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The structural relationship between negative thermal expansion and quartic

anharmonicity of cubic ScF3
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Cubic scandium tri-fluoride (ScF3) has a large negative thermal expansion over a wide range of
temperature. Inelastic neutron scattering experiments were performed to study the temperature
dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of
states (DOS) show a large anharmonic contribution with a thermal stiffening of modes around 25
meV. Phonon calculations with first-principles methods identified the individual modes in the DOS,
and frozen phonon calculations showed that some of the modes with motions of F atoms transverse
to their bond direction behave as quantum quartic oscillators. The quartic potential originates from
harmonic interatomic forces in the DO9 structure of ScF3, and accounts for phonon stiffening with
temperature and a significant part of the negative thermal expansion.

PACS numbers: 63.20.Ry, 78.70.Nx, 65.40.De, 63.20.D-, 64.70.kp

Nearly all materials expand when heated, so exceptions
are interesting. Negative thermal expansion (NTE) of a
pure phase has attracted much attention over the past
twenty years, driven both by curiosity, and by oppor-
tunities to design materials with special thermal prop-
erties. For materials like face-centered cubic plutonium
and Invar alloys, NTE involves electronic or magnetic
excitations. Other types of NTE are structure-induced,
originating from atom arrangements in the crystal [1].
Several mechanisms of NTE have been proposed, such
as deformations of polyhedra, one or two-dimensional
NTE caused by normal thermal expansion of anisotropic
bonds, NTE induced by interstitial cations, and NTE as-
sociated with transverse motions of linkage atoms (as in
Fig. 1) [2, 3]. Often NTE is anisotropic, and it usu-
ally occurs only in a small range of temperature [4].
Zirconium tungstate (ZrW2O8) is a notable exception
[5–10]. The NTE in ZrW2O8 is associated with under-
constrained atom sites in the crystal structure [11]. Al-
though some of the behavior can be understood with a
“quasiharmonic” model (a harmonic model with inter-
atomic forces adapted to the bond lengths at a given
temperature), anharmonic effects are expected, but the
full connection between anharmonic lattice dynamics and
NTE is obscured by the complexity of the structure [11].
Simplified models like a rigid square [12, 13], a 3-atom
Bravais lattice [11], and a rigid structure [14] have been
used to explain the “soft-phonon” NTE mechanism, but
accurate lattice dynamics for materials such as ZrW2O8

are not easy to obtain from geometrical models.

Very recently, a surprisingly large and isotropic nega-
tive thermal expansion was discovered in cubic scandium
tri-fluoride (ScF3) by Greve et al. [15]. It occurs over
a wide range of temperature from 10 to about 1100 K,
and exceeds −1.0 × 10−5 K−1. Under ambient condi-
tions, ScF3 has the DO9 crystal structure of α-ReO3,
shown in Fig. 1, and is stable from 10 K to over 1600

FIG. 1: (a) DO9 structure of ScF3. (b) Geometry and vari-
ables for the mechanical model of Sc-F bonds.

K. Although α-ReO3 itself shows modest negative ther-
mal expansion below 300 K [16, 17], the NTE of ScF3

is an order of magnitude larger. Only a small amount
of work has been performed on the lattice dynamics of
ScF3 [18], although materials with similar structure have
been studied [19]. Here we report results from inelastic
neutron scattering measurements of the lattice dynamics
of ScF3 from 7 to 750K. The simplicity of the DO9 struc-
ture of cubic ScF3 allows a detailed analysis of the lattice
dynamics, elucidating the connection between NTE and
phonon anharmonicity.

Inelastic neutron scattering measurements were per-
formed with ARCS, a time-of-flight Fermi chopper spec-
trometer at the Spallation Neutron Source at Oak Ridge
National Laboratory. Coarse powders (<0.1mm) of cu-
bic ScF3 crystals of 99.99% purity were loaded into an-
nular aluminum containers with outer diameters of 30.0
mm and heights of 64.0 mm. The effective sample thick-
ness was 2.0 mm, giving a ratio of multiply- to singly-
scattered neutrons of approximately 5%. Four incident
neutron energies were used, 30.0, 79.5, 118.7, and 163.0
meV. Each measurement included approximately 2×106

neutron counts. For temperatures of 7, 100, 200, and
300 K, the sample was mounted in a closed-cycle helium
refrigerator. An electrical resistance furnace designed for
vacuum service was used for temperatures of 320, 450,



2

600, and 750 K. Backgrounds with empty sample cans
were measured at each temperature.

Data reduction was performed with the standard soft-
ware package for ARCS as described previously [20, 21].
The neutron-weighted phonon density of states (DOS)
curves for three incident energies are shown in Fig. 2a.
Differences among the phonon DOS curves are expected
from differences in instrument resolution, which improves
for lower incident neutron energies. Good agreement is
seen for the DOS curves measured in the refrigerator
and furnace at 300 K and 320 K, showing the success
of the background subtraction. Neutron diffraction pat-
terns were obtained from the elastic scattering and used
to verify the structure and lattice parameters.

All major features in the DOS broaden with tempera-
ture, indicating a decrease in phonon lifetime. To quan-
tify thermal shifts, Gaussian functions were fitted to the
five features in the phonon DOS, and Fig. 2b presents
the shifts (∆E) of the peak centers. The high-energy fea-
tures 4 and 5 soften normally with temperature, but the
low-energy feature 2 stiffens anomalously. Feature 3 may
also stiffen, and feature 1 changes little with temperature.
The shifts obtained from different incident energies agree
reasonably well. Some of the features correspond to more
than one phonon branch, so while the fitted shifts give
a good indication of of the trend of the phonon energy
changes, they usually do not pinpoint a specific mode.

First-principles calculations were performed with the
local density approximation to the density functional the-
ory, implemented in the VASP package [22]. Projec-
tor augmented wave (PAW) [23] pseudopotentials and
a plane wave basis set with energy cutoff of 450 eV were
used in all calculations. Within the quasi-harmonic ap-
proximation (QHA), the free energy is

F (T,V )=Es(V)+

∫

g(ω)

(

~ω

2
+ kBT ln(1−e

−
~ω

kBT )

)

dω (1)

where the static energy Es is the total energy of the
crystal when all the atoms are fixed at their equilib-
rium positions, ω is the (angular) phonon frequency,
and g(ω) is the phonon DOS for the lattice parame-
ter, a, that minimizes F (T, V (a)). Here Es was calcu-
lated self-consistently using a 4-atom primitive cell and
a 12 × 12 × 12 k-point grid, and phonon energies were
calculated using the direct supercell method with a 108-
atom supercell and a 2× 2× 2 k-point grid. The LO-TO
correction for the optical phonons was included based on
the inter-plane force constants model [24].

To study anharmonic effects with VASP, we performed
ab-initio Born-Oppenheimer molecular dynamics (MD)
at 7, 100, 200, 300, 450, 600, and 750 K, and we also
performed frozen phonon calculations. The MD simu-
lations used a 108-atom supercell, and temperature was
controlled by Nosé thermostats. For each temperature,
the system was first equilibrated and then simulated for
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FIG. 2: (a) Neutron-weighted ScF3 phonon DOS from inci-
dent energies of 118.7 meV (black), 79.5 meV (green, dashed),
and 30.0 meV (red), scaled to conserve spectral areas and off-
set for clarity. Five vertical lines are aligned to peak centers
at 7 K, and labeled by numbers. Errors at top are from count-
ing statistics, and similar at all temperatures. (b) Shifts of
phonon peak centers relative to 7 K data. The solid lines are
linear fits. For each point, the spectrum with the best reso-
lution was used. Error bars are mean differences between the
spectra of different incident energies at all temperatures.
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5 ps with a time step of 5 fs. The QHA and MD simula-
tions were used to identify modes corresponding to exper-
imental spectral features having anomalous temperature
dependencies. The vibrational potentials of these modes
were obtained through frozen phonon calculations on the
minimum supercell determined by symmetry.

Figure 3 shows phonon properties calculated from
first principles within the harmonic approximation. The
agreement between the experimental and calculated
phonon DOS curves is good after accounting for instru-
mental broadening and neutron weighting (neutrons are
scattered about twice as efficiently from motions of Sc
atoms than F atoms). All major features in the exper-
imental phonon DOS can be assigned to specific groups
of phonon modes. The motions of F atoms dominate
the higher- and lower-energy parts of the DOS, and the
majority of Sc-dominated modes are between 40 and 60
meV. The low-energy “rigid unit modes”, where ScF6 oc-
tahedra pivot about corner-shared F atoms, had negative
Grüneisen constants (Fig. 3c), such as the low-energy
modes at R and M with anomalous Grüneisen constants
of –371 and –84. In what follows we show that these
modes have quartic potentials, so these Grüneisen con-
stants are not meaningful and the QHA is not reliable.
Figure 4 shows the thermal expansion calculated with
the QHA equation of state from Eq. 1, compared with
the recent measurements [15]. Some difference at the
highest temperatures could be caused by the creation of
defects. For low temperatures, the QHA underestimates
the NTE.

The ScF6 octahedra are more flexible than their ox-
ides counterparts – our MD simulations showed that the
F atoms in an octahedron executed largely independent
and uncorrelated motions, as shown in the animation,
and by the radial and angular distribution functions in
EPAPS document No. [number will be inserted by pub-
lisher]. At 300 K, the distributions of atom centers, pro-
jected onto one axis and binned into a histogram, were
satisfactorily fit to Gaussian functions, giving full-width-
half-maxima (FWHM) of 0.124 Å for Sc (isotropic) and
0.124 Å for F along the z-axis (longitudinal), and 0.270
Å for F along the x- and y-axes (transverse to the Sc-F
bond) [number will be inserted by publisher]. The aver-
age transverse amplitude of the F-atom motion is more
than 10 % of the Sc-F bond length at 300 K. We per-
formed frozen phonon calculations for the five modes at
the R-point. Most were fit well to a quadratic potential,
but the R4+ mode (the mode of lowest energy calculated
with the harmonic approximation), depicted in Fig. 5,
was found to have a nearly pure quartic potential.

With the quasiharmonic model, analysis of the two
bands of vibrations at 0−30 and 60−90 meV showed that
they were dominated by the transverse and longitudinal
motions of F atoms, respectively. The simple mechani-
cal model of Fig. 1b, depicting the transverse motions
of the F atoms, helps to show the important relationship

between phonon anharmonicity and NTE. First consider
the two Sc atoms in Fig. 1b to be positioned in equilib-
rium so there are no net forces on them when the F atom
is at rest in mid-position (x = 0), as expected for a clas-
sical crystal with lattice parameter 2d at T = 0. For sim-
plicity, first consider the Sc atoms rigidly positioned, as if
they had infinite mass. The transverse restoring force on
the F atom depends on the elongations of the springs, s,
which goes as 1–cos θ times the resolved transverse force,
giving a transverse restoring force going as x3. The total
potential for the transverse displacement of the F atom
with two springs is

Ut =
k

4

x4

d2
, (2)

consistent with the quartic potential of the R4+ mode.
The force constant k was obtained from the frozen

phonon calculations by fitting the transverse fluorine
mode to a quartic function, and also by fitting the lon-
gitudinal fluorine mode to a quadratic function. The re-
sults, 901 and 744 N/m, respectively, are close. For these
force constants the harmonic longitudinal vibrations of F
atoms were 111 or 91.7meV, reasonably close to the ac-
tual frequencies of these modes in the DOS.
From a numerical analysis of the quartic quantum os-

cillator [25], the k = 901N/m gives energies of 7.4, 26.4,
51.9, 81.0, 113 meV for levels 0, 1, 2, 3, 4. The transi-
tion to the first excited state requires 19.0meV, which is
in good agreement with the peak 2 in the phonon DOS.
The spread between these levels increases with temper-
ature, so excitations to higher levels absorb increasingly
more energy from the neutron, and peak 2 in Fig. 2 stiff-
ens with temperature. This temperature dependence was
calculated by assigning Boltzmann factors to the differ-
ent oscillator levels, giving a shift of 7meV over 750K.
This is about three times larger than the shift of peak
2, but peak 2 contains contributions from other phonon
branches that are more harmonic. Next we allow for dis-
placements of the Sc atoms and NTE. When the F atom
is displaced transversely, the springs tend to pull the two
Sc atoms together. The average displacements x̄i of the
F atoms at each energy level i were calculated numeri-
cally using quantum quartic wavefunctions. The average
displacement x̄ at temperature was then calculated by
weighting {x̄i} with level populations from Boltzmann
distributions. The result in Fig. 4 shows many features
of the experimental result of Greve [15], giving better
agreement than the QHA.
Our frozen phonon calculations of modes with shape

distortions of the octahedral ScF6 units, but with fixed
Sc-Fe first-nearest neighbor (1nn) distances, gave soft
quadratic potentials, consistent with the Gaussian spread
of F-atom displacements. The rocking of undistorted
ScF6 units about F-atom pivot points (“rigid unit
modes”) occurs without distortion of F-F 2nn distances,
but these modes exist only on lines in the Brillouin zone
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FIG. 3: (a) Calculated phonon dispersions along high symmetry directions of ScF3 at 0K. X = (1, 0, 0)π/a; M = (1, 1, 0)π/a;
R = (1, 1, 1)π/a. (b) Total and partial phonon DOS curves at 0K from first-principles calculation, neutron-weighted phonon
DOS with instrument broadening at 120 meV added, and experimental neutron-weighted phonon DOS at 7 K. (c) Grüneisen
parameters (γ) calculated with the QHA for modes along high symmetry directions. Colors correspond to the phonon dispersions
in a.
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FIG. 4: Experimental [15] and calculated linear thermal ex-
pansion coefficients.
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FIG. 5: Phonon mode R4+, its frozen phonon potential,
quadratic (harmonic) and quartic fit to the frozen phonon
potential. The range of the quadratic fit is from -0.1 to 0.1 Å
for transverse displacements of F atoms.

along the M-R directions (the edges and corners of the
cubic unit cell in reciprocal space). Nevertheless, with
weak quadratic components, there are cylindrical vol-
umes around these lines where the quartic potential dom-
inates over the quadratic at modest temperatures. A
full frozen phonon calculation for each mode in the Bril-
louin zone is not practical, but we obtained a volume
in the Brillouin zone by setting a boundary where the
QHA Grüneisen parameters were more negative than –5
[EPAPS]. For the R4+ modes centered around M-R, ap-
proximately two thirds of the Brillouin zone is within this
anharmonic boundary, so there are a substantial number
of modes with quartic behavior in ScF3. The negative
thermal expansion of ScF3 should be a weighted com-
bination of effects such as shown for the curves labeled
QHA and Quartic in Fig. 4.

Although cubic ScF3 transforms to a rhombohedral
phase at a pressure of 0.6 GPa and then to another struc-
ture at about 3 GPa [18], the cubic DO9 structure is ro-
bust over a wide range of temperature at ambient pres-
sure. The phase stability could be explained by the large
vibrational entropy from the large-amplitude fluorine mo-
tions responsible for NTE. A full analysis requires infor-
mation on the lattice dynamics of the competing phases,
of course.
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