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Abstract. We solve an open problem of Maass andafyishowing that the optimal mistake-bound when learning

a given concept class without membership queries is within a constant factor of the optimal number of mistakes
plus membership queries required by an algorithm that can ask membership queries. Previously known results
imply that the constant factor in our bound is best possible.

We then show that, in a natural generalization of the mistake-bound model, the usefulness to the learner of
arbitrary “yes-no” questions between trials is very limited. We show that several natural structural questions about
relatives of the mistake-bound model can be answered through the application of this general result. Most of these
results can be interpreted as saying that learning in apparently less powerful (and more realistic) models is not
much more difficult than learning in more powerful models.
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1. Introduction

Inthis paper, we present a new technigue for proving structural results about on-line learning
models, and describe a number of applications of this technique. For the most part, we will
focus on the amount of information required for learning, and will ignore computation time.
Many of the models considered in this paper are variants of the mistake-bound model, so
we begin by describing it.

1.1. The standard mistake-bound model

Inthe standard mistake bound model (Littlestone, 1988; Angluin, 1988), learning is assumed
to proceed irtrials, where in theth trial the learner

*Some of the results in this paper appeared in preliminary form in (Auer & Long, 1994).
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e is presented with an elemextof some domairk,
e outputs a predictio; € {0, 1}
e discoversy; € {0, 1} (calledreinforcement

If i # W, the learner is said to have madenéstakeon trial t, and the goal is to make

few mistakes. It is further assumed that the learner knows of & séffunctions fromX

to {0, 1} containing a functionf that satisfiesf (x;) = y; for all trialst. The performance

of a learning algorithm is then measured by its worst-case number of mistakes, over all
sequencesxy, Y1), (Xz, ¥2), ... of elements oiX x {0, 1} for which there exists arfi € F
satisfying the above. Denote the optimal such performance ky,efft).

1.2. Membership queries

In a heavily studied relative of the mistake-bound model (Angluin, 1988), it is further
assumed that, between trials, the learner may qli¢ry for elementsx of its choosing.
The performance of a learner for a particular sequenge y;)): is then measured by the
sum of the number of its mistakes and its total number of queries between trials. Let us
denote the optimal worst-case performance for a particular Elaffunctions fromX to
{0, 1} (defined analogously to the above) by apt(F).

We show that, for alF,

Optnem(F) > (l0g, 4/3)0ptyand F)-

The VC-dimension of a clads is a common measure of the “richness’fof As a direct
consequence of the above bound, we obtain the following:

Optnemn(F) > (log, 4/3)VCdim(F)

(note that log4/3 is approximately 12.41). An example due to Maass and @orshows
that in neither of the above bounds can the constant be improved.
The previously best bounds, due to Maass anai{t992), were

OPtand F)
1+ optand F))

OPtnemd(F) > log,(

OPtnemu(F) > %VCdim(F)_

We further show that iF = UsFs and X = U, X,,, then if there is an algorithrA that,
given that the hidden function is taken frdfg and thex;’s come fromX,,

e makes its predictions in time pseudo-polynorhialn ands
e makes at most polynomial imands mistakes
e asks polynomial in log and logs membership queries,

then there is an algorithrA, that
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e makes its predictions in time pseudo-polynomiahiands
e makes at most polynomial imands mistakes
e asksnomembership queries.

(Intuitively s measures the complexity of the function cl&sandn measures the length
of the inputsx; € Xp.)

1.3. The strength of weak reinforcement

There are two very natural ways to generalize the standard mistake-bound model to the case
in which the values to be predicted come from some finite set, possibly with more than two
members (Auer et al., 1995). At the end of a given trjaither the algorithm could be
told whether or not its predictiofy was correct (“weak reinforcement”) or it could be told
the correct valugy, (“strong reinforcement”). Both types of reinforcement occur in nature.
Notice that in the case in which thg's come from{0, 1}, both kinds of reinforcement are
equivalent.

How much weaker is weak reinforcement? Suppose for a giveX aatl a finite seY of
at least two elements (from which tlygs will be chosen), for a sdt of functions fromX
toY, we definé Optsrong F) and opfear(F) in an analogous manner as gpi(F), except
replacing the standard reinforcement with strong and weak reinforcement respectively. We
show that

Optueak(F) < 1.39Y[([1+10g,(|Y| — D10ptstrond F) + 2).

A trivial lower bound shows that this bound is within &xlog|Y|) factor of the best
possible.

1.4. Agnostic learning

For many applications, it is too optimistic to assume that there i§ fnom a reasonably
small known clas$ that perfectly maps the's to the corresponding’s in {0, 1}. A well
established approach in such cases (Vovk, 1990; Littlestone & Warmuth, 1994; Littlestone,
1989; Feder, Merhav, & Gutman, 1992; Merhav & Feder, 1993; Cesa-Bianchi et al., 1997;
Cesa-Bianchi et al., 1996) is to assume nothing abouxhey) pairs, and instead, for a
given F, to give bounds on the number of mistakes made by a given learning algorithm in
terms of the minimum ovef € F of the number, of trialst for which f (x;) # y;. Learning
models like this are often referred to as agnostic learning mbdesarns, Schapire, &
Sellie, 1994).

It is convenient to assume that the learner knows a boung lbefore learning takes
place, although this assumption can be removed with a slight degradation in the bounds via
standard doubling techniques. In this case, informally, lefq#t, n) be the best bound
on the number of mistakes that can be obtained given the assumption that thefedsfan
such that the number of triatfor which f (x;) # y; is at most;. As a special case of our
main theorem (Theorem 3.1), we obtain the following bound:

Optagn(F, n) < 4~82(0ptagn(|:: 0O+n+1 Q)
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Note that opign(F, 0) = opty..{F). Since, for many applications, one expegt® be
much larger than oggn(F, 0), optimizing the constant on theterm seems worthwhile. By
applying the more refined Theorem 3.2, we can show that fer all1/20,

4 1 5
Optagn(F, n) < <E In g)optagn(F, 0 + (2 + E 6)’7~ (2
Littlestone and Warmuth (1994) proved that sy Fwith |F| > 1,

Optagn(F, 7) > optagn(F, 0 + 2n.

Thus, the bound of (1) is within a small constant factor of optifoakeach(nontrivial) F.
This reduces the problem of determining QgrtF, n) to within a constant factor to that of
determining opfyn(F, 0) to within a constant factor. In other words, in a sense, it reduces
the study of the agnostic learning model to the study of the standard mistake-bound model.
(Notice, however, that this is without regarddomputationaktomplexity.) Furthermore,
using (2), the constant on tlygerm can be brought arbitrarily close to the optimal 2, at the
expense of increasing the constant on the other term.

Similar results about ogj«(F, n) were independently obtained by Cesa-Bianchi et al.
(1996).

Littlestone and Warmuth (1994), and independently Vovk (1992), showed that fét,any

optagn(F, n) < 2.41(log, |F| + n). 3

Other refinements of this result, which retain the same flavor in that they are in terms
of log, |F| andn, but some of which concern probabilistic algorithms, which we don't
study here, are described in (Littlestone & Warmuth, 1994, Littlestone, 1989; Vovk, 1990;
Cesa-Bianchi et al., 1997)Due to the fact that for any finit€, optgn(F, 0) < log, |F|
(Littlestone, 1988), our bound of (1) is always at most a small constant factor greater than
(3). Furthermore, sometimes it is substantially less.

As an example, if SUBSPis the set of (indicator functions for) linear subspaceRgf
there is a trivial algorithm for learning given that a function in SUB&Rpsx;'s (in R") to
corresponding;’s that makes at mostmistakes (Shvaytser, 1988), but SUB$#infinite,
s0 no bound on op§n(SUBSR, 1) can be obtained from (3) and related results. However,
a bound of 482(n + ) (as mentioned above, within a small constant factor of optimal)
follows immediately from (1).

Finally, by adapting the proofs of Theorem 3.1 and Theorem 3.2, we may obtain (1) and
(2) in the case that the predictiogisand the true valueg are chosen from any s¥t F is
a set of functions fronX to Y, and the goal is still to have few mistakes, i.e. trials in which

Yt # Wt

1.5. Closure results

For many classeb of functions from some seX to {0, 1}, one obtains a richer class by
takingk-wise OR'’s of elements df, i.e. by defining

OR(F)={fiv.--v f: f1,..., fre F}
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where f; v ... v f¢ has the obvious interpretation. How much harder ca (@R be
thanF? By applying our Theorem 3.1, we can show that forsll|

0ptand ORK(F)) < 2.41K[1 + log, Klopt(F) + 1.

A trivial lower bound shows that this bound is within @rglog k) factor of the best possible.
While analogous results for the PAC model were obtained some time ago (Kearns et al.,
1987; Blumer et al., 1989), to the best of our knowledge, the question of whether there was
any bound on opt,,{OR«(F)) in terms ofk and opt;,,{F) had remained open. A more
general result of this type is described in Section 4.4.

1.6. Temporal credit assignment

Sometimes on-line learning algorithms cannot expect to get reinforcement before having to
predict again, and the reinforcement they get may be ambiguous, indicating that a mistake
was made some time in the recent gagte adapt the standard mistake-bound model to
include such learning situations by assuming that after every certain number, shy
trials, the learning algorithm is told whether any of the gaptedictions were incorrect.
(Of course, for applications, the number of trials between reinforcements seems bound to
vary; however, we obtain an equivalent modeli§ an upper bound on the number of trials
between reinforcements.)

If, for a given class~ of {0, 1}-valued functions, we define qpfiy, (F) to be the worst-
case number of mistakes made by the optimal algorithm in this model (where a mistake is
said to be made if the algorithm was incorrectimy of its predictions before a particular
reinforcement, see Section 4.5), we may obtain the following bound,

Optambr(F) = Z(In 2r). 2. optamh,l(F)-

Note that opimn1(F) = optfF). We also describe a lower bound that shows that this
bound cannot be significantly improved.

1.7. A unifying framework: the MB and MBQ models

All of the above results are direct consequences of a single theorem about more general
models. These models (which we call the MB model and MBQ model) are relatives of the
mistake-bound model (Angluin, 1988; Littlestone, 1988). As in that model, we assume
learning is an on-line process, proceedingrials. During thetth trial,

1. the learner receives amstance x from some sek,
2. the learner outputs@edictiony; in some seY,
3. the learner receivesrasponsey; € Y indicating thaty; # ;.

This type of response given in the MB model is a subtle point. Instead of receiving direct
feedback to its predictiory; the learner receives only some valiedifferent from the
correcty;. For|Y| = 2 this is equivalent to giving the correct valyeas a response since



152 P. AUER AND P. LONG

it can be inferred immediately. But f¢¥| > 2 the environment is more flexible in giving
feedback to the learner, even more flexible than just telling the learner if its prediction was
correct or not as in the weak reinforcement model. The learner is said to have made a
mistake ify; = ¥, i.e. if the responsg impliesthat the learner’s prediction was incorrect.
The learner is not charged for trials wigh # y; buty; # ;.

The learner’s prior knowledge is modeled by assuming that the learner knows of a set
L C (X x Y)* of sequences of pairg;, y;) containing those pairs encountered on any run
of the algorithm.

In the MB model, the goal of the learner is simply to minimize the number of triels
which it makes a mistake. For a particular ggtwe then define opi (£) to be the best
bound on the number of mistakes that can be obtained by a learning algorithm given the
assumption that the sequen@®;, Y;)): of (X;, yt) pairsisinL.

In the MBQ model, the learner is allowed to ask arbitrary “yes-no” questions about the
entire sequencéX:, y;)): between trials to gain additional information. In this model, the
performance of the learner is measured by the sum of the number of questions it asked and
the number of mistakes, and ggt (£) is defined to be the optimal performance givén
in a similar manner to the above. More formal descriptions of both models are given in
Section 3.1. All the models considered in this paper are summarized in Table 1.

Table 1 A summary of the learning models studied in this paper. In eachtirthe learner is presented with

an elemenk; of some domairX, outputs a predictiory; from some seY, then possibly gets some information
about the correcy;. In some models queries are allowed between trials; for these the algorithms are evaluated
by summing the number of prediction errors and the number of queries. In different models, different types of
assumptions about the relationship betweerxtlgeandy;’s are considered. We denote Bya class of functions

from X to Y, we denote by C (X x Y)* a set of sequences of pairg, y;), and we denote b) C £ a subset

of £. Note that forY| = 2, opiyg (£) = optus, (L) and opisg (L) = 0ptveq, (L).

Notation Relationship Information at Queries
for optimal Y betweernx;’s andy;'s end of trial allowed
Optsiand F) {0, 1} For somef € F, Ve None
forallt, f(x;) =W
optmems(F) {0, 1} For somef ¢ F, Vi Whatis f (x)?
forallt, f(x) =w
optagn(F, n) {0, 1} For somef € F, Vi None
[{t: f(x) # W <n
optamiar (F) {0, 1} For somef € F, In everyrth trial, None
forallt, f(x) =w was there a mistake
in the past trials?
Optstrong(F) Any finite set For somd < F, Wt None
forallt, f(x) =W
Ooptyeak(F) Any finite set Forsomd < F, Isyi = %? None
forallt, f(x) =
optve (£) Any finite set (X, ) € £ Vi # Wt None
opiveo (L) Any finite set (X, Y € £ e # % Is ((Xt, Y))t € Q?
optve, (L) Any finite set (X, YOIt € L Isyr = %? None
optveQ, (£) Any finite set (X, Yy € £ Isyt = %? Is{(Xt, y))t € Q?
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We show for allZ € (X x Y)* that

21y| — 14 OPiwEQ(L) ~ 106, Y|
Opive (£) < log, 5911
20PiveQ (£)+1 otherwise

if Y] < 20PtusQ (L)

which implies the looser but more suggestive bound
optve (£) =< 1.39Y|(optveq (L) + 2).

These are the general results which imply the results mentioned in previous sections. We
also show that this bound is within a constant factor of the best possible for all values of
Y| and opiugq (£).

We also consider the natural variant of the MB and MBQ models where the response
ot € {TRUE, FALSE} does indicate whether the learner’s prediction has been correct or
not. These models are denoted by M8nd MBQo. Note again that fofY| = 2 the MB
and MBp models are equivalent (as are the MBQ and MBRodels) and that they are
a generalization of the standard mistake-bound model from learning functions to learning
sequences. For the relationship of the M&nd MBQo models we show the bound

optve, (L) < (IY[In]Y]opiveg,(£) + 13X(Y|InIn|Y[)optveg, (L)

which is almost best possible.
1.8. Related results and the organization of the paper

Our technique to prove the above results builds on the “weighted majority” technique
of Littlestone and Warmuth (1994). The weighted majority technique uses a fixed set of
specialized subalgorithms, and it uses a weighting scheme to combine the predictions of
these algorithms. In contrast, our techniglypamicallycreates subalgorithms depending

on information gathered during a particular run.

Kulkarni, Mitter, and Tsitsiklis (1993) studied PAC learning usongy “yes-no” ques-
tions. Bshouty et al. (1996) studied the use of membership queries to reduce the number
of mistakes as much as possible (Bshouty et al., 1996).

The paper is organized as follows. In Section 2 we illustrate our main technique by
showing how membership queries can be simulated by an algorithm which cannot ask
membership queries. In Section 3 we present our general results from which most of the
other results can be derived. In Section 4 we give various applications of our main result,
and we conclude in Section 5. Appendix A contains several lower bound proofs.

2. Bounds on the usefulness of membership queries

In this section we illustrate the techniques of this paper with an example. We bound the
number of mistakes in the standard mistake-bound model in terms of the number of queries
and mistakes in the mistake-bound model with membership queries.
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Choose a seX. In this subsection, we study a model due to Angluin (1988). (To make
our notation and terminology more uniform throughout the paper, on the face of it, the
model we describe looks somewhat different than Angluin’s original model, but the two
can be shown to be equivalent (Littlestone, 1988).) In this model, we assume that a function
f from X to {0, 1} is hidden from the learner, and that learning proceeds in trials, where in
thetth trial, the learner (a) receives € X from the environment, (b) outputs a prediction
¥ € {0, 1}, (c) discoversf (x;). We further assume that, before each trial, the learner may
determinef (x) for differentx e X of its choosinghembership queri¢sThe performance
of an algorithm on a particular run is the total of the number of mistakes and the number of
membership queries, and the overall quality of an algorithm is measured by its worst-case
performance. Then optmy(F) is the optimal performance that can be obtained in this
model, and opt,{F) is the optimal performance that can be obtained with an algorithm
that never asks membership queries.

Theorem 2.1. Choose Xand a set F of functions from X {0, 1}. Then

Optmemt(F)
OPLiand F) = Tog,(4/3)

The VC-dimension (Vapnik & Chervonenkis, 1971) of a cl&ss defined by
VCdim(F) = max{d: 3x;, ..., Xg € X, {(f (x0), ..., f(x)): f € F} = {0, 1}%}.

The fact that opt,(F) > VCdim(F) (Littlestone, 1988) trivially yields the following
corollary.

Theorem 2.2. Choose Xand a set F of functions from X {0, 1}. Then
Optnem(F) > l0g,(4/3)VCdim(F).

As discussed in the introduction, the following theorem due to Maass alath $hows that
the constant cannot be improved in either Theorem 2.1 or Theorem 2.2.

Theorem 2.3 (Maass & Turdn, 1992). There is a family X,,), of sets and a familyF,)n,
such that for each nF, is a set of functions from xto {0, 1} and

OPtnemy(Fn) < (10g,(4/3) 4+ 0o(1))VCdim(F,) < (109,(4/3) + 0(1))0optynd Fn)
as n— oo.

Proof of Theorem 2.1: Let A™™Phe an optimal learning algorithm which for all targets

f € F andxyg, Xp,... € X has its total number of mistakes and membership queries
bounded by optemy(F). We construct a learning algorith#*®"dwhich makes at most
Optnem(F)/ 109,(4/3) mistakes, and asks no membership queries.
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The algorithmAS®druns copiesA™MP of A™eMP a5 subalgorithms and keeps a weight
w; for each copy. These weights indicate how “reliable” the corresponding copies are.
Initially ASta"dstarts with one copy oA™™ and its weight is 1. To prove the theorem
we (as observers of the algorithAf2"Y investigate how the total sum of all weighis
changes, and we keep track of a special c8gy™ (and its weight) which performs in
the same way a8™™°would perform if membership queries were available. Initially the
single copy is the special one. During ttik trial, algorithmAs®"dpehaves as follows:

e As long as any copyA{“emb wants to ask a membership querf/(ty) = 17", this copy
is split into two copies, one copy receives the answer YES and the other copy receives
the answer NO. The weight; /2 is assigned to both copies. Intuitively the weight is
split between the two copies since it is unknown whether the YES or the NO answer is
correct.

Clearly the total sum of weights is not changed.

If Amembis the special copy then one of the new copies represents the correct answer
to the query and this copy becomes the special one. Its weight is half the weight of the
original special copy.

e Since we can assume that no copy asks more thapepF) queries, eventually all
copies are ready to make a prediction. When this happens, algoAitifficonstructs its
predictiony; using a majority vote of the predictionys; of the subalgorithms according
to their weights,

1 if Zwiszi

9 . i:)A/iA:l iZ)A/m=0 (4)
c 0 if Z wj < Z wj.
iyii=1 i:9i:=0

Then the correct answeg is passed to all copieA™®™P of Amemb |f Astand made a
mistake, then those copig§"™ whose predictiong ; were the same a&5a"%s pre-

diction ¥; also made mistakes. The weights of all these copies are multiplied by 1/2
(since they seem less reliable). The copies that predicted correctly have their weights un-
changed. IfAs@"predicts correctly, for simplicity, none of the copies have their weights
reduced.

Since) g _g Wi = X iy 4g Wi, arguing as in (Littlestone & Warmuth, 1994), we have
for the modified weightsy; that

iZwi/: Z wi + Z w]

i:9it=% i:9i 1 # %

2 Y wt Y w

9 t=% P29t £
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=§ wer Y g Y w

'ym St |Y|t7é)’t

< - Wi .

Thus the total sum of weights decreases by at least a fagdaf 252" Ymakes a mistake.
The weight of the special copy is multiplied by2only if it predicted incorrectly.

To summarize, iN"has madé/ mistakes the total sum of all weights is at m@t4)™.

On the other hand the weight of the special copy is always at (&aa(°Pm(F) since the
number of mistakes plus the number of membership queries of the special copy is bounded
by opthemn(F). By taking logarithms and solving favl, we get

_ OPlmemy(F)
log, 4/3

which implies the theorem. O

To get a feel for howAS®dworks, it is worthwhile to view its state as a tree, where the
various copies oA™M correspond to the leaves. For example, suppo¥&is learning
f, and that the single copy &™™°would be ready to make a prediction. Then the tree at
this point would consist of a single node labeled READY. The predictioASfYwould
then be just that of the single copy AF'*™. Suppose tha&s@"9made a mistake in the first
trial. Then the single copA™™ made a mistake on the first trial, too. This is reflected in
the tree by giving the node corresponding to the single copdyf™°a child:

mistake

Suppose that the single copy Af*™°then wanted to ask a membership query Then
Asandywould create two copies g™ one which it would give the response YES, and the
other which would get the response NO. If the copy that got the response YES did not want
to ask another membership query, and the copy that got the response NO asked another
membership query, call @f,, then we can visualize the state AF2"dwith the following

tree.
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‘ mistake

N(/ YES

Now, Astandwould “expand” the leaf on the left, again creating two copies, which would

be given YES and NO respectively as answers to their most recent question. If neither of
these copies wanted to ask a membership query, then the following tree would encode the
state ofAstand

‘ mistake

A&

Now Asdwould be ready for the second trial. Its predictiprwould be calculated as the
weighted majority vote of the copies @™ in the leaves of the tree, see Eq. (4). The
weight of each copy is simply 2 whend is the depth of the corresponding leaf in the tree.
The leaves corresponding to those copieABf™ which made a mistake would be given
children, and the new tree would look for example like this:
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mistake

Nc/ vEs
=

mistake

mistake

The process would continue in this manner, wii#"%“expanding” all leaves whose copies
of AmeMbask membership queries until there are no more such leaves, and then constructing
its prediction using those of the copies on the leaves as described above.

3. The MB and MBQ models

In this section we present our general result from which the other results can be obtained.

3.1. Definitions

Choose setX andY and letZ € (X x Y)* be some set of sequences of elements af Y
(1Y] = 2). A kind of subset of X x Y)* will be of particular interest. For a sét of
functions fromX to Y, let L¢ consist of those sequencgs;, y;)): of elements ofX x Y
for which there is arf € F such that for alt, f(x;) = y;. Our results, however, will hold
for arbitrary sets of sequences(@f, y;) pairs.

We consider the following MB model for on-line learning of sequences ((X;, i))t
from L. This model is included to provide the cleanest statement we can of a general result
unifying our treatment of the applications in the paper; itis not intended itself as an accurate
model of applied learning problems.
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As in the standard mistake-bound model, we assume learning procetidssinin the
tth trial,

o the algorithm is giverx,
e the algorithm outputs a predictich of v;
e the algorithm receives a responges Y with y; # ;.

In the MBQ model, we further assume that the learner may ask arbitrary “yes-no” ques-
tions aboutr between trials. Since for any “yes-no” question abewne is equivalently
asking whether is contained in the set of those elementsCofor which the answer is
“yes”, a “yes-no” question can be formalized as askings“ls £'?” for someL’ C L.

A prediction of an algorithm is counted as mistakéiif= ¥, i.e. an algorithm is only
charged for a trial when evidence of a mistake is given. We measure the performance
M (L, A) of an algorithmA for learningL in the MBQ model by the maximum, overe £
and any consistent responses, of the number of mistakes and queries nfad&/bylefine
opiveo (L) to be the minimum oM (L, A) over all learning algorithm#\, and opig (£)
to be the minimum oM (£, A) over learning algorithm# that do not ask queries.

For some of the applications, we will want to assign different costs to YES answers to
queries, NO answers, and mistakes. Choose positive consiggi<no andcy, and let
€ = (CyEs, Cno, Cm). DefineM (L, A, ©) to be the maximum, over € £ and consistent
responses, ofyes - Nyes + Cno - NNo + Cm - M, wherenygs, Nyo andm are the number
of A’'s queries answered YES, the number answered NO, and the numAisrrofstakes.
Define optisq (L, €) to be the minimum oM (£, A, €) over learning algorithmé.

3.2. Upper bounds

The following result limits the usefulness of “yes-no” questions.

Theorem 3.1. For any sets X and Y for whidlY| > 2, and anyL C (X x Y)*

optveo (L) —log, |Y
2y| — 1+ 2PWeQ . 9 Y]
opive (L) < 109 v

20Piveo (£)+1 otherwise

< 1.39Y|(optveq(L) + 2).

if Y| < 20PtveQ (L)

We also have the following result concerning different costs for the number of YES and
NO answers and the number of mistakes.

Theorem 3.2. ChooseO < «, 8, ¥y < 1 such thatae + 8 = 1. Choose sets X and Y
for which |Y|>2, and somefl C (X x Y)*. Then for the weighted cost M
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optveg (L, (log, 0—1[ log, % log, %))’

IYI-1 M —log,|Y|

if Y| <2M
1 Y] <

1+

|092%
RS e
otherwise

l1-y

The first inequality of Theorem 3.1 follows from Theorem 3.2 by settiag= g =
y = 1/2. The proof of Theorem 3.2 is similar to the proof of Theorem 2.1 in that a master
algorithm that does not ask questions keeps track of several copies of an algorithm that does,
and generates its predictions from the copies using weighted voting. But the generality of
the theorem gives rise to some new issues.

First, if |Y| > 2, if the master algorithm finds out that its predictigron trialt is wrong,
i.e. ¥y =V, it cannot tell whether the predictions of those copies of the question-asking
algorithm that didn’t predic§; were correct or wrong. But since in the MBQ model such
feedback is not required, it is sufficient that the master algorithms gives respoiasall
the copies. (For the MB@ model of Section 3.4, where such feedback is required, this
problem has to be dealt with differently.) Another complication is that the weights are
adjusted by factors other thay2l. This is needed for some of the applications. Finally, the
analysis for Theorem 3.2 is divided into two stages. In the first stage, we show that the total
weight goes down by a certain factor, as we did in the proof of Theorem 2.1. In the second
stage, we use an additive bound on the reduction of weight, which is sometimes tighter due
to the fact thatY| can be large. This is apparently required to get bounds that are tight to
within a constant factor.

Proof of Theorem 3.2: Choose an MBQ algorithmAEQ which is optimal with respect
to costs log 2, log, % and log 2 for YES answers, NO answers, and mistakes respec-
tively. Consider the MB algorithrAMB which usesAMEQ as a subroutine defined in figure 1.

By induction, at any time during the execution A8 when learning some sequenge
with responsesy; ), there is a special copB? which corresponds to a state AMEQ
when learnings with responsegy:);. This follows from the fact that both answers to
queries are given to corresponding copiesASFQ and that all responseg are given to
the copies. The weights = o"ves® gMo(®),, M) of the special copy satisfiess > 2~M,
whereM = optygq (L, (log, 2, log, % log, %)).

Denote byW = Y, w; the total weight of all copie#\">° maintained byAMB. First
W is 1 whenAMB starts. Note further that since+ g = 1, thatW does not change when
copies are duplicated and given both answers to “yes-no” questions during the simulation
of queries.

Our proof proceeds by using/ as a measure of progress. As mentioned earlier, the
analysis is divided into two stages. The first stage consists of thosd siat that, before
the beginning of triat, W > 2=M|Y|. The second stage consists of the remaining trials. In
both stages we are ignoring the chang&\bfuring trials in which the master algorithm
does not make a mistake sindénever increases.
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Notation:

Maintains a set of copies, MBQ 4t AMBQ where each copy corresponds
a subsetl; < L which denotes the current information @ﬂwBQ about
the target sequenee. Each copy maintains its number of YES answers, NO
answers, and mistakes received so far, denotedy(i ), nno (i), m(i). The
weight of a copyAi'vIBQ is calculated as = o"YES® . gno®) . ,m® (thys
o weights YES answergi weights NO answers, angd weights mistakes in
predictions) We assume that a COAVBQ terminates 'fnYES(') Iog2 =

nno() log, £ 7 +m@) I092 1 > optweq(L, (log, 1, log, 4 it Iogz ).

o

Initialization:
Initially there is only a single copyA;
Nno(1) = m(1) = 0.

MBQ with £1 = £ and nygs(1) =

Simulating queries:
As long as there is a cop& WhICh wants to ask a yes-no question this
copy is duplicated giving a cop),ok Q and the answer YES is given to copy
A®Q and the answer NO is given to copy">®.

Making a prediction:

If no copy wants to ask a yes-no questiqris received from the environment
and the prediction

§o=argmaxey Y wi
i AMBQ )=y

is calculated as the value with the highest weight.

Update:
The respons#; is given to all copiesAiMBQ.

The steps Simulating queries, Making a prediction, and Update are repeated 4
long as required.

n

Figure 1 Algorithm AMB from the proof of Theorem 3.2.

Let us assume as a first case that < 2M. In this case, the first stage has at least one
trial. We begin by bounding the numbaer; of mistakes made byAV® in the first stage.
Choose some tridlin the first stage. Supposgis a mistake, i.ey; = y;. Then

Whew = Z o NvESnew )IBnNO‘new(i)ymnew(i) — Z o "veso )IBnNO.o\d(i ) ymom(i)
! i AR (x )41
+ Z J/O[nwas,om(i)ﬁnNo,md(i)ymom(i) < (1= 1/1Y)Woig + ¥ Wora/| Y|
i Ai’wBQ(Xt):f’t

1—y
1— — W,
( Y ) o
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where “old” and “new” indicate whether the values of the variables are considered before
or after trialt. The inequality follows from the fact tha&™® makes the prediction with the
greatest weight, and therefore a fraction at le@pt [lof the weight is behind this prediction.

By induction, afterAMB has maden mistakes in the first stage, we have that

1—p\"
Wf(“w)- ©)

Since the first stage is over\f < 2-M|Y| inequality (5) implies that

1_ m—1

Solving form;, yields that

M —log, |Y
<1+ 4?;" ©)
09, vi=a=7

Now, we bound the number of mistakes in the second stage. For any trial in the second
stage with a mistake,

Wnew _ Wold — Z (a nYESnew(i)IBnNO.new(i ) ymnew(i) _ anYESold(i )IBnNO.o\d(i ) ymold(i))

— Z (anYES.neW(i)’BnNO.new(i)ymnew(i) _ anYES.old(i)ﬁnNO,old(i)ymold(i))

i AVEQ (X)# %

=@ -1 Z anYES,old(i)ﬁnNO.old(i)ymold(i) <(y - 1)24\4
i A ()25

since there is a special copyB? with ws > 2™, and AM® made the prediction with the
greatest weight. Since, prior to the start of the second st&lgeas at most 2M|Y|, and
at any time the total weight is at least", this implies that the number of mistakes in the
second stage is at mog¥ | — 1)/(1 — y). Combining this with (6) completes the proof in
the case thaty| < 2M.

The proof in the case thaY| > 2M goes as above, except that there is no first stage in
this case, and in the analysis of the second stage, in place of the assumption that the weight
at the beginning of the second stage is at mo&t|¥ |, we use thatitisatmost1l. O

3.3. Alower bound

In this section we present a lower bound that matches Theorem 3.1 to within constant
factors. The proof is given in Appendix A.1.
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Theorem 3.3. Choose positive integers a and u such that @. Then there are sets, X
such thafY| = u, and there is a sef < (X x Y)* such thabopivego(L£) < a, and

2a _ 1 if Y| > 22
0 L) > Y In2
Ptus (L) > |?|<1+ n7(a — log, |Y|)) otherwise.

3.4. The MB and MBQ models

As a natural variant of the MB and MBQ models we consider theoNMBd MBQo models
where the response to the learnepiss {TRUE, FALSE]} (instead ofy; € Y) indicating
whethery; = y; or § # y;. A predictiony; is a mistake ify; # y; and we measure
the performanceM, (£, A) of an algorithmA for learning£ in the MBQp model by the
maximum, ovel € L, of the number of mistakes and queriesfofvhen learning-. We
define opiisg, (£) to be the minimum oM, (L, A) over all algorithmsA, and opiis, (£)
to be the minimum oM, (£, A) over algorithmsA which do not ask queries.

For the relationship between the MBand MBQo models we get a similar but slightly
weaker result than for the MB and MBQ models and we show that this result is close to
best possible.

Theorem 3.4. For any sets X and Y for whidly| > 3, and anyL C (X x Y)*

optve, (£) < (IY[In[Y[)optueq, (L) + 13X Y InIn [Y|)optusg, (L)

Theorem 3.5. Choose positive integers a and u such that-u2981 Then there are
sets X Y such thalY| = u, and there is a sef C (X x Y)* such thatoplveg,(£) =
2a+ [2log, |Y]|], and

optus, (L) = allY[In[Y|/4].

The proof of Theorem 3.5 is given in Appendix A.2.

The proof of Theorem 3.4 is similar to the proof of Theorem 3.2. The main difference is
that in the proof of Theorem 3.4, the copies which didn't pregliere split into two copies
each, one which is told that its prediction was correct, and another that is told its prediction
was not.

Proof of Theorem 3.4: Choose an optimal MBQ algorithm AMBQ» and consider the
MBp algorithm AMB» which usesAMBQ» as a subroutine defined in figure 2 and get
I

The key difference betweeAME? and AME is in the update after a mistake. Loosely
speaking, wherAMB» makes a mistake, reinforcement TRUE or FALSE must be given to
all copies of AMBQ» Those copies that we do not know whether they made a mistake are
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Notation:
Maintains a set of cop|eA1MBQ" of AMBQr where each copy corresponds fto
a subsetl; € £ which denotes the current information 8" about the
target sequence. Each copy maintains its number of queries and mistakes
denoted byg(i) andm(i).
The weight of a copyA®?” is calculated agy = 2-9Hy M.
We assume that a copg{v'BQ/’ terminates ifg(i) + m(i) > optveg, (£).

Initialization:
Initially there is only a single copx,\MBQ" with £3 = £andqg(1) = m(1) = 0.

Simulating queries:
As long as there is a cop&\, MBQp WhICh wants to ask a yes-no question this
copy is duplicated giving a cop&( ? and the answer YES is given to cof
AYER? and the answer NO is given to COMBQ’D

<

Making a prediction:
If no copy wants to ask a yes-no questiqris received from the environment
and the prediction

o=argmaxey Y. w
i AiMBQ‘)(x[)=y

is calculated as the value with the highest weight.

Update wheny; # vi:
If the prediction was wrong then all copies wmf" Qp(xt) = §; are told
that they have made a mlstake Each cap{P?” with A Bl (%) # ¥ is
duplicated giving a cop)A B the copy A, BQr s told that its prediction|
was correct, and the copﬁ)VI | is told that its prediction was wrong.

Update wheny; = y;:
If the prediction was correct then all copies wwﬁ"' Qp(xt) = Yy are told
that their prediction was correct, and all copies WAH /’(xt) # Y are
told that their prediction was wrong.

The steps Simulating queries, Making a prediction, and Update are repeated as
long as required.

Figure 2 Algorithm AMB# from the proof of Theorem 3.4.

split into two copies, one which receives the reinforcement that it made a mistake, and one
which receives the reinforcement that it did not.
Our proof proceeds by usiny = >, 2790, M0 as a measure of progress. Initially
is 1, andW does not change when copies are duplicated and given both answers to “yes-no”
questions during the simulation of queries.
Now choose some Obviously, if; is not a mistakeW only decreases after trig| but
we will ignore this decrease in our analysis. Thef iis a mistake, since each cop BQp
for which A®?”(x,) # ¥ is split into two copies, one whose weight is multlplled by
and the other whose weight remains the same, and all copies for W\Fﬁ x) = %
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have their weights multiplied by, we have

Wnew — Z Z*Qnew(i)ymnew(i)

= Z 1+ y)z—%\d(i)ymom(i) + Z yz_qo\d(i)ymold(i)
iz AP ()G iz AYBY (x) =

= A+ y)A-1/IYDWoid + ¥ Woid/[ Y|
= Woia(1+ 1/1Y[In[Y] = 1/]YD).

By induction, afterAMB» has maden mistakes, we have

v (v ) = o) ) @

Also by induction, at any time during the execution&{B”, there is a special cope(g"BQp

with q(s) + m(s) < optusg,(£). ThenW > 274y MS) > ,0Pkee (L) sincey < 1/2.
Combining this with (7), we get

1 m
expl =(1— —— ) — ) >,/ 0PtBo, (D)
p( ( In|Y|>|Y|> =7 ’

and solving form and substituting the value ¢fyields

m < (IYIT(IYI In YD)

1
InlY|

>0pTMBQp (L)

1
= (Y[In[Y[+[Y[InIn |Y|)(1+ m)ODWBQp(ﬁ)

= [YlIn]Y|optueq, (£) + 130 Y| InIn|Y|optusq, (L),

since|Y| > 3. O

3.5. Relationship between MB, MBQ and MB/ABQp models

As mentioned before the models are equivaletit jf= 2 since the correct valug can be
immediately deduced from the respong@r p;. In this case Theorem 3.1 gives the better
bound for the relationship between MEand MBQy model.

For anyY it holds that

Opliss,» (£) < Oplvs (L), ®)
0ptveg, (£) < optveg(L), 9)

since any MB or MBQ algorithm can be transformed into an M& MBQp algorithm,
respectively, by translating a responge= FALSE intoy; = §; andp; = TRUE into some
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Vi # Y. That the converse of Eq. (9) is not true follows from Theorem 3.5 together with
Theorem 3.1 and Eq. (8). That the converse of Eq. (8) is not true follows from a similar
proof as for Theorem 3.5.

The converse of Eq. (8) does hold for sets of sequeKiges (X x Y)* derived from
classed~ of functions fromX to Y: if Lg is the set of all sequencééx, y;)): such that
there is anf € F with y; = f(x;) for all t then

optve, (L) = optus (LF).

This follows from the fact that the maximum number of mistakes of an optimap MB
algorithm forZr does not increase if it is made to ignore trials where it predicted corfectly.
Then such an algorithm can be used in the MB model by ignoring trialsywith §;. We
also conjecture that fof ¢ the converse of Eg. (9) holds but we were unable to prove that.

4. Applications of the general results

In this section we describe applications of the general results of the previous section. These
applications are obtained by applying Theorem 3.1 or Theorem 3.2 to particulaf.sets
Essentially we will show that all models considered in Section 1 are special cases of the
MB and MBQ model, respectively.

4.1. The usefulness of few membership queries

First note, that a membership query is a special case of a yes-no question; i.e., for any
classF of functions fromX to {0, 1} we have oplieg(Lr) < OPtnems(F).2 Furthermore,

when learningCg, the MB model is equivalent to the standard mistake-bound model so
that opis (Lr) = optynd F). Thus, modulo a small additive constant, Theorem 2.1 is a
special case of Theorem 3.1. By examining the proof of Theorem 2.1 more closely, we
may draw conclusions regarding the usefulness of polylogarithmically many membership
queries in generatingomputationallyefficient algorithms.

Theorem 4.1. Choose XF C {0, 1}*. Then if there is an algorithm ™ that takes at
most T time between trials to learn Bnd A™™Pasks at most g membership queritsen
there is an efficient algorithm $&"¢for learning F that makes no membership queries and
requires Q29T) time between trials.

Proof: We constructAs®®"d from A™™ as in the proof of Theorem 2.1, except with
the following change: Any copy oA™™P that asks more thag membership queries is
terminated. This does not affect the proof of Theorem 2.1 SWB&™ asks at most
membership queries when learning a function frem

Since the time required b4¢2"%to make a prediction is bounded by the number of copies
Arembtimes the time forA™™to make a prediction, all that needs to be shown is that the
number of copies maintained 2" never exceeds™2
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To see this, itis useful to view the copig&®™Pas the leaves of a binary tree as discussed
after the proof of Theorem 2.1. Since a node has two children only if it corresponds to a
membership query and since there are at magich nodes on any path from the root to a
leaf, the number of leaves is bounded 15y 2 O

4.2. Function learning with weak and strong reinforcement

Here we consider two generalizations of the standard mistake-bound model to functions
with range possibly larger than two that were previously studied in (Auer et al., 1995).
Choose some se&¢, a finite sety of at least two elements, and a classf functions from
XtoY.

We begin with theweak reinforcement modelHere learning also proceeds in trials,
where in thetth trial, the learner (a) receives € X from the environment, (b) outputs
a predictiony; € Y, (c) gets a response true or false indicating whethee f (x;) or
not wheref e F is the function to be learned. For a learning algoritiinfor F let
Muwea(A, F) be the maximum number of mistakes Afwhen learning a function i
with weak reinforcement, and let Qpi(F) = mina Myea(A, F). Note that the weak
reinforcement model is simply the MBmodel for learningCg.

Next, we define thetrong reinforcement modeHere again learning proceeds in trials. In
thetth trial, the learner (a) receives € X from the environment, (b) outputs a prediction
%t € Y, (c) discoversy; = f(x). For a learning algorithnmA let Mgyong A, F) be the
maximum number of mistakes &fwhen learning a function i with strong reinforcement,
and let opdyong(F) = Mina Mswong(A, F). The following result bounds the relative strength
of strong reinforcement.

Theorem 4.2. For any set F of functions from X to, Y
Optyeak(F) < L.39Y[([1 + log, (Y| — 1)T0opktrong(F) + 2).

Proof: We show that an MBQ algorithm can simulate an algorithm which receives strong
reinforcement: the MBQ algorithm predicts with the strong reinforcement algorithm and af-
ter amistake it determingg by asking log[|Y|—17 yes-no questions. Thus o (L) <
[1+10g,(|Y|—1)10ptrong(F). Since optea F) = 0ptvis,(LF) < optvs (LF) (by Eq. (8))
the theorem follows from Theorem 3.1. O

The following trivial lower bound shows that the above cannot be improved by more than
anO(log|Y]) factor.

Theorem 4.3. For each positive integer,aand each integer &= 2, there is a set Xa set
Y of u elementsand a set F of functions from X to Y such to@ton(F) = a and

Optwea(F) = (IY] — 1)Opttrong(F).

Proof: Choosea andu. Consider the sef of all functions from{1, ..., a}to{1, ..., u}.
Trivially, optsiong(F) is &, Since, with strong reinforcement an algorithm never need make
a mistake on the same element of the domain twice.
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To see that opka(F) > (JY| — 1)a, consider an adversary that first sg{s= ... =
Xjv|-1 = 1, and tells the algorithm that all its predictions are wrong, thensgts= - - - =
Xo(v-1 = 2, and so on. Since the algorithm makes at mg$t— 1 predictions on each
element of the domain, there is some functionfidm .., a} to {1, .. ., u} consistent with
the adversary’s responses. This completes the proof. O

4.3. Agnostic learning

In the agnostic learning model the learner again has to learn a functionXrtor{0, 1}

from some clas$ on-line, but some of the reinforcements given to the learner might be
noisy. In thetth trial, the learner (a) receives € X from the environment, (b) outputs a
predictiony; € {0, 1}, (c) discoversy; € {0, 1}. If §y # y; the learner has made a mistake.
Denote byM (A, F, n) the maximum number of mistakes of a learning algoritArwhen

the reinforcements; are such that there is ah € F with |{t: f(X;) # W%} < n, i.e. at
mostn reinforcements are noisy. Finally, let ggdF, n) = mina M(A, F, ). We have

the following result.

Theorem 4.4. For all sets X for all sets F of functions from X t§0, 1}, for all non-
negative integerg, and for all0 < ¢ < 1/20,

Optagn(F, 7) < 4.82(0ptagn(F, 0) + 1) + 1

4 1 5
optagn(F, ) < g('n E>0ptagn(|:’ 0) + (2 + Ee)n.

Proof: We show that an MBQ algorithm can simulate an algorithm for the standard
mistake-bound model without noise. L&t , < (X x {0, 1})* consist of those sequences
(X, Y1)t such that there exists ane F with |{t: f (X)) # W} < n (there may be many
such f for the same sequence). Note tliiat, is closed under subsequences. NowAet
be a standard mistake-bound algorithm ForWe construct an MBQ algorith for Lg ,,
as follows. AlgorithmB maintains a list of correct reinforcemergse {0, 1}. In each
trial it predicts with algorithmA. If §; = y; both algorithms ignore this trial. §; # v
algorithm B determines if the reinforcement was noisy by asking*Is- ((X;, y;)). such
that there is arf € F with f(x;) = z, fort < t, f(x%) = w, and|{r: f (X;) # Y. }| <
n?” (It is worth emphasizing at this point that this question is about the sequente
examples.) If the answer is YES algorithBhsetsz; = y;, otherwise it setg; = 1 — vy,
and it passeg; to algorithmA. By induction, there is arf € F such that for all trials
t, f(x) = z, and|{t: f(X) # ¥} < n. Therefore the number of trialson which
Yt # z is at most opf,,d F) = optygn(F, 0) and the number of trials on which # v
is at most opfgn(F, 0) + n. Finally, sinceB asks a question after each mistake, we get
0pive(LF,,;) < 2(0ptagn(F, 0) +1). Since opign(F, ) = optus (Lk,,), the first bound of
Theorem 3.1 gives the first bound of the theorem.

To get the second bound, note that at mpsf B’s questions are answered NO and at
most opign(F, 0) are answered YES. Applying Theorem 3.2 with= €2, B = 1 — €2,
y = 1 — ¢, gives the result after some calculations. O
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The proofs of Theorem 3.2 and Theorem 4.4 can be modified to obtain the same bounds
for agnostically learning sets of functions from an arbitrary)6éb an arbitrary seY with
strong reinforcement.

For comparison, we give the following lower bound of Littlestone and Warmuth.

Theorem 4.5 (Littlestone & Warmuth, 1994). For any X and any set F of at least two
functions from X td0, 1},

Optagn(F, 1) > optagn(F, 0 + 2n.

4.4. Closure results

Now we return to the standard mistake-bound model. Choose an ikteg@rand a seX.
If f,,..., fx are functions fronX to {0, 1}, andg is a function from{0, 1}* to {0, 1}, then
define the functiom( fq, ..., fx) from X to {0, 1} by

Q(f, ..o, 1) = g(fr(%), ..., f(X)).

For any fixedg: {0, 1} — {0, 1}, and any set§, ..., F of functions fromx to {0, 1},
define

COMPOSEF, ..., F,9) ={g(fy,..., f): fre F, ..., fke K}
and for any seG of functions from{0, 1} to {0, 1}, let
COMPOSEFy, ..., F, G) = UgegCOMPOSEF,, ..., F, 0).

Theorem 4.6. For any sets I, ..., Fi of functions from X td0, 1}, for any function g
from {0, 1}¥ to {0, 1}, and for any set G of such functions

k
OPliand COMPOSEF. ..., Fy, ) < 24171+ log, k1 )  0ptyand ) + 1.
i=1

0Pt d COMPOSEF,, ..., F, G))

k
<2.4171 + logy(K + 1) (optstano(G) + ) Optyand Fi )) +1

i=1

Proof: We beginwiththefirstbound. Suppose, foraknayfunctionsf; € Fy, ..., fx €

Fx are unknown to the learner, who is trying to legff,, ..., fx). A harder problem is

to try to predict, for each tridl, the vecton f1(x), ..., fk(X)) in the weak reinforcement
model above. This problem becomes easy, however, if after each mistake, the learner can
determine a component of its prediction that was incorrect: The learner can then simply
run separate algorithms for learning eachfef. .., fx. Any time the master algorithm
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makes a mistake, it can make one of the subroutine algorithms make a mistake (all other
subalgorithms ignore that trial), and therefore the number of mistakes made by the master
algorithm is at mos[::‘zl Opty.nd Fi) if optimal algorithms are used for the subalgorithms.
Since an MBQ learner can determine a component of its prediction that was incorrect
throughflog, k1 “yes-no” questions, an MBQ learner can obtain a performance guarantee
of (1 + [log, k1) Zik=1 optand Fi). Applying the first bound of Theorem 3.1 then yields
the first bound of this theorem.

For the second bound, we do the analogous thing, except using the value of

(fa(X0), - - f(X0), 9(Fa(x), ..., f(xp))).

Whenever the master algorithm makes a mistake it determines the least component of the
prediction of the above which was incorrect throydhg, (k + 1)1 questions. If it was of

an f;(x), it simulates for the corresponding subalgorithm the trial withthe subalgo-
rithm’s prediction, andf;(x;). If the only incorrect component of the prediction was of
g(fi(x), ..., fk(%)) then the algorithm simulates for the subalgorithm learmjitige trial
consistingof f1(x), ..., fk(X)), the subalgorithm’s prediction, agd f1(x;), ..., fk(X)).

Since such trials are only simulated when all prediction$;6%;), ..., fc(X;) are correct,

the trials given to the algorithm for learnirgare consistent witlyg. Continuing as in the
previous paragraph yields the second bound. O

The following lower bound shows that Theorem 4.6 is within@gog k) factor of op-
timal. The proof is given in Appendix A.3. From the proof one can also easily see that
corollaries obtained by applying Theorem 4.6 with many natural congrate also within

this O(log k) factor of optimal. (Of course, there are exceptions, g.6: 0.)

Theorem 4.7. Choose an integer k 2 and positive integersia. . ., ax. Then there is a
set X and sets . .., F of functions from X t¢0, 1} such that for all i opt,,{Fi) = &,
and there is a g {0, 1} — {0, 1} such that

k
OPland COMPOSEFy. ..., Fi. @) = Y 0ptyand Fi).-

i=1
Choose a positive integega, < 2. Then there is a set X and sets F. ., F of functions

from X to{0, 1} such that for all | opt,,{Fi) = &, and there is a set G of functions from
{0, 1}¥ to {0, 1} such thaopt,,,{G) = a1 and

1 k
OprstanCKCOMPOSEFlv o P, G) > E (opgtancﬁe) + E Optstano(Fi)>-
i=1

The restrictiora,,1 < 2¥ is needed since for any s6tof functions from{0, 1} to {0, 1},
OPand G) =< 2
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4.5. Mistake bounds with delayed, ambiguous reinforcement

Finally, we formally define what we call theelayed ambiguous reinforcement model

In this model the learner again has to learn a functiofrom a classF of functions
from X to {0, 1}, but it receives no immediate reinforcement. Learning proceedsiimds
where in each rountthe learner is givem; ; € X, outputs a predictiof 1, . .., iS given
Xir € X, outputs a predictiofk (, then receives reinforcement FALSE or TRUE indicating
whether any of the predictiong 1, . . ., ¥;r was incorrect, i.e. the reinforcement is FALSE
iff ii # f(x,) foranyi € {1,...,r}. Denote by Mmyr (A, F) the maximum number
of false rounds of an algorithrA when learning a functiorf € F and let opimn,(F) =
Mina Mamnr (A, F). Note that opimn1(F) = opt..dF)-

Note that before the algorithm outpuis , it does not know the values &f j for j > i. A
natural question is if knowing these values could help the algorithm. If this were not the case,
then learning in the-trial delayed ambiguous feedback model would reduce to learning
in the weak reinforcement model as follows. For somexsand some sef of functions
from X to {0, 1}, we might setX’ = X" and defineF’ = CART, (F) to be all functions
f’ from X’ to {0, 1}' such that there existé € F for which for all (X1, ..., %) € X",
fr(Xg, ..., %) = (f(X), ..., F(x)). Ifitdidn’t help the algorithm to know; 1, . .., X¢r,
then we could assume without loss of generality that ..., %, were all given at the
beginning of the round, and it would be the case that@ptF) = optyea(CART, (F)).

The following theorem shows that this is not the case. The proof is given in Appendix A.5.

Theorem 4.8. There exists a set X and a set F of functions from X0td} such that

optyea CARTL(F)) < Optath( F).

The following result bounds the relative difficulty of learning with ambiguous reinforce-
ment.

Theorem 4.9. For any set F of functions from X {@®, 1},

OPtamir (F) <2(In2r) - 2 - optamna(F).

Proof: If, after each round in which it makes a mistake, a learning algorithm is told of

a trial during that round in which its prediction was incorrect, then by ignoring the other
trials of those rounds, an algorithm can make at most,gptF) mistakes. Similar to the

proof of Theorem 3.2 knowledge of the incorrect trials can be simulated by splitting into
copies, each given one of the trials as a mistake. Since the master algorithm can choose its
predictions such that at least a fraction g210of the total weight predicted the same on all

r trials of a round the bound follows analogously as in the proof of Theorem 3.2. O

Finally, we describe a polynomially related lower bound. The proofis givenin Appendix A.4.
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Theorem 4.10. For any integers ar > 1, there is a class F of functions such that
Optmp1(F) = aand

1 OPtane1 (F)
OPlamnr (F) = min E(Z“ — Doptamn1(F), ( > (|>> - 1}.

i=0

5. Conclusions and future directions

In this paper, we have presented a new method for simulating on-line learning algorithms
which have access to queries by algorithms that have no such access, and presented ap-
plications of this simulation concerning structural questions about several natural on-line
learning models.

An interesting open question is to try to find a more efficient simulation, in particular
with respect to computational requirements. Significant progress in this direction would
resultin a strengthening of Theorem 4.1. A more computationally efficient simulation which
achieved a worse mistake-bound would be potentially interesting.

An anonymous referee asked whether arbitrary boolean queries are significantly more
powerful than membership queries for learn{@g1}-valued functions.

Finally, many of the bounds of Section 4 have small gaps that it would be nice to remove.
Furthermore, it would be interesting to try to find computationally efficient algorithms for
learning in the models described in Section 4.

Appendix A: Lower bounds
A.1. Proof of Theorem 3.3
First, we restate Theorem 3.3 for easy reference:

Theorem 3.3. Choose positive integers a and u such that @. Then there are sets,X
Y such thatY| = u, and there is a sef < (X x Y)* such thaibptysg(£) = a, and

20ptueQ(L) _ 1 if |Y| > 20Pieo(L)
optvs (£) = 1 |Y|

1 ,
3 <1+ m(optMBQ(L) — log, |Y|)) otherwise

This theorem is proved through a pair of lemmas. For any positive integerslet
SVAR,,, be the set of all functions$: {1, ..., u}’ — {1, ..., u} such that there existsor

which forallX € {1, ...,u}?, f(X) = X;.

Lemma A.1. For any nonnegative integer a and any positive integer u

0ptveo(Lsvar, ) < a.
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Proof: There are at most®2elements of SVAR2. Therefore, by asking for the bits of
the index of the function mapping th¢'s to they;’s before the first triald questions), this
MBQ algorithm never makes a mistake. O

Lemma A.2. For any positive integep and any positive integer & 2,

v—1 if v<u
0 L > 1
ptMB( SVARU,U) = %(1 + > In g) otherwise

Proof: If u = 2, then the theorem follows from the fact (Littlestone, 1989) that
opive (Lsvar,,) = 109, v]. Assume from here on that> 2.

As a first case, assume < u. Choose an MB algorithni\. Let ¥, ..., Y,_1 be the
predictions made byA when givenx; = --- = x,_1 = (1, 2, ..., v) on-line with response
y¢ = ¥, at the end of each trial. Choosee ({1,...,u} — {V1,..., Y»_1}). Thus if
o= (X1, ¥), ..., X-1,¥)), Amakesv — 1 mistakes ow, ando € Lsvar,, -

Now, assume > u. Construct a sequeneec (X x Y)* using an adversary as follows.
The adversary operates in two stages. The adversary maintains alist of functions in SVAR
which map previoust's to y;'s (or equivalently a list of the coordinates defining those
functions). Letl; be the number of elements in this list before thetrial (; = v). The
first stage ends whelp < u. During the first stage, on each trial, the adversary divides
up thel; remaining coordinates into nearly equal sized groups, each consisting of either
M¢/u] or |lI;/u] members. Thew; is chosen so that the coordinates in the first group take
the value 1, the coordinates in the second group take the value 2, and so on. Whatever the
algorithm’s prediction it is given same value as the response (resulting in a mistake), and
the “live” coordinates which evaluated to the algorithm’s prediction are no longer so.

During the first stage, we have= v, and

leyr > 1t — [le/u
2l
>l — =
u

= 1,(1 - 2/u). (10)

Thus, by induction, for any trial in the first stagé,; > v(1 — 2/u)!. Thus, the number
of trials (and therefore mistakes) in the first stage is at least

max{q: v(1 — 2/u)%! > u}
—2(q —1)/u

> uyg sinceu > 2
1-2/u

> max{q: v exp(
> (Uu/2—1)n S (11)

The number of “live” coordinatels before the first triat” of the second stage is at most
u, so the adversary may force the algorithm to miake 1 mistakes similarly as in the first
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paragraph of the proof. We claim tHat= u — 1 which is seen from (10): If._; = u then
ly =u—1.Iflp_; >u+1thenly > U+ 1)(1—2/u) >u—1-2/3sinceu > 3.
Thus, the number of “live” coordinates prior to the onset of stage two is atleast,
and therefore there are at least 2 mistakes during the second stage. Combining with the
lower bound of (11) on the number of mistakes during the first stage, we arrive at a total of

v 1 v
(u/2—1)|na+(u—2)=(u—2)(1+ilna>

u 1 v
> —|(1+=In—
_3<+2 u)

completing the proof. O

Theorem 3.3 is an immediate consequence of Lemma A.1 and Lemma A.2.

A.2. Proof of Theorem 3.5
We restate Theorem 3.5 for reference:

Theorem 3.5. Choose positive integers a and u such that-u2981 Then there are
sets X Y such thatY| = u, and there is a sef < (X x Y)* such thatoptygg, (L) =
2a+ [2log, |Y|], and

optus, (L) = allY[In|Y|/4].

Proof: Forany positive integers, v, let SVAR, , be the setof all function§: {1, ..., u}”
— {1,...,u} with fi(X) = x;,i € {1,...,v}. Informally, this is the set of all functions
which “pick out some component” of their input.

Now letY = {1,...,u}, v = u? andX = Y". The setl consists of sequences of
lengthar,r = [|Y[|In|Y|/4], where each sequenee= ((X1.1, Y1.1), - --» Xirs Yir), -« - s
(Xa.1, Ya.1), - --» (Xar, Yar)) € L consists ofa subsequences of length Each sub-
sequence is consistent with one of the functions in SyARXxcept for two elements
of the subsequence, i.e. there &e...,ia € {1,...,v}, S,...,% € {1,...,u}, and
t,....tae {u+1,...,2u} with Yoo = fi¢ (X(p’w) for /-1 {Sﬁ, t¢} andy(z,’]l, * firb(X‘f’J//)
for ¢ € {sy,ts}, ¢ € {1, ...,a}. Furthermores, andt, encode the function consistent
with the next subsequence, iig.1=u-(s, — 1)+ (t; —r) for ¢ € {1,...,a} (assume
iar1 = 1). Observe that such a coding is possible since2u for u > 2981.

An MBQ algorithm can asklog, v] yes-no questions to determine Then it will predict
with f;, for the first subsequence. The elements for which it makes a mistake detegmine
andt,. Continuing this way the algorithm will make two mistakes for each subsequence
which gives oplisg(£) < [2log, [Y[] + 2a.

To get a lower bound for any MB algorithm we define an adversary strategy. For each
subsequence the adversary maintains a list of functions in SYA® equivalently coordi-
nates) which are consistent with the previous trials of this subsequende be¢he number
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of elements in this list before processing ttth element of the subsequente£ v). On

each trial the adversary divides theremaining coordinates into nearly equally sized
groups, each consisting of eithgg /u] or [l /u] members. Thewr, is chosen so that the
coordinates in the first group take the value 1, the coordinates in the second group take the
value 2, and so on. Whatever the algorithm’s prediction is it is given the reinforcement
“false”, and the “live” coordinates which evaluated to the algorithm’s prediction are no
longer so, yielding by induction that

I‘[+1 > Ir - |—|.,;/U—| = It - % = lr(l_ Z/U)
and
lry1 > 11(1=2/w)" > vexp(—=In|Y]) > u.

Thusforally =1, ..., athereis a functionf;, € SVAR,, which is consistent with the
trials of the subsequence.

Now we show that after alir trials there is a sequence i consistent with all the
reinforcements given by the adversary. Boe 1, ..., alets, andt, be such thaiy,; =
U-(s — 1)+ (ty —u). Wesetyy y = fi,(Xs.4) for v & {ss, 14}, ¥p.s, t0 @ value different
from f;, (X.5,) andy, s,, andy, 1, to a value different fronf;, (x, 1,) andyy ;,. Sinceu > 3
this is always possible. Thus @pt(£) > ar. O

Remark A.3. By a more careful analysis the constants in the theorem can be improved.
Furthermore, along the same line it can be shown that for positive intagerdu there
areX, Y, andZ, such thatY| = u, opiueq(£) < &, and

optvs (£) = alY[(In|Y[+InIn|Y| - C)

for a > log® |Y| and some constar®@. Thus the upper bound in Theorem 3.4 has the
correct constant at the first order term and the correct magnitude of the second order term.

A.3. Proof of Theorem 4.7

Lemma A.4. Choose finite sets and X such that X C X,, an integer a such that
a < | X5|, and a function {f from X; to {0, 1}. Then there is a function, from X, to {0, 1}
such that for all xe X;, f1(x) = fo(x), and there is a set F of functions from X0 {0, 1}
such that § € F andopt,,{(F) = a.

Proof: Extendf; to fy arbitrarily. Trivially, opt,,,{{ f2}) = 0. Furthermore, if° is the

set of all functions fromX; to {0, 1}, opt.,d P) = |X2| > a. Also, for anyG < P and
anyg € P,

OsttanO(G) S optstano(G U {g}) S Optstano(G) + 1
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Therefore, if we start withr = { f,} and add the elements Bfto F one by one, opt,.{F)
goes from being 0 tdX;|, increasing by at most one each time we add an elemeft to
Sincea < | X»|, there must be a time when Qgt(F) = a. O

Here is a restatement of Theorem 4.7:

Theorem 4.7. Choose an integer k 2 and positive integersia. . ., ax. Then there is a
set X and sets . .., F of functions from X t¢0, 1} such that for all | opt,,{F) = &,
and thereis a g {0, 1}* — {0, 1} such that

k
OPttand COMPOSEFy, ..., Fi. 9) = ) 0Ptyand Fi).
i=1

Choose a positive integega, < 2. Then there is a set X and sets F. ., F of functions
from X to{0, 1} such that for all | opt,,{Fi) = &, and there is a set G of functions from
{0, 1}¥ to {0, 1} such thaopt,,,{G) = a1 and

1 k
OPlyand COMPOSEF, . .., Fy, G)) = 3 (optstano(G) + ) Optand Fi )).

i=1

Proof: We beginwith the firstbound. Le{; = {1,..., a1}, Xo ={ay+1,...,a},...,
Xe = {1+ a,.... Y ;a). LetX = UK X; = {1,..., Y, &}. Foreach, let
Fi be the set of all functions frorX to {0, 1} that are zero everywhere K — X;. Then for
eachi, opt,,(Fi) = |Xi| = &. Letg: {0, 1}k — {0, 1} evaluate to the disjunction of its
arguments. Thatig(by,...,bx) = lifandonlyif 1€ {by, ..., by}.

We claim that COMPOSH, ..., Fx, g) is the set of all functions fronX to {0, 1}.
Choose a functiorf from X to {0, 1}. For eachi, let f; € F; be defined by

f(x) ifxeX;
fi(x) = .
0 otherwise.

Then, trivially, f = g(f1,..., fx). Since f was chosen arbitrarily, COMPOSE,, ...,
Fk, 9) is the set of all functions fronX to {0, 1}, and therefore,

k
Optstano(COMPOSEFl, ceey Fka g)) = |X| = Za s
i=1

completing the proof of the first bound.
Now for the second bound. We will distinguish two cas®gsy > Zikzlai andag, 1 <

Zik:la.- , proving that opg,,{ COMPOSEF;, ..., F, G)) > a1 and opt,,, COMPOSE
(F1,....F, G)) > Z:‘zlai, respectively.

Assume as the first case tlagt ; > Z:‘Zla,-. For each, let f; : {0, 1} — {0, 1} simply
output theith component of its argument, i.€.(X) = x;. Let X’ be a set containing all
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the elements of0, 1} which has a total of at least mag elements. Apply Lemma A.4 to
obtain functionsf;, ..., f; from X’ to {0, 1} and sets, ..., F of functions fromX’ to
{0, 1} such that for all <Kk,

o forall X e {0, 1}, f/(X) = x;
o f/eF
L4 Optstano(Fi) =q.

Since for anyX e {0, 1}, (f{(X), ..., f,(X)) = X, even if a learning algorithm knows
fi, ..., fg, learningg(fy, ..., f,) is at least as hard as learnigg Therefore
k+1

1
OPlyan COMPOSEF, ... Fi, G)) 2 0Plyand G) = aks1 > - > a,
i=1

completing the proof of the second bound in the Gase > Zik=1 q.

To establish the second bound in the cagg < Z:‘Zla, again apply Lemma A.4
to obtain a seG of functions from{0, 1}* to {0, 1} such thatG contains the functiomy
computing the disjunction of its arguments and that,gpfG) = ax.1. Using the argument
for the first bound, there exi#t, ..., F such that

k
OPtyand COMPOSEF, ..., Fi, ga)) = ) &,
i=1

and therefore
OPtyand COMPOSEFy, ..., F. G) = > & > > > a,
i=1

i=1

completing the proof. O
A.4. Proof of Theorem 4.10

Recall the statement of Theorem 4.10:

Theorem 4.10. For any integers ar > 1, there is a class F of functions such that
optamp1(F) =a and

i=0

) 1 i Optamn1(F) r
Optampr (F) > min 5(2 — 1optymp1(F), Z (I) —1;.

Proof: The first term in the min holds in the case> r. In this case, lef be the
set of all functions from{1, ..., a} to {0, 1}. Trivially, optamn1(F) = a. To show that
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OPtamnr (F) > %(2r — Da, we construct an adversary to generate a hard sequence for any
learner.

Choose a learning algorithiA. The adversary gives 1 = 1,..., %, =r for2 —1
rounds, then givex 1 =r +1,..., X, = 2r for 2" — 1 rounds, and does th[§J times.
It always answers FALSE. The total number of mistakes is

r

HE

For each{(i — Lr + 1, ...,ir} there is some sequenceroklements of 0, 1} that was
not guessed by. If we definef to take on those values, then the resulting sequence is
consistent withf .

Whena < r, let F be the set of all functions frofd, ..., r} to {0, 1} which map at most
aelementsto 1. Then opty1(F) = a, see e.g. (Maass & Tan, 1992). The adversary sets
X1=21,....,%,=r,fort=1,..., (Zf‘:o({ )) — 1. The reinforcement FALSE is given
in all rounds. Again, for any algorithm, there must be some sequerrcpreflictions with
at mosta 1's that the algorithm didn't make on any of those rounds, and therefore there is
a function inF consistent with all those rounds. O

A.5. Proof of Theorem 4.8

We restate Theorem 4.8:

Theorem 4.8. There exists a set X and a set F of functions from X0fd} such that
OPtuea CART2(F)) < 0ptamn2(F).

Proof: Let X = {1, 2, 3}, and consider the sé&t = {fq, ..., f4} of functions fromX to
{0, 1} defined in the following table.

x| f100  f20  fa0)  fa(x)

1 0 0 1 1
2 0 0 0 1
3 0 1 1 1

First, we claim that optn2(F) > 3. To see this, imagine an adversary that sets= 1.
If the algorithm’s predictiory; 1 = 1, it setsx; » = 2, otherwise it setg; » = 3. In either
case the reinforcement for the first round is FALSE.

If 1.1 = Y12 = 1, then any off;, f,, f3 are consistent with the information of the first
round. In this case, the adversary camsgt= 1, Xo» = 3. No matter how the algorithm
predicts, the adversary can give reinforcement FALSE, and has two functions remaining,
trivially enabling it to force a mistake in the third round.

If 11 = 1, ¥1» = 0, then any off,, f,, f; are consistent with the information of the
first round. In this case, the adversary can alsxget= 1, X, » = 3. No matter how the
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algorithm predicts, the adversary can give reinforcement FALSE, and has two functions
remaining, again trivially enabling it to force a mistake in the third round.

If y1.1 =0, 1> = 1 (recallthatin this case 3 = 3), then any off, fs, f;are consistent
with the information of the first round. In this case, the adversary capset 1, xo» = 2.
No matter how the algorithm predicts, the adversary can give reinforcement FALSE, and
has two functions remaining, also trivially enabling it to force a mistake in the third round.

Finally, if y11 = 0, ¥1.» = 0 (againx; 3 = 3), then any off,, fs, f; are consistent with
the information of the first round. In this case, the adversary also can get 1, X, = 2.
No matter how the algorithm predicts, the adversary can give reinforcement FALSE, and has
two functions remaining, enabling it to force a mistake in the third round. This completes
the proof that optnn2(F) > 3.

Next, we claim that opka CART,(F)) = 2. Consider the following algorithm in the
weak reinforcement model. ¥; € {(1, 2), (2, 1)}, the algorithm predictg0, 0). If x; =
(2,3), it predicts(0,1). If x3 = (3,2), it predicts(1,0). If x; € {(1,3), (3,1}, the
algorithm predictg1, 1).

In any of those cases, by inspection, after the first trial, there are at most two functions in
F’ consistent with the information received. Therefore, if the algorithm predicts with some
consistent function for the second trial, it can ensure that it will make at most two mistakes.

O
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Notes

. This quantity is called opt in (Littlestone, 1988, 1989) and LC-ARB in (Maass &ut989, 1990, 1992).

. Recall that pseudo-polynomial is commonly defined to be exp(polnflog

. OptyongF) was denoted by LC-ARE) in (Auer et al., 1995).

. The model studied in (Kearns, Schapire, & Sellie, 1994) is considerably different than the model considered
here. The common aspect is measuring the performance of a learning algorithm by comparison with the best
function inF.

5. These results can also be viewed as bounding,gStVARn, n) and related quantities (for the randomized

algorithms), where SVARIs the set of all functiond from {0, 1}" to {0, 1} that output a single variable; i.e.,
such that there is ainsuch that for alk e {0, 1}", f(X) = X;.

6. Some theorems have been proved about a popular approach to combat this probletencpteal difference
(Samuel, 1959; Sutton, 1984; Sutton, 1988; Watkins, 1989; Dayan, 1992), but they rely on probabilistic
assumptions about the environment of the learner, unlike the worst-case analysis done here for our new
approach. Recently, Schapire and Warmuth (1996) proved worst-case results about temporal difference learning
in conjunction with the Widrow-Hoff rule in a model different from that of this section.

7. Getting the second is easy|¥f| > 2°PMBQ(L): otherwise, since for all positive, In(1 + x) > x/(1 + x), we

have log % > le)m which implies the second.

A WN PP
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8. To see this, consider that as long as possible the environment might pgefeenthich the algorithm predicts
incorrectly. Presenting in betweeq for which the algorithm predicts correctly only helps the algorithm
by providing additional information at no cost. Thus by ignoring trials for which it predicted correctly the
algorithm ignores this additional information but does not increase the maximum number of mistakes for the
worst possible sequence frofi. Note that this argument only holds sinfe is closed under permutations.
For arbitrary £ the position of a pailx, yt) in the sequence might encode information that is lost if the
corresponding trial is ignored, for example see the proof of Theorem 3.5.

9. To simulate a membership query “whatfigx)?” while learningCr in the MBQ model, one may ask “is the
target sequence such that there isfas F with f (x) = 1 and which is consistent with the target sequence
and all previous queries?”
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