mopt max[q(�)] v

Arabidopsis 6981 7 5 0.436 0.33
Bos 326 4 3 0.494 0.33
Candida 368 7 4 0.527 0.50
C. elegans 3880 6 4 0.390 0.40
Drosophila 8216 7 5 0.426 0.33
Gallus 314 6 4 0.505 0.40
Human HIV-1 1006 5 2 0.499 0.75
Mus 7748 7 6 0.376 0.17
Plasmodium 1204 3 2 0.500 0.50
Rattus 2641 6 4 0.504 0.40
S. cerevisiae 6571 7 4 0.115 0.50
S. pombe 4093 7 4 0.197 0.50
Xenopus 462 5 3 0.424 0.50
Arxiv coauthorship 14065 13 11 0.231 0.17
Terrorist network 78 4 2 0.239 0.67
FAO Trade network 184 340 182 0.354 0.47
London Tube 369 13 12 0.441 0.08
Airports Europe 1064 175 165 0.667 0.06
Airports Asia 1130 213 202 0.653 0.05
Airports North America 2040 143 136 0.686 0.05

Number of nodes (N), number of layers in the original system (M), number of layers (Mopt)
corresponding to the maximal value of the quality function (max[q(�)]) obtained through the
greedy hierarchical clustering procedure, and the value of the reducibility (w) for several
biological, social, economical and technological multilayer networks. Notice that the structure of
the three continental air networks and of the London metropolitan transportation system cannot
be substantially reduced, in accordance with the fact that in these systems layer redundancy is
purposedly avoided. Conversely, social and biological systems exhibit higher levels of
redundancy and allow for the merging of up to 75% of the layers.
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Figure 4 | Structural reducibility of protein–genetic networks in the

BioGRID data set. The global quality function q(�) versus the number of

merges in the hierarchical clustering procedure for the protein–genetic

interaction multilayer networks of all the 13 organisms considered in this

study (the plots are vertically rescaled to avoid overlaps). The values of q(�)
are not reported in the y axis, because only the existence of a global

maximum, and the corresponding value of m in the x axis is meaningful for

the analysis. For each organism, q(�) has a maximum corresponding to the

partition of the layers which minimizes layer redundancy at the cost of a

small loss of information.
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separated, with the only exception of the Circle Line and the
Hammersmith and City Line, which, as expected, are aggregated
together, as they considerably overlap in Zone 1 and Zone 2 (they
actually share the same tracks and stations between Hammer-
smith and Liverpool Street).

We would like to clearly point out that by quantifying the
reducibility of a multilayer network one obtains information
about the structural redundancy of the different layers of the
system. However, in the particular case in which the interaction
layers are functionally similar, as in the case of unimodal
transportation networks or multidisciplinary collaboration net-
works (but not for gene–protein interaction networks), the
optimal multilayer network resulting from the reduction
procedure proposed in the study might be also employed, at
least to some extent, to characterize the dynamical behaviour of
the system. We are confident that this aspect will be the subject of
further research in the field.

It is worth noticing that although the problem of reducing the
number of layers of a multilayer network can be tackled from
different perspectives and might in principle be solved using
different techniques (most of which are still to be explored), the
framework provided by the Von Neumann entropy of graphs
allows to formulate this problem in a natural way, and to use a
standardised set of tools –borrowed from quantum physics– to
define similarity relationships among layers (in terms of Jensen–
Shannon divergence) and to construct a quality function able to
identify optimal configurations of layers in terms of distinguish-
ability from the aggregated graph. We would also like to stress
that the problem of obtaining more compact representations of
multilayer networks is interesting per se and we expect that the
present work will trigger the investigation of more sophisticated
methods for its solution. Beyond the structural reducibility, the
reducibility of a multilayer network, while preserving its
dynamics and function, remains an outstanding research
problem37–39.

We find quite remarkable that the formal analogy between
quantum systems and multilayer networks allows to formulate the
problem of layer reducibility in terms of quantum entropy
divergence, and we believe that this analogy should be further
exploited, as it might effectively provide a novel perspective on the
characterization of the structure of multilayer complex systems.

Methods
Von Neumann entropy of single-layer networks. Given a graph G(V, E) with
N¼ |V| nodes and K¼ |E| edges, represented by the adjacency matrix A¼ {aij},

where aij¼ 1 if node i and node j are connected through an edge, the Von Neu-
mann entropy of G is defined as:

hA ¼ �Tr LG log2 LG
� �

ð4Þ

where LG ¼ c� D�Að Þ is the combinatorial Laplacian associated to the graph31 G
rescaled by c ¼ 1=ð

P
i;j2V aijÞ ¼ 1

2K and D is the diagonal matrix of the degrees of
the nodes. Formally, LG has all the properties of a density matrix (that is, it is
positive semi-definite and Tr LGð Þ ¼ 1) and it is easy to prove that hA can be
written in terms of the set l1; l2; . . . ; lNf g of eigenvalues of LG :

hA ¼ �
XN
i¼1

li log2 lið Þ; ð5Þ

that is, the Von Neumann entropy of a density matrix corresponds to the Shannon
entropy of its power spectrum.

In Supplementary Methods and Supplementary Fig. 5 we discuss an efficient
procedure to approximate the Von Neumann entropy of a graph that avoids the
computation of the whole spectrum of LG.

Jensen–Shannon distance between graphs. Given two density matrices q and r,
it is possible to quantify to which extent q is different from r by means of the
Kullback–Liebler divergence:

DKL q jjrð Þ ¼ Tr q log2 qð Þ� log2 rð Þ
� �� �

ð6Þ

which represents the information gained about r when the expectation is based
only on q. However, DKL �j �jð Þ is not a metric, as it is not symmetric with respect to
its arguments (that is, DKL qj rjð Þ 6¼ DKL rj qjð Þ) and it does not satisfy the trian-
gular inequality. A more suitable quantity to measure the dissimilarity between two
density operators is the Jensen–Shannon divergence. If we call l ¼ 1

2 qþrð Þ the
new density matrix obtained as the mixture of the two operators, the Jensen–
Shannon divergence between q and r is defined as:

DJS qj rjð Þ ¼ 1
2
DKL qj ljð Þþ 1

2
DKL rj ljð Þ ¼ h lð Þ� 1

2
h qð Þþ h rð Þ½ �: ð7Þ

By definition, DJS is a reflexive and symmetric relation. In addition, it is possible
to prove that

ffiffiffiffiffiffiffi
DJS

p
, usually called Jensen–Shannon distance, takes values in [0,1]

and satisfies all the properties of a metric if applied to qbits40. Some recent
numerical arguments41 have shown that

ffiffiffiffiffiffiffi
DJS

p
behaves similar to a metric as well,

when applied to any pair of mixed quantum states, although a rigorous proof is still
lacking. We decided to employ the quantum Jensen–Shannon divergence to
quantify the distance, in terms of information gain/loss, between the normalized
Laplacian matrices associated to two distinct networks.

The quality function q(�). The relative entropy defined in equation (2) quantifies
the distinguishability of a multilayer network from the corresponding aggregated
graph. Here we show that q(�) is an appropriate quality function to maximize, to
detect the configuration of layers Cmax corresponding to the highest possible dis-
tinguishability. In general, q(�) can either increase or decrease as a result of the
aggregation of two layers, depending on several factors such as the relative density
of the two graphs or their actual wiring patterns. In Supplementary Table 1 we
report and discuss several illustrative examples.

If we start from the original M-layer multiplex network A ¼
A 1½ �;A 2½ �; . . . ;A M½ �� �

and aggregate some of its layers, we obtain a new multiplex
C ¼ C 1½ �;C 2½ �; . . . ;C X½ �� �

with XrM layers, where the adjacency matrix of each

Distance matrix

Fruit, dried
Nuts, prepared

Roots and tubers

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Roots and tubers

Nuts, prepared

Fruit, dried nes

Fr
uit

, d
rie

d

Nut
s, 

pr
ep

ar
ed

Roo
ts 

an
d 

tu
be

rs

Figure 5 | Structural reducibility of the FAO worldwide food import/export network. The distance matrix of three layers of the FAO worldwide food

import/export data set, corresponding to three specific products (that is, ‘roots and tubers’, ‘prepared nuts’ and ‘dried fruit’), is shown in a, whereas the

topology of the three layers is reported in b. The layers corresponding to ‘prepared nuts’ and ‘dried fruits’, which are more similar to each other (that is,

closer with respect to the Jensen–Shannon divergence), are indeed aggregated by the algorithm in a single cluster, whereas the ‘roots and tubers’ layer,

which is characterized by a remarkably different topology as evident from b, is kept separated. Map tiles By Stamen Design, under CC BY 3.0. Data by

OpenStreetMap, under CC BY SA.
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layer C[a] is either one of the adjacency matrices of the original multiplex or the
result of the aggregation of two or more of them. In particular, each of the M
original layers of A will contribute to exactly one of the layers of the reduced
multiplex C. If we denote by Ga the layer of the reduced multiplex to which the
original layer A[a] contributes, then we can express each layer C ‘½ � of C as

C ‘½ � ¼ A 1½ �d‘;G1 þA 2½ �d‘;G2 þ . . . þA M½ �d‘;GM ð8Þ
where d‘;Ga ¼ 1 if either the original layer A[a] has been aggregated with other
layers to form the new layer C ‘½ � or if C ‘½ � � A a½ � .

If we consider the multilayer network C with X layers and the reduced
multilayer network C0 with X–1 layers obtained from C as a consequence of the
aggregation of two layers, we want to find the conditions under which q C0ð Þ4q Cð Þ
or, equivalently, �H C0ð Þo�H �C

� �
. For the sake of simplicity, and without loss of

generality, we assume that the reduced configuration C0 is obtained by aggregating
layers C[1] and C[2] into a new layer C[1]þC[2]. After some algebra, the inequality
q C0ð Þ4q Cð Þ reduces to

hC½1� þC½2�ohC½1� þ hC½2� � �H Cð Þ; ð9Þ
that is, the quality function q(�) increases as a result of the aggregation, if the
entropy of the aggregated layers is smaller than the difference between the sum of
the entropies of the layers to be aggregated and the entropy per layer before the
aggregation. It is useful to rewrite equation (9) as:

�H Cð ÞohC½1� þ hC½2� � hC½1� þC½2� ¼ DH ð10Þ
where DH is the difference of entropy due to the aggregation. This means that q(�)
increases if the value of DH associated to the two aggregated layers is higher than
the entropy per layer of the layer configuration before the aggregation. In general,
the Von Neumann entropy is sub-additive, meaning that the entropy of a state
obtained as the mixing of two other states is smaller than the sum of the entropies
of the two original states, that is, DH ¼ hC½1� þ hC½2� � hC½1� þC½2� � 0. However, as we
extensively show in Supplementary Note 2, Supplementary Fig. 1 and
Supplementary Table 1, this is not always the case when we aggregate two graphs,
so that the Von Neumann entropy of the resulting graph can be either larger or
smaller than the sum of the Von Neumann entropies of the two original graphs,
that is, the aggregation of two layers can sometimes violate sub-additivity. This
happens in at least two cases, that is, when one aggregates layers with very different
edge densities or when the aggregation would create structural patterns that did not
exist in any of the two original layers, which are both examples of undesirable
aggregation (see Supplementary Fig. 1 and Supplementary Table 1). In such cases,
equation (10) is automatically not satisfied (remember that �H Cð Þ � 0) and the
quality function q(�) decreases.

The condition to have an increase of q(�) expressed by equation (9) can be also
written in terms of the Jensen–Shannon divergence of the layers to be aggregated.
For the sake of simplicity, let us assume that the two layers C[1] and C[2] aggregated
to obtain the new configuration C0 have the same number of links. In this case, the
inequality in equation (9) is equivalent to

DJS q½1�
		 q½2�		
 �

o
hC½1� þ hC½2�

2
� �H Cð Þ; ð11Þ

where q[1] and q[2] are the density matrices corresponding to layers C[1] and C[2],
respectively. The first term on the right-hand side of inequality (11) is the entropy
per layer of the multilayer network formed by the two layers that have been
aggregated, so that the quality function q(�) increases if the difference between the
entropy per layer of this smaller multilayer and the entropy per layer of the full
multilayer network is larger than the Jensen–Shannon divergence of the density
matrices to be aggregated. In the limiting case in which C[1] and C[2] are identical
(that is, DJS q½1�

		 q½2�		 		� �
¼ 0), this leads to an increase of q(�) only if hC½1�4�H Cð Þ, or

equivalently if hC½1�4 1
X

PX
a¼1

hC½a� , that is, if the entropy of each of the two layers is

larger than the entropy per layer of the multilayer network before the merge. In
conclusion, an increase of q(�) usually corresponds either to the aggregation of two
layers that do not violate sub-additivity or to the merge of layers having very
similar structure. Hence, by maximizing q(�) one tends to avoid layer
configurations that might contain spurious structural patterns or redundant layers.

Hierarchical clustering. We measure the information lost by merging two layers
of a multilayer graph in a single network by comparing the Von Neumann entropy
of the compressed multilayer network with the original representation. The main
hypothesis is that if the value of the Jensen–Shannon distance between the
Laplacian matrices associated to layers a and b is small, then the two layers can be
safely merged in a single one without loosing too much information. Conversely, if
DJS La;Lb

� �
is large, then the two layers provide different information about the

relationships among the nodes of the system. In this case, it would be better to leave
the two layers separated, as their aggregation will result in a substantial loss of
information.

We perform a classical hierarchical clustering of the M layers using the Jensen–
Shannon distance to quantify the dissimilarity among (clusters of) layers. At each
step of the algorithm, we aggregate the two clusters of layers, which are separated
by the smallest value of DJS, and then we update the distances between the newly
formed cluster and the remaining ones according to Ward’s linkage. By iterating

this procedure M–1 times, we obtain a dendrogram, that is, a hierarchical diagram
whose M leaves are associated to the original layers of the system, internal nodes
indicate merges of (clusters of) layers and the root corresponds to the aggregated
graph. The quality of the layer organization obtained after m steps of the
hierarchical clustering algorithm is measured by the relative entropy q(�).

To verify whether the proposed greedy clustering procedure is able to find good
approximations of the real optimal configuration of layers, we compared the
solution corresponding to the optimal cut of the dendrogram with the actual
optimal configuration of layers of each of the 13 multilayer networks obtained from
the BioGRID data set. For each multilayer network, the optimal configuration of
layers was found through exhaustive enumeration of all the possible partitions of
the set of layers. The results are reported and discussed in Supplementary Note 3,
Supplementary Table 2 and Supplementary Fig. 6, and confirm that the greedy
clustering algorithm performs a quite efficient exploration of the quality function
landscape, yielding (sub-)optimal solutions associated to values of q(�) that are
between 76% and 100% of the actual global optimum. This is quite a remarkable
result, especially if we consider that the greedy algorithm performs only M–1 steps
(that is, less than seven steps for all the BioGRID multilayer networks), while the
exhaustive exploration of all the partitions of a set ofM elements requires a number
of operations equal to the Mth Bell number, which increases super-exponentially
with M.

We notice that the same hierarchical clustering algorithm can be potentially
applied with any other measure able to quantify the difference between layers,
not just with DJS. The only caveat here is that if the employed measure is not
a metric then the classical linkage schemes, including Ward’s linkage, cannot
be employed directly, so that at each step it is necessary to recompute the
distance between the new layer resulting from the last merge and all the remaining
layers.

A stand-alone implementation of the algorithm for the reduction of multilayer
networks described above is available at https://github.com/KatolaZ/multired.
Another implementation of the algorithm is already included in muxViz (https://
github.com/manlius/muxViz), a software for the multilayer analysis of networks.
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Ranking nodes in interconnected multilayer networks reveals their versatility.
Nat. Commun. doi:10.1038/ncomms7868 (2015).

20. Nicosia, V. & Latora, V. Measuring and modelling correlations in multiplex
networks. Preprint at http://arxiv.org/abs/1403.1546 (2014).
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