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Abstract. We solve an open problem of Maass and Tur´an, showing that the optimal mistake-bound when learning
a given concept class without membership queries is within a constant factor of the optimal number of mistakes
plus membership queries required by an algorithm that can ask membership queries. Previously known results
imply that the constant factor in our bound is best possible.

We then show that, in a natural generalization of the mistake-bound model, the usefulness to the learner of
arbitrary “yes-no” questions between trials is very limited. We show that several natural structural questions about
relatives of the mistake-bound model can be answered through the application of this general result. Most of these
results can be interpreted as saying that learning in apparently less powerful (and more realistic) models is not
much more difficult than learning in more powerful models.
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1. Introduction

In this paper, we present a new technique for proving structural results about on-line learning
models, and describe a number of applications of this technique. For the most part, we will
focus on the amount of information required for learning, and will ignore computation time.
Many of the models considered in this paper are variants of the mistake-bound model, so
we begin by describing it.

1.1. The standard mistake-bound model

In the standard mistake bound model (Littlestone, 1988; Angluin, 1988), learning is assumed
to proceed intrials, where in thet th trial the learner
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• is presented with an elementxt of some domainX,
• outputs a prediction̂yt ∈ {0, 1}
• discoversyt ∈ {0, 1} (calledreinforcement).

If ŷt 6= yt , the learner is said to have made amistakeon trial t , and the goal is to make
few mistakes. It is further assumed that the learner knows of a setF of functions fromX
to {0, 1} containing a functionf that satisfiesf (xt ) = yt for all trials t . The performance
of a learning algorithm is then measured by its worst-case number of mistakes, over all
sequences(x1, y1), (x2, y2), . . . of elements ofX × {0, 1} for which there exists anf ∈ F
satisfying the above. Denote the optimal such performance by optstand(F).

1

1.2. Membership queries

In a heavily studied relative of the mistake-bound model (Angluin, 1988), it is further
assumed that, between trials, the learner may queryf (x) for elementsx of its choosing.
The performance of a learner for a particular sequence〈(xt , yt )〉t is then measured by the
sum of the number of its mistakes and its total number of queries between trials. Let us
denote the optimal worst-case performance for a particular classF of functions fromX to
{0, 1} (defined analogously to the above) by optmemb(F).

We show that, for allF ,

optmemb(F) ≥ (log2 4/3)optstand(F).

The VC-dimension of a classF is a common measure of the “richness” ofF . As a direct
consequence of the above bound, we obtain the following:

optmemb(F) ≥ (log2 4/3)VCdim(F)

(note that log2 4/3 is approximately 1/2.41). An example due to Maass and Tur´an shows
that in neither of the above bounds can the constant be improved.

The previously best bounds, due to Maass and Tur´an (1992), were

optmemb(F) ≥ optstand(F)

log2(1+ optstand(F))

optmemb(F) ≥ 1

7
VCdim(F).

We further show that ifF = ∪sFs andX = ∪n Xn, then if there is an algorithmA that,
given that the hidden function is taken fromFs and thext ’s come fromXn,

• makes its predictions in time pseudo-polynomial2 in n ands
• makes at most polynomial inn ands mistakes
• asks polynomial in logn and logs membership queries,

then there is an algorithmA0 that
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• makes its predictions in time pseudo-polynomial inn ands
• makes at most polynomial inn ands mistakes
• asksnomembership queries.

(Intuitively s measures the complexity of the function classFs andn measures the length
of the inputsxt ∈ Xn.)

1.3. The strength of weak reinforcement

There are two very natural ways to generalize the standard mistake-bound model to the case
in which the values to be predicted come from some finite set, possibly with more than two
members (Auer et al., 1995). At the end of a given trialt , either the algorithm could be
told whether or not its prediction̂yt was correct (“weak reinforcement”) or it could be told
the correct valueyt (“strong reinforcement”). Both types of reinforcement occur in nature.
Notice that in the case in which theyt ’s come from{0, 1}, both kinds of reinforcement are
equivalent.

How much weaker is weak reinforcement? Suppose for a given setX and a finite setY of
at least two elements (from which theyt ’s will be chosen), for a setF of functions fromX
to Y, we define3 optstrong(F) and optweak(F) in an analogous manner as optstand(F), except
replacing the standard reinforcement with strong and weak reinforcement respectively. We
show that

optweak(F) ≤ 1.39|Y|(d1+ log2(|Y| − 1)eoptstrong(F)+ 2).

A trivial lower bound shows that this bound is within anO(log |Y|) factor of the best
possible.

1.4. Agnostic learning

For many applications, it is too optimistic to assume that there is anf from a reasonably
small known classF that perfectly maps thext ’s to the correspondingyt ’s in {0, 1}. A well
established approach in such cases (Vovk, 1990; Littlestone & Warmuth, 1994; Littlestone,
1989; Feder, Merhav, & Gutman, 1992; Merhav & Feder, 1993; Cesa-Bianchi et al., 1997;
Cesa-Bianchi et al., 1996) is to assume nothing about the(xt , yt ) pairs, and instead, for a
given F , to give bounds on the number of mistakes made by a given learning algorithm in
terms of the minimum overf ∈ F of the numberη of trialst for which f (xt ) 6= yt . Learning
models like this are often referred to as agnostic learning models4 (Kearns, Schapire, &
Sellie, 1994).

It is convenient to assume that the learner knows a bound onη before learning takes
place, although this assumption can be removed with a slight degradation in the bounds via
standard doubling techniques. In this case, informally, let optagn(F, η) be the best bound
on the number of mistakes that can be obtained given the assumption that there is anf ∈ F
such that the number of trialst for which f (xt ) 6= yt is at mostη. As a special case of our
main theorem (Theorem 3.1), we obtain the following bound:

optagn(F, η) ≤ 4.82(optagn(F, 0)+ η)+ 1. (1)
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Note that optagn(F, 0) = optstand(F). Since, for many applications, one expectsη to be
much larger than optagn(F, 0), optimizing the constant on theη term seems worthwhile. By
applying the more refined Theorem 3.2, we can show that for allε ≤ 1/20,

optagn(F, η) ≤
(

4

ε
ln

1

ε

)
optagn(F, 0)+

(
2+ 5

2
ε

)
η. (2)

Littlestone and Warmuth (1994) proved that forany F with |F | > 1,

optagn(F, η) ≥ optagn(F, 0)+ 2η.

Thus, the bound of (1) is within a small constant factor of optimalfor each(nontrivial) F .
This reduces the problem of determining optagn(F, η) to within a constant factor to that of
determining optagn(F, 0) to within a constant factor. In other words, in a sense, it reduces
the study of the agnostic learning model to the study of the standard mistake-bound model.
(Notice, however, that this is without regard tocomputationalcomplexity.) Furthermore,
using (2), the constant on theη term can be brought arbitrarily close to the optimal 2, at the
expense of increasing the constant on the other term.

Similar results about optagn(F, η) were independently obtained by Cesa-Bianchi et al.
(1996).

Littlestone and Warmuth (1994), and independently Vovk (1992), showed that for anyF ,

optagn(F, η) ≤ 2.41(log2 |F | + η). (3)

Other refinements of this result, which retain the same flavor in that they are in terms
of log2 |F | andη, but some of which concern probabilistic algorithms, which we don’t
study here, are described in (Littlestone & Warmuth, 1994; Littlestone, 1989; Vovk, 1990;
Cesa-Bianchi et al., 1997).5 Due to the fact that for any finiteF , optagn(F, 0) ≤ log2 |F |
(Littlestone, 1988), our bound of (1) is always at most a small constant factor greater than
(3). Furthermore, sometimes it is substantially less.

As an example, if SUBSPn is the set of (indicator functions for) linear subspaces ofRn,
there is a trivial algorithm for learning given that a function in SUBSPn mapsxt ’s (inRn) to
correspondingyt ’s that makes at mostn mistakes (Shvaytser, 1988), but SUBSPn is infinite,
so no bound on optagn(SUBSPn, η) can be obtained from (3) and related results. However,
a bound of 4.82(n + η) (as mentioned above, within a small constant factor of optimal)
follows immediately from (1).

Finally, by adapting the proofs of Theorem 3.1 and Theorem 3.2, we may obtain (1) and
(2) in the case that the predictionsŷt and the true valuesyt are chosen from any setY, F is
a set of functions fromX to Y, and the goal is still to have few mistakes, i.e. trials in which
ŷt 6= yt .

1.5. Closure results

For many classesF of functions from some setX to {0, 1}, one obtains a richer class by
takingk-wise OR’s of elements ofF , i.e. by defining

ORk(F) = { f1 ∨ · · · ∨ fk: f1, . . . , fk ∈ F}
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where f1 ∨ · · · ∨ fk has the obvious interpretation. How much harder can ORk(F) be
thanF? By applying our Theorem 3.1, we can show that for allF ,

optstand(ORk(F)) ≤ 2.41kd1+ log2 keoptstand(F)+ 1.

A trivial lower bound shows that this bound is within anO(logk) factor of the best possible.
While analogous results for the PAC model were obtained some time ago (Kearns et al.,
1987; Blumer et al., 1989), to the best of our knowledge, the question of whether there was
any bound on optstand(ORk(F)) in terms ofk and optstand(F) had remained open. A more
general result of this type is described in Section 4.4.

1.6. Temporal credit assignment

Sometimes on-line learning algorithms cannot expect to get reinforcement before having to
predict again, and the reinforcement they get may be ambiguous, indicating that a mistake
was made some time in the recent past.6 We adapt the standard mistake-bound model to
include such learning situations by assuming that after every certain number, sayr , of
trials, the learning algorithm is told whether any of the pastr predictions were incorrect.
(Of course, for applications, the number of trials between reinforcements seems bound to
vary; however, we obtain an equivalent model ifr is an upper bound on the number of trials
between reinforcements.)

If, for a given classF of {0, 1}-valued functions, we define optamb,r(F) to be the worst-
case number of mistakes made by the optimal algorithm in this model (where a mistake is
said to be made if the algorithm was incorrect inanyof its predictions before a particular
reinforcement, see Section 4.5), we may obtain the following bound,

optamb,r (F) ≤ 2(ln 2r ) · 2r · optamb,1(F).

Note that optamb,1(F) = optstand(F). We also describe a lower bound that shows that this
bound cannot be significantly improved.

1.7. A unifying framework: the MB and MBQ models

All of the above results are direct consequences of a single theorem about more general
models. These models (which we call the MB model and MBQ model) are relatives of the
mistake-bound model (Angluin, 1988; Littlestone, 1988). As in that model, we assume
learning is an on-line process, proceeding intrials. During thet th trial,

1. the learner receives aninstance xt from some setX,
2. the learner outputs apredictionŷt in some setY,
3. the learner receives aresponsēyt ∈ Y indicating thatyt 6= ȳt .

This type of response given in the MB model is a subtle point. Instead of receiving direct
feedback to its prediction̂yt the learner receives only some valueȳt different from the
correctyt . For |Y| = 2 this is equivalent to giving the correct valueyt as a response since
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it can be inferred immediately. But for|Y| > 2 the environment is more flexible in giving
feedback to the learner, even more flexible than just telling the learner if its prediction was
correct or not as in the weak reinforcement model. The learner is said to have made a
mistake ifŷt = ȳt , i.e. if the responsēyt impliesthat the learner’s prediction was incorrect.
The learner is not charged for trials withŷt 6= yt but ȳt 6= ŷt .

The learner’s prior knowledge is modeled by assuming that the learner knows of a set
L ⊆ (X×Y)∗ of sequences of pairs(xt , yt ) containing those pairs encountered on any run
of the algorithm.

In the MB model, the goal of the learner is simply to minimize the number of trialst in
which it makes a mistake. For a particular setL, we then define optMB(L) to be the best
bound on the number of mistakes that can be obtained by a learning algorithm given the
assumption that the sequence〈(xt , yt )〉t of (xt , yt ) pairs is inL.

In the MBQ model, the learner is allowed to ask arbitrary “yes-no” questions about the
entire sequence〈(xt , yt )〉t between trials to gain additional information. In this model, the
performance of the learner is measured by the sum of the number of questions it asked and
the number of mistakes, and optMBQ(L) is defined to be the optimal performance givenL
in a similar manner to the above. More formal descriptions of both models are given in
Section 3.1. All the models considered in this paper are summarized in Table 1.

Table 1. A summary of the learning models studied in this paper. In each trialt , the learner is presented with
an elementxt of some domainX, outputs a prediction̂yt from some setY, then possibly gets some information
about the correctyt . In some models queries are allowed between trials; for these the algorithms are evaluated
by summing the number of prediction errors and the number of queries. In different models, different types of
assumptions about the relationship between thext ’s andyt ’s are considered. We denote byF a class of functions
from X to Y, we denote byL ⊆ (X × Y)∗ a set of sequences of pairs(xt , yt ), and we denote byQ ⊆ L a subset
of L. Note that for|Y| = 2, optMB(L) = optMBρ(L) and optMBQ(L) = optMBQρ(L).

Notation Relationship Information at Queries
for optimal Y betweenxt ’s andyt ’s end of trial allowed

optstand(F) {0, 1} For somef ∈ F , yt None
for all t , f (xt ) = yt

optmemb(F) {0, 1} For somef ∈ F , yt What is f (x)?
for all t , f (xt ) = yt

optagn(F, η) {0, 1} For somef ∈ F , yt None
|{t : f (xt ) 6= yt }| ≤ η

optamb,r (F) {0, 1} For somef ∈ F , In everyr th trial, None
for all t , f (xt ) = yt was there a mistake

in the pastr trials?

optstrong(F) Any finite set For somef ∈ F , yt None
for all t , f (xt ) = yt

optweak(F) Any finite set For somef ∈ F , Is yt = ŷt ? None
for all t , f (xt ) = yt

optMB(L) Any finite set 〈(xt , yt )〉t ∈ L ȳt 6= yt None

optMBQ(L) Any finite set 〈(xt , yt )〉t ∈ L ȳt 6= yt Is 〈(xt , yt )〉t ∈ Q?

optMBρ(L) Any finite set 〈(xt , yt )〉t ∈ L Is yt = ŷt ? None

optMBQρ(L) Any finite set 〈(xt , yt )〉t ∈ L Is yt = ŷt ? Is〈(xt , yt )〉t ∈ Q?
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We show for allL ⊆ (X × Y)∗ that

optMB(L) ≤
2|Y| − 1+ optMBQ(L)− log2 |Y|

log2
2|Y|

2|Y|−1

if |Y| ≤ 2optMBQ(L)

2optMBQ(L)+1 otherwise

which implies the looser but more suggestive bound

optMB(L) ≤ 1.39|Y|(optMBQ(L)+ 2).

These are the general results which imply the results mentioned in previous sections. We
also show that this bound is within a constant factor of the best possible for all values of
|Y| and optMBQ(L).

We also consider the natural variant of the MB and MBQ models where the response
ρt ∈ {TRUE,FALSE} does indicate whether the learner’s prediction has been correct or
not. These models are denoted by MBρ and MBQρ. Note again that for|Y| = 2 the MB
and MBρ models are equivalent (as are the MBQ and MBQρ models) and that they are
a generalization of the standard mistake-bound model from learning functions to learning
sequences. For the relationship of the MBρ and MBQρ models we show the bound

optMBρ(L) ≤ (|Y| ln |Y|)optMBQρ(L)+ 130(|Y| ln ln |Y|)optMBQρ(L)

which is almost best possible.

1.8. Related results and the organization of the paper

Our technique to prove the above results builds on the “weighted majority” technique
of Littlestone and Warmuth (1994). The weighted majority technique uses a fixed set of
specialized subalgorithms, and it uses a weighting scheme to combine the predictions of
these algorithms. In contrast, our techniquedynamicallycreates subalgorithms depending
on information gathered during a particular run.

Kulkarni, Mitter, and Tsitsiklis (1993) studied PAC learning usingonly “yes-no” ques-
tions. Bshouty et al. (1996) studied the use of membership queries to reduce the number
of mistakes as much as possible (Bshouty et al., 1996).

The paper is organized as follows. In Section 2 we illustrate our main technique by
showing how membership queries can be simulated by an algorithm which cannot ask
membership queries. In Section 3 we present our general results from which most of the
other results can be derived. In Section 4 we give various applications of our main result,
and we conclude in Section 5. Appendix A contains several lower bound proofs.

2. Bounds on the usefulness of membership queries

In this section we illustrate the techniques of this paper with an example. We bound the
number of mistakes in the standard mistake-bound model in terms of the number of queries
and mistakes in the mistake-bound model with membership queries.
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Choose a setX. In this subsection, we study a model due to Angluin (1988). (To make
our notation and terminology more uniform throughout the paper, on the face of it, the
model we describe looks somewhat different than Angluin’s original model, but the two
can be shown to be equivalent (Littlestone, 1988).) In this model, we assume that a function
f from X to {0, 1} is hidden from the learner, and that learning proceeds in trials, where in
the t th trial, the learner (a) receivesxt ∈ X from the environment, (b) outputs a prediction
ŷt ∈ {0, 1}, (c) discoversf (xt ). We further assume that, before each trial, the learner may
determinef (x) for differentx ∈ X of its choosing (membership queries). The performance
of an algorithm on a particular run is the total of the number of mistakes and the number of
membership queries, and the overall quality of an algorithm is measured by its worst-case
performance. Then optmemb(F) is the optimal performance that can be obtained in this
model, and optstand(F) is the optimal performance that can be obtained with an algorithm
that never asks membership queries.

Theorem 2.1. Choose X, and a set F of functions from X to{0, 1}. Then

optstand(F) ≤
optmemb(F)

log2(4/3)
.

The VC-dimension (Vapnik & Chervonenkis, 1971) of a classF is defined by

VCdim(F) = max
{
d: ∃x1, . . . , xd ∈ X, {( f (x1), . . . , f (xd)): f ∈ F} = {0, 1}d}.

The fact that optstand(F) ≥ VCdim(F) (Littlestone, 1988) trivially yields the following
corollary.

Theorem 2.2. Choose X, and a set F of functions from X to{0, 1}. Then

optmemb(F) ≥ log2(4/3)VCdim(F).

As discussed in the introduction, the following theorem due to Maass and Tur´an shows that
the constant cannot be improved in either Theorem 2.1 or Theorem 2.2.

Theorem 2.3 (Maass & Turán, 1992). There is a family〈Xn〉n of sets and a family〈Fn〉n
such that for each n, Fn is a set of functions from Xn to {0, 1} and

optmemb(Fn) ≤ (log2(4/3)+ o(1))VCdim(Fn) ≤ (log2(4/3)+ o(1))optstand(Fn)

as n→∞.

Proof of Theorem 2.1: Let Amembbe an optimal learning algorithm which for all targets
f ∈ F and x1, x2, . . . ∈ X has its total number of mistakes and membership queries
bounded by optmemb(F). We construct a learning algorithmAstand which makes at most
optmemb(F)/ log2(4/3) mistakes, and asks no membership queries.
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The algorithmAstandruns copiesAmemb
i of Amemb as subalgorithms and keeps a weight

wi for each copy. These weights indicate how “reliable” the corresponding copies are.
Initially Astand starts with one copy ofAmemb and its weight is 1. To prove the theorem
we (as observers of the algorithmAstand) investigate how the total sum of all weightswi

changes, and we keep track of a special copyAmemb
s (and its weight) which performs in

the same way asAmembwould perform if membership queries were available. Initially the
single copy is the special one. During thet th trial, algorithmAstandbehaves as follows:

• As long as any copyAmemb
i wants to ask a membership query “f (q) = 1?”, this copy

is split into two copies, one copy receives the answer YES and the other copy receives
the answer NO. The weightwi /2 is assigned to both copies. Intuitively the weight is
split between the two copies since it is unknown whether the YES or the NO answer is
correct.

Clearly the total sum of weights is not changed.

If Amemb
i is the special copy then one of the new copies represents the correct answer

to the query and this copy becomes the special one. Its weight is half the weight of the
original special copy.
• Since we can assume that no copy asks more than optmemb(F) queries, eventually all

copies are ready to make a prediction. When this happens, algorithmAstandconstructs its
predictionŷt using a majority vote of the predictionsŷi,t of the subalgorithms according
to their weights,

ŷt =


1 if

∑
i :ŷi,t=1

wi ≥
∑

i :ŷi,t=0

wi

0 if
∑

i :ŷi,t=1

wi <
∑

i :ŷi,t=0

wi .
(4)

Then the correct answeryt is passed to all copiesAmemb
i of Amemb. If Astand made a

mistake, then those copiesAmemb
i whose predictionŝyi,t were the same asAstand’s pre-

diction ŷt also made mistakes. The weights of all these copies are multiplied by 1/2
(since they seem less reliable). The copies that predicted correctly have their weights un-
changed. IfAstandpredicts correctly, for simplicity, none of the copies have their weights
reduced.

Since
∑

i :ŷi,t=ŷt
wi ≥

∑
i :ŷi,t 6=ŷt

wi , arguing as in (Littlestone & Warmuth, 1994), we have
for the modified weightsw′i that∑

i

w′i =
∑

i :ŷi,t=ŷt

w′i +
∑

i :ŷi,t 6=ŷt

w′i

= 1

2

∑
i :ŷi,t=ŷt

wi +
∑

i :ŷi,t 6=ŷt

wi
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= 3

4

∑
i

wi − 1

4

∑
i :ŷi,t=ŷt

wi + 1

4

∑
i :ŷi,t 6=ŷt

wi

≤ 3

4

∑
i

wi .

Thus the total sum of weights decreases by at least a factor 3/4 if Astandmakes a mistake.

The weight of the special copy is multiplied by 1/2 only if it predicted incorrectly.

To summarize, ifAstandhas madeM mistakes the total sum of all weights is at most(3/4)M .
On the other hand the weight of the special copy is always at least(1/2)optmemb(F) since the
number of mistakes plus the number of membership queries of the special copy is bounded
by optmemb(F). By taking logarithms and solving forM , we get

M ≤ optmemb(F)

log2 4/3

which implies the theorem. 2

To get a feel for howAstandworks, it is worthwhile to view its state as a tree, where the
various copies ofAmemb correspond to the leaves. For example, supposeAstandis learning
f , and that the single copy ofAmembwould be ready to make a prediction. Then the tree at
this point would consist of a single node labeled READY. The prediction ofAstandwould
then be just that of the single copy ofAmemb. Suppose thatAstandmade a mistake in the first
trial. Then the single copyAmembmade a mistake on the first trial, too. This is reflected in
the tree by giving the node corresponding to the single copy ofAmemba child:

Suppose that the single copy ofAmemb then wanted to ask a membership queryq1. Then
Astandwould create two copies ofAmemb, one which it would give the response YES, and the
other which would get the response NO. If the copy that got the response YES did not want
to ask another membership query, and the copy that got the response NO asked another
membership query, call itq2, then we can visualize the state ofAstand with the following
tree.
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Now, Astandwould “expand” the leaf on the left, again creating two copies, which would
be given YES and NO respectively as answers to their most recent question. If neither of
these copies wanted to ask a membership query, then the following tree would encode the
state ofAstand:

Now Astandwould be ready for the second trial. Its predictionŷ2 would be calculated as the
weighted majority vote of the copies ofAmemb in the leaves of the tree, see Eq. (4). The
weight of each copy is simply 2−d whend is the depth of the corresponding leaf in the tree.
The leaves corresponding to those copies ofAmemb which made a mistake would be given
children, and the new tree would look for example like this:
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The process would continue in this manner, withAstand“expanding” all leaves whose copies
of Amembask membership queries until there are no more such leaves, and then constructing
its prediction using those of the copies on the leaves as described above.

3. The MB and MBQ models

In this section we present our general result from which the other results can be obtained.

3.1. Definitions

Choose setsX andY and letL ⊆ (X×Y)∗ be some set of sequences of elements ofX×Y
(|Y| ≥ 2). A kind of subset of(X × Y)∗ will be of particular interest. For a setF of
functions fromX to Y, letLF consist of those sequences〈(xt , yt )〉t of elements ofX × Y
for which there is anf ∈ F such that for allt , f (xt ) = yt . Our results, however, will hold
for arbitrary sets of sequences of(xt , yt ) pairs.

We consider the following MB model for on-line learning of sequencesσ = 〈(xt , yt )〉t
fromL. This model is included to provide the cleanest statement we can of a general result
unifying our treatment of the applications in the paper; it is not intended itself as an accurate
model of applied learning problems.
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As in the standard mistake-bound model, we assume learning proceeds intrials. In the
t th trial,

• the algorithm is givenxt ,
• the algorithm outputs a prediction̂yt of yt

• the algorithm receives a responseȳt ∈ Y with ȳt 6= yt .

In the MBQ model, we further assume that the learner may ask arbitrary “yes-no” ques-
tions aboutσ between trials. Since for any “yes-no” question aboutσ one is equivalently
asking whetherσ is contained in the set of those elements ofL for which the answer is
“yes”, a “yes-no” question can be formalized as asking “Isσ ∈ L′?” for someL′ ⊆ L.

A prediction of an algorithm is counted as mistake ifȳt = ŷt , i.e. an algorithm is only
charged for a trial when evidence of a mistake is given. We measure the performance
M(L, A) of an algorithmA for learningL in the MBQ model by the maximum, overσ ∈ L
and any consistent responses, of the number of mistakes and queries made byA. We define
optMBQ(L) to be the minimum ofM(L, A) over all learning algorithmsA, and optMB(L)
to be the minimum ofM(L, A) over learning algorithmsA that do not ask queries.

For some of the applications, we will want to assign different costs to YES answers to
queries, NO answers, and mistakes. Choose positive constantscYES, cNO andcm, and let
Ec = (cYES, cNO, cm). DefineM(L, A, Ec) to be the maximum, overσ ∈ L and consistent
responses, ofcYES · nYES + cNO · nNO + cm · m, wherenYES, nNO andm are the number
of A’s queries answered YES, the number answered NO, and the number ofA’s mistakes.
Define optMBQ(L, Ec) to be the minimum ofM(L, A, Ec) over learning algorithmsA.

3.2. Upper bounds

The following result limits the usefulness of “yes-no” questions.

Theorem 3.1. For any sets X and Y for which|Y| ≥ 2, and anyL ⊆ (X × Y)∗

optMB(L) ≤


2|Y| − 1+ optMBQ(L)− log2 |Y|

log2
2|Y|

2|Y|−1

if |Y| ≤ 2optMBQ(L)

2optMBQ(L)+1 otherwise

≤ 1.39|Y|(optMBQ(L)+ 2).

We also have the following result concerning different costs for the number of YES and
NO answers and the number of mistakes.

Theorem 3.2. Choose0< α, β, γ < 1 such thatα + β = 1. Choose sets X and Y
for which |Y| ≥ 2, and someL ⊆ (X × Y)∗. Then for the weighted cost M=
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optMBQ(L, (log2
1
α
, log2

1
β
, log2

1
γ
)),

optMB(L) ≤


1+ |Y| − 1

1− γ +
M − log2 |Y|
log2

|Y|
|Y|−(1−γ )

if |Y| ≤ 2M

2M

1− γ otherwise

The first inequality7 of Theorem 3.1 follows from Theorem 3.2 by settingα = β =
γ = 1/2. The proof of Theorem 3.2 is similar to the proof of Theorem 2.1 in that a master
algorithm that does not ask questions keeps track of several copies of an algorithm that does,
and generates its predictions from the copies using weighted voting. But the generality of
the theorem gives rise to some new issues.

First, if |Y| > 2, if the master algorithm finds out that its predictionŷt on trial t is wrong,
i.e. ȳt = ŷt , it cannot tell whether the predictions of those copies of the question-asking
algorithm that didn’t predict̂yt were correct or wrong. But since in the MBQ model such
feedback is not required, it is sufficient that the master algorithms gives responseȳt to all
the copies. (For the MBQρ model of Section 3.4, where such feedback is required, this
problem has to be dealt with differently.) Another complication is that the weights are
adjusted by factors other than 1/2. This is needed for some of the applications. Finally, the
analysis for Theorem 3.2 is divided into two stages. In the first stage, we show that the total
weight goes down by a certain factor, as we did in the proof of Theorem 2.1. In the second
stage, we use an additive bound on the reduction of weight, which is sometimes tighter due
to the fact that|Y| can be large. This is apparently required to get bounds that are tight to
within a constant factor.

Proof of Theorem 3.2: Choose an MBQ algorithmAMBQ which is optimal with respect
to costs log2

1
α
, log2

1
β

, and log2
1
γ

for YES answers, NO answers, and mistakes respec-
tively. Consider the MB algorithmAMB which usesAMBQ as a subroutine defined in figure 1.

By induction, at any time during the execution ofAMB when learning some sequenceσ
with responses〈ȳt 〉t , there is a special copyAMBQ

s which corresponds to a state ofAMBQ

when learningσ with responses〈ȳt 〉t . This follows from the fact that both answers to
queries are given to corresponding copies ofAMBQ and that all responses̄yt are given to
the copies. The weightws = αnYES(s)βnNO(s)γm(s) of the special copy satisfiesws ≥ 2−M ,
whereM = optMBQ(L, (log2

1
α
, log2

1
β
, log2

1
γ
)).

Denote byW = ∑
i wi the total weight of all copiesAMBQ

i maintained byAMB. First
W is 1 whenAMB starts. Note further that sinceα + β = 1, thatW does not change when
copies are duplicated and given both answers to “yes-no” questions during the simulation
of queries.

Our proof proceeds by usingW as a measure of progress. As mentioned earlier, the
analysis is divided into two stages. The first stage consists of those trialst such that, before
the beginning of trialt , W > 2−M |Y|. The second stage consists of the remaining trials. In
both stages we are ignoring the change ofW during trials in which the master algorithm
does not make a mistake sinceW never increases.
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Notation:

Maintains a set of copiesAMBQ
i of AMBQ where each copy corresponds to

a subsetLi ⊆ L which denotes the current information ofAMBQ
i about

the target sequenceσ . Each copy maintains its number of YES answers, NO
answers, and mistakes received so far, denoted bynYES(i ), nNO(i ),m(i ). The
weight of a copyAMBQ

i is calculated aswi = αnYES(i ) · βnNO(i ) · γm(i ) (thus
α weights YES answers,β weights NO answers, andγ weights mistakes in
predictions). We assume that a copyAMBQ

i terminates ifnYES(i ) log2
1
α
+

nNO(i ) log2
1
β
+m(i ) log2

1
γ
> optMBQ(L, (log2

1
α
, log2

1
β
, log2

1
γ
)).

Initialization:
Initially there is only a single copyAMBQ

1 with L1 = L and nYES(1)=
nNO(1) = m(1) = 0.

Simulating queries:
As long as there is a copyAMBQ

i which wants to ask a yes-no question this
copy is duplicated giving a copyAMBQ

j and the answer YES is given to copy
AMBQ

i and the answer NO is given to copyAMBQ
j .

Making a prediction:
If no copy wants to ask a yes-no questionxt is received from the environment
and the prediction

ŷt := argmaxy∈Y

∑
i : AMBQ

i (xt )=y

wi

is calculated as the value with the highest weight.

Update:
The responsēyt is given to all copiesAMBQ

i .

The steps Simulating queries, Making a prediction, and Update are repeated as
long as required.

Figure 1. Algorithm AMB from the proof of Theorem 3.2.

Let us assume as a first case that|Y| < 2M . In this case, the first stage has at least one
trial. We begin by bounding the numberm1 of mistakes made byAMB in the first stage.
Choose some trialt in the first stage. Supposêyt is a mistake, i.e.̄yt = ŷt . Then

Wnew=
∑

i

αnYES,new(i )βnNO,new(i )γmnew(i ) =
∑

i : AMBQ
i (xt )6=ŷt

αnYES,old(i )βnNO,old(i )γmold(i )

+
∑

i : AMBQ
i (xt )=ŷt

γαnYES,old(i )βnNO,old(i )γmold(i ) ≤ (1− 1/|Y|)Wold+ γWold/|Y|

=
(

1− 1− γ
|Y|

)
Wold,
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where “old” and “new” indicate whether the values of the variables are considered before
or after trialt . The inequality follows from the fact thatAMB makes the prediction with the
greatest weight, and therefore a fraction at least 1/|Y| of the weight is behind this prediction.
By induction, afterAMB has madem mistakes in the first stage, we have that

W ≤
(

1− 1− γ
|Y|

)m

. (5)

Since the first stage is over ifW ≤ 2−M |Y| inequality (5) implies that

(
1− 1− γ

|Y|
)m1−1

> 2−M |Y|.

Solving form1 yields that

m1 ≤ 1+ M − log2 |Y|
log2

|Y|
|Y|−(1−γ )

. (6)

Now, we bound the number of mistakes in the second stage. For any trial in the second
stage with a mistake,

Wnew−Wold =
∑

i

(
αnYES,new(i )βnNO,new(i )γmnew(i ) − αnYES,old(i )βnNO,old(i )γmold(i )

)
=

∑
i : AMBQ

i (xt )6=ŷt

(
αnYES,new(i )βnNO,new(i )γmnew(i ) − αnYES,old(i )βnNO,old(i )γmold(i )

)
= (γ − 1)

∑
i : AMBQ

i (xt )6=ŷt

αnYES,old(i )βnNO,old(i )γmold(i ) ≤ (γ − 1)2−M

since there is a special copyAMBQ
s with ws ≥ 2−M , andAMB made the prediction with the

greatest weight. Since, prior to the start of the second stage,W was at most 2−M |Y|, and
at any time the total weight is at least 2−M , this implies that the number of mistakes in the
second stage is at most(|Y| − 1)/(1− γ ). Combining this with (6) completes the proof in
the case that|Y| < 2M .

The proof in the case that|Y| ≥ 2M goes as above, except that there is no first stage in
this case, and in the analysis of the second stage, in place of the assumption that the weight
at the beginning of the second stage is at most 2−M |Y|, we use that it is at most 1. 2

3.3. A lower bound

In this section we present a lower bound that matches Theorem 3.1 to within constant
factors. The proof is given in Appendix A.1.
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Theorem 3.3. Choose positive integers a and u such that u≥ 2. Then there are sets X,Y
such that|Y| = u, and there is a setL ⊆ (X × Y)∗ such thatoptMBQ(L) ≤ a, and

optMB(L) ≥


2a − 1 if |Y| ≥ 2a

|Y|
3

(
1+ ln 2

2
(a− log2 |Y|)

)
otherwise.

3.4. The MBρ and MBQρ models

As a natural variant of the MB and MBQ models we consider the MBρ and MBQρ models
where the response to the learner isρt ∈ {TRUE,FALSE} (instead ofȳt ∈ Y) indicating
whether ŷt = yt or ŷt 6= yt . A prediction ŷt is a mistake ifŷt 6= yt and we measure
the performanceMρ(L, A) of an algorithmA for learningL in the MBQρ model by the
maximum, overσ ∈ L, of the number of mistakes and queries ofA when learningσ . We
define optMBQρ(L) to be the minimum ofMρ(L, A) over all algorithmsA, and optMBρ(L)
to be the minimum ofMρ(L, A) over algorithmsA which do not ask queries.

For the relationship between the MBρ and MBQρ models we get a similar but slightly
weaker result than for the MB and MBQ models and we show that this result is close to
best possible.

Theorem 3.4. For any sets X and Y for which|Y| ≥ 3, and anyL ⊆ (X × Y)∗

optMBρ(L) ≤ (|Y| ln |Y|)optMBQρ(L)+ 130(|Y| ln ln |Y|)optMBQρ(L).

Theorem 3.5. Choose positive integers a and u such that u≥ 2981. Then there are
sets X, Y such that|Y| = u, and there is a setL ⊆ (X × Y)∗ such thatoptMBQρ(L) =
2a+ d2 log2 |Y|e, and

optMBρ(L) ≥ ab|Y| ln |Y|/4c.

The proof of Theorem 3.5 is given in Appendix A.2.
The proof of Theorem 3.4 is similar to the proof of Theorem 3.2. The main difference is

that in the proof of Theorem 3.4, the copies which didn’t predictŷt are split into two copies
each, one which is told that its prediction was correct, and another that is told its prediction
was not.

Proof of Theorem 3.4: Choose an optimal MBQρ algorithm AMBQρ and consider the
MBρ algorithm AMBρ which usesAMBQρ as a subroutine defined in figure 2 and setγ =

1
|Y| ln |Y| .

The key difference betweenAMBρ and AMB is in the update after a mistake. Loosely
speaking, whenAMBρ makes a mistake, reinforcement TRUE or FALSE must be given to
all copies ofAMBQρ . Those copies that we do not know whether they made a mistake are
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Notation:
Maintains a set of copiesAMBQρ

i of AMBQρ where each copy corresponds to
a subsetLi ⊆ L which denotes the current information ofAMBQρ

i about the
target sequenceσ . Each copy maintains its number of queries and mistakes
denoted byq(i ) andm(i ).
The weight of a copyAMBQρ

i is calculated aswi = 2−q(i )γm(i ).
We assume that a copyAMBQρ

i terminates ifq(i )+m(i ) > optMBQρ(L).

Initialization:
Initially there is only a single copyAMBQρ

1 withL1 = L andq(1) = m(1) = 0.

Simulating queries:
As long as there is a copyAMBQρ

i which wants to ask a yes-no question this
copy is duplicated giving a copyAMBQρ

j and the answer YES is given to copy
AMBQρ

i and the answer NO is given to copyAMBQρ
j .

Making a prediction:
If no copy wants to ask a yes-no questionxt is received from the environment
and the prediction

ŷt := argmaxy∈Y

∑
i : AMBQρ

i (xt )=y

wi

is calculated as the value with the highest weight.

Update when ŷt 6= yt :
If the prediction was wrong then all copies withAMBQρ

i (xt ) = ŷt are told
that they have made a mistake. Each copyAMBQρ

i with AMBQρ
i (xt ) 6= ŷt is

duplicated giving a copyAMBQρ
j , the copy AMBQρ

i is told that its prediction
was correct, and the copyAMBQρ

j is told that its prediction was wrong.

Update when ŷt = yt :
If the prediction was correct then all copies withAMBQρ

i (xt ) = ŷt are told
that their prediction was correct, and all copies withAMBQρ

i (xt ) 6= ŷt are
told that their prediction was wrong.

The steps Simulating queries, Making a prediction, and Update are repeated as
long as required.

Figure 2. Algorithm AMBρ from the proof of Theorem 3.4.

split into two copies, one which receives the reinforcement that it made a mistake, and one
which receives the reinforcement that it did not.

Our proof proceeds by usingW =∑i 2−q(i )γm(i ) as a measure of progress. InitiallyW
is 1, andW does not change when copies are duplicated and given both answers to “yes-no”
questions during the simulation of queries.

Now choose somet . Obviously, if ŷt is not a mistake,W only decreases after trialt , but
we will ignore this decrease in our analysis. Then ifŷt is a mistake, since each copyAMBQρ

i
for which AMBQρ

i (xt ) 6= ŷt is split into two copies, one whose weight is multiplied byγ ,
and the other whose weight remains the same, and all copies for whichAMBQρ

i (xt ) = ŷt
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have their weights multiplied byγ , we have

Wnew=
∑

i

2−qnew(i )γmnew(i )

=
∑

i : AMBQρ
i (xt )6=ŷt

(1+ γ )2−qold(i )γmold(i ) +
∑

i : AMBQρ
i (xt )=ŷt

γ2−qold(i )γmold(i )

≤ (1+ γ )(1− 1/|Y|)Wold+ γWold/|Y|
= Wold(1+ 1/|Y| ln |Y| − 1/|Y|).

By induction, afterAMBρ has madem mistakes, we have

W ≤
(

1+ 1

|Y| ln |Y| −
1

|Y|
)m

≤ exp

(
−
(

1− 1

ln |Y|
)

m

|Y|
)
. (7)

Also by induction, at any time during the execution ofAMBρ , there is a special copyAMBQρ
s

with q(s) + m(s) ≤ optMBQρ(L). ThenW ≥ 2−q(s)γm(s) ≥ γ optMBQρ (L), sinceγ ≤ 1/2.
Combining this with (7), we get

exp

(
−
(

1− 1

ln |Y|
)

m

|Y|
)
≥ γ optMBQρ (L),

and solving form and substituting the value ofγ yields

m ≤
( |Y| ln(|Y| ln |Y|)

1− 1
ln |Y|

)
optMBQρ(L)

= (|Y| ln |Y| + |Y| ln ln |Y|)
(

1+ 1

ln |Y| − 1

)
optMBQρ(L)

≤ |Y| ln |Y|optMBQρ(L)+ 130|Y| ln ln |Y|optMBQρ(L),

since|Y| ≥ 3. 2

3.5. Relationship between MB, MBQ and MBρ, MBQρ models

As mentioned before the models are equivalent if|Y| = 2 since the correct valueyt can be
immediately deduced from the responseȳt or ρt . In this case Theorem 3.1 gives the better
bound for the relationship between MBρ and MBQρ model.

For anyY it holds that

optMBρ(L) ≤ optMB(L), (8)

optMBQρ(L) ≤ optMBQ(L), (9)

since any MB or MBQ algorithm can be transformed into an MBρ or MBQρ algorithm,
respectively, by translating a responseρt = FALSE into ȳt = ŷt andρt = TRUE into some



166 P. AUER AND P. LONG

ȳt 6= ŷt . That the converse of Eq. (9) is not true follows from Theorem 3.5 together with
Theorem 3.1 and Eq. (8). That the converse of Eq. (8) is not true follows from a similar
proof as for Theorem 3.5.

The converse of Eq. (8) does hold for sets of sequencesLF ⊆ (X × Y)∗ derived from
classesF of functions fromX to Y: if LF is the set of all sequences〈(xt , yt )〉t such that
there is anf ∈ F with yt = f (xt ) for all t then

optMBρ(LF ) = optMB(LF ).

This follows from the fact that the maximum number of mistakes of an optimal MBρ

algorithm forLF does not increase if it is made to ignore trials where it predicted correctly.8

Then such an algorithm can be used in the MB model by ignoring trials withȳt 6= ŷt . We
also conjecture that forLF the converse of Eq. (9) holds but we were unable to prove that.

4. Applications of the general results

In this section we describe applications of the general results of the previous section. These
applications are obtained by applying Theorem 3.1 or Theorem 3.2 to particular setsL.
Essentially we will show that all models considered in Section 1 are special cases of the
MB and MBQ model, respectively.

4.1. The usefulness of few membership queries

First note, that a membership query is a special case of a yes-no question; i.e., for any
classF of functions fromX to {0, 1} we have optMBQ(LF ) ≤ optmemb(F).9 Furthermore,
when learningLF , the MB model is equivalent to the standard mistake-bound model so
that optMB(LF ) = optstand(F). Thus, modulo a small additive constant, Theorem 2.1 is a
special case of Theorem 3.1. By examining the proof of Theorem 2.1 more closely, we
may draw conclusions regarding the usefulness of polylogarithmically many membership
queries in generatingcomputationallyefficient algorithms.

Theorem 4.1. Choose X, F ⊆ {0, 1}X. Then if there is an algorithm Amemb that takes at
most T time between trials to learn F, and Amembasks at most q membership queries, then
there is an efficient algorithm Astandfor learning F that makes no membership queries and
requires O(2qT) time between trials.

Proof: We constructAstand from Amemb as in the proof of Theorem 2.1, except with
the following change: Any copy ofAmemb that asks more thanq membership queries is
terminated. This does not affect the proof of Theorem 2.1 sinceAmemb asks at mostq
membership queries when learning a function fromF .

Since the time required byAstandto make a prediction is bounded by the number of copies
Amemb

i times the time forAmembto make a prediction, all that needs to be shown is that the
number of copies maintained byAstandnever exceeds 2q.
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To see this, it is useful to view the copiesAmemb
i as the leaves of a binary tree as discussed

after the proof of Theorem 2.1. Since a node has two children only if it corresponds to a
membership query and since there are at mostq such nodes on any path from the root to a
leaf, the number of leaves is bounded by 2q. 2

4.2. Function learning with weak and strong reinforcement

Here we consider two generalizations of the standard mistake-bound model to functions
with range possibly larger than two that were previously studied in (Auer et al., 1995).
Choose some setX, a finite setY of at least two elements, and a classF of functions from
X to Y.

We begin with theweak reinforcement model. Here learning also proceeds in trials,
where in thet th trial, the learner (a) receivesxt ∈ X from the environment, (b) outputs
a predictionŷt ∈ Y, (c) gets a response true or false indicating whetherŷt = f (xt ) or
not where f ∈ F is the function to be learned. For a learning algorithmA for F let
Mweak(A, F) be the maximum number of mistakes ofA when learning a function inF
with weak reinforcement, and let optweak(F) = minA Mweak(A, F). Note that the weak
reinforcement model is simply the MBρ model for learningLF .

Next, we define thestrong reinforcement model. Here again learning proceeds in trials. In
the t th trial, the learner (a) receivesxt ∈ X from the environment, (b) outputs a prediction
ŷt ∈ Y, (c) discoversyt = f (xt ). For a learning algorithmA let Mstrong(A, F) be the
maximum number of mistakes ofAwhen learning a function inF with strong reinforcement,
and let optstrong(F) = minA Mstrong(A, F). The following result bounds the relative strength
of strong reinforcement.

Theorem 4.2. For any set F of functions from X to Y,

optweak(F) ≤ 1.39|Y|(d1+ log2(|Y| − 1)eoptstrong(F)+ 2).

Proof: We show that an MBQ algorithm can simulate an algorithm which receives strong
reinforcement: the MBQ algorithm predicts with the strong reinforcement algorithm and af-
ter a mistake it determinesyt by asking log2d|Y|−1e yes-no questions. Thus optMBQ(LF ) ≤
d1+ log2(|Y|−1)eoptstrong(F). Since optweak(F) = optMBρ(LF ) ≤ optMB(LF ) (by Eq. (8))
the theorem follows from Theorem 3.1. 2

The following trivial lower bound shows that the above cannot be improved by more than
an O(log |Y|) factor.

Theorem 4.3. For each positive integer a, and each integer u≥ 2, there is a set X, a set
Y of u elements, and a set F of functions from X to Y such thatoptstrong(F) = a and

optweak(F) ≥ (|Y| − 1)optstrong(F).

Proof: Choosea andu. Consider the setF of all functions from{1, . . . ,a} to {1, . . . ,u}.
Trivially, optstrong(F) isa, since, with strong reinforcement an algorithm never need make

a mistake on the same element of the domain twice.
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To see that optweak(F) ≥ (|Y| − 1)a, consider an adversary that first setsx1 = · · · =
x|Y|−1 = 1, and tells the algorithm that all its predictions are wrong, then setsx|Y| = · · · =
x2(|Y|−1) = 2, and so on. Since the algorithm makes at most|Y| − 1 predictions on each
element of the domain, there is some function from{1, . . . ,a} to {1, . . . ,u} consistent with
the adversary’s responses. This completes the proof. 2

4.3. Agnostic learning

In the agnostic learning model the learner again has to learn a function fromX to {0, 1}
from some classF on-line, but some of the reinforcements given to the learner might be
noisy. In thet th trial, the learner (a) receivesxt ∈ X from the environment, (b) outputs a
predictionŷt ∈ {0, 1}, (c) discoversyt ∈ {0, 1}. If ŷy 6= yt the learner has made a mistake.
Denote byM(A, F, η) the maximum number of mistakes of a learning algorithmA when
the reinforcementsyt are such that there is anf ∈ F with |{t : f (xt ) 6= yt }| ≤ η, i.e. at
mostη reinforcements are noisy. Finally, let optagn(F, η) = minA M(A, F, η). We have
the following result.

Theorem 4.4. For all sets X, for all sets F of functions from X to{0, 1}, for all non-
negative integersη, and for all0< ε ≤ 1/20,

optagn(F, η) ≤ 4.82(optagn(F, 0)+ η)+ 1

optagn(F, η) ≤ 4

ε

(
ln

1

ε

)
optagn(F, 0)+

(
2+ 5

2
ε

)
η.

Proof: We show that an MBQ algorithm can simulate an algorithm for the standard
mistake-bound model without noise. LetLF,η ⊆ (X × {0, 1})∗ consist of those sequences
〈(xt , yt )〉t such that there exists anf ∈ F with |{t : f (xt ) 6= yt }| ≤ η (there may be many
such f for the same sequence). Note thatLF,η is closed under subsequences. Now letA
be a standard mistake-bound algorithm forF . We construct an MBQ algorithmB for LF,η

as follows. AlgorithmB maintains a list of correct reinforcementszt ∈ {0, 1}. In each
trial it predicts with algorithmA. If ŷt = yt both algorithms ignore this trial. If̂yt 6= yt

algorithmB determines if the reinforcement was noisy by asking “Isσ = 〈(xτ , yτ )〉τ such
that there is anf ∈ F with f (xτ ) = zτ for τ < t , f (xt ) = yt , and|{τ : f (xτ ) 6= yτ }| ≤
η?” (It is worth emphasizing at this point that this question is about the sequenceσ of
examples.) If the answer is YES algorithmB setszt = yt , otherwise it setszt = 1− yt ,
and it passeszt to algorithm A. By induction, there is anf ∈ F such that for all trials
t , f (xt ) = zt , and |{t : f (xt ) 6= yt }| ≤ η. Therefore the number of trialst on which
ŷt 6= zt is at most optstand(F) = optagn(F, 0) and the number of trials on whicĥyt 6= yt

is at most optagn(F, 0) + η. Finally, sinceB asks a question after each mistake, we get
optMBQ(LF,η) ≤ 2(optagn(F, 0)+ η). Since optagn(F, η) = optMB(LF,η), the first bound of
Theorem 3.1 gives the first bound of the theorem.

To get the second bound, note that at mostη of B’s questions are answered NO and at
most optagn(F, 0) are answered YES. Applying Theorem 3.2 withα = ε2, β = 1− ε2,
γ = 1− ε, gives the result after some calculations. 2
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The proofs of Theorem 3.2 and Theorem 4.4 can be modified to obtain the same bounds
for agnostically learning sets of functions from an arbitrary setX to an arbitrary setY with
strong reinforcement.

For comparison, we give the following lower bound of Littlestone and Warmuth.

Theorem 4.5 (Littlestone & Warmuth, 1994). For any X, and any set F of at least two
functions from X to{0, 1},

optagn(F, η) ≥ optagn(F, 0)+ 2η.

4.4. Closure results

Now we return to the standard mistake-bound model. Choose an integerk ≥ 2 and a setX.
If f1, . . . , fk are functions fromX to {0, 1}, andg is a function from{0, 1}k to {0, 1}, then
define the functiong( f1, . . . , fk) from X to {0, 1} by

(g( f1, . . . , fk))(x) = g( f1(x), . . . , fk(x)).

For any fixedg: {0, 1}k → {0, 1}, and any setsF1, . . . , Fk of functions fromx to {0, 1},
define

COMPOSE(F1, . . . , Fk, g) = {g( f1, . . . , fk) : f1 ∈ F1, . . . , fk ∈ Fk}

and for any setG of functions from{0, 1}k to {0, 1}, let

COMPOSE(F1, . . . , Fk,G) = ∪g∈GCOMPOSE(F1, . . . , Fk, g).

Theorem 4.6. For any sets F1, . . . , Fk of functions from X to{0, 1}, for any function g
from {0, 1}k to {0, 1}, and for any set G of such functions

optstand(COMPOSE(F1, . . . , Fk, g)) ≤ 2.41d1+ log2 ke
k∑

i=1

optstand(Fi )+ 1,

optstand(COMPOSE(F1, . . . , Fk,G))

≤ 2.41d1+ log2(k+ 1)e
(

optstand(G)+
k∑

i=1

optstand(Fi )

)
+ 1.

Proof: We begin with the first bound. Suppose, for a knowng, functionsf1 ∈ F1, . . . , fk ∈
Fk are unknown to the learner, who is trying to learng( f1, . . . , fk). A harder problem is
to try to predict, for each trialt , the vector( f1(xt ), . . . , fk(xt )) in the weak reinforcement
model above. This problem becomes easy, however, if after each mistake, the learner can
determine a component of its prediction that was incorrect: The learner can then simply
run separate algorithms for learning each off1, . . . , fk. Any time the master algorithm
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makes a mistake, it can make one of the subroutine algorithms make a mistake (all other
subalgorithms ignore that trial), and therefore the number of mistakes made by the master
algorithm is at most

∑k
i=1 optstand(Fi ) if optimal algorithms are used for the subalgorithms.

Since an MBQ learner can determine a component of its prediction that was incorrect
throughdlog2 ke “yes-no” questions, an MBQ learner can obtain a performance guarantee
of (1+ dlog2 ke)∑k

i=1 optstand(Fi ). Applying the first bound of Theorem 3.1 then yields
the first bound of this theorem.

For the second bound, we do the analogous thing, except using the value of

( f1(xt ), . . . , fk(xt ), g( f1(xt ), . . . , fk(xt ))).

Whenever the master algorithm makes a mistake it determines the least component of the
prediction of the above which was incorrect throughdlog2(k + 1)e questions. If it was of
an fi (xt ), it simulates for the corresponding subalgorithm the trial withxt , the subalgo-
rithm’s prediction, andfi (xt ). If the only incorrect component of the prediction was of
g( f1(xt ), . . . , fk(xt )) then the algorithm simulates for the subalgorithm learningg the trial
consisting of( f1(xt ), . . . , fk(xt )), the subalgorithm’s prediction, andg( f1(xt ), . . . , fk(xt )).
Since such trials are only simulated when all predictions off1(xt ), . . . , fk(xt ) are correct,
the trials given to the algorithm for learningg are consistent withg. Continuing as in the
previous paragraph yields the second bound. 2

The following lower bound shows that Theorem 4.6 is within anO(log k) factor of op-
timal. The proof is given in Appendix A.3. From the proof one can also easily see that
corollaries obtained by applying Theorem 4.6 with many natural concreteg are also within
this O(log k) factor of optimal. (Of course, there are exceptions, e.g.g ≡ 0.)

Theorem 4.7. Choose an integer k≥ 2 and positive integers a1, . . . ,ak. Then there is a
set X and sets F1, . . . , Fk of functions from X to{0, 1} such that for all i, optstand(Fi ) = ai ,

and there is a g: {0, 1}k → {0, 1} such that

optstand(COMPOSE(F1, . . . , Fk, g)) ≥
k∑

i=1

optstand(Fi ).

Choose a positive integer ak+1 ≤ 2k. Then there is a set X and sets F1, . . . , Fk of functions
from X to{0, 1} such that for all i, optstand(Fi ) = ai , and there is a set G of functions from
{0, 1}k to {0, 1} such thatoptstand(G) = ak+1 and

optstand(COMPOSE(F1, . . . , Fk,G)) ≥ 1

2

(
optstand(G)+

k∑
i=1

optstand(Fi )

)
.

The restrictionak+1 ≤ 2k is needed since for any setG of functions from{0, 1}k to {0, 1},
optstand(G) ≤ 2k.
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4.5. Mistake bounds with delayed, ambiguous reinforcement

Finally, we formally define what we call thedelayed, ambiguous reinforcement model.
In this model the learner again has to learn a functionf from a classF of functions

from X to {0, 1}, but it receives no immediate reinforcement. Learning proceeds inrounds,
where in each roundt the learner is givenxt,1 ∈ X, outputs a prediction̂yt,1, . . . , is given
xt,r ∈ X, outputs a prediction̂yt,r , then receives reinforcement FALSE or TRUE indicating
whether any of the predictionŝyt,1, . . . , ŷt,r was incorrect, i.e. the reinforcement is FALSE
iff ŷt,i 6= f (xt,i ) for any i ∈ {1, . . . , r }. Denote by Mamb,r(A, F) the maximum number
of false rounds of an algorithmA when learning a functionf ∈ F and let optamb,r(F) =
minA Mamb,r(A, F). Note that optamb,1(F) = optstand(F).

Note that before the algorithm outputsŷt,i , it does not know the values ofxt, j for j > i . A
natural question is if knowing these values could help the algorithm. If this were not the case,
then learning in ther -trial delayed ambiguous feedback model would reduce to learning
in the weak reinforcement model as follows. For some setX and some setF of functions
from X to {0, 1}, we might setX′ = Xr and defineF ′ = CARTr (F) to be all functions
f ′ from X′ to {0, 1}r such that there existsf ∈ F for which for all (x1, . . . , xr ) ∈ Xr ,
f ′(x1, . . . , xr ) = ( f (x1), . . . , f (xr )). If it didn’t help the algorithm to knowxt,1, . . . , xt,r ,
then we could assume without loss of generality thatxt,1, . . . , xt,r were all given at the
beginning of the round, and it would be the case that optamb,r(F) = optweak(CARTr (F)).
The following theorem shows that this is not the case. The proof is given in Appendix A.5.

Theorem 4.8. There exists a set X and a set F of functions from X to{0, 1} such that

optweak(CART2(F)) < optamb,2(F).

The following result bounds the relative difficulty of learning with ambiguous reinforce-
ment.

Theorem 4.9. For any set F of functions from X to{0, 1},

optamb,r(F) ≤ 2(ln 2r ) · 2r · optamb,1(F).

Proof: If, after each round in which it makes a mistake, a learning algorithm is told of
a trial during that round in which its prediction was incorrect, then by ignoring the other
trials of those rounds, an algorithm can make at most optamb,1(F) mistakes. Similar to the
proof of Theorem 3.2 knowledge of the incorrect trials can be simulated by splitting intor
copies, each given one of the trials as a mistake. Since the master algorithm can choose its
predictions such that at least a fraction of 1/2r of the total weight predicted the same on all
r trials of a round the bound follows analogously as in the proof of Theorem 3.2. 2

Finally, we describe a polynomially related lower bound. The proof is given in Appendix A.4.
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Theorem 4.10. For any integers a, r ≥ 1, there is a class F of functions such that
optamb,1(F) = a and

optamb,r(F) ≥ min

{
1

2r
(2r − 1)optamb,1(F),

(
optamb,1(F)∑

i=0

(
r

i

))
− 1

}
.

5. Conclusions and future directions

In this paper, we have presented a new method for simulating on-line learning algorithms
which have access to queries by algorithms that have no such access, and presented ap-
plications of this simulation concerning structural questions about several natural on-line
learning models.

An interesting open question is to try to find a more efficient simulation, in particular
with respect to computational requirements. Significant progress in this direction would
result in a strengthening of Theorem 4.1. A more computationally efficient simulation which
achieved a worse mistake-bound would be potentially interesting.

An anonymous referee asked whether arbitrary boolean queries are significantly more
powerful than membership queries for learning{0, 1}-valued functions.

Finally, many of the bounds of Section 4 have small gaps that it would be nice to remove.
Furthermore, it would be interesting to try to find computationally efficient algorithms for
learning in the models described in Section 4.

Appendix A: Lower bounds

A.1. Proof of Theorem 3.3

First, we restate Theorem 3.3 for easy reference:

Theorem 3.3. Choose positive integers a and u such that u≥ 2. Then there are sets X,
Y such that|Y| = u, and there is a setL ⊆ (X × Y)∗ such thatoptMBQ(L) = a, and

optMB(L) ≥
2optMBQ(L) − 1 if |Y| ≥ 2optMBQ(L)

|Y|
3

(
1+ 1

2 ln 2
(optMBQ(L)− log2 |Y|)

)
otherwise.

This theorem is proved through a pair of lemmas. For any positive integersu, v, let
SVARu,v be the set of all functionsf : {1, . . . ,u}v → {1, . . . ,u} such that there existsi for
which for all Ex ∈ {1, . . . ,u}v, f (Ex) = xi .

Lemma A.1. For any nonnegative integer a and any positive integer u,

optMBQ
(
LSVARu,2a

) ≤ a.
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Proof: There are at most 2a elements of SVARu,2a . Therefore, by asking for the bits of
the index of the function mapping thext ’s to theyt ’s before the first trial (a questions), this
MBQ algorithm never makes a mistake. 2

Lemma A.2. For any positive integerv and any positive integer u≥ 2,

optMB
(
LSVARu,v

) ≥

v − 1 if v ≤ u

u

3

(
1+ 1

2
ln
v

u

)
otherwise.

Proof: If u = 2, then the theorem follows from the fact (Littlestone, 1989) that
optMB(LSVAR2,v ) = blog2 vc. Assume from here on thatu > 2.

As a first case, assumev ≤ u. Choose an MB algorithmA. Let ŷ1, . . . , ŷv−1 be the
predictions made byA when givenx1 = · · · = xv−1 = (1, 2, . . . , v) on-line with response
ȳt = ŷt at the end of each trial. Choosey ∈ ({1, . . . ,u} − {ŷ1, . . . , ŷv−1}). Thus if
σ = ((x1, y), . . . , (xv−1, y)), A makesv − 1 mistakes onσ , andσ ∈ LSVARu,v .

Now, assumev >u. Construct a sequenceσ ∈ (X×Y)∗ using an adversary as follows.
The adversary operates in two stages. The adversary maintains a list of functions in SVARu,v

which map previousxt ’s to yt ’s (or equivalently a list of the coordinates defining those
functions). Letl t be the number of elements in this list before thet th trial (l1 = v). The
first stage ends whenl t < u. During the first stage, on each trial, the adversary divides
up thel t remaining coordinates intou nearly equal sized groups, each consisting of either
dl t/ue or bl t/uc members. Thenxt is chosen so that the coordinates in the first group take
the value 1, the coordinates in the second group take the value 2, and so on. Whatever the
algorithm’s prediction it is given same value as the response (resulting in a mistake), and
the “live” coordinates which evaluated to the algorithm’s prediction are no longer so.

During the first stage, we havel1 = v, and

l t+1 ≥ l t − dl t/ue

≥ l t − 2l t
u

= l t (1− 2/u). (10)

Thus, by induction, for any trialt in the first stagel t+1 ≥ v(1− 2/u)t . Thus, the number
of trials (and therefore mistakes) in the first stage is at least

max{q: v(1− 2/u)q−1 ≥ u}
≥ max

{
q: v exp

(−2(q − 1)/u

1− 2/u

)
≥ u

}
sinceu > 2

≥ (u/2− 1) ln
v

u
. (11)

The number of “live” coordinatesl t ′ before the first trialt ′ of the second stage is at most
u, so the adversary may force the algorithm to makel t ′ − 1 mistakes similarly as in the first
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paragraph of the proof. We claim thatl t ′ = u−1 which is seen from (10): Ifl t ′−1 = u then
l t ′ = u− 1. If l t ′−1 ≥ u+ 1 thenl t ′ ≥ (u+ 1)(1− 2/u) ≥ u− 1− 2/3 sinceu ≥ 3.

Thus, the number of “live” coordinates prior to the onset of stage two is at leastu − 1,
and therefore there are at leastu−2 mistakes during the second stage. Combining with the
lower bound of (11) on the number of mistakes during the first stage, we arrive at a total of

(u/2− 1) ln
v

u
+ (u− 2) = (u− 2)

(
1+ 1

2
ln
v

u

)
≥ u

3

(
1+ 1

2
ln
v

u

)
completing the proof. 2

Theorem 3.3 is an immediate consequence of Lemma A.1 and Lemma A.2.

A.2. Proof of Theorem 3.5

We restate Theorem 3.5 for reference:

Theorem 3.5. Choose positive integers a and u such that u≥ 2981. Then there are
sets X, Y such that|Y| = u, and there is a setL ⊆ (X × Y)∗ such thatoptMBQρ(L) =
2a+ d2 log2 |Y|e, and

optMBρ(L) ≥ ab|Y| ln |Y|/4c.

Proof: For any positive integersu, v, let SVARu,v be the set of all functionsfi : {1, . . . ,u}v
→ {1, . . . ,u} with fi (Ex) = xi , i ∈ {1, . . . , v}. Informally, this is the set of all functions
which “pick out some component” of their input.

Now let Y = {1, . . . ,u}, v = u2, and X = Yv. The setL consists of sequences of
lengthar , r = b|Y| ln |Y|/4c, where each sequenceσ = 〈(x1,1, y1,1), . . . , (x1,r , y1,r ), . . . ,

(xa,1, ya,1), . . . , (xa,r , ya,r )〉 ∈ L consists ofa subsequences of lengthr . Each sub-
sequence is consistent with one of the functions in SVARu,v except for two elements
of the subsequence, i.e. there arei1, . . . , ia ∈ {1, . . . , v}, s1, . . . , sa ∈ {1, . . . ,u}, and
t1, . . . , ta ∈ {u+ 1, . . . ,2u} with yφ,ψ = fiφ (xφ,ψ) for ψ 6∈ {sφ, tφ} andyφ,ψ 6= fiφ (xφ,ψ)
for ψ ∈ {sφ, tφ}, φ ∈ {1, . . . ,a}. Furthermore,sφ and tφ encode the function consistent
with the next subsequence, i.e.iφ+1= u · (sφ − 1)+ (tφ − r ) for φ ∈ {1, . . . ,a} (assume
i a+1 = 1). Observe that such a coding is possible sincer ≥ 2u for u ≥ 2981.

An MBQ algorithm can askdlog2 ve yes-no questions to determinei1. Then it will predict
with fi1 for the first subsequence. The elements for which it makes a mistake determines2

andt2. Continuing this way the algorithm will make two mistakes for each subsequence
which gives optMBQ(L) ≤ d2 log2 |Y|e + 2a.

To get a lower bound for any MB algorithm we define an adversary strategy. For each
subsequence the adversary maintains a list of functions in SVARu,v (or equivalently coordi-
nates) which are consistent with the previous trials of this subsequence. Letlτ be the number



WITH AND WITHOUT QUERIES 175

of elements in this list before processing theτ th element of the subsequence (l1 = v). On
each trial the adversary divides thelτ remaining coordinates intou nearly equally sized
groups, each consisting of eitherdlτ /ue or blτ /uc members. Thenxτ is chosen so that the
coordinates in the first group take the value 1, the coordinates in the second group take the
value 2, and so on. Whatever the algorithm’s prediction is it is given the reinforcement
“false”, and the “live” coordinates which evaluated to the algorithm’s prediction are no
longer so, yielding by induction that

lτ+1 ≥ lτ − dlτ /ue ≥ lτ − 2lτ
u
= lτ (1− 2/u)

and

lr+1 ≥ l1(1− 2/u)r ≥ v exp(− ln |Y|) ≥ u.

Thus for allφ = 1, . . . ,a there is a functionfiφ ∈ SVARu,v which is consistent with ther
trials of the subsequence.

Now we show that after allar trials there is a sequence inL consistent with all the
reinforcements given by the adversary. Forφ = 1, . . . ,a let sφ andtφ be such thatiφ+1 =
u · (sφ − 1)+ (tφ − u). We setyφ,ψ = fiφ (xφ,ψ) for ψ 6∈ {sφ, tφ}, yφ,sφ to a value different
from fiφ (xφ,sφ ) andŷφ,sφ , andyφ,tφ to a value different fromfiφ (xφ,tφ ) andŷφ,tφ . Sinceu ≥ 3
this is always possible. Thus optMB(L) ≥ ar . 2

Remark A.3. By a more careful analysis the constants in the theorem can be improved.
Furthermore, along the same line it can be shown that for positive integersa andu there
areX, Y, andL, such that|Y| = u, optMBQ(L) ≤ a, and

optMB(L) ≥ a|Y|(ln |Y| + ln ln |Y| − C)

for a ≥ log3 |Y| and some constantC. Thus the upper bound in Theorem 3.4 has the
correct constant at the first order term and the correct magnitude of the second order term.

A.3. Proof of Theorem 4.7

Lemma A.4. Choose finite sets X1 and X2 such that X1 ⊆ X2, an integer a such that
a ≤ |X2|, and a function f1 from X1 to {0, 1}. Then there is a function f2 from X2 to {0, 1}
such that for all x∈ X1, f1(x) = f2(x), and there is a set F of functions from X2 to {0, 1}
such that f2 ∈ F andoptstand(F) = a.

Proof: Extend f1 to f2 arbitrarily. Trivially, optstand({ f2}) = 0. Furthermore, ifP is the
set of all functions fromX2 to {0, 1}, optstand(P) = |X2| ≥ a. Also, for anyG ⊆ P and
anyg ∈ P,

optstand(G) ≤ optstand(G ∪ {g}) ≤ optstand(G)+ 1.
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Therefore, if we start withF = { f2} and add the elements ofP to F one by one, optstand(F)
goes from being 0 to|X2|, increasing by at most one each time we add an element toF .
Sincea ≤ |X2|, there must be a time when optstand(F) = a. 2

Here is a restatement of Theorem 4.7:

Theorem 4.7. Choose an integer k≥ 2 and positive integers a1, . . . ,ak. Then there is a
set X and sets F1, . . . , Fk of functions from X to{0, 1} such that for all i, optstand(Fi ) = ai ,

and there is a g: {0, 1}k → {0, 1} such that

optstand(COMPOSE(F1, . . . , Fk, g)) ≥
k∑

i=1

optstand(Fi ).

Choose a positive integer ak+1 ≤ 2k. Then there is a set X and sets F1, . . . , Fk of functions
from X to{0, 1} such that for all i, optstand(Fi ) = ai , and there is a set G of functions from
{0, 1}k to {0, 1} such thatoptstand(G) = ak+1 and

optstand(COMPOSE(F1, . . . , Fk,G)) ≥ 1

2

(
optstand(G)+

k∑
i=1

optstand(Fi )

)
.

Proof: We begin with the first bound. LetX1 = {1, . . . ,a1}, X2 = {a1+1, . . . ,a2}, . . . ,
Xk = {1+

∑k−1
i=1 ai , . . . ,

∑k
i=1 ai }. Let X = ∪k

i=1Xi = {1, . . . ,
∑k

i=1 ai }. For eachi , let
Fi be the set of all functions fromX to {0, 1} that are zero everywhere inX− Xi . Then for
eachi , optstand(Fi ) = |Xi | = ai . Let g: {0, 1}k → {0, 1} evaluate to the disjunction of its
arguments. That isg(b1, . . . ,bk) = 1 if and only if 1∈ {b1, . . . ,bk}.

We claim that COMPOSE(F1, . . . , Fk, g) is the set of all functions fromX to {0, 1}.
Choose a functionf from X to {0, 1}. For eachi , let fi ∈ Fi be defined by

fi (x) =
{

f (x) if x ∈ Xi

0 otherwise.

Then, trivially, f = g( f1, . . . , fk). Since f was chosen arbitrarily, COMPOSE(F1, . . . ,

Fk, g) is the set of all functions fromX to {0, 1}, and therefore,

optstand(COMPOSE(F1, . . . , Fk, g)) = |X| =
k∑

i=1

ai ,

completing the proof of the first bound.
Now for the second bound. We will distinguish two cases,ak+1 ≥

∑k
i=1 ai andak+1 ≤∑k

i=1 ai , proving that optstand(COMPOSE(F1, . . . , Fk,G)) ≥ ak+1 and optstand(COMPOSE
(F1, . . . , Fk,G)) ≥

∑k
i=1 ai , respectively.

Assume as the first case thatak+1 ≥
∑k

i=1 ai . For eachi , let fi : {0, 1}k → {0, 1} simply
output thei th component of its argument, i.e.fi (Ex) = xi . Let X′ be a set containing all
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the elements of{0, 1}k which has a total of at least maxi ai elements. Apply Lemma A.4 to
obtain functionsf ′1, . . . , f ′k from X′ to {0, 1} and setsF1, . . . , Fk of functions fromX′ to
{0, 1} such that for alli ≤ k,

• for all Ex ∈ {0, 1}k, f ′i (Ex) = xi

• f ′i ∈ Fi

• optstand(Fi ) = ai .

Since for anyEx ∈ {0, 1}k, ( f ′1(Ex), . . . , f ′k(Ex)) = Ex, even if a learning algorithm knows
f ′1, . . . , f ′k, learningg( f ′1, . . . , f ′k) is at least as hard as learningg. Therefore

optstand(COMPOSE(F1, . . . , Fk,G)) ≥ optstand(G) = ak+1 ≥ 1

2

k+1∑
i=1

ai ,

completing the proof of the second bound in the caseak+1 ≥
∑k

i=1 ai .
To establish the second bound in the caseak+1 ≤

∑k
i=1 ai , again apply Lemma A.4

to obtain a setG of functions from{0, 1}k to {0, 1} such thatG contains the functiongd

computing the disjunction of its arguments and that optstand(G) = ak+1. Using the argument
for the first bound, there existF1, . . . , Fk such that

optstand(COMPOSE(F1, . . . , Fk, gd)) ≥
k∑

i=1

ai ,

and therefore

optstand(COMPOSE(F1, . . . , Fk,G)) ≥
k∑

i=1

ai ≥ 1

2

k+1∑
i=1

ai ,

completing the proof. 2

A.4. Proof of Theorem 4.10

Recall the statement of Theorem 4.10:

Theorem 4.10. For any integers a, r ≥ 1, there is a class F of functions such that
optamb,1(F) = a and

optamb,r(F) ≥ min

{
1

2r
(2r − 1)optamb,1(F),

(
optamb,1(F)∑

i=0

(
r

i

))
− 1

}
.

Proof: The first term in the min holds in the casea ≥ r . In this case, letF be the
set of all functions from{1, . . . ,a} to {0, 1}. Trivially, optamb,1(F) = a. To show that
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optamb,r(F) ≥ 1
2r (2

r − 1)a, we construct an adversary to generate a hard sequence for any
learner.

Choose a learning algorithmA. The adversary givesxt,1 = 1, . . . , xt,r = r for 2r − 1
rounds, then givesxt,1 = r + 1, . . . , xt,r = 2r for 2r − 1 rounds, and does thisb a

r c times.
It always answers FALSE. The total number of mistakes is⌊a

r

⌋
(2r − 1) ≥ 2r − 1

2r
a.

For each{(i − 1)r + 1, . . . , ir } there is some sequence ofr elements of{0, 1} that was
not guessed byA. If we define f to take on those values, then the resulting sequence is
consistent withf .

Whena ≤ r , let F be the set of all functions from{1, . . . , r } to {0, 1}which map at most
a elements to 1. Then optamb,1(F) = a, see e.g. (Maass & Tur´an, 1992). The adversary sets
xt,1 = 1, . . . , xt,r = r , for t = 1, . . . , (

∑a
i=0(

r
i ))− 1. The reinforcement FALSE is given

in all rounds. Again, for any algorithm, there must be some sequence ofr predictions with
at mosta 1’s that the algorithm didn’t make on any of those rounds, and therefore there is
a function inF consistent with all those rounds. 2

A.5. Proof of Theorem 4.8

We restate Theorem 4.8:

Theorem 4.8. There exists a set X and a set F of functions from X to{0, 1} such that

optweak(CART2(F)) < optamb,2(F).

Proof: Let X = {1, 2, 3}, and consider the setF = { f1, . . . , f4} of functions fromX to
{0, 1} defined in the following table.

x f1(x) f2(x) f3(x) f4(x)

1 0 0 1 1

2 0 0 0 1

3 0 1 1 1

First, we claim that optamb,2(F) ≥ 3. To see this, imagine an adversary that setsx1,1 = 1.
If the algorithm’s prediction̂y1,1 = 1, it setsx1,2 = 2, otherwise it setsx1,2 = 3. In either
case the reinforcement for the first round is FALSE.

If ŷ1,1 = ŷ1,2 = 1, then any off1, f2, f3 are consistent with the information of the first
round. In this case, the adversary can setx2,1 = 1, x2,2 = 3. No matter how the algorithm
predicts, the adversary can give reinforcement FALSE, and has two functions remaining,
trivially enabling it to force a mistake in the third round.

If ŷ1,1 = 1, ŷ1,2 = 0, then any off1, f2, f4 are consistent with the information of the
first round. In this case, the adversary can also setx2,1 = 1, x2,2 = 3. No matter how the
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algorithm predicts, the adversary can give reinforcement FALSE, and has two functions
remaining, again trivially enabling it to force a mistake in the third round.

If ŷ1,1 = 0, ŷ1,2 = 1 (recall that in this casex1,3 = 3), then any off1, f3, f4 are consistent
with the information of the first round. In this case, the adversary can setx2,1 = 1, x2,2 = 2.
No matter how the algorithm predicts, the adversary can give reinforcement FALSE, and
has two functions remaining, also trivially enabling it to force a mistake in the third round.

Finally, if ŷ1,1 = 0, ŷ1,2 = 0 (again,x1,3 = 3), then any off2, f3, f4 are consistent with
the information of the first round. In this case, the adversary also can setx2,1 = 1, x2,2 = 2.
No matter how the algorithm predicts, the adversary can give reinforcement FALSE, and has
two functions remaining, enabling it to force a mistake in the third round. This completes
the proof that optamb,2(F) ≥ 3.

Next, we claim that optweak(CART2(F)) = 2. Consider the following algorithm in the
weak reinforcement model. Ifx1 ∈ {(1, 2), (2, 1)}, the algorithm predicts(0, 0). If x1 =
(2, 3), it predicts(0, 1). If x1 = (3, 2), it predicts(1, 0). If x1 ∈ {(1, 3), (3, 1)}, the
algorithm predicts(1, 1).

In any of those cases, by inspection, after the first trial, there are at most two functions in
F ′ consistent with the information received. Therefore, if the algorithm predicts with some
consistent function for the second trial, it can ensure that it will make at most two mistakes.

2
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Notes

1. This quantity is called opt in (Littlestone, 1988, 1989) and LC-ARB in (Maass & Tur´an, 1989, 1990, 1992).
2. Recall that pseudo-polynomial is commonly defined to be exp(poly(logn)).
3. optstrong(F) was denoted by LC-ARB(F) in (Auer et al., 1995).
4. The model studied in (Kearns, Schapire, & Sellie, 1994) is considerably different than the model considered

here. The common aspect is measuring the performance of a learning algorithm by comparison with the best
function in F .

5. These results can also be viewed as bounding optagn(SVARn, η) and related quantities (for the randomized
algorithms), where SVARn is the set of all functionsf from {0, 1}n to {0, 1} that output a single variable; i.e.,
such that there is ani such that for allEx ∈ {0, 1}n, f (Ex) = xi .

6. Some theorems have been proved about a popular approach to combat this problem, calledtemporal difference
(Samuel, 1959; Sutton, 1984; Sutton, 1988; Watkins, 1989; Dayan, 1992), but they rely on probabilistic
assumptions about the environment of the learner, unlike the worst-case analysis done here for our new
approach. Recently, Schapire and Warmuth (1996) proved worst-case results about temporal difference learning
in conjunction with the Widrow-Hoff rule in a model different from that of this section.

7. Getting the second is easy if|Y| > 2optMBQ(L); otherwise, since for all positivex, ln(1+ x) ≥ x/(1+ x), we
have log2

2|Y|
2|Y|−1 ≥ 1

(2 ln 2)|Y| , which implies the second.
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8. To see this, consider that as long as possible the environment might presentxt for which the algorithm predicts
incorrectly. Presenting in betweenxt for which the algorithm predicts correctly only helps the algorithm
by providing additional information at no cost. Thus by ignoring trials for which it predicted correctly the
algorithm ignores this additional information but does not increase the maximum number of mistakes for the
worst possible sequence fromLF . Note that this argument only holds sinceLF is closed under permutations.
For arbitraryL the position of a pair(xt , yt ) in the sequence might encode information that is lost if the
corresponding trial is ignored, for example see the proof of Theorem 3.5.

9. To simulate a membership query “what isf (x)?” while learningLF in the MBQ model, one may ask “is the
target sequence such that there is anf ∈ F with f (x) = 1 and which is consistent with the target sequence
and all previous queries?”
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