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Abstract

A graph is k-degenerate if its vertices can be successively deleted so that
when deleted, each has degree at most k. These graphs were introduced by
Lick and White in 1970 and have been studied in several subsequent papers.
We present sharp bounds on the diameter of maximal k-degenerate graphs
and characterize the extremal graphs for the upper bound. We present a
simple characterization of the degree sequences of these graphs and consider
related results. Considering edge coloring, we conjecture that a maximal
k-degenerate graph is class two if and only if it is overfull, and prove this in
some special cases. We present some results on decompositions and arboric-
ity of maximal k-degenerate graphs and provide two characterizations of the
subclass of k-trees as maximal k-degenerate graphs. Finally, we define and
prove a formula for the Ramsey core numbers.
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1. Introduction

One of the basic properties of graphs is the existence of subgraphs with specified
degree conditions. (See [3] and [18] for basic terminology.)

Definition. The k-core of a graph G, Ck (G), is the maximal induced subgraph
H ⊆ G such that δ(H) ≥ k, if it exists.

Cores were introduced by S.B. Seidman [16] and have been studied extensively
in [1]. It is easy to show that the k-core is well-defined and that the cores of a
graph are nested.

http://dx.doi.org/10.7151/dmgt.1637
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Definition. The core number C(v) of a vertex v is the largest value for k such
that v ∈ Ck(G). The maximum core number of a graph, Ĉ(G), is the maximum
of the core numbers of the vertices of G.

There is a simple algorithm for determining the k-core of a graph, which we shall
call the k-core algorithm.

Algorithm 1 (k-Core Algorithm). Iteratively delete vertices of degree less than
k until none remain.

This will produce the k-core if it exists. This suggests the following concept.

Definition. A graph is k-degenerate if its vertices can be successively deleted so
that when deleted, each has degree at most k. The degeneracy of a graph is the
smallest k such that it is k-degenerate.

As a corollary of the k-core algortithm, we have the following min-max relation-
ship.

Corollary 2. For any graph, its maximum core number is equal to its degeneracy.

A graph is k-core-free if it does not contain a k-core. A graph is maximal with
respect to some property if no edge can be added without violating this property.
The k-core algorithm also implies that a graph G is k-degenerate if and only if G
is (k+ 1)-core-free, and maximal k-degenerate graphs are equivalent to maximal
(k + 1)-core-free graphs.

The term k-degenerate was introduced in 1970 by Lick and White [11]; the
concept has been introduced under other names both before and since. In partic-
ular, the term ’k-dense tree’ has been used for ’k-degenerate graph’ and ’k-arch
graph’ has been used for ’maximal k-degenerate graph’.

Our examination of k-degenerate graphs will focus on maximal k-degenerate
graphs. Most of the properties given can be generalized with appropriate modi-
fication to all k-degenerate graphs. The most basic result is the size of maximal
k-degenerate graphs; we include a proof for completeness.

Theorem 3. The size of a maximal k-degenerate with order n ≥ k is k ·n−
(
k+1
2

)
.

Proof. If G is k-degenerate, then its vertices can be successively deleted so that
when deleted they have degree at most k. Since G is maximal, the degrees of
the deleted vertices will be exactly k until the number of vertices remaining is at
most k. After that, the n − jth vertex deleted will have degree j. Thus the size
of G is m =

∑k−1
i=0 i+

∑n−1
i=k k = k(k−1)

2 + k (n− k) = k · n−
(
k+1
2

)
.

Thus for k-core-free graphs, maximal and maximum are equivalent. Hence a
k-degenerate graph is maximal if and only if it has size k · n−

(
k+1
2

)
.
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Corollary 4. Every graph with order n, size m ≥ (k − 1)n −
(
k
2

)
+ 1, 1 ≤ k ≤

n− 1, has a k-core.

The basic properties of maximal k-degenerate graphs were established by Lick
and White [11] and Mitchem [13]. An early survey of results appears in [17].

Theorem 5. Let G be a maximal k-degenerate graph of order n, 1 ≤ k ≤ n− 1.
Then

(a) G contains a (k + 1)-clique and for n ≥ k + 2, G contains Kk+2 − e as a

subgraph.

(b) For n ≥ k+2, G has δ(G) = k, and no two vertices of degree k are adjacent.

(c) G has connectivity κ (G) = k.

(d) For any integer r, 1 ≤ r ≤ n, G contains a maximal k-degenerate graph

of order r as an induced subgraph. For n ≥ k + 2, if d (v) = k, then G is

maximal k-degenerate if and only if G− v is maximal k-degenerate.

(e) G is maximal 1-degenerate if and only if G is a tree.

In fact, maximal k-degenerate graphs are one type of generalization of trees.

Several corollaries follow immediately from these basic results.

Corollary 6. Let G be a maximal k-degenerate graph of order n, 1 ≤ k ≤ n− 1.
Then

(a) For k ≥ 2, the number of nonisomorphic maximal k-degenerate graphs of

order k + 3 is 3.

(b) The number of nonisomorphic maximal k-degenerate subgraphs of order n−
1 is equal to the number of vertices of degree k in G that are in distinct

automorphism classes.

Proof. (a) Kk+2− e is the unique maximal k-degenerate graph of order k+2. It
has two automorphism classes of vertices, one with two, one with k. Thus there
are three possibilities for order k + 3.

(b) Deleting any minimum degree vertex yields such a subgraph, and deleting
any other vertex destroys maximality. The subgraphs will be distinct unless two
minimum degree vertices are in the same automorphism class.

A trivial edge cut is an edge cut such that all the edges are incident with one
vertex.

Corollary 7. Let G be a maximal k-degenerate graph of order n, 1 ≤ k ≤ n− 1.
Then G has edge-connectivity κ′ (G) = k, and for k ≥ 2, an edge set is a minimum

edge cut if and only if it is a trivial edge cut.
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Proof. First, k = κ (G) ≤ κ′ (G) ≤ δ (G) = k. Certainly the edges incident
with a vertex of minimum degree form a minimum edge cut. The result holds for
Kk+1. Assume the result holds for all maximal k-degenerate graphs of order r,
and let G have order r + 1, v ∈ G, d (v) = k, H = G − v. Let F be a minimum
edge cut of G. If F ⊂ E (H), the result holds. If F is a trivial edge cut for v, the
result holds. If F contained edges both from H and incident with v, it would not
disconnect H and would not disconnect v from H.

2. Diameter

We can bound the diameter of a maximal k-degenerate graph.

Theorem 8. A maximal k-degenerate graph G with n ≥ k+2 has 2 ≤ diam (G) ≤
n−2
k

+ 1.
If the upper bound is an equality, then G has exactly two vertices of degree k

and every diameter path has them as its endpoints.

Proof. Let G be maximal k-degenerate with r = diam (G). For n ≥ k + 2, G is
not complete, so diam (G) ≥ 2. Now G contains u, v with d (u, v) = r. Now G is
k-connected, so by Menger’s Theorem there are at least k independent paths of
length at least r between u and v. Thus n ≥ k (r − 1) + 2, so r ≤ n−2

k
+ 1.

Let the upper bound be an equality, and d (u, v) = r. Then n = k (r − 1)+2,
and since there are k independent paths between u and v, all the vertices are
on these paths. Thus d (u) = d (v) = k. If another vertex w had degree k,
then G − w would be maximal k-degenerate with κ (G− w) = k − 1, which is
impossible. Thus any other pair of vertices has distance less than r.

The lower bound is sharp. For example, the graph Kk +Kn−k has diameter 2.
The upper bound is sharp for all k. For k = 1, the unique extremal graph is
Pd+1. In general, form a graph as follows. Establish a k× (r − 1) grid of vertices.
Add the edges between vertices vi,j and vs,t if t = j + 1 or t = j = 1. (Thus we
have a graph that decomposes into r − 2 copies of Kk,k and one Kk.) Finally,
add a vertex u adjacent to vi,1 for all i and a vertex v adjacent to vi,r−1 for all i.
It is easily checked that this graph is maximal k-degenerate.

We can provide an operation characterization of graphs that achieve the
upper bound of the previous theorem.

Theorem 9. A maximal k-degenerate graph G has diam (G) = n−2
k

+ 1 if and

only if G can be constructed by the following algorithm.

(1) Begin with either Kk+2K1 or a graph formed from any maximal k-degenerate
graph of order 2k by adding two vertices of degree k with no common neigh-

bors.
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(2) Iterate the following operation. Let v = v0 be vertex of degree k in G with

neighbors {u1, . . . , uk}. Successively add k − 1 vertices {v1, . . . , vk−1} with

degree k when added so that the neighbors of vi are all in {u1, . . . , uk, v0, . . . ,
vi−1}. Then add a new vertex v′ adjacent to {v0, . . . , vk−1}.

Proof. (⇐) The initial graphs satisfy the equality. One iteration of the operation
increases the order by k and the diameter by one, so equality is maintained.

(⇒) Let G be a graph with diam (G) = n−2
k

+ 1. Then G has two vertices u
and v of degree k with d (u, v) = diam (G). Label the vertices with their distance
from u and call the vertices with a common label a column. Then vertices in
non-consecutive columns cannot be adjacent and each internal column contains
exactly k vertices.

We show that G contains a subgraph as provided in 1. G can be con-
structed beginning with Kk+1, and this clique must be contained in two con-
secutive columns. If it contains all of one column and one in an adjacent column,
then the first vertex added on the other side can only be adjacent to all the ver-
tices in the filled column, creating a copy of Kk + 2K1. If not, then constructing
G must add vertices within the two columns that the clique overlaps until one
of them is full. As before, the first vertex added on the other side can only be
adjacent to all the vertices in the filled column. We can separately add vertices
to fill the second column, creating a graph with order 2k, and adding one more
vertex on each side creates the subgraph specified in 1.

Thus G contains a maximal subgraph H that can be constructed using the
algorithm. Assume that this is not all of G. Let u′ and v′ be the opposite vertices
of degree k in H. At least one of these is not u or v, respectively; WLOG assume
this is u′. Now continue constructing G by adding vertices on this side of the
graph. They can only be adjacent to u′, its neighbors, or some of the vertices
previously added. They must fill the column of u′ before a vertex can be added
to the next column, which must be adjacent to all the vertices of the column of
u′. But this is a larger subgraph constructed using the algorithm.

Note that the second part of step 1 is unnecessary when k is 2 or 3, but may be
necessary for larger k.

3. Degree Sequences

We can characterize the degree sequences of maximal k-degenerate graphs. A
different characterization with a longer proof was offered in [2].

Lemma 10. Let G be maximal k-degenerate with order n and nonincreasing

degree sequence d1, . . . , dn. Then di ≤ k + n− i.
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Proof. Assume to the contrary that di > k + n − i for some i. Let H be the
graph formed by deleting the n− i vertices of smallest degree. Then δ (H) > k,
so G has a (k + 1)-core.

Lemma 11. Let d1, . . . , dn be nonincreasing sequence of integers with
∑n

i=1 di =

2(k · n −
(
k+1
2

)
) such that k ≤ di ≤ min {n− 1, k + n− i}. Then at most k + 1

terms of the sequence achieve the upper bound.

Proof. Visualize the problem as stacking boxes in adjacent columns so that the
height of the ith column is di. If all the terms other than dn that achieve the
upper bound are at the beginning of the sequence, then there are at most k, since∑n

i=1 di ≥ k (n− 1) + (n− k) k = 2k · n − k (k + 1). Filling the row at height
k+1 would require n− k− 1 more boxes, which would have to be moved from at
least two of the columns. Similarly, filling more rows requires disrupting at least
as many columns. Thus there are at most k + 1 terms that achieve the upper
bound when all the columns that achieve the upper bound are at the beginning
or end of the sequence. Suppose there is sequence that is a counterexample, and
let it maximize the number of columns at the beginning or end that achieve the
maximum. There must be a column somewhere in the middle that achieves the
upper bound. Then some boxes can be moved to a column or row next to the the
run of those at the beginning or end that to achieve the upper bound, producing
a contradiction.

Similar analysis shows that only n columns at the beginning and one at the end
can achieve the upper bound exactly k+1 times, in which case the corresponding
graph must be Kk +Kn−k.

Theorem 12. A nonincreasing sequence of integers d1, . . . , dn is the degree se-

quence of a maximal k-degenerate graph G if and only if k ≤ di ≤ min{n − 1,
k + n− i} and

∑n
i=1 di = 2(k · n−

(
k+1
2

)
) for 0 ≤ k ≤ n− 1.

Proof. Let d1, . . . , dn be such a sequence.

(⇒) Certainly ∆(G) ≤ n− 1. The other three conditions have already been
shown.

(⇐) For n = k + 1, the result holds for G = Kk+1. Assume the result holds
for order r. Let d1, . . . , dr+1 be a nonincreasing sequence that satisfies the given
properties. Let d′1, . . . , d

′
r be the sequence formed by deleting dr+1 and decreasing

k other numbers greater than k by one, including any that achieve the maximum.
(There are at most k by the preceding lemma.) Then the new sequence satisfies
all the hypotheses and has length r, so it is the degree sequence for some maximal
k-degenerate graph H. Add vertex vr+1 to H, making it adjacent to the vertices
with degrees that were decreased for the new sequence. Then the resulting graph
G has the original degree sequence and is maximal k-degenerate.
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The upper bound in this theorem can be improved.

Corollary 13. For a nonincreasing degree sequence d1, . . . , dn of a maximal k-
degenerate graph, di ≤ k(n−k−1)

i
+ k. Hence

di ≤ min{n− 1,
⌊
k(n−k−1)

i

⌋
+ k, k + n− i}

and for each i, there is some maximal k-degenerate graph that attains this bound.

Proof. Since di ≥ k, di−k ≥ 0. Now i (di − k) ≤ Σn
i=1 (di − k) = Σn

i=1di−k ·n =

2
(
k · n−

(
k+1
2

))
−k·n = k·n−k (k + 1) = k (n− k − 1). Hence di ≤ k(n−k−1)

i
+k.

The next upper bound follows immediately.
Consider stacking boxes as in Lemma 11. Then each column has at least

k, and there are k (n− k − 1) left to work with. If n − 1 is the lowest of the
three bounds, add n− k− 1 boxes to the first k columns. If the second is lowest,

add an additional
⌊
k(n−k−1)

i

⌋
boxes to the first i columns, and distribute any

leftovers arbitrarily. If the third is lowest, add n− i boxes to the first i columns,
and distribute any leftovers arbitrarily. This is possible since in this case, the
third bound is smaller than the second. Then the corresponding sequence attains
the upper bound at i and by the previous theorem, there is some maximal k-
degenerate graph with this degree sequence.

We can bound the maximum degree of a maximal k-degenerate graph. Intuitively,
since there are approximately k · n edges in G, its maximum degree should be at
least 2k, provided that G has order large enough to overcome the constant

(
k+1
2

)

subtracted from the size. The following theorem was proven in [7].

Theorem 14. Let G be maximal k-degenerate of order n.

(1) Let k ≥ 2 and 0 ≤ s ≤ k − 2. If n > k2+(3+2s)k
2(1+s) − s

2 , then ∆(G) ≥ 2k − s.

(2) In particular, if n ≥
(
k+2
2

)
, then ∆(G) ≥ 2k.

(3) If n ≤ 1+
√
1+8k
2 + k, then ∆(G) = n− 1.

Part 2 is the best possible in two senses. First, no larger lower bound for the
minimum degree can be guaranteed, regardless how large the order is. Second,
the hypothesis on n is the smallest that guarantees the result. This can be seen
by constructing a maximal k-degenerate graph so that when added, each new
vertex is made adjacent to the k vertices of smallest degree.

Lemma 15. If G is maximal k-degenerate, then G + v is maximal (k + 1)-
degenerate. If G has a vertex v of degree n − 1, then G − v is maximal (k − 1)-
degenerate.

Corollary 16. Let d1, . . . , dn be the nonincreasing degree sequence of a maximal

k-degenerate graph G with k ≥ 2 and 0 ≤ s ≤ k − 2. If n > k2+(3+2s)k
2(1+s) − s

2 , then

di ≥ 2k + 1− s− i.
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Proof. The previous theorem shows this for d1. If d1 < n − 1, then by shifting
boxes as in Lemma 11, we can find a maximal k-degenerate graph G∗ with the
same order so that d∗1 = n−1 and d∗i ≤ di. Then H = G∗−v∗1 is maximal (k−1)-

degenerate with order n − 1 ≥
(
k2+(3+2s)k

2(1+s) − s
2

)
− 1 ≥ (k−1)2+(3+2s)(k−1)

2(1+s) − s
2 .

Thus ∆ (H) ≥ 2 (k − 1)− s, so d2 ≥ d∗2 ≥ 2 (k − 1)− s+1 = 2k− s− 1. Iterating
this process produces the result for larger i.

The following relationship between the numbers of vertices of different degrees
was proved in [2].

Proposition 17. Let G be maximal k-degenerate with ∆(G) = r, n ≥ k+1, and
ni the number of vertices of degree i, k ≤ i ≤ r. Then

∑r
i=k (i− 2k)ni + k (k + 1) = 0.

4. Edge Coloring

A proper edge coloring of a graph assigns a color to each edge so that adjacent
edges are colored differently. The edge chromatic number of a graph, χ1 (G), is
the smallest number of colors that can be used in a proper edge coloring. Clearly
the edge chromatic number is at least as large as the maximum degree. Vizing
showed that it is never more than ∆ (G) + 1. A graph is called class one if
χ1 (G) = ∆ (G), and class two if χ1 (G) = ∆ (G) + 1. Determining which of the
two is the case is a difficult problem in general. We consider this problem for
maximal k-degenerate graphs. It is easily shown that every tree is class one.

Zhou Goufei [8] proved the following result on edge coloring of k-degenerate
graphs. Its proof uses Vizing’s adjacency lemma.

Theorem 18. Every k-degenerate graph with ∆ ≥ 2k is class one.

This theorem and Theorem 14 produce the following corollary.

Corollary 19. If G is maximal k-degenerate with n ≥
(
k+2
2

)
, then G is class

one.

This implies that almost all maximal k-degenerate graphs are class one. In par-
ticular, this theorem implies that if G is 2-degenerate and ∆ (G) ≥ 4, then G is
class one.

A graph G is overfull if n is odd and m > n−1
2 ∆(G). It is easily seen that an

overfull graph is class two. This result and the preceding theorem imply that the
only maximal 2-degenerate graphs of class two are K3 and K4 with a subdivided
edge.
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Conjecture 20. A maximal k-degenerate graph is class two if and only if it is

overfull.

A related conjecture is the overfull conjecture [5].

Conjecture 21 (Overfull Conjecture). If a graph G with n vertices has ∆(G) >
n
3 , then G is Class 1 if and only if G has no overfull subgraph H with ∆(G) =
∆ (H).

If a maximal k-degenerate graph has an overfull subgraph with the same maxi-
mum degree then it is itself overfull. Also, the largest order than can could violate

this conjecture is
(
k+2
2

)
− 1. Now

(k+2

2 )−1

3 ≤ 2k − 1 implies k ≤ 9+
√
57

2 < 9. Thus
for small k, (1 ≤ k ≤ 8) the overfull conjecture implies Conjecture 20.

Conjecture 20 holds for k = 3.

Theorem 22. The maximal 3-degenerate graphs of class two are exactly K3,

K5 − e, and all those of order 9 and maximum degree 5.

Proof. This is easily checked for orders 1–5. Maximal 3-degenerate graphs of
order 9 and maximum degree 5 have m = 3 ·9−6 = 21 > 20 = 9−1

2 5 = n−1
2 ∆ and

hence are overfull. By the previous theorems, maximal 3-degenerate graphs with
∆ ≥ 6 and n ≥ 10 are class one. Thus we need only check graphs with orders
6–8 and maximum degree 5.

There are three maximal 3-degenerate graphs of order 6, G1 = K3 + K3 =
K6 − K3, G2 = P4 + K2 = K6 − P4, and G3 = K6 − (P3 ∪K2). They can be
5-edge colored as in the first table below. Now the orbits are {1, 2, 3} , {4, 5, 6}
for G1, {1, 4} , {2, 3} , {5, 6} for G2, and {1, 2} , {3} , {4, 5} , {6} for G3. Hence up
to isomorphism, there are respectively 1, 2, and 5 maximal 3-degenerate graphs
of order 7 and maximum degree 5 that can be built off these three graphs (there
are seven total since one is repeated among the last two sets). By labeling the
vertices with the colors not used on edges incident with them as in the second
table, it is easy to check that the 5-edge colorings can be extended in each case.

Label G1 G2 G3

1 23,16 23,46 23,56
2 13,24 13,24 13,24
3 14,25,36 14,25,36 14,25,36
4 15,34,26 15,34,26 15,34
5 12,35 12,35 12,35,46

absent 45,46,56 45,16,56 45,16,26

Vertex G1 G2 G3

1 x 1 1
2 x x 4
3 x x x
4 1,5 5 1
5 1,2 1,2 2
6 2,5 2,5 2,4

Now each maximal 3-degenerate graph of order 7 and maximum degree 5 has size
15, so each edge color class contains three edges and misses one of the vertices.
Hence when adding a vertex adjacent to three vertices of degree less than five,
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the 5-edge coloring can be extended to the new vertex. Thus all maximal 3-
degenerate graphs of order 8 are class one.

The only overfull maximal 4-degenerate graphs are K3 and K5. Conjecture 20
is easily verified for maximal 4-degenerate graphs with ∆ (G) ≤ 6. An argument
similar to that used in the last paragraph of the proof of the previous theorem
would extend 7-edge colorings of maximal 4-degenerate graphs with order 13 and
∆ (G) = 7 to order 14. Hence only these graphs need to be checked to verify the
conjecture for k = 4.

5. Decompositions and Arboricity

Maximal k-degenerate graphs have some interesting decompositions.

Theorem 23. Let t1, . . . , tr be r positive integers which sum to t. Then a maxi-

mal t-degenerate graph can be decomposed into r graphs with degeneracies at most

t1, . . . , tr, respectively.

Proof. Consider sucessively deleting vertices of a maximal t-degenerate graph G
so that each vertex has degree at most t when deleted. When a vertex is deleted,
the edges incident with it can be allocated to r subgraphs with at most t1, . . . , tr
edges going to the respective subgraphs. Thus the subgraphs have at most the
stated degeneracies.

In particular, a k-degenerate graph decomposes into k forests. These can be
almost trees, except for the initial k-clique. The graph G/H is formed by con-
tracting the subgraph H of G to a single vertex.

Corollary 24. A maximal k-degenerate graph G of order n ≥ k can be decom-

posed into Kk and k trees of order n− k + 1, which span G/Kk.

Proof. If n = k, G = Kk, so let the k trees be k distinct isolated vertices. Build
G by successively adding vertices of degree k. Allocate one edge to each of the
k trees in such a way that each is connected. To do this, assign an edge incident
with a vertex of the original clique to the unique tree containing that vertex. Any
other edges can be assigned to any remaining tree, since every tree contains every
vertex not in the original clique.

Note that if k is odd, a maximal k-degenerate graph decomposes into k trees of
order n − k−1

2 , since given k = 2r − 1, K2r can be decomposed into k trees of
order r + 1.
The previous corollary also implies that a maximal 2-degenerate graph has two
spanning trees that contain all its edges and overlap on exactly one edge. This
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’overlap edge’ can be any edge that is the last to be deleted by the k-core algo-
rithm.

Definition. The edge-arboricity, or simply arboricity a1 (G) is the minimum
number of forests into which G can be decomposed. The a-density of a nontrivial
graph G is m

n−1 .

Nash-Williams [14] (see also [4] and [9]) showed that for every nonempty graph G,

a1 (G) = max
⌈

m(H)
n(H)−1

⌉
, where the maximum is taken over all induced subgraphs

H of G. This maximum may be difficult to calculate in general.
We now determine an explicit formula for the arboricity of maximal k-

degenerate graphs. This question has been previously considered in [15]. We
provide a much shorter proof. Note that it follows immediately from Theorem
23 that if G is maximal k-degenerate, then a1 (G) ≤ k. The arboricity may be
smaller if n is small relative to k.

Theorem 25. Let G be maximal k-degenerate. Then a1 (G) =
⌈
k −

(
k
2

)
1

n−1

⌉
.

Proof. A maximal k-degenerate graph of order n has size m = k · n −
(
k+1
2

)
.

Then its a-density is m
n−1 =

[
k · n−

(
k+1
2

)]
1

n−1 = k +
[
k −

(
k+1
2

)]
1

n−1 = k −
(
k
2

)
1

n−1 . Note that this function is monotone with respect to n. Now any subgraph
of a k-degenerate graph is also k-degenerate, so this implies that any proper
subgraph of G has smaller a-density. Then by Nash-Williams’ theorem, a1 (G) =⌈
k −

(
k
2

)
1

n−1

⌉
.

Since any graph with Ĉ (G) = k is contained in a maximal k-degenerate graph,
this theorem implies that the bound a1 (G) ≤ Ĉ (G) is sharp for all k. More
specifically, for a given k, it is sharp for all n ≥

(
k
2

)
+2. For n ≤

(
k
2

)
+1, it is not

sharp. But this theorem implies the following easy-to-calculate upper bound.

Corollary 26. Let k = Ĉ (G). Then a1 (G) ≤
⌈
k −

(
k
2

)
1

n−1

⌉
.

In our efforts to reduce the number of subgraphs of a graph G that must be
checked to determine its arboricity, we can also bound the orders of the subgraphs.
Clearly a very small subgraph has no chance of achieving the maximum.

Corollary 27. Let G be a graph with k = Ĉ (G) containing a subgraph with

a-density d < k. Then any subgraph of maximum a-density has order at least

n ≥
(
k
2

)
1

k−d
+ 1.

Proof. A subgraph H with maximum core number k has maximum a-density
when it is maximal k-degenerate. Thus the order n ofH must satisfy k−

(
k
2

)
1

n−1 ≥
d. This is equivalent to k−d ≥

(
k
2

)
1

n−1 , and n ≥
(
k
2

)
1

k−d
+1, so the result follows.
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Thus determining the arboricity can be simplified by checking subgraphs of rel-
atively large order.

6. k-trees

There is one particular subclass of maximal k-degenerate graphs that is of inter-
est.

Definition. A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of making a new vertex adjacent to all the vertices of a
k-clique of the existing graph. The clique used to start the construction is called
the root of the k-tree.

It is easy to see that a k-tree is maximal k-degenerate. A 1-tree is just a tree.
However, k-trees and maximal k-degenerate graphs are not equivalent for k ≥ 2.

In fact, every maximal k-degenerate graph of order n ≥ k + 1 contains an
induced k-tree. For n ≥ k + 2, Kk+2 − e must occur. No larger k-tree can
be guaranteed. For example, let U be a k-element set of vertices of Kk+2 − e
containing both vertices of degree k, and let V be the partite set of order k of
Kk,r. Then (Kk+2 − e) ∪

U=V
Kk,r, where the union identifies the sets U and V ,

has order n ≥ k + 3 and no larger induced k-tree.

Theorem 28. Every maximal k-degenerate graph G of order n ≥ k+1 contains

a unique k-tree of largest possible order containing a (k + 1)-clique that can be

used to begin the construction of G.

Proof. It is obvious that every maximal k-degenerate graph can be constructed
beginning with a maximal k-tree. We prove uniqueness. Suppose to the contrary
that there is a maximal k-degenerate graph containing two distinct maximal
k-trees either of which can be used to begin its construction. Let G be a coun-
terexample of minimum order n ≥ k + 3 containing k-trees T1 and T2. Divide
the vertices of G into V (T1), V (T2), and S = V (G) − V (T1) − V (T2). Now G
has at least one vertex v of degree k. If v ∈ S, then G − v can be constructed
starting with either k-tree, so there is a smaller counterexample. If v ∈ V (T1)
and n (T1) ≥ k + 2, then G − v can be still be constructed starting with some
other vertex of T1, so there is a smaller counterexample. If v ∈ V (Ti), i ∈ {1, 2},
and Ti = Kk+1, then G cannot be constructed starting with Ti since any maximal
k-tree that can be used to begin construction of G must contain Kk+2 − e. Thus
in any case we have a contradiction.

We offer two characterizations of k-trees as maximal k-degenerate graphs. A
graph is chordal if every cycle of length more than three has a chord, that is, it
contains no induced cycle other than C3.
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Theorem 29. A graph G is a k-tree if and only if G is maximal k-degenerate
and G is chordal with n ≥ k + 1.

Proof. (⇒) Let G be a k-tree. Then G is clearly maximal k-degenerate. If G
is not chordal, then there is a minimal counterexample H which must contain a
chordless cycle C that by minimality contains a vertex v of degree k. But since
all the neighbors of v are adjacent, C must have a chord.

(⇐) Assume G is maximal k-degenerate and chordal. If k = 1, it is immediate
that G is a k-tree, so assume that k ≥ 2. If n = k + 1, G is certainly a k-tree.
Assume the result holds for order r, and let G have order r + 1. Then G has a
vertex v of degree k. If the neighbors of v do not induce a clique, then v has
two nonadjacent neighbors x and y. Since G is k-connected, the graph formed
by deleting all the neighbors of v except x and y is 2-connected. Thus an x − y
path of shortest length in G− v together with yv and vx would produce a cycle
with no chord. Since G− v is a k-tree, so is G.

The second characterization of k-trees as maximal k-degenerate graphs involves
subdivisions.

Theorem 30. A maximal k-degenerate graph is a k-tree if and only if it contains

no subdivision of Kk+2.

Proof. (⇒) Let G be a k-tree. Certainly Kk+1 contains no subdivision of Kk+2.
Suppose G is a counterexample of minimum order with a vertex v of degree k.
Then G − v is a k-tree with no subdivision of Kk+2, so the subdivision in G
contains v. But then v is not one of the k + 2 vertices of degree k + 1 in the
subdivision, so it is on a path P between two such vertices. Let its neighbors on
P be u and w. But since the neighbors of v form a clique, uw ∈ G− v, so P can
avoid v, implying G− v has a subdivision of Kk+2. This is a contradiction.

(⇐) Let G be maximal k-degenerate and not a k-tree. Since G is constructed
beginning with a k-tree, for a given construction sequence there is a first vertex
in the sequence that makes G not a k-tree. Let v be this vertex, and H be
the maximal k-degenerate subgraph induced by the vertices of the construction
sequence up to v. Then n (H) ≥ k + 3, dH (v) = k, v has nonadjacent neighbors
u and w, and H − v is a k-tree. Now there is a sequence of at least two (k + 1)-
cliques starting with one containing u and ending with one containing w, such
that each pair of consecutive (k+1)-cliques in the sequence overlap on a k-clique.
Then two of these cliques and a path through v produces a subdivision of Kk+2.

Dirac [6] determined the minimum size of a graph G of order n that will guarantee
that G contains a subdivision of K4. We can prove this simply and determine
the extremal graphs.
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Corollary 31. If G has m ≥ 2n − 2, then G contains a subdivision of K4, and

the graphs of size 2n − 3 that fail to contain a subdivision of K4 are exactly the

2-trees.

Proof. Let G have m ≥ 2n− 2 = (3− 1)n−
(
3
2

)
+1. By Corollary 4, G contains

a 3-core. It is known that every 3-core contains a subdivision of K4. If a graph of
size 2n− 3 has no 3-core, it is maximal 2-degenerate. By the previous theorem,
exactly the 2-trees do not contain a subdivision of K4.

A natural generalization of this result is that if m ≥ 3n− 5, G contains a subdi-
vision of K5. This was conjectured by Dirac and proved by Mader [12] using a
much more intricate argument.

7. Ramsey Core Numbers

The problem of Ramsey numbers is one of the major problems of extremal
graph theory. Given positive integers t1, t2, . . . , tk, the classical Ramsey num-
ber r (t1, . . . , tk) is the smallest integer n such that for any decomposition of Kn

into k factors, for some i, the ith factor has a ti-clique. This problem can be
modified to require the existence of other classes of graphs. Since classical Ram-
sey numbers are defined, which is not trivial to show, such modifications are also
defined, since every finite graph is a subgraph of some clique. When considering
cores, the following modified problem arises naturally.

Definition. Given nonnegative integers t1, t2, . . . , tk, the Ramsey core number
rc (t1, t2, . . . , tk) is the smallest n such that for all edge colorings of Kn with k
colors, there exists an index i such that the subgraph induced by the ith color,
Hi, has a ti-core.

Several basic results can be obtained immediately.

Proposition 32. (1) rc (t1, t2, . . . , tk) ≤ r (t1 + 1, . . . , tk + 1).

(2) For any permutation σ of [k], rc (t1, t2, . . . , tk) = rc
(
tσ(1), tσ(2), . . . , tσ(k)

)
.

(3) rc (0, t2, . . . , tk) = 1.

(4) rc (1, t2, . . . , tk) = rc (t2, . . . , tk).

We can easily determine some classes of multidimensional Ramsey core numbers.

Proposition 33. Let t1 = t2 = · · · = tk = 2. Then rc (t1, t2, . . . , tk) = 2k + 1.

Proof. It is well known that the complete graph K2k can be decomposed into k
spanning paths, each of which has no 2-core. Thus rc (2, 2, . . . , 2) ≥ 2k+1. K2k+1

has size
(
2k+1
2

)
= k (2k + 1), so if it decomposes into k graphs, one of them has

at least 2k + 1 edges, and hence contains a cycle. Thus rc (2, 2, . . . , 2) = 2k + 1.
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The technique of this proof suggests a general upper bound for Ramsey core
numbers.

Definition. The multidimensional upper bound for the Ramsey core number
rc (t1, t2, . . . , tk) is the function B (t1, t2, . . . , tk), where T =

∑
ti and

B (t1, . . . , tk) =
⌈
1
2 − k + T +

√
T 2 −∑

t2i + (2− 2k)T + k2 − k + 9
4

⌉
.

With a definition like that, this had better actually be an upper bound.

Theorem 34 (The Upper Bound). rc (t1, t2, . . . , tk) ≤ B (t1, . . . , tk).

Proof. The size of a maximal k-core-free graph of order n is (k − 1)n−
(
k
2

)
. Now

by the Pigeonhole Principle, some Hi has a ti-core when
(
n
2

)
≥ ∑k

i=1((ti − 1)n−(
ti
2

)
) + 1. This is equivalent to n2 − n ≥ 2n

∑k
i=1 (ti − 1)−∑k

i=1

(
t2i − ti

)
+ 2.

This is a quadratic inequality n2 − bn + c ≥ 0 with b = 1 + 2
∑

ti − 2k and

c =
∑(

t2i − ti
)
−2. By the quadratic formula, n ≥ 1

2

(
b+

√
b2 − 4c

)
and b2−4c =

(1+4T − 4k+4T 2− 8kT +4k2)− (4
∑

t2i − 4T − 8) = 4(T 2−∑
t2i +(2− 2k)T +

k2 − k + 9
4).

Thus n ≥
⌈
1
2 − k + T +

√
T 2 −∑

t2i + (2− 2k)T + k2 − k + 9
4

⌉
= B(t1, . . . , tk).

Now rc (t1, . . . , tk) ≤ min {n |n ≥ B (t1, . . . , tk)} = B (t1, . . . , tk).

Thus to show that a Ramsey core number achieves the upper bound, we must
find a decomposition of the complete graph of order B (t1, . . . , tk) − 1 for which
none of the factors contain the stated cores. To prove this, we state the following
theorem due to R. Klien and J. Schonheim [10].

Theorem 35. Any complete graph with order n < B (t1, . . . , tk) has a decompo-

sition into k subgraphs with degeneracies at most t1 − 1,. . . , tk − 1.

The proof of this theorem is difficult. It uses a complicated algorithm to construct
a decomposition of a complete graph with order satisfying the inequality into k
subgraphs given a decomposition of a smaller complete graph into k−1 subgraphs
without the first k − 1 cores, a copy of Ktk , and some extra vertices. Thus the
proof that the algorithm works uses induction on the number of subgraphs.

Using this theorem, proving the conjecture is not hard.

Theorem 36. We have rc (t1, t2, . . . , tk) = B (t1, . . . , tk).

Proof. We know that B (t1, . . . , tk) is an upper bound. By the previous theorem,
there exists a decomposition of the complete graph of order B (t1, . . . , tk) − 1
such that subgraph Hi has degeneracy ti − 1, and hence has no ti-core. Thus
rc (t1, t2, . . . , tk) > B (t1, . . . , tk)− 1, so rc (t1, t2, . . . , tk) = B (t1, . . . , tk).
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s\t 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12

2 3 5 6 8 9 10 12 13 14 15 17

3 4 6 8 10 11 13 14 15 17 18 19

4 5 8 10 11 13 15 16 18 19 20 22

5 6 9 11 13 15 16 18 20 21 23 24

6 7 10 13 15 16 18 20 21 23 25 26

7 8 12 14 16 18 20 22 23 25 26 28

Table 1. Values of some 2-dimensional Ramsey core numbers.

Since the exact answer depends on a complicated construction, some simpler
constructions remain of interest.

Lemma 37. We have rc (t1 + 1, t2, . . . , tk) ≥ rc (t1, . . . , tk) + 1.

Proof. Let n = rc (t1 + 1, t2, . . . , tk). Then there exists a decomposition of
Kn−1 with each factor having no ti-core for all i. Consider the decomposition
of Kn formed from the previous decomposition by joining a vertex to the first
factor. Then the first factor has no t1 + 1-core. Thus rc (t1 + 1, t2, . . . , tk) ≥
rc (t1, . . . , tk) + 1.

The formula for rc (2, t) can be expressed in another form, and proven using a
simple construction.

Theorem 38. Let t =
(
r
2

)
+ q, 1 ≤ q ≤ r. Then rc (2, t) =

(
r
2

)
+ r + q + 1 =

t+ r + 1 = B (2, t) .

Proof. We first show that the Upper Bound for rc (2, t) can be expressed as
a piecewise linear function with each piece having slope one and breaks at the

triangular numbers. Let t =
(
r
2

)
. Let B′ (s, t) = s+ t− 3

2 +
√
2 (s− 1) (t− 1) + 9

4 .

Then B (s, t) = ⌈B′ (s, t)⌉. Now B′ (2, t) = 2 + t − 3
2 +

√
2 · 1 (t− 1) + 9

4 =

t + 1
2 +

√
2 r(r−1)

2 + 1
4 = t + 1

2 +

√(
r − 1

2

)2
= t + r, which is an integer. Now

B′ (2, t+ 1) > t+r+1, so B (2, t+ 1) ≥ t+r+2. Then B (2, t+ q) ≥ t+r+1+q
for q ≥ 1 by the Lower Bound. Now B′ (2, t+ r) = B′

(
2,
(
r+1
2

))
= t+ r + r + 1,
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an integer. Thus B (2, t+ r) = t + r + r + 1, so B (2, t+ q) ≤ t + r + 1 + q for
1 ≤ q ≤ r by the previous lemma. Thus B (2, t+ q) = t + r + 1 + q, 1 ≤ q ≤ r,
so rc (2, t) ≤ t+ r + 1 for t =

(
r
2

)
+ q.

We next show that the upper bound is attained with an explicit construction.
Let T be a caterpillar whose spine with length r is

r − r − (r − 1)− (r − 2)− · · · − 4− 3− 2,

where a number is the degree of a vertex and end-vertices are not shown. Now T
has [(r − 1) + (r − 2) + (r − 3) + · · ·+ 2 + 1]+ 1 =

(
r
2

)
+1 leaves, so it has order

n =
(
r
2

)
+ r + 1. The degrees of corresponding vertices in T and T must add up

to n− 1 =
(
r
2

)
+ r. Then the degrees of corresponding vertices in T are
(
r
2

)
,
(
r
2

)
,
(
r
2

)
+ 1,

(
r
2

)
+ 2, . . . ,

(
r
2

)
+ r − 3,

(
r
2

)
+ r − 2.

Take the
((

r
2

)
+ 1

)
-core of T . The first two vertices will be deleted by the k-

core algorithm. The pth vertex will be deleted because it has degree
(
r
2

)
+p−2 and

is adjacent to the first p−2 vertices, which were already deleted. Thus all the spine
vertices will be deleted, leaving

(
r
2

)
+1 vertices, which must also be deleted. Thus

T has no
((

r
2

)
+ 1

)
-core, and T has no 2-core. Thus rc

(
2,
(
r
2

)
+ 1

)
≥

(
r
2

)
+r+1+1.

Thus rc
(
2,
(
r
2

)
+ q

)
≥

(
r
2

)
+ r + 1 + q by the Lower Bound.

Thus rc (2, t) = t+ r + 1 for t =
(
r
2

)
+ q, 1 ≤ q ≤ r.
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