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Chapter 12

STRUCTURAL REDUNDANCY IN LARGE-SCALE OPTIMIZATION MODELS

Gordon H. Bradley, Gerald G. Brown

and

Glenn W. Graves

This paper discusses automatic detection and exploitation of structural

redundancy in large-scale mathematical programming models. From our perspective,

such redundancy represents embedded special structure which can give significant

insight to the model proponent as well as greatly reduce solution effort. We report

experiments with real-life linear programming (LP) and mixed-integer (MIP) models in

which various methods are developed and tested as integral modules in an

optimization system of advanced design. We seek to understand the modeling

implications of these embedded redundancies as well as to exploit them during actual

optimization. The latter goal places heavy emphasis on efficient, as well as

effective, identification techniques for economic application to large models.

Several (polynomially bounded) heuristic detection algorithms are presented from our

work. In addition. bounds are reported for a maximum row dimension of the more

complex structures. These bounds are useful for objectively estimating the quality

of heuristically derived assessments of structural redundancy. Finally, some

additional suggestions are made for analyzing nonlinear programming (NLP) models.

12.1 Introduction

Automatic detection and exploitation of structural redundancy in large-scale

linear programming (LP) (as well as mixed integer programming (MIP) and nonlinear)

models has been the subject of a continuing research program conducted at the Naval

Postgraduate School and UCLA over the past decade. This exposition draws from

various results in that effort. and refers (sparingly) to significant work by other

researchers. The references contain complete descriptions of these results for the

interested reader.

Our scope is intentionally limited to automated methods of sufficient efficiency

to enable us to economically apply them to real-world optimization problems. Thus.

we consider only those approaches showing greatest promise for immediate practical

application. Although the interpretations of embedded model redundancy can lend

profound insights in their own right, we are equally interested in detecting errors

in data preparation and model generation--mathematically mundane issues of

fundamental importance to the practioner.



146

In this context, our definition of structural redundancy includes not only

features which permit reduction of effective problem size, but also those embedded

special structures which invite application of special solution methods with

enhanced efficiency. This somewhat expanded view of redundancy admits features

which yield to. for instance, basis factorization or decomposition.

The sheer size of contemporary large-scale LP models presents significant

computational difficulties, even for discovery of otherwise elementary structures

(in the sense of formal complexity). Implementation of effective structural

analysis procedures is primarily a matter of exercising large-scale data structures

efficiently. As we shall see, though, these practical considerations can give

significant theoretical guidance in the specification of efficiently achievable

classes of model transformations.

That detection of embedded special structure can be of practical importance in

actual model solution is undisputed. It is widely known that explicit simplex

operations can be materially improved in efficiency by incorporation of basis

factorization methods (e.g., McBride (1973) and Graves and McBride (1976)). The

details of such modifications of the simplex procedure are not given here. However.

the underlying themes of simplex factorization are the substitution of logic for

floating point arithmetic, and separation of the apparent problem monolith into

more manageable components.

This work deals primarily with row factorizations. The pervasive implied

problem for row factorization is the identification of the best embedded structure

from all those that may lie at hand in any particular model. Conventional wisdom

differs as to the criterion for this discrimination among factorizations of the same

class. However, it is generally accepted that the row dimensionality of the

factorization serves as an excellent measure of effectiveness. In this sense,

embedded special structures fall naturally into a taxonomy implied by the intrins ic

complexity of the associated maximum row identification problems.

We proceed with a discussion of several types of embedded special structures

detectable by efficient polynomially bounded algorithms. These structures are

considered in increasing order of maximum row identification complexity. We

emphasize that efficient polynomial algorithms are operationally defined here as

low-order polynomial in terms of intrinsic problem dimensions (e.g., number of rows,

columns. and non-zero elements), and not in terms of the total volume of model

information (e.g., total number of bits in al l coefficients, ad nauseam),
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12.2 Overview of the Analysis

We are usually faced with the following practical situation. An LP (or MIP) is

presented, typically in MPS format on magnetic tape. Some documentation and

possibly solution experience is also provided, but the matrix generator and source

data elements for the model are rarely at hand. The model is frequently sent to us

because of some difficulty encountered in preliminary solution attempts.

Our efforts are devoted to two issues: analysis of the LP, and solving it

efficiently. The analysis is initially focused on rather ordinary details,

primarily estabishing computer capability, and on review of gross problem statistics

such as those shown in Table 12.1 for the same problems we will discuss further. At

this stage we attempt to detect outright disasters before investing more time and

money.

For instance, we have frequently found that the actual LP bears little

resemblance to the intended formulation due to matrix generator difficulties, human

error, or data base failures. Even an LP which seems to follow its formulation

template may exhibit superfluous objective functions, right-hand sides, and so

forth.

After the cursory review, a representative model is achieved, set up and input

to an internal data structure for detailed analysis. The input process is

relatively expensive for large LP models, involVing conversion of thousands of

records. Rowand column summary statistics are produced and reviewed. At this

point, pathological coefficient scaling is frequently revealed; this is sometimes

caused by poor modelling, and occasionally by bad source data elements. For

example, we have found at this point that unwanted model features (such as, say,

production capacity constraints) have be "relaxed" in an ad hoc fashion by providing

outrageous dummy coefficients (e.g., essentially infinite capacity or infinitesimal

production rates). These redundancies, while innocently intended, can play havoc

with LP solution procedures (this is especially true for MIP and nonlinear

algorithms).

Next, we apply a set of simple reductions to the LP model. At this stage, we

identify redundancies with two goals. First, we want to complete our "bottom-up"

analysis of the model. However, we also seek to set the stage for actual model

solution.

In this sense, we cannot (ordinarily) afford and we do not (routinely) apply

large scale reduction methods which are computationally equivalent to actual
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solution of the LP. Rather, we discover as much as possible about redundancy in the

model by efficient, polynomial1y bounded static analysis not employing basis

exchanges. From this we attempt to infer qualitatively the complete redundancy

structure of the model at hand.

Also, we ignore structural features which have little or no bearing on our

analysis or solution effort. For instance, we are indifferent about degeneracy,

since our solution procedures exploit this delightful property (Graves (1965)).

Similarly, we do seek certain properties which may make our solution much more

efficient, but which may not be so attractive to analysts using other methods.

Among these properties are embedded Generalized Upper Bounds (GUB) and network, or

pure network (NET) rows, for which our interest is particularly keen (Bradley, Brown

and Graves (1977a), Brown and Graves (1975), Graves and VanRoy (1979)).

Actual solution of the model follows these analysis efforts unless we find that

the model requires significant modification or managerial review. For models that

merit solution, we see no reason to impose unreasonable restrictions on the model

builder. That is, the responsibility for efficient solution is ours regardless of

the redundancy structure found, as long as this redundancy is not in conflict with

the intent of the modeler. Thus. all reductions must provide an equivalent solution

to the model as originally posed, and cannot require that the model be changed or

severely modified externally (e.g., requiring general linear transformation of the

formulation to suit the solver is out of the question).

12.3 Details of the Analysis

For analysis, the linear program is stored in a sparse data structure. Nonzero

coefficients are stored along with the corresponding row index by column with access

via column entry points. Each row and column has associated with it an external

label, several coefficient values representing upper and lower bounds and ranges,

and a coded tag giving the type of constraint (e.g., equation) or column and its

status in the analysis.

Although conversion to a super-sparse data structure is subsequently required

for the solution of the model, the sparse structure is much more convenient for

analysis of the model composition and for model modifications. Very little

auxiliary storage is required for the analysis and practical problems at large scale

are routinely analyzed. The system is designed to operate on problems with up to

30,000 rows plus columns (e.g., see Bradley, Brown and Galatas (1980) for examples

using FORTRAN).
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Our analysis is confined to reductions that do not change the feasible region.

The analysis can also be called "orthogonal" in that the reduction tests are made on

the current problem with no pivotal transformations actually performed. The

reductions may show how to transform the problem by removing columns and constraints

and by the elimination of columns (equivalent to pivoting), but the tests are

applied only to the current representation of the problem.

The analysis is applied to a fully ranged and bounded linear program.
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Some ranges and bounds may be missing (that is, +00 or _co).

12.3.1 Simple Reductions

Singleton column. If a column has a single nonzero coefficient, the column can

be removed. The ranges of the constraint that contain the nonzero coefficient are

modified to construct an equivalent problem.

Fixed column. If a column has been fixed at a certain value, or (equivalently)

its upper and lower bounds are equal, it can be removed. The ranges of all

constraints that have a nonzero coefficient in the removed column are modified.

Vacuous columns. Columns with all coefficients zero may be removed. The

associated variable may assume any value between its upper and lower bounds.

Inconsistent column. Any column with its upper bound strictly less than its

lower bound indicates that the linear program has no feasible solution.

Free column. A free column results from modeling a variable that has no upper

or lower bound or by analysis that can show that neither the upper nor lower bound

is necessary to define the feasible region.

s

Singleton constraint.

constraint may be removed.

are modified.

If a constraint has a single nonzero coefficient, the

The bounds of the column that contains the coefficients
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Redundant constraints. A constraint is redundant if its removal does not change

the feasible region. An examination of the bounds on columns with nonzero

coefficients yields a test for a redundant constraint. For constraint i define

R
i

= L a··u· + L a..h.,
a . .>0 1J J a ..<0 1J J

. 1J 1J

and

L a, .h. + ~ a, .u, .
o 1JJ a ~ < O 1JJ

ai j > 1J

A constraint is redundant if Ri
< r i and R. > r.. If only one inequality holds,
- 1 - 1

the corresponding range can be eliminated (that is, set to '" or - "-').

Constraints that fix variables. If Ri = r i or Ri = r i then each column with

a nonzero coefficient in the constraint must be fixed at the appropriate bound in

order for the constraint to be satisfied. The constraint can then be removed.

Inconsistent constraints, If Ri < r i or Ri > r i • then the LP has no feasi

ble solution.

Vacuous constraints. Constraints with no nonzero coefficients may be removed.

If r i
< 0 or r i > 0 • then the LP has no feasible solution.

All of the sets above are applied in a single pass. Since the reductions (if

any) may make it possible to identify new reductions, the complete analysis consists

of repeated passes until no additional reductions are found. Table 12.1 displays

the results for the sample problems. The times given are for execution on an IBM

360/67 using FORTRAN H (Extended) without code optimization.

With real-life . LP (and MIP) models. a remarkably large fraction of model

constraints can be removed by these simple techniques. For some cases. models have

nearly been solved this way.

We have often been surprised at the number of reductions achieved after several

passes. The repeated passes can serve to unravel a model and reveal special

structure that is quite obscure in a static analysis.

Experiments with some of these reductions have been reported by Brearley. Mitra

and Williams (1978) . More extensive work at large scale has been done by Bradley.

Brown and Graves (1977b) and by Krabek (1979).
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:hange Table 12.1

nzero

ne CHARACTERISTICS OF SAMPLE LP (MIP) MODELS

Constraints Variables Nonzero Coefficients
Orders of

Model Total Equality Total Integer Total Magnitude

NETTING 90 36 177 114 375 8

AIRLP 171 170 3,040 0 6,023 3

COAL 171 0 3,753 0 7,506 6

TRUCK 220 0 4,752 4,752 30,074 1

)Ids , CUPS 361 330 582 145 1,341 7

FERT 606 559 9,024 0 40,484 8

PIES 663 480 2,923 0 13,288 7

with PAD 695 160 3,934 0 13,459 7

rd in ELEC 785 462 2,800 0 8,462 6

GAS 799 638 5,536 0 27,474 5

PILOT 976 701 2,172 0 13,057 14

si- FOAM 1,000 0 4,020 42 13,083 7

LANG 1,236 665 1,425 0 22,028 3

JCAP 2,487 310 3,849 560 9,510 >9

\led. PAPER 3,529 2.456 6,543 0 32,644 6

OOSAS 4,648 4,059 4,683 0 30,520 4
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12.3.2 Transformation Reductions

Equations confine the feasible region to an affine subspace of lower dimension.

It is possible to eliminate an equation and a column with a nonzero coefficient in

the equation. If aik; 0 in an equation constraint i, then

X
k

= (r i - La..x .)/ a .k
j~k lJ J 1

can be used to eliminate xk from the problem. The equation is eliminated but the

bounds on xk generate a constraint.

hk :: (r
i

- r a. .x.)/a·k < Uk •
jfk 'J J 1-
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This elimination is equivalent to pivoting on aik• Although repeated application

will remove all equations. this will not in general make the problem easier to solve

or reduce the number of constraints.

There are two special cases where the elimination of a column can reduce the

number of constraints. If the column xk has no upper or lower bound (t.a., a

"free" variable), then the generated constraint is redundant and thus may be

el iminated.

If the equation has only two columns with nonzero coefficients, the generated

constraint is a simple bound on a variable and thus may be combined with the

existing 'bounds on the variable.

A particular type of constraint that is common to many models leads to an

equation that has a nonzero coefficient for a column with no bounds. Commonly

called material balance equations. these constraints set one nonnegative column

equal to the sum of several other nonnegative columns.

Xk - 1: Xj = 0 ,
jE:J

Since the xj j (J are all restricted to be nonnegative. it is easy to see

that the bound xk ~ 0 is redundant -- that is. if it is eliminated. the feasible

region is unchanged. Thus k can be regarded as a column with no bounds and the

elimination of xk will reduce the number of constraints by one.

Notice that although the analysis of the material balance equation results in

removing the bound from xk' when eliminating xk any single equation that has a

nonzero coefficient in column k can be substituted out.

The analysis applies to a generalization of material balance rows:

o < xk • h. < x· < u· ,
- J- J- J

where a ik > 0 , b i and hj ~ 0 and aij < 0 V j €J. Although this is not the

most general form which can be used to designate that the bound(s) on xk are

redundant, this form (and its negative) captures all the cases in the real-world

problems that we have analyzed.
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Doubleton equations. Equation constraints with exactly two nonzero coefficients

can be identified for immediate elimination. The elimination of the equation and

one of two columns is accomplished as described above. The generated inequality

contains just a single nonzero coefficient so i t can be removed by modifying the

bounds on the surviving column.

Free column equations. An equation with a nonzero coeffic ient for a free column

can be identified for immediate elimination along with the free column. The

transformation to remove the constraint and column is equivalent to pivoting on the

nonzero coefficient.

Redundant bounds. Our analysis uses only the generalized material balance

equation to identify columns that have no bounds. It is possible to generalize this

idea to include the use of all constraints to identify such columns. Each

constraint may be used to generate bounds on all the columns with nonzero

coefficients. For constraint i with aik > 0

'\ '\ h+ < < i- L. a, .u, - L. a··· r i _ aikxk .; r
a..>0 lJ J a ..<0 lJ J
lJ lJ
jjk

- I a· ·h .
a ..>0 lJ J

lJ
jjk

- I a, -u, •
a . .<0 u J
lJ

see

ble

t he

in

; a

'le

"e

Id

An analogous result can be constructed for a
ik

< 0 .

The intersection of these bounds from all the constraints imply bounds for

column k which may reveal hk and uk to be redundant and thus permit k to be

designated a free column, or which can be used to tighten hk and uk'

Although this test can be done efficiently for any particular aik' there are

potentially quite a large number of candidates to test. We have not included this

test in our results here, and we further believe that there are few real LP problems

for which this test yields significantly more columns without bounds than

examination for generalized material balance equations.

One particular situation for which this test may be selectively applied is that

in which a coefficient is much larger, or much smaller than its cohorts. In this

case the inferred bounds may reveal inf initesimal or (respectively) gigantic bounds

for xk' possibly suggesting delet ion of the column.

Table 12.2 shows doubleton equations found after the final simple reduction

pass. Note the last model (ODSAS) for which almost all constraints are identified

as doubleton equations.
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Table 12.2

RESULTS OF SIMPLE REDUCTIONS

Columns Constraints Reduction Doubleton
Model Single. Fixed Single. Redund. Passes Equations Seconds

NETTING 1 8 29 17 4 7 0.81

AIRLP 0 20 0 0 2 0 1. 78

COAL 0 a 0 0 2 0 2.12

TRUCK 0 2 0 1 2 0 5.57

CUPS 49 57 18 55 4 39 1.90

FERT a 406 0 13 4 0 14.25

PIES 50 183 16 0 3 0 3.32

PAD 30 183 16 0 3 0 3.26

ELEe 56 494 110 14 4 3 8.64

GAS 60 501 31 30 4 0 10.08

PILOT 123 277 12 91 11 36 17.15

FOAM 0 2 36 0 2 0 3.30

LANG 220 105 68 55 20 9 61.45

JCAP 414 6 277 360 3 180 12.16

PAPER 190 145 90 45 5 359 20.61

ODSAS 40 0 0 40 3 3t609 31.00

A sample analysis for material balance equations performed on the PAPER model

detected 1,645 such constraints.

It is not always obvious whether actually applying a particular transformation

reduction will produce an LP model which is easier to solve. In particular.

transformation reductions can generate a "reduced. equivalent lP" which is actually

denser. and not necessarily as well-scaled as its progenitor .

On the other hand, some reductions offer a decided advantage for solution

efficiency. For constraints like xj - xk : 0 • xj.xk ~ 0 , both variables must be

in the basis for them to assume a positive value. For many commercial linear

programming systems t partial pricing and the lack of effective mechanisms to cope

.. .
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with degeneracy do not allow the efficient treatment pf the special relationship

between the variables. Similarly, for material balance equations with nonnegative

variables, at least two variables with coefficients of opposite sign must be in the

basis before any of the variables can assume a positive value. The transformation

reductions eliminate these particular instances where relationships among variables

interfere with the solution progress.

For large-scale models, we analyze the reductions carefully, using all

information available for the model and the problem it addresses. Numerical and

structural consequences of reductions are critically reviewed in concert with the

algebraic interpretations and modeling discoveries which they characterize.

Notice that both simple and transformation reductions may be viewed as linear

operators that do not change the feasible region of the problem. After the reduced

problem is solved, the inverse operators applied to the optimal solution construct

an optimal solution to the original problem.

The analysis makes no special use of an objective function. Free rows (i.e.,

-r i = r i = CD) may be included in the problem. The objective function and any free

rows designated to be included are only examined in determining if a column has a

single nonzero coefficient. Thus the reduction can be done for several different

objective functions simultaneously.

12.3.3 Generalized Upper Bounds

Rows for which each column has at most one nonzero coefficient (restricted to

those rows) collectively form a generalized .upper bound (GUB) set. Usually, we

additionally require that the coefficients in these rows be capable of being

rendered to !1 by simple row or column scaling.

The problem of identifying a GUS set of maximum row dimension is NP-hard, making

optimal GUB identification algorithms hopelessly inefficient for our purposes.

Heuristics adapted from work by Graves and by Senju and Toyoda (1968) (see also

Brearley, Mitra and Williams (1978)) work very effectively and dependably at

large-scale to find maximal GUS sets.

Unfortunately, the problem of determining just the size of the maximum GUB set

is also NP-hard. However, Brown and Thomen (1980) have developed bounds on the size

of the maximum GUB set which are sharp and easily computed. These bounds have been

used to show, in some cases, that maximum GUB sets have been achieved via heuristic
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Aproblem-independent bound on the size of the maximum GUB set is

c > (m - y) y ;

c ~ (m - y) y

{

m- rely ,

Uz =
-----:------:---L (.5 + 1.25 + y(2m - y - 1 )- Zc ) ,

A tighter, problem-dependent bound is

ul = l-(.5 + 1.25 + m(m - 1) -Zc )

c = lIZ ~ si < 1/2 m(m - 1) •
1

methods. In any case, the bounds provide an excellent objective measure of the

quality of any GUO set, regardless of the means of its derivation. Frequently,

manual GUS analysis will suffice for models with amenable structure.

where l- indicates truncation to the next lower integer.

The bounds are developed in terms of the number of distinct conflicts present in

the model. Two rows are in conflict if they each have a nonzero element in a common

column, making them mutually exclusive 1n a GUS set. If si is the number of rows

in conflict with row i , then the total problem conflict count for a model with m

rows is

where

and r indicates rounding to the next higher integer.

Tighter upper bounds have been derived for the size of the maximum GUB set, as

well as lower bounds.

Table 12.3 contains the results of automatic GUB identification applied to the

benchmark models. Row eligibility is based on the capability to scale the row to

contain only 0, ±l coefficients. GUB quality is the number of GUB rows found,

expressed as a percentage of the best known upper bound on maximum GUS row dimension

(actual GUO quality may be greater than this conservative estimate). The results

were obtained using FORTRAN H (Extended) with code optimization.
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the Table 12.3

ly,

GUB IDENTIFICATION

in

non
Constraints Constraint Conflicts GUB

JWS Model GUB-Eligible Count Density Rows Quality Seconds

m
NETTING 71 46 1.85% 36 78.26% 0.05

AIRLP 170 2,983 20.64% 150 100% 0.65

COAL 170 3,753 26.13% 111 91.74% 0.92

TRUCK 219 10,438 43.53% 29 20.28% 5.00

CUPS 336 744 1.32% 160 66.67% 0.21

FERT 605 16,455 9.01% 559 98.59% 6.73

PIES 662 4,116 1.88% 172 40.76% 2.82

PAD 694 4,416 1.84% 188 41.87% 3.34

ELEC 784 6,167 2.01% 309 62.80% 1.15

GAS 789 22,220 7.15% 608 93.25% 3.79

PILOT 975 12,110 2.55% 255 33.73% 2.75

FOAM 989 8,186 1.67% 917 98.18% 1. 73

LANG 1,235 46,424 6.09% 342 35.15% 14.90

JCAP 2,446 16,578 0.55% 529 29.19% 2.23

PAPER 3,528 35,047 2.82% 1041 34.65% 5.77

ODSAS 4.647 5,220 0.05% 749 18.61% 7.12

12.3.4 Implicit Network Rows

IS

e

o

n

s

Implicit generalized network rows are a set of rows for which each column has at

most two nonzero coefficients (restricted to those rows). Such rows in LP are

called implicit networks with gains if columns with two nonzero coefficients (in

these rows) can be converted by simple row and column scaling such that one nonzero

coefficient is +1.

Pure network rows (NET) can be converted by simple row and column scaling such

that all nonzero coefficients (restricted to those rows) have value ±1 , and such

that columns with two nonzero coefficients (in those rows) have one +1 and one

-1. Such rows in LP are called pure networks.
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Simple row and column scaling is restricted such that application of each scale

factor renders an entire row, or column, to the desired sign (and unit magnitude for

pure NET).

The problem of identifying a NET factorization of maximum row dimension is

NP-hard (Wright (1980)), making optimal NET identification algorithms unattractive

in a practical sense. The problem of determining just the size of the maximum NET

set ;s also NP-hard. Thus, heuristic identification methods are mandated.

An extension of GUB can be used to achieve NET factorizations. First a GUB set

is determined by methods mentioned in Section 12.3.3. Then. a second GUB set is

found from an eligible subset of remaining rows. The second GUB set is conditioned

such that its row members must possess nonzero coefficients of opposite sign in each

column for which the prior GUB set has a nonzero coefficient. This double-GUB (OGUB)

factorization yields a bipartite NET factorization. Thus. DGUB heuristically seeks

the maximum embedded transportation or assignment row factorization. Pure network

equivalents derive from proper editing of eligible rows.

Generalizing on the theme of Senju and Toyoda, a method has been developed by

Brown and Wright (1980) for direct NET factorization of implicit network rows. Pure

NET rows can be identified with the same procedure by simple screening of admissible

candidate rows.

This heuristic is designed to perform a network factorization of a signed

elementary matrix (0. 1 entries only). It is a deletion heuristic which is

feasibility seeking. The measure of infeasibility at any point is a matrix penalty

computed as the sum of individual row penalties. The algorithm is two-phased, one

pass. and non-backtracking. The first phase yields a feasible set of rows, while

the second phase attempts to improve the set by reincluding rows previously

excluded. Each iteration in Phase I either deletes a row or reflects it (multiplies

it by -1) and guarantees that the matrix penalty will be reduced. Thus, the number

of iterations in Phase I is bounded by the initial value of the matrix penalty,

which is polynomially bounded.

Let A = [ai j] be an mx n matrix with aij = 0, ±1 V i,j •

Problem: Find a matrix N = [ni j] with (m - k) rows and n columns

which is derived from A by

1. Deleting k rows of A where k ~ 0 ,
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2. Multiplying zero or more rows of A by -1 ,where N has

~he property that each column of N has at most one +1

element and at most one -1 element.

We wish to find a "large" N in the sense of containing as many rows as possible,

i.e., minimize k

Terminology and Notation:

1. E is the set of row indices for rows eligible for inclusion in Nand

is called the eligible set.

2. C is the set of row indices for rows removed from E in Phase I

(Deletion). Some rows in C may be readmitted to E in Phase II.

e is called the candidate set.

3. The phrase "reflect row i' of A" means to multiply each element in row

i I by -1 , i.e. , ai' j + -ai' j V j .

4. Other notation will be defined in the algorithm itself.

ALGORITHM:

Phase I - Deletion of Infeasible Rows

Step 0: Initialization. Set E = {1,2, ... ,m } , C = tP •

+
For each column j of A compute the + penalty (Kj )

and the - penalty (Kj) as follows:

!r K: = (L 1) - 1, Kj =
J iEE:a ..>Q

lJ

1

These penalties represent the number of excess +1 and -1 elements,

respectively, in column j which prevent the row whose indices remain

in E from forming a valid N matrix. A penalty value of -1, for

K~(K~} indicates that the column does not contain a +1(-1) element.
J J

Step 1: Define Row Penalties. For every iE·E, compute a row penalty

(Pi) as follows:

i
i

!
I
'lI
I

I,
I
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This is simply the sum of + penalties for all columns in which

row ; has a +1 plus the sum of - penalties for all columns in which

row has a -1

Step 2: Define Matrix Penalty. Compute the penalty (h) for the matrix

by summing the row penalties as follows:

h = L p,"
i € E

If h = 0 • then go to Step 7. Otherwise go to Step 3.

Step 3: Row Selection. Find the row i'EE with the greatest penalty

i .e. ,

Find i I € E such that Pi' = max Pi •

i EE

(If there is a tie. choose i~ from among the tied values.) Compute

the reflected row penalty Pi ' for i' as follows:

(K~ + 1)
J

This would be the row penalty for row i' if it were to be reflected.

Step 4: Delete. or Reflect Row

. -;-. , . ~ . 
"

Case i )

Case ii)

p., > p, ••-' - ,
Pi' < Pi'

Let E -+- E - {i I I, C + CU{i 1 1 •

Reflect row i' • Go to Step 6.

Go to Step 5.

Step 5: Reduce Column Penalties as follows:

For all j such that ai• j
> 0 , Kj K~ - 1

J

For all j such that ai 'j < 0 • Kj Kj - 1 .

Go to Step 1.

e
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Step 6: Change Column Penalties as follows:

Using the a· l • values after reflection of row i I ,
1 J

For all j such that + + and K: -+- K: - 1a· l • > o , K.-+-K.+l
1 J J J J J

For all j such that o , + + 1 and Kj -+- Kj + 1 •ai I j < Kj -+- Kj -

Go to Step 1.

Phase II - Reinclusion of Rows from C

Step 7: Eliminate Conflicting Rows. The rows with indices in E, some

possibly reflected from the original A matrix, form a valid N

matrix. However, some of the rows removed from E and placed in

C may now be reincluded in E if they do not make h O.

Remove from C (and discard) all row indices for rows which,

if reincluded in E in present or reflected form, would make

h > 0 That is remgve from C if

a) 3 jl such that a.. > 0 and K~ = 0
1Jl J1

or a' j < 0 and K: ~ 0
1 1 J1

and

b) 3 j2 such that aij2 > 0 and Kj2 = 0 ,

+or a.. < 0 and K
J
'
2

= 0 •
1J2

If C = rp , STOP, otherwise go to Step 8.

Step 8: Select Row for Reinclusion. At this point a row from C may be

reincluded in E. There are several possible schemes for selecting

the row. After the row is reincluded, the column penalties are

adjusted. Then go to Step 7.

No dominating rule has been discovered 'for breaking ties in maximum row penalty

encountered in Step 3. The rule used for the computational results presented herein

is to select the row with the minimum number of nonzero entries in the network set.
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Other possible rules are "first-comet f t rs t-served ;" maximum number of nonzero

entries, type of constraint, or modeler preference.

Modifications can be made to Step a to allow for (1) matrices including non

-0, ±1 entries and/or (2) pre-specified network rows. The modifications are:

1. E = {i Iai j = 0, ±1 for all j }

2. Let P = {i lrow i is prespecified}

E -e- E - P

+After computation of K
j

and Kj find for all j

if 3 i e: P such that ai j = 1 then Kj -4- Kj + 1 ,

if 3 i e: P such that aU = -1 then Kj of- Kj + 1 •

At termination of the algorithm, the rows in N are given by E UP.

One easily obtained upper bound on the maximum row dimension of the network

factorization is:

u1 = m - M~X(Kj + Kj)
J

This bound is easily computed and evidently sharp. It can be used to

objectively evaluate the quality of a heuristically derived network factorization.

The bound may also be used to preemptively terminate factorization effort.

Another generally tighter bound has been developed by Wright (1980) which is

based on the reflection and deletion potentials for each row in the eligible set.

Using this information it is possible to obtain a lower bound on the number of rows

which must be deleted to achieve a feasible network set. The upper bound is then:

u2 = m - lower bound on rows deleted.

This bound is also evidently sharp and is the bound used to compute NET -qual it y

in the following table.

I
- )

I
j
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'0 Table 12.4

NET IDENTIFICATION

n

Constraints
DGUB NET

Model Net-Eligible Rows Seconds Rows Quality Seconds

NETTING 59 54 0.07 54 94.74% 0.08

AIRLP 150 150 0.41 150 100% 0.35

COAL 111 111 0.50 111 100% 0.43

TRUCK 219 47 8.40 46 33.58% 19.83

CUPS 300 251 0.29 295 99.33% 0.14

FERT 585 572 6.03 572 100% 6.15

PIES 142 128 0.56 128 96.97% 0.59

PAD 174 160 0.58 160 97.56% 0.59

ELEC 322 272 0.99 286 93.46% 2.07 .!
:

GAS 752 682 5.00 668 94.08% 9.71 i,
PILOT 109 109 0.92 109 100% 0.36 .1.

.,
"

FOAM 966 951 1.89 951 99.58% 1.16
•.

" .1

LANG 850 585 3.74 661 87.20% 14.82 ' ~ i

JCAP 1.811 874 2.50 917 83.97% 44.07 .t. ,

PAPER 2.324 1.484 7.24 1.627 78.52% 94.16
.\
'.I

ODSAS 410 317 3.39 286 77 .51% 14.55
,

Table 12.4 displays the results of DGUB and NET factorizations of the benchmark

models. Row eligibility is determined by the capacity to scale each row, by row

scaling alone. to contain only 0. 1 entries. The NET quality is the number of NET

rows found, expressed as a percentage of the upper bound on maximum NET row

dimension given above (actual NET quality may be considerably better than this

estimate) .

12.3.5 Hidden Network Rows

Hidden network rows1 are a set of rows which satisfy NET row restrictions after

full linear transformation of the model. That is, realization of these (LNET) rows

may require a general linear transformation of the original model.

lwe have coopted the term hidden from Bixby (1981), but his definition may
not superficially appear to be equivalent •

• ....m::.>.
</>••• • :
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The discrimination between implicit and hidden network rows is not (necessarily)

in their use, but rather in their detection. The transformation group associated

with implicit network rows involves ~ permutations and simple scaling of

individual rows and columns. The hidden network rows require a completely general

linear transformation and partial ordering. Thus, identification of hidden networks

requires significant computation just to identify eligible rows, since any given row

may conflict with subsets of its cohorts after transformation.

This problem has been solved for entire hidden network factorization, where all

rows are shown to be LNET or the algorithm fails. Bixby and Cunningham (1980) and

Musa1em (1979) have given po1ynomially complex methods for entire LNET conversion.

(The entire GUB problem is polynomial as well.)

Strategically, the entire hidden LNET factorization requires two steps:

DETECTION: necessary conditions for existence of an entire LNET

factorization must be established, and

SCALING: a linear transformation to achieve the NET structure must

be determined, if one exists.

Cunningham and Bixby attempt detection, followed by scaling. Musa1em tries

scaling, then detection. This is a crucial difference between methods, since

problems which cannot be completely NET factorized may fail in either step.

Briefly, Cunningham and Bixby detect by showing that the incidence matrix of

the model rows can be converted to a graphic matroid. They employ a method of Tutte

(see references of Bixby and Cunningham, 1980). Given success, the graphic record

of the detection is used to attempt to scale the model to NET, or to show that no

such scaling exists.

Musa1em scales the model to a ±1 matrix, and then uses a method by Iri (see

references of Musalem (1979)) to build a tree, edge by. edge, which reveals the

partial ordering coincident with entire hidden LNET factorization.

Both methods are po1ynomial1y complex. However, entire LNET factorization is

relatively expensive by either method in that quite a large amount of real

arithmetic and log ic is required. Underlying data structures have not been

suggested for either method. Both methods fail if complete LNET factorization is



165

y)

ed

of

al

ks

'w

11

Id

impossible. and neither leaves the investigator with much information useful in

salvaging a partial LNET factorization. We conjecture that risk of preemptive

failure narrowly favors the Musalem approach. since he defers the relatively

involved detection step.

Locating a hidden LNET factorization of maximal row dimension has been

suggested by Bixby (1981) and by Musalem (1979). but no concrete method is given and

no computational testing is reported. Evidently, the maximum LNET problem is

NP-hard, and its maximal relaxation remains unsolved in the practical sense of this

report.

12.4 Extensions to Mixed Integer and Nonlinear Models

Mixed integer (MIP) and nonlinear (NLP) optimization models present additional

challenges, especially at large scale. Our interest in the detection of structural

redundancy is intensified since general purpose algorithms for (MIP) and (NLP)

normally operate by solving sequences of many embedded LP models. This provides

added impetus to the analysis of problems prior to their actual solution, and

economically justifies some additional initial investment in problem analysis.

12.4.1. Mixed Integer Extensions

The structural analysis presented for LP is also applicable to MIP. Since most

real-world models and many commercial optimization systems have only binary variable

capability, our analysis addresses binary variables exclusively. Thus, binary

factorization of integer variables is a prerequisite. We also assume that

reductions requiring scaling of binary columns are inadmissable.

When a reduction tightens a bound for a discrete variable the bound is rounded

to the nearest integer (down for uj and up for hj). Any tightening of bounds

for a binary variable immediately results in a fixed column or an inconsistent

column. The reduction for fixed columns, vacuous columns, inconsistent columns,

singleton constraints, vacuous constraints, constraints that fix variables, and

redundant constraints are applied exactly as described for LP.

The treatment of doubleton equations requires special consideration to identify

inconsistent constraints.

A doubleton equation with both columns binary has either one solution, two

solutions or no solutions. All four possible solutions (0,0), (l,O), (0.1) and

(1,1) are tried.

-
l , .~ .
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If only one solves the equation. the binary variables are fixed at these values

and the constraint is removed (the test for constraints that fix variables will also

discover the equation with a single solution and accomplish the same reduction).

For the case with two solutions there can only be two situations: consider the

daub leton as a il x1 + ai2x2 = bi with ail ~ 0 and ai2 ~ O. Then if (0.0)

and (1.1) can both solve the equation, this implies that b = 0 and ail = -ai2 •

If (0.1) and (1.0) are solutions. this implies that ail =ai2 =b. Both cases

are treated correctly by the transformation described for continuous variables.

If there are no solutions. the constraint is designated as inconsistent.

For a doublteton equation with one continuous and one binary variable. the

transformation described for continuous variables is used. but it must be the

continuous variable that is eliminated.

The reductions to eliminate singleton columns and to designate a free column

equation many not be applied to binary variables. This is ensured by marking the

binary columns as ineligible for these reductions. Note that since a binary

variable can never be designated as a free column, binary variables cannot be

eliminated as a variable in a free column constraint but may be among the other

columns in such a constraint.

The redundant bounds test may be used to tighten bounds on binary variables and

thus fix them. or show that the MIP has no feasible solution.

12.4.2 Nonlinear Extensions

Large-scale nonlinear optimization. though not yet in wide use. can benefit

from the analysis techniques given here for LP. and demands some additional special

treatment.

We have experience with only two large-scale. general-purpose optimization

systems with full nonlinear capability: our own X-system and MINOS/Augmented

(Saunders and Murtagh (1980)). Both of these systems can accept linear problem

features and labels in MPS format and nonlinear terms from function-generators.

Both systems can also employ several alternate problem generation interface

standards.

These systems are each designed to exploit any linearity or near-linearity in

the NLP. Given a starting solution. it is of no little interest to analyze the
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linear portion of the NlP which will, after all, be solved many times--the reason

that we support all lP features for NlP. Also, any local linearization of the NlP

is subject to analysis.

However, it has been our misfortune to have repeatedly discovered that NlP

presents us with unique structural curiosities.

We refer to the foremost among these as function coordination. There are

myriad opportunities with NlP to unwittingly introduce discontinuities and

miscellaneous unruliness in functions and derivatives. Whether by programming

error, mathematical blunder or numerical difficulty, these errors inflict great

vexation and expense.

Detection of such difficulties is quite challenging since, unlike lP,

procedures and data are used to express the problem at hand. As a bare minimum, we

employ a preemptive analysis module that acts as a complete surrogate for the

optimizer, employing standard interface conventions and exercising all functions and

data.

The starting solution and scaling parameters are used to check analytic

gradients (if supplied) with numerical difference approximations. Approximation of

functions is then attempted to reveal behavior local to the initial solution such as

apparent convexity and degree of nonlinearity. Optionally, the first step of the

algorithm is simulated and the same analyses performed.

From the initial results algorithm tolerances may be changed, programming

errors detected, and so forth, until acceptable model behavior is observed.

In some cases, suspicious functions may be evaluated at column bounds to see if

numerical arithmetic faults occur. Some models require construction and maintenance

of a trust region for the approximations implied by the NlP algorithm, and prior

analysis is absolutely essential in these cases.

Structural analysis of HIP and NlP can frequently--even repeatedly--presage

outright failure of the solution algorithms to be employed. For these models, the

effects of structural redundancy can be far more significant than for simple lP.

12.5 Conclusion

The techniques reported here have been used with great success on a wide

variety of large lP (HIP) models. The context of this research is somewhat atypical
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in that the models which we work with are often sent to us for analysis and solution

precisely because they have already failed elsewhere. In these cases, our motives

are to quickly diagnose suspected trouble before optimization, prescribe remedies,

and perform the actual optimization reliably and efficiently.

This has undoubtedly biased our view of structural detection methods.

Practical considerations arising from turnaround deadlines and the specific

advantages of our own optimization system {Brown and Graves (1975»2 have colored

our judgment. Many provocative suggestions for further research have not been

pursued, either due to lack of opportunity, to poor intuition, or to simple

economics. Whether or not by equivalent prejudice, Krabek (1979) reports some

similar methods for detecting redundancy in large-scale MIP.

Various cormerc tal optimization systems support "CRASH", "REDUCE", and other

operators which implement some of these reductions automatically during lP solution.

These systems are not reviewed here. We stress the value of structural analysis

techniques as stand-alone tools, rather than as exclusive features of actual

lP-solution algorithms.

A great de?l of insight has been gained from these experiments. The cost of

analysis is truly insignificant relative to the information and solution efficiency

thereby gained. Revelations have ranged from outright rejection of absurd

formulations, to subtle inferences on the project management and lnterpersonal

relations among model proponents. Very few models fail to reveal some totally

unsuspected structural curiosity. Indeed, it is often some small aberration that

proves most revealing. Sometimes, the combined effects of several minor features

collectively contribute to a discovery of significant model attributes.

Our general operational guideline has been to avoid heavy computational

investment in model analysis. Rather, highly efficient methods are used repeatedly

on variations of each model. Manual and intuitive analysis of these results usually

reveal much more than could be reasonably expected from any totally automated method

of exponential complexity. After all, just the names of rows and columns can be

expected to reveal a great deal about the model, but exploiting this mathematically

2The X-system (XS) differs in many ways from classical large-scale mathematical
programming systems; it simultaneously supports simple and generalized upper
bounds, general basis factorization, MIP, nonlinear, and decomposition features.
In addition, the fundamental lP algorithm has been enhanced to intrinsically
incorporate elastic range restrictions. XS is particularly suited for solution
in limited time of large models with complicating features.
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virtually defies automation in any general manner; interactive analysis of

large-scale models is uncompromisingly challenging in a technical sense and equally

rewarding.

Large degrees of structural redundancy are routinely found as intrinsic

features in real-life models. However, we feel that it is an abominable practice to

proselytize in favor of some particular model structure at the expense of model

realism or common sense. For instance, network models have recently received

unprecedented attention in the literature. The implication has often been that

since networks are usually found in models, networks should be used as the exclusive

model. This is. of course, patent nonsense, smacking of a solution in search of a

problem. An analyst should view intrinsic redundancy as an interesting feature of

models. rather than forcing models to exhibit minimal redundancy, or requiring that

they follow some particular structural pattern.

As for automating the discovery of all redundancy in a model, this exercise

seems to be almost exclusively academic with large-scale real-life LP projects. In

those rare cases for which such extensive analysis is justified, we suggest a

straightforward view and a frontal attack with an imbedded LP optimizer.
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