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Abstract

The symmetry for the corners of a box, the continuity for

the surfaces of a monitor, the linkage between the torso

and other body parts — it suggests that 3D objects may

have common and underlying inner relations between local

structures, and it is a fundamental ability for intelligent

species to reason for them. In this paper, we propose

an effective plug-and-play module called the structural

relation network (SRN) to reason about the structural

dependencies of local regions in 3D point clouds. Existing

network architectures on point sets such as PointNet++

capture local structures individually, without considering

their inner interactions. Instead, our SRN simultaneously

exploits local information by modeling their geometrical

and locational relations, which play critical roles for our

humans to understand 3D objects. The proposed SRN

module is simple, interpretable, and does not require

any additional supervision signals, which can be easily

equipped with the existing networks. Experimental results

on benchmark datasets indicate promising boosts on the

tasks of 3D point cloud classification and segmentation by

capturing structural relations with the SRN module.

1. Introduction

Recent years have witnessed rapid development on 3D

point cloud data due to the popularity of varying scanning

devices. Typically, point cloud data is represented by s-

parse and unordered 3D points. Compared with 2D im-

ages which usually have regularly arranged pixels, it is

more challenging to analyze 3D point clouds with the ir-

regular structures [39]. Early works mainly focus on ex-

tracting hand-crafted 3D features, which aim to exploit sta-

tistical properties of point sets and are especially designed
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Figure 1. Examples of highly related local structures in common

3D objects. In the figure, red ellipses represent repetitive symmet-

ric local regions, orange ellipses are continuous surfaces (on which

the local structures share the same plane), and green ellipses show

the junctions of connected parts. We observe that most real-world

3D objects contain highly related local structures and it is a funda-

mental ability for our humans to reason about them.

to present robustness to transformations [26]. In general,

these methods can be divided into two categories: intrinsic

features [3, 5, 33] and extrinsic features [30, 31, 22, 7, 15],

where representative hand-crafed 3D features include spin

image [15], fast point feature histograms (FPFH) [30] and

heat kernel signature (HKS) [33].

With the great success of deep learning methods on 2D

image processing and understanding, pioneer works have

been proposed to design network architectures for 3D point

cloud data [26, 28, 25, 17, 43]. The initial PointNet directly

learns global features from the input point clouds by point-

wise spatial encoding and aggregation, which obtains en-

couraging performance [26]. While PointNet does not cap-

ture local information of point clouds, the extension work

PointNet++ demonstrates the importance of local structure

exploitation [28]. In order to capture local structures, Point-

Net++ designs sampling and grouping layers to obtain lo-

cal sub-clouds, and individually encodes the local regions
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by performing point feature embedding on each sub-cloud.

Then, PointNet++ aggregates the local features for holistic

representation with a pooling operation to acquire invari-

ance to point-wise permutations. However, it fails to con-

sider the underlying structural interactions between local re-

gions due to the simple pooling operation, which is one of

the key components in understanding 3D objects.

As examples shown in Figure 1, most real-world 3D ob-

jects have highly related local structures such as repetitive

symmetric regions, continuous surfaces and connected part-

s, and it is a fundamental ability for our humans to reason

about such inner structural relations when analyzing a 3D

object. Structural relational reasoning plays a crucial role in

3D object understanding, especially for the point cloud data

where only the coordinates of points are provided without

further information. For example, if we are learning to rec-

ognize the species of “human” from their 3D shapes, it is far

from satisfactory to individually remember the structures of

all the body parts (head, torso, arms and legs). More im-

portantly, we need to reason about their structural relations,

such as the symmetry of two arms and of two legs, and the

linkage between the torso and other body parts. We may al-

so notice the symmetric two large wings at the first glance of

an airplane. These relations are key components when un-

derstanding the holistic 3D structures of humans, airplanes

as well as other objects, and we are able to better grasp the

their semantics with the exploitation of structural relations.

In this paper, we propose a simple module named the

structural relational network (SRN) to reason for the inter-

actions between local regions, which can be plugged into

existing networks without additional labels. Our SRN is in-

spired by the recent relational networks [32, 13, 45]. While

most existing methods model the spatial or temporal rela-

tions for images and videos, SRN aims to capture the struc-

tural interactions between local regions in 3D point clouds.

More specifically, we compute the geometrical and loca-

tional interactions between each local structure and others

to reason for their relations, so that the learned local features

encode not only the 3D structures but also the dependen-

cies with other local regions. In our experiments, we equip

our SRN with the widely-used PointNet++ architecture [28]

to show the effectiveness, which is also widely applicable

to networks with local structure exploitation modules on

point clouds. Experimental results on the ModelNet [38],

ScanNet [9] and ShapeNet [6] datasets show substantial im-

provements with the 3D point cloud classification and seg-

mentation tasks compared to the PointNet++ pipeline.

2. Related Work

Deep Learning on Point Clouds: In recent years, deep

learning methods have been employed to various 2D vi-

sual analysis tasks and have achieved outstanding perfor-

mance [18, 10, 12]. However, these methods cannot be di-

rectly applied to 3D point clouds. While pixels regularly lie

on the image plane for 2D images, the structure of 3D point

cloud data is irregular so that some basic operations in CNN

are not applicable. An intuitive idea to address the issue is to

partition the 3D space into voxelized shapes [23, 38, 27, 9].

However, as 3D point cloud data is usually sparse, these

methods suffer from low resolution and heavy computa-

tional cost. More recently, some deep learning structures

have been especially designed to consume 3D point cloud-

s as the input [26, 28, 25, 29, 39, 19, 20, 14, 2, 44, 40].

For example, Qi et al. [26] proposed a network architecture

named PointNet by fusing point features into global repre-

sentations with max pooling, which presented invariance to

point-wise permutations. As PointNet fails to capture local

structures which play critical roles for the success of con-

volutions, they further extended PointNet to PointNet++ by

hierarchically grouping points to different levels for local

feature extraction [28]. The following works such as self-

organizing network (SO-Net) [19], similarity group propos-

al network (SGPN) [36] and PointCNN [20] also empha-

sized the importance of local structure exploitation for 3D

point clouds. However, they fail to fully exploit the struc-

tural relations between local sub-clouds, which our human-

s largely rely on in 3D object understanding. Instead, the

proposed SRN module aims to reason for such local inter-

actions without any extra supervision signals.

Relational Reasoning: Relational reasoning aims to

reason about the interactions between entities, which is a

fundamental ability of humans. However, such relations

are difficult for conventional network architectures to learn.

More recently, relational modules have been carefully de-

signed to solve the problems [32, 13, 37, 45, 34, 8, 16, 24].

For example, Santoro et al. [32] proposed a relational net-

work (RN) for the task of visual question answering (VQA)

and achieved outstanding performance. Hu et al. [13] pre-

sented an object relation module based on attention mod-

ules for object detection. Zhou et al. [45] designed a tem-

poral relational network (TRN) to reason about the inter-

actions between frames of videos in varying scales. While

most of these methods aim to exploit the spatial or tem-

poral relations in images and videos, very few works fo-

cus on relational reasoning for 3D data. Suwajanakorn et

al. [34] proposed a KeypointNet for category-specific 3D

keypoint extraction, which is the most relevant work in 3D

point cloud reasoning. Although both methods are designed

for 3D point cloud data, the goal of KeypointNet is to de-

tect latent keypoints by reasoning for the relations between

points and the categories. Our main contribution is the first

attempt to reason about the structural relations of 3D object-

s, which are commonly-existed, important, but ignored by

most existing methods. With the exploitation of structural

relations, the models are able to understand 3D objects more

comprehensively.
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Figure 2. An illustration of the proposed structural relational network (SRN). For each input point cloud, we first obtain local sub-clouds

to extract their geometrical features u and average coordinates v, which are concatenated into local features x. Then, we employ our SRN

to capture the both geometrical and locational relations between the local sub-cloud Pi and other Pj . Lastly, we fuse the two kinds of

relations to obtain the final structural relation yi for Pi. In this figure, we utilize four different colors to represent varying local regions,

and set the red sub-cloud as Pi for an easy illustration. (Best viewed in color.)

3. Proposed Approach

In this section, we first present the proposed structural re-

lational network, which can be generally plugged into deep

neural networks on 3D point cloud with local feature ex-

traction modules. Then, we detail how to equip our SRN

module to the widely-used PointNet++ architecture. Last-

ly, we highlight the differences with existing methods and

introduce implementation details.

3.1. Structural Relational Network

Let P be a point set in which each point is represented by

a 3D coordinate feature, where there are local sub-clouds Pi

extracted from the holistic point cloud P . As there are only

coordinates provided for point sets without further informa-

tion, we extract the local geometrical feature ui ∈ R
d and

average location vi ∈ R
3 to describe each sub-cloud Pi,

so that the features contain both geometrical and locational

information of each local region.

Inspired by the relational reasoning modules for images

and videos [32, 13, 45], we aim to reason about the struc-

tural relations between each Pi and other Pj . Both geo-

metrical feature u and locational feature v of each local

sub-cloud play crucial roles in structural interactions. For

example, the repetitive local patterns are exploited through

reasoning in geometry, and the linkage relations are cap-

tured through reasoning in location. Therefore, we define

the structural interactions SRN(xi) between the ith local

sub-cloud and others by jointly learning geometrical and lo-

cational relations:

yi = f





∑

∀j

h (gu (ui,uj) , gv (vi,vj))



 , (1)

where both i and j are the indexes of local regions, f , gu,

gv and h are functions, and yi is the learned structural re-

lational feature of Pi. In (1), the pairwise functions gu and

gv aim to exploit the geometrical and locational relations

between Pi and Pj , respectively, and then h fuses the two

kinds of relations followed by an elementwise sum for al-

l Pj . Lastly, we utilize the function f to obtain the final

structural relations of Pi.

Figure 1 shows an illustration of the proposed SRN mod-

ule, which aims to learn structural relations between Pi and

other Pj . We learn the geometrical and locational interac-

tions for structural relation exploitation, which are both im-

portant for 3D point cloud understanding. We follow [32]

by firstly concatenating ui and each uj , and vi and each

vj to construct the input of gu and gv , respectively. The

pairwise functions gu and gv capture the geometrical and

locational relations between Pi and other Pj . Then, we u-

tilize another pairwise function h to fuse the two kinds of

relations for complete description, and sum up the results of

varying Pj up to make (1) invariant to permutations. Lastly,

we employ a function f to obtain the final relational rep-

resentation yi. In SRN, we utilize multi-layer perceptrons

(MLPs) to realize the functions gu and gv , with the param-

eters shared by all local sub-cloud pairs, respectively, and

1 × 1 convolutions for h and f , respectively. The learned

yi provides essential complementary information for local

sub-cloud description. We utilize a residual block to sum up

yi and ui (which share the same dimension), and then con-

catenate vi as the final representation of the local sub-cloud

Pi.

There are two key advantages of the proposed SRN mod-

ule:

1) For each local sub-cloud Pi, the SRN module learns

its structural interactions with all the local sub-clouds

Pj . As point sets only contain point-wise coordinates
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Figure 3. The network architecture of the SRN-equipped PointNet++. We first sample and group each input point cloud into G sub-clouds,

following a PointNet module to extrate the local feature u for each sub-cloud. The PointNet module contains a multi-layer perceptron and

a max-pooling layer for feature fusion. Then, we employ the proposed SRN module to obtain the relational features y, which is summed

up by u with a residual connection and concatenated by v. We perform the procedure twice to extract multi-scale local features. Lastly,

we employ a PointNet module to obtain the final output feature for the holistic point cloud. (Best viewed in color.)

without further information, SRN simultaneously con-

siders the geometrical and locational relations between

local regions, which both play crucial roles in 3D point

cloud data. Compared with the existing local features

for point clouds, SRN exploits additional information

of structural relations as important complements.

2) SRN supports local sub-clouds in variable numbers

and permutations. Even for the same point cloud, the

number and permutation of local regions may be dif-

ferent due to varying sub-cloud grouping algorithms.

With the shared parameters of the pairwise function g

and the operation of element-wise sum, SRN is flexi-

ble with the input sizes by maintaining the same output

size, and is invariant to varying permutations of local

features.

3.2. SRN-PointNet++

The proposed SRN consumes the local geometrical fea-

tures and average coordinates as the input, and learns the

structural relational features as the output. As we simply

employ the concatenation results of local features to replace

the original ones, it can be generally applied to deep neu-

ral network architectures with local feature extraction mod-

ules for point clouds. PointNet++ [28] is a recent network

architecture on 3D point clouds, which has achieved very

promising performance. In this paper, we employ Point-

Net++ as a representative model to detail the equipment of

SRN and analyze the experimental improvements.

Based on PointNet [26], PointNet++ utilizes an addition-

al hierarchical architecture by sampling and grouping points

for local structure exploitation. Rather than directly learn-

ing a global feature from the holistic point cloud, Point-

Net++ performs iterative farthest point sampling and bal-

l query based grouping to obtain local sub-clouds at first,

and then learns local features with PointNet individually.

PointNet++ hierarchically learns local features through the

three key layers including sampling layer, grouping layer

and PointNet layer, and combine the features from multi-

ple scales. Figure 3 shows the network structure of SRN-

equipped PointNet++. Rather than simply utilizing local

features u and v for representation, we learn the relational

features y through SRN to provide essential complements,

which is integrated with the original network with the resid-

ual block. For the point cloud classification task, we utilize

the learned holistic feature for representation, and employ a

1024-512-256 fully connected layer followed by a softmax

classifier. For the point cloud segmentation task, we fol-

low [28] by employing a point feature propagation method

to obtain point-wise scores for each point in the original

point cloud.

3.3. Discussion

In this subsection, we compare our SRN with existing re-

lational networks and local feature based methods to high-

light the differences.

Difference with Existing Relational Networks: In re-

cent years, several relational networks (RNs) have been

proposed to reason about the interactions between enti-

ties [32, 13, 45]. They exploit spatial and semantic relations

between objects for images [32, 13], or model temporal re-

lations between frames in videos [45]. In our work, we fo-

cus on the structural relations between local sub-clouds for

3D point sets, which widely exist in real-world 3D object-
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s and play important roles for our humans to understand

them. In order to better capture structural relations, we

simultaneously exploit geometrical and locational interac-

tions of sub-clouds, which are both critical in 3D structure

understanding. To our best knowledge, the proposed SRN

is the first time to reason about structural relations for point

cloud feature learning.

Difference with Local Feature Based Methods: Re-

cent deep learning methods on 3D point cloud data demon-

strate the importance of local regions [28, 39, 20]. In gener-

al, these methods employ hierarchical architectures to cap-

ture local structures in varying scales, and then integrate

the local features for holistic representation. However, they

independently process each local region and ignore the im-

portant structural relations thereby cannot completely un-

derstand the holistic 3D objects. Instead, our SRN captures

both geometrical and positional relations to provide essen-

tial complement information for 3D local structure descrip-

tion, which is able to boost the performance of the existing

network architecture for point clouds as a simple plug-and-

play module.

3.4. Implementation Details

We used the Tensorflow [1] packages to construct our

module throughout the experiments. For each 3D point

cloud input, we randomly sampled 1,024 points from the

3D mesh to construct the point sets. The dimensions and

other details of each layer are shown in Figure 3. In the

first SRN module, we reasoned about the structural rela-

tions between each local region and the randomly-selected

32 local regions. In the second SRN module, we reason for

all the sub-clouds for each sub-cloud. We did not perform

data augmentation of point clouds, and fixed the dimension

of the final representation as 1,024. We set the maximum

training epoch number as 250 and the batchsize as 16 in the

experiments. At the beginning of training, we empirically

set the learning rate as 0.001 and the decay rate as 0.7 for

every 200K steps.

4. Experiments

We conducted experiments on the widely-used 3D point

cloud datasets to evaluate the proposed SRN module. More

specifically, we first tested the performance of the SRN-

equipped PointNet++ on point cloud classification and seg-

mentation tasks, respectively, and compared with the state-

of-the-art methods. We also designed cross-dataset evalua-

tion to test the generalization ability. Then, we illustrated

the effectiveness of SRN with ablation studies. Lastly, we

visualized the t-SNE results and the learned structural re-

lations between local sub-clouds for intuitive illustrations,

and analyzed the key observations from the experiments.

For fair comparisons, we utilized the same network struc-

ture of PointNet++ with our SRN-PointNet++ on all the

Table 1. The comparison of the classification accuracy (%) with

the state-of-the-art methods on the ModelNet40 and ScanNet

datasets.

Method ModelNet40 ScanNet

FPNN [21] 87.5 -

Vol. CNN [27] 89.9 74.9

O-CNN [35] 90.6 -

PointNet [26] 89.2 -

PointCNN [20] 91.7 77.9

PointNet++ [28] 90.6 77.1

SRN-PointNet++ 91.5 79.7

Table 2. Cross-dataset evaluation of SRN-PointNet++ on Model-

Net40 and ScanNet with classification accuracy (%).

Train / Test ModelNet40 ScanNet

ModelNet40 91.5 75.6

ScanNet 86.5 79.7

datasets, with the only difference of the equipment of SRN

modules.

4.1. Datasets

We employed three benchmark point cloud datasets for

experimental evaluation, which included ModelNet40 [38],

ScanNet [9] and ShapeNet [6]. We followed the standard

evaluation protocols to test the performance.

1) The ModelNet40 dataset [38] contains 40 categories

with 12,331 3D mesh models, which are split into

9,843 training models and 2,468 test models.

2) The ScanNet dataset [9] includes 1,513 scanned and

reconstructed indoor scenes, and we employ 1,201

scenes as the training set and the rest 312 scenes as

the test set.

3) The ShapeNet dataset [6] covers 55 common objec-

t categories with about 51,300 models, where we fol-

low [41] by employing the ShapeNet Part dataset of

16 categories with 16,880 models. The models are di-

vided into 14,006 training split and 2,874 test split, in

which each point is associated with a point-wise label

for the point cloud segmentation task.

4.2. Quantitative Results

In this subsection, we first evaluated the proposed SRN-

PointNet++ on point cloud classification and segmentation

tasks, respectively, and designed cross-dataset experiments.

Then, we conducted ablation studies for more in-depth anal-

ysis of SRN.

Point Cloud Classification: Classification is usually

considered as a touchstone task to test the effectiveness of
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Table 3. Experimental comparison of the segmentation part IoU (%) with the recent methods on the ShapeNet Part dataset. In the table,

the compared baseline methods are field probing neural networks [21], volumetric CNN [27], anisotropic CNN [4], SyncSpecCNN [42],

PointNet [26], fully-convolutional point network [29] and PointNet++ [28], respectively.

Class FPNN Vol. ACNN SSCNN PN FCPN PN++ SRN-PN++

Airplane 81.0 75.1 76.4 81.6 83.4 84.0 82.3 82.4

Bag 78.4 72.8 72.9 81.7 78.7 82.8 79.7 79.8

Cap 77.7 73.3 70.8 81.9 82.5 86.4 86.1 88.1

Car 75.7 70.0 72.7 75.2 74.9 88.3 78.2 77.9

Chair 87.6 87.2 86.1 90.2 89.6 83.3 90.5 90.7

EarPhone 61.9 63.5 71.1 74.9 73.0 73.6 73.7 69.6

Guitar 92.0 88.4 87.8 93.0 91.5 93.4 91.5 90.9

Knife 85.4 79.6 82.0 86.1 85.9 87.4 86.2 86.3

Lamp 82.5 74.4 77.4 84.7 80.8 77.4 83.6 84.0

Laptop 95.7 93.9 95.5 95.6 95.3 97.7 95.2 95.4

MotorBike 70.6 58.7 45.7 66.7 65.2 81.4 71.0 72.2

Mug 91.9 91.8 89.5 92.7 93.0 95.8 94.5 94.9

Pistol 85.9 76.4 77.4 81.6 81.2 87.7 80.8 81.3

Rocket 53.1 51.2 49.2 60.6 57.9 68.4 57.7 62.1

Skateboard 69.8 65.3 82.1 82.9 72.8 83.6 74.8 75.9

Table 75.3 77.1 76.7 82.1 80.6 73.4 82.8 83.2

Mean 81.4 79.4 79.6 84.7 83.7 84.0 85.1 85.3

the deep model, and the methods often perform well on oth-

er tasks if they achieve promising classification accuracies.

We compared our SRN-PointNet++ with the state-of-the-art

methods on the ModelNet40 [38] and ScanNet [9] datasets

following the standard evaluation protocols.

Table 1 shows the classification results compared with

the existing methods, where we share the same network

architecture and hyperparameters of PointNet++ [28] and

our SRN-PointNet++ for direct comparisons. We utilize the

bold numbers to show that the performance of PointNet++

is improved equipped with SRN. In general, the point cloud

data in ScanNet is more complicated than ModelNet40, as

ScanNet contains indoor scenes and ModelNet40 includes

3D objects. While PointNet++ captures multi-scale local

structures with hierarchical layers, it integrates local fea-

tures with a simple max-pooling operation and fails to ex-

ploit their structural relations. Instead, the proposed S-

RN module explicitly reasons about the geometrical and

locational relations of local structures, so that the learned

deep model better understands the holistic structure of point

clouds. The simple plug-and-play SRN module successful-

ly boosts the performance of PointNet++ on both Model-

Net40 and ScanNet datasets. More spcifically, we observe

that the improvement for ScanNet is larger than ModelNet

equipped with our SRN module. As the point clouds in

ScanNet are more complicated with adaquate local struc-

tures, reasoning about the inner structural relations plays a

more important role for more complete understanding. F-

PNN [21], Vol. CNN [27] and O-CNN [35] are volume-

based deep learning methods which suffer from low reso-

lution of 3D point cloud data. Our SRN-PointNet++ di-

rectly consumes point sets as inputs and outperforms these

methods. PointCNN [20] designs a X -convolution opera-

tion on 3D point cloud and achieves the state-of-the-art per-

formance. Instead, the proposed SRN-PointNet++ model

is able to obtain a comparable result on ModelNet40 and

better performance on more complicated ScanNet by rea-

soning about the structural relations between local regions,

where only multi-layer perceptrons and 1 × 1 convolutions

are utilized for mapping rather than carefully-designed X -

convolution operation on 3D point cloud data.

As there are large differences between the point cloud

data in ModelNet40 (3D objects) and ScanNet (indoor

scenes), we also conducted cross-dataset experiments to test

the generalization ability of the proposed SRN-PointNet++.

For cross-dataset evaluation, we trained the network on one

dataset and tested on the other dataset, extracting features

with the learned model and employing linear SVM as classi-

fier. Table 2 shows the experimental results of cross-dataset

experiments on ModelNet40 and ScanNet. We observe that

the performance drops if we chooses different training and

test datasets due to the data discrepancy. However, the gap-

s are small and the cross-dataset experimental results are

still comparable with existing recent methods. The cross-

dataset experiments demonstrate the generalization abili-

ty of our SRN-PointNet++. Moreover, it shows that the

learned structural relations are common for varying types

of 3D point cloud data.
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Table 4. The comparison of the classification accuracy (%) of

SRN-PointNet++ under varying relations and integration methods

on ModelNet40 (MN40).

Method Relation Integration MN40

PointNet++ - - 90.6

SRN-PointNet++ Geo Concat 91.0

SRN-PointNet++ Geo Res 90.7

SRN-PointNet++ Loc Concat 91.1

SRN-PointNet++ Loc Res 91.2

SRN-PointNet++ Geo + Loc Concat 91.3

SRN-PointNet++ Geo + Loc Res 91.5

Point Cloud Segmentation: The segmentation task

is more challenging than classification as it requires fur-

ther understanding of the point cloud data. We used the

ShapeNet Part dataset [6] for comparison with existing

methods on the point cloud segmentation task. We fol-

lowed [42, 29] by employing part averaged IoU to evaluate

the segmentation results, which calculated the weighted av-

erage of IoU for each category. Through the detailed com-

parisons on each 3D object, we are able to make complete

observations of the proposed SRN-PointNet++.

Table 3 illustrates the experimental comparisons of point

cloud segmentation on the ShapeNet Part dataset, where

we also employ bold numbers to represent the improve-

ment of SRN. Among the compared baseline methods,

SyncSpecCNN [42] [11] is especially designed for the

task of 3D semantic segmentation, while other method-

s are general 3D feature learning methods. We observe

that the proposed SRN-PointNet++ obtains the state-of-the-

art performance in the final result compared with exist-

ing methods on the task of point cloud segmentation. E-

quipped with our SRN module, SRN-PointNet++ outper-

forms PointNet++ in 13 out of 16 identities, which demon-

strates the effectiveness of structural relational reasoning

for 3D point cloud understanding. While SyncSpecCN-

N [42] learns synchronized spectral CNN for 3D data aug-

mentation, SRN-PointNet++ achieves better performance

on the point cloud segmentation task as a general point

cloud analysis method. FCPN [29] is the most recent deep

learning method for point clouds, which designs a fully-

convolutional point network to process large-scale 3D da-

ta. Instead, our SRN-PointNet++ outperforms FCPN in the

final result with the exploitation of structural relations by

simple operations. Experimental results show the effective-

ness of SRN-PointNet++ on the relatively hard point cloud

segmentation task.

Ablation Study: Besides direct comparisons with the

recent methods on benchmark datasets, we also conducted

ablation experiments on ModelNet40 to further analyze the

properties of SRN. In order to completely exploit structural

Figure 4. Visualization results of t-SNE on the ModelNet40 dataset

for SRN-PointNet++.

relations between local regions, we simultaneously consid-

ered geometrical and locational interactions and we tested

the influence of the relation types by only using each one

of them. Moreover, we employed a residual block to aggre-

gate local structural features and relations features in SRN-

PointNet++, which we compared with another widely-used

fusion method of concatenation.

Table 4 shows the classification accuracies on Model-

Net40 of the ablation study. In the table, Geo and Loc are

geometrical and locational relations, respectively. We com-

pared the performance of SRN-PointNet++ by exploiting

each or both of them. Concat and Res represent to fuse

the structural features with concatenation ([y,u,v]) and

residual blocks ([y + u,v]). We observe that capturing ei-

ther geometrical or locational relation is able to boost the

performance of PointNet++, which is close to our human-

s when understanding 3D objects as we may notice both

repetitive structures and linkages of parts. The best perfor-

mance is obtained by simultaneously considering both rela-

tions. Concatenation and residual blocks are popular meth-

ods for feature combination. Through the detailed compar-

isons, we observe that the performance gap is small for the

two aggregation approaches, which shows the adaptivity of

the learned relational features. As the residual blocks do not

require to increase the feature length, we employ residual

blocks throughout the experiments for computational cost

reduction.

4.3. Qualitative Results

In this subsection, we first visualized the t-SNE results

of the proposed SRN-PointNet++. Figure 4 shows the vi-

sualization results. We observe that most classes are sepa-

rated with small intra-class variations, which demonstrates

the discriminative power of SRN-PointNet++. For more de-

tailed analysis, we look into the most mixed areas to find

the categories which have larger difficulties to be correct-

ly classified. We discover that the most confusing cate-
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Figure 5. The visualization results of local regions with high re-

sponses. In the figure, different colors represent varying local re-

gions. (Best viewed in color.)

gories for SRN-PointNet++ are: 1) night stand, 2) dresser,

3) wardrobe, and 4) x-box. These objects share similar 3D

structures, which are also relatively simple compared with

other classes such as airplane and car. On one hand, their

inter-class distances are small which leads to large difficulty

in feature learning and classification. On the other hand, our

SRN module captures similar structural relations for these

objects and results in similar encoding due to their simple

and regular structures. Therefore, these classes are relative-

ly easier to be misclassified by SRN-PointNet++ compared

with other classes.

We also visualized the learned structural relations with

the high responses of the second SRN in our SRN-

PointNet++. Figure 5 shows the visualization results on the

ModelNet40 dataset. We observe that highly related local

structures are captured with both geometrical and location-

al interactions, such as symmetric repetitive parts (the first

row), local regions sharing the same plane (the second row)

and essential linkages of varying parts (the third row). Al-

though the point clouds from different classes vary largely,

our SRN module is still able to exploit the common and

underlying relations between local structures. It should be

noted that we do not utilize additional labels or carefully-

designed loss functions to train such structural relations. In-

stead, these relations are captured with the goal of better un-

derstanding the semantics. In other words, SRN discovers

similar local interactions with our humans when learning to

understand the objects, which also demonstrates the impor-

tance of exploiting structural relations in 3D object analysis.

4.4. Analysis

The above experiments on benchmark datasets suggest

the following four key observations:

1) The proposed SRN module successfully boosts the

performance of PointNet++ on both classification and

segmentation tasks, which shows the effectiveness of

structural relational reasoning in 3D point cloud da-

ta. Moreover, the improvement is more significant

for complicated point cloud data with adequate local

structures.

2) Cross-dataset evaluations on ModelNet40 and Scan-

Net show that our SRN-PointNet++ presents strong

generalization ability and captures common structural

relations despite of data discrepancy.

3) Ablation studies show that both geometrical and lo-

cational interactions are important to describe struc-

tural relations between local regions. The best result

is achieved when simultaneously exploiting both rela-

tions. Also, we show that different aggregation meth-

ods of the local structural features and relational fea-

tures do not largely affect the performance of SRN-

PointNet++.

4) While supervision signals only provide the categories

of the point clouds, visualization results illustrate that

our SRN module is able to capture highly relevant local

structures without specific labels.

5. Conclusion

In this paper, we have proposed a simple and plug-and-

play module named SRN to reason about structural relation-

s between local regions for 3D point clouds, which play an

important role for our humans to analyze 3D objects. While

most existing methods aggregate local features by a simple

pooling operation thereby ignoring the important structural

interactions, our SRN explicitly captures their geometri-

cal and locational relations to better understand the holistic

structures. The proposed SRN module can be equipped with

the existing models, where we detail the SRN-PointNet++

architecture as a representative method. Experimental re-

sults on benchmark datasets demonstrate that our SRN suc-

cessfully boosts the performance of the original network on

point cloud classification and segmentation tasks. Ablation

studies and visualization results also show that our SRN

module captures essential structural relations in geometry

and location.
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