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Abstract

Hypervalent iodine λ3-benziodoxoles are common electrophilic transfer reagents known for their

enhanced stability compared to their non-cyclic analogues. Herein we present data showing that

chlorobenziodoxole reacts with two different thiolate nucleophiles (thiocyanate and

trifluoromethylthiolate), resulting in the formation of stable thioperoxy complexes rather than the

expected benziodoxole derivatives. We further report a revised structure for the earlier described

electrophilic trifluoromethylthiolation reagent (1), which was previously believed to contain the

benziodoxole framework. Our findings, which are based on a combination of analytical

techniques, including the recently introduced crystalline sponge method for X-ray analysis,

unambiguously demonstrate that 1 is a thioperoxy compound both in solution and the solid state.
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Recently, Shen et al. introduced a new hypervalent iodine reagent for the transfer of an

electrophilic trifluoromethylsulfur group (Figure 1, 1).[1] Compound 1 was isolated as a

colorless liquid and characterized by 1H, 13C, and 19F NMR spectroscopy, as well as

elemental analysis. Based on these data, Shen proposed that 1 contains the sulfur-bound

hypervalent iodine motif, similar to all previously reported benziodoxole and

benziodoxolone transfer reagents (Figure 1).[2-9]

As part of our work on the synthesis of aryl isocyanates,[10] we were interested in

developing new reagents based on the benziodoxole motif for isocyanate and isothiocyanate

group transfer chemistry. We anticipated that the ambidentate cyanate and thiocyanate

nucleophiles could potentially react with reagent 3 at either the nitrogen or group 16 element

(oxygen or sulfur) nucleophilic sites. Indeed, when 3 was treated with silver cyanate, a

mixure of isomeric 1-cyanatobenziodoxoles was obtained, with the major product arising

from reaction at the nitrogen atom (4, Scheme 1a). In contrast, the reaction of 3 with silver

thiocyanate yielded a single compound that did not contain the expected benziodoxole
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scaffold (5, Scheme 1b). As shown in Scheme 1, the single crystal X-ray analysis of

compound 5 revealed that the thiocyanate-group was S-bound to the oxygen atom of 2 rather

than to the iodine.[11,12]

Intrigued by this result, we conducted a brief comparison of the 1H NMR spectra of the

benziodoxoles and 2- iodobenzyl alcohol-derivatives that are shown in Figure 2. We found

that the two compound classes (closed benziodoxole vs. open benzyl alcohol) generally

display different characteristic signals in the aromatic region. Most notably, the aromatic

protons that are para to the alkyl group (Hb) exhibited significant (0.5 ppm or greater)

downfield shifts in the closed compounds (Figure 2a,b) when compared to the open ones

(Figure 2c,d). As described above, the sulfur-based nucleophile afforded the corresponding

open compound (Figure 2d) with complete selectivity, which is in contrast to the reported

benziodoxole structure of the related trifluoromethylthiolation reagent 1. Compound 1 was

synthesized according to literature procedure[1a] and exhibited identical spectral properties

as reported. To our surprise, the 1H NMR spectrum of 1 (Figure 2e) resembles those of the

open-form compounds more closely than the spectra of the closed-form ones, suggesting

that 1 could potentially exist as the open thioperoxy compound rather than the benziodoxole.

The oxidation state of iodine in 1, 5 and 6 as II in solution was further corroborated by 13C

NMR spectroscopy, as outlined previously by Katritzky et al.[13]

To further evaluate the structure of the Shen reagent, we undertook two parallel studies that

would allow us to obtain X-ray crystallographic structural data.[14,15] We first sought to

prepare a solid analogue of the trifluoromethylthio-transfer reagent. According to the route

outlined in Scheme 2, we were able to construct a modified reagent 6 that contained the

dichlorotrimethoxyphenyl substituent at C4 of the phenyl ring. This new reagent displayed

the characteristic aromatic 1H NMR signal that indicated a compound that did not contain

the benziodoxole scaffold (Figure 2f). X-ray diffraction analysis of single crystals of 6
provided unequivocal structural evidence that the SCF3 group is bound to oxygen rather

than to iodine (Scheme 2).

To evaluate the potential steric and electronic effects that installation of the functionalized

aromatic substituent could impart to the reagent, we compared the reactivity of 6 and 1 in

previously reported SCF3–transfer reactions. Under the optimized conditions reported by

Shen et al. for β-ketoester- (Scheme 3a) or Cu-catalyzed arylboronic acid-

trifluoromethylthiolation (Scheme 3b),[1a] the two reagents displayed nearly identical

reactivity profiles (Scheme 3).

Although it is possible that there exists a Curtin-Hammet scenario where both forms of the

reagent exist in equilibrium in solution and the reactivity arises from the hypervalent iodine

structure, no evidence for such an equilibrium was observed by 1H or 19F NMR

spectroscopy, even at low temperatures (−80 °C). Furthermore, the similarity of the

thioperoxide structure to the previously reported nitrogen-based electrophilic

trifluoromethylthiolation reagents by the groups of Billard[16] and Rueping[17] (Scheme 4a

and b), as well as the disulfide reagents used for directed Cu-promoted sulfenylation of sp2

C–H bonds by Daugulis et al.[18] (Scheme 4c) supports the hypothesis that the observed

reactivity[1a,c] could arise from the thioperoxide fragment itself.
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Fujita recently introduced a new method for the structure determination of liquid compounds

trapped in the pores of a host Metal Organic Framework (MOF).[19] We were interested in

applying this methodology to gain access to the X-ray structure of the parent reagent 1. The

MOF material was prepared by slow diffusion of the solution of ZnI2 in methanol into the

solution of 2,4,6-Tri(4-pyridyl)-1,3,5-triazine in a mixture of nitrobenzene and methanol.

Soaking the resulting crystals in cyclohexane at 50 °C for 2 weeks (used solvent was

replaced by fresh solvent each day) allowed for the majority of nitrobenzene in the pores of

the MOF to be exchanged with more labile cyclohexane molecules.[20] A consecutive soak

of the crystals in the analyte provided X-ray quality crystals of the host-guest complex

1@MOF. Subsequent structure determination using a variety of advanced refinement

techniques[21] revealed the presence of 92% of reagent 1 per asymmetric unit of the crystal

structure of 1@MOF, disordered over three crystallographically independent sites (see

Supporting Information for details). As shown in Scheme 5, the crystallographically-derived

structure of 1 does not contain the benziodoxole fragment, and the SCF3-group is bound to

the oxygen atom.

In summary, we have discovered that the reaction of chlorobenziodoxole with two sulfur-

containing nucleophiles leads to the formation of rearranged products containing stable

thioperoxy groups. A combination of spectroscopic techniques, derivatization experiments

and the crystalline sponge method recently introduced by Fujita,[19] allowed for

unambiguous confirmation of the open form thioperoxide structure of the recently reported

trifluoromethylthiolation reagent 1 both in solution and in solid state at room temperature.

Importantly, while these results do not affect the chemical reactivity studies utilizing reagent

1 as recently reported by Shen,[1a] they do suggest that other mechanistic pathways for

electrophilic trifluoromethylthiolation are possible.[1c]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The reported structure of the reagent for electrophilic trifluoromethylthiolation (1) recently

introduced by Shen et al., and representative examples of other reported benziodoxole-based

hypervalent iodine transfer reagents.
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Figure 2.
Comparison of the aromatic region of the 1H NMR spectra of hypervalent-iodine based

transfer reagents and novel thioperoxide reagents.
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Scheme 1.
Synthesis of novel electrophilic transfer reagents and crystal structures of reagents 4 and 5.

Thermal ellipsoid plots are drawn at 50% probability, hydrogen atoms are omitted for

clarity.
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Scheme 2.
Synthesis of a solid trifluoromethylthiolation reagent and the crystal structure of reagent 6.

Thermal ellipsoid plot is drawn at 50% probability, hydrogen atoms are omitted for clarity.

Reaction conditions: a. Ar’I (1 equiv), ArB(OH)2 (1.5 equiv), Pd(OAc)2 (2 mol%), SPhos (4

mol%), K3PO4 (2 equiv), toluene, 110 °C, 18 h; b. p-TsOH (3 equiv), CH3CN, then KI (2.5

equiv), NaNO2 (2 equiv), H2O, 5 h; c. MeMgBr (4 equiv), Et2O, 40 °C, 5 h; d. tBuOCl (4

equiv), THF/CH2Cl2 (2:1), 2 h; e. AgSCF3 (1 equiv), THF, 50 °C, 1 h. pTsOH=para-

toluenesulfonic acid, SPhos=2-dicyclohexylphosphino-2′,6′-dimethoxy-1,1′-biphenyl.
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Scheme 3.
Representative reactions of reagents 1 and 6 with β-ketoesters (a) and arylboronic acids (b).

For detailed reaction conditions, see: Ref. [1a] and Supporting Information. DMAP = N,N-

dimethylaminopyridine.
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Scheme 4.
Trifluoromethylthiolation reagents reported by Billard (a), Rueping (b), and Daugulis (c).
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Scheme 5.
Crystal structure of the guest molecule 1 observed in the cavities of the MOF. Thermal

ellipsoid plot is drawn at 50% probability, hydrogen atoms are omitted for clarity.
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