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ABSTRACT

We present results of computer experiments that indicate that several RNAs for which the native state (minimum free energy
secondary structure) is functionally important (type III hammerhead ribozymes, signal recognition particle RNAs, U2 small
nucleolar spliceosomal RNAs, certain riboswitches, etc.) all have lower folding energy than random RNAs of the same length
and dinucleotide frequency. Additionally, we find that whole mRNA as well as 5�-UTR, 3�-UTR, and cds regions of mRNA have
folding energies comparable to that of random RNA, although there may be a statistically insignificant trace signal in 3�-UTR
and cds regions. Various authors have used nucleotide (approximate) pattern matching and the computation of minimum free
energy as filters to detect potential RNAs in ESTs and genomes. We introduce a new concept of the asymptotic Z-score and
describe a fast, whole-genome scanning algorithm to compute asymptotic minimum free energy Z-scores of moving-window
contents. Asymptotic Z-score computations offer another filter, to be used along with nucleotide pattern matching and mini-
mum free energy computations, to detect potential functional RNAs in ESTs and genomic regions.
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INTRODUCTION

In Le et al. (1990b), it was shown that RNA stem–loop
structures situated 3� to frameshift sites of retroviral gag–
pol and pro–pol regions of several viruses (human immu-
nodeficiency virus HIV-1, Rous sarcoma virus RSV, etc.)
are thermodynamically stable and recognizable among po-
sitions 300 nt upstream and downstream of the frameshift
site. Using Zuker’s algorithm4 (Zuker and Stiegler 1981;
Mathews et al. 2000; Zuker 2003) to compute the minimum
free energy (mfe) secondary structure for RNA, Le et al.
(1990a) showed that certain RNAs have lower folding en-
ergy (i.e., minimum free energy of predicted secondary
structure) than random RNA of the same mononucleotide
(or compositional) frequency. This was measured by per-
forming permutations (i.e., mononucleotide shuffles) of
nucleotide positions, subsequently computing the Z-score5

of the minimum free energy (mfe) of real versus random
RNA—see Materials and Methods for details.

In Seffens and Digby (1999), it was shown that the fold-
ing energy of mRNA is lower than that of random RNA of
the same mononucleotide frequency, as measured by the
Z-score of the mfe secondary structure of mRNA versus
mononucleotide shuffles of mRNA. In Rivas and Eddy
(2000), a moving-window, whole-genome scanning algo-
rithm was developed to compute Z-scores of windows of a
genome with respect to mononucleotide shuffles of the win-
dow contents. By constructing artificial data with samples of
real RNA (RNase-P RNA, T5 tRNA, soy bean SSU, etc.)
planted in the center of a background sequence of random
RNA of the same compositional frequency, Rivas and Eddy
(2000; see their Figs. 4–11) found that the planted RNA had
a low Z-score, as expected; however, other regions of the
artificial data displayed low Z-scores as well, and by con-
sidering p-values for an assumed extreme value distribu-
tion, Rivas and Eddy subsequently argued that determining
Z-scores of genomic window contents is statistically notReprint requests to: Peter Clote, Department of Biology, Higgins 416,

Boston College, Chestnut Hill, MA 02467, USA; e-mail: clote@bc.edu; fax:
(617) 552-2011.

Article and publication are at http://www.rnajournal.org/cgi/doi/
10.1261/rna.7220505.

4Zuker’s algorithm was first implemented in Zuker’s mfold, subse-
quently in Hofacker et al.’s Vienna RNA Package RNAfold, and most
recently in Mathews and Turner’s RNAstructure.

5The Z-score of x (with respect to a histogram or probability distribu-
tion) is the number of standard deviation units to the left or right of the
mean for the position where x lies, that is, (x − µ)/�.
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reliable enough to allow one to construct an RNA gene
finder on this basis.6

In Workman and Krogh (1999), it was noted that Zuker’s
algorithm (Zuker and Stiegler 1981) computes secondary
structure minimum free energy (mfe) by adding contribu-
tions of negative (stabilizing) energy terms for stacked base
pairs and positive (destabilizing) energy terms for hairpin
loops, bulges, internal loops, and multiloops. In Zuker’s
algorithm, experimentally determined stacked base pair en-
ergies and loop energies for various lengths of hairpin,
bulge, and internal loop are used, as determined by D.
Turner’s lab (see Mathews et al. 1999). The energy term
contributed by a base pair depends on the base pair (if any)
upon which it is stacked; for instance, Turner’s current rules
(Xia et al. 1998) at 37°C assign stacking free energy of −2.24
kcal/mol to

5� − AC − 3�
3� − UG − 5�

of −3.26 kcal/mol to

5� − CC − 3�
3� − GG − 5�

and of −2.08 kcal/mol to

5� − AG − 3�
3� − UC − 5�.

For this reason, Workman and Krogh (1999) argued that
random RNA must be generated with the same dinucleotide
frequency, for any valid conclusions to be drawn. Their
experiments using mfold indicated that, in contrast to the
results of Seffens and Digby (1999) mentioned above,
mRNA does not have any statistically significant lower mfe
than random RNA of the same dinucleotide frequency. This
is consistent with the idea that mRNA exists in an ensemble
of low-energy states, lacking any functional structure.
Workman and Krogh additionally considered a small
sample of five rRNAs and five tRNAs; for the latter, they
stated, “Surprisingly, the tRNAs do not show a very clear
difference between the native sequence and dinucleotide
shuffled, and one of the native sequences even has a higher
energy than the average of the shuffled ones” (Workman
and Krogh 1999).

In this paper, we use Zuker’s algorithm as implemented
in version 1.5 of Vienna RNA Package RNAfold (http://
www.tbi.univie.ac.at/∼ivo/RNA/) to compute minimum
free energy for RNA sequences, and analyze the following

RNA classes: tRNA, hammerhead type III ribozymes,
SECIS7 elements, U1 and U2 small nuclear RNA (snRNA)
components of the spliceosome, signal recognition particle
RNA (srpRNA), seven classes of riboswitches (namely, Pu-
rine, Lysine, Cobalamin, THI element, S-box leader, RFN
element, ykoK element), 5S ribosomal RNA, entire mRNA,
as well as the 3�-UTR (untranslated region), 5�-UTR, and
coding sequence (cds) of mRNA. Structural RNAs were
chosen using information from the Rfam database (Grif-
fiths-Jones et al. 2003) and the SCOR (Structural Classifi-
cation of RNA) database (Klosterman et al. 2002). While
Workman and Krogh (1999) use a heuristic to perform
dinucleotide shuffle, their heuristic is not guaranteed to
correctly sample random RNAs having a given number of
dinucleotides, and thus we have implemented the provably
correct procedure of Altschul and Erickson (1985). We pro-
vide both Python source code as well as a Web server for
our implementation of the Altschul-Erikson algorithm8 (see
http://clavius.bc.edu/∼clotelab/). The work of the present
paper validates the conclusion of Workman and Krogh
(1999) concerning mRNA. Concerning their conclusion
about tRNA, by using the database of 530 tRNAs (Sprinzl et
al. 1998), where we generated 1000 random RNAs for each
tRNA considered,9 we show that Z-scores for tRNA are low
(∼−1.5), although not as low as certain other classes of
structural RNA (∼−4), and that there is a statistically sig-
nificant, although moderate signal in the Z-scores of tRNA
from Sprinzl’s database, with p-values of ∼0.12. See the
related work of Bonnet et al. (2004), who investigate Z-
scores and p-values10 of minimum free energy for precursor
microRNAs.

Additionally, in this paper, we introduce the novel con-
cept of the “asymptotic Z-score,” and by proving an asymp-
totic limit for the mean and standard deviation of mini-
mum free energy per nucleotide for random RNA, we
indicate how to perform certain precomputations that en-
tail an enormous speed-up when computing asymptotic Z-
scores for whole-genome, sliding-window scanning algo-
rithms. This method provides a filter, which may be used
along with (approximate) pattern matching, minimum free
energy computations, and other filters, when attempting to
determine putative functional RNA genes in ESTs and ge-
nomic data.

Various researchers have used a combination of filters to

6Figures 12 and 13 of Rivas and Eddy (2000) are similar to some of the
graphs presented in this paper; however, unlike our work, Rivas and Eddy
(2000) use mononucleotide shuffles to produce random sequences. As
previously observed in Workman and Krogh (1999) when computing Z-
scores for minimum free energies of RNA, it is important to generate
random sequences that preserve dinucleotide frequency of the given RNA.
Our work presents a careful analysis of a large class of RNAs using the
dinucleotide shuffling Algorithm 4.

7SECIS abbreviates “selenocysteine insertion sequence,” a small (30–45
nt) portion of the 3�-UTR that forms a stem–loop structure necessary for
the UGA stop codon to be retranslated to allow selenocysteine incorpora-
tion.

8After completion of this paper, we learned of the more general Web
server Shufflet (Coward 1999).

9The work of Workman and Krogh (1999) focuses on mRNA, and only
at the end of their article do they consider a small collection of five tRNAs,
where 100 random RNAs are generated per tRNA.

10Bonnet et al. (2004) compute p-values of minimum free energy not
not p-values of Z-scores as done in this paper.
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determine potential RNAs of interest. Kryukov et al. (1999)
developed the program SECISearch, which uses PATSCAN
(Dsouza et al. 1997) to filter for approximate matching
nucleotide sequences for SECIS elements (e.g., there is a
required AA dinucleotide in an internal loop region of the
secondary structure of the SECIS element, as well as certain
other nucleotide constraints). Subsequently, SECISearch
uses Vienna RNA Package RNAfold to compute free ener-
gies related to the SECIS secondary structure. Lescure et al.
(1999) developed a filter using the tool RNAMOT
(Gautheret et al. 1990; Laferriere et al. 1994) to find ap-
proximate pattern matches in human ESTs for known
SECIS stem–loop structure with certain nucleotide con-
straints. After experimentally validating the SECIS elements
found in Lescure et al. (1999), the secondary structure of
valid SECIS elements was found by chemical probing in
Fagegaltier et al. (2000).

In Lim et al. (2003), vertebrate microRNA (miRNA)
genes were found by devising a computational procedure,
MiRscan, to identify potential miRNA genes. MicroRNAs
(Harborth et al. 2003; Tuschl 2003) are 21-nt RNA se-
quences that form a known stem–loop secondary structure,
are (approximately) the reverse complement of a portion of
transcribed mRNA, and prevent the translation of protein
product. MiRscan (Lim et al. 2003) involves a moving-
window scan of 110-nt regions of the genome, and by using
the Vienna RNA Package (C. Burge, pers. comm.), deter-
mines stem–loop structures, then assigns a log-likelihood
score to each window to determine how well its attributes
resemble those of certain experimentally verified miRNAs
of Caenorhabditis elegans and Caenorhabditis briggsae ho-
mologs.

Klein et al. (2002) scanned for GC-rich regions in the
AT-rich genomes of Methanococcus jannaschii and Pyrococ-
cus furiosus to determine noncoding RNA genes. Recently,
Hofacker et al. (2004) developed a fast, whole-genome ver-
sion of RNAfold, which determines the minimum free en-
ergy structure of RNA from whole genomes, in which base-
paired indices i, j are required to be of at most a user-
specified distance (e.g., 100 nt). See the additional relevant

work of Eddy (2001, 2002), Macke et al. (2001), and Washietl
and Hofacker (2004).

Although Rivas and Eddy (2000) argued that genome
scanning computations of Z-scores, in which randomized
window contents preserve mononucleotide frequency (Al-
gorithm 2), are not statistically significant enough to be
used as a base for a general ncRNA gene finder, it is nev-
ertheless possible that Z-score computations, in which ran-
domized window contents preserve dinucleotide frequency
(Algorithms 3 or 4), may be used as one of several filters to
determine RNA of interest. Such Z-score computations, es-
pecially for large window size, are enormously time-con-
suming. Owing to a precomputation phase, asymptotic Z-
scores, introduced in this paper, may provide a computa-
tionally efficient filter to identify certain RNA. In all of our
computational experiments, asymptotic Z-scores, when
compared to (classical) Z-scores, have substantially higher
signal-to-noise ratio,11 although at present we have no un-
derstanding of why this is so.

RESULTS

As described in detail in Materials and Methods, we per-
formed experiments on tRNA, SECIS elements, hammer-
head type III ribozymes, and other structural RNAs, as well
as whole mRNA and the cds, 5�-UTR and 3�-UTR regions
of mRNA. For each RNA sequence s from a given class (e.g.,
tRNA), we compute the minimum free energy of s, as well
as that of a large number of random RNA having the same
expected (Algorithm 3) or the same exact (Algorithm 4)
dinucleotide frequency as that of s. From these data, we
compute the Z-score (number of standard deviation units
to the right or left of the mean) for each RNA sequence, and
produce histograms summarized in Tables 1 and 2 and
related figures.

11Average Z-scores have value 0, while average asymptotic Z-scores are
>0, making a greater contrast with negative scores of functional RNA in
computational experiments.

TABLE 1. Z-score statistics for structural RNA compared to random RNA of the same expected dinucleotide frequency using Algorithm 3

RNA type Number of sequences Mean Stdev Max Min

tRNA 530 −1.348202 0.611164 0.269411 −3.124041
Hammerhead III 114 −2.053881 0.664340 −0.001203 −3.387384
SECIS 5 −3.800337 0.883944 −2.832499 −5.237905
srpRNA 94 −2.037159 1.030724 0.010698 −4.961649
U1 53 −1.083326 0.547852 0.012102 −2.508698
U2 62 −2.243978 0.599099 0.920614 −3.479369
mRNA whole length 41 0.090522 0.783253 1.667423 −1.711233
mRNA 3�-UTR 41 0.152680 0.646208 0.870732 −2.132468
mRNA 5�-UTR 41 0.183972 0.628083 0.893692 −1.940810
mRNA cds 41 −0.209889 0.681839 1.268412 −2.218905
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Tables 1 and 2 give details on the number of sequences,
mean, standard deviation, maximum and minimum Z-
scores12 for each investigated class of RNA. For Table 1, we
computed Z-scores with respect to random RNA of the
same expected dinucleotide frequency, using Algorithm 3,
while in Table 2 we computed Z-scores with respect to
random RNA of the same (exact) dinucleotide frequency
using the provably correct Altschul-Erikson Algorithm 4.
Since we correct an assertion of Workman and Krogh
(1999) concerning tRNA, we implemented their method of
computing p-values and list in Table 2 the p-values for all
investigated classes of RNA.

All classes of structurally important RNA, which we in-
vestigate (with the exception of the TPP riboswitch–THI
element), show a significantly lower folding energy than
random RNAs of the same dinucleotide frequency, using
both Algorithms 3 and 4. In contrast, for entire mRNA, as
well as in 5�-UTR, 3�-UTR, and cds of mRNA, the folding
energy is approximately that of random RNA of the same
(both expected and exact) dinucleotide frequency. Figures 1
and 2 present histograms of Z-score data for all RNA
classes, where Z-scores were computed with respect to ran-
dom RNA of the same expected dinucleotide frequency as
generated by Algorithm 3. Figures 3 and 5 present similar
histograms, differing only in that Z-scores were computed
with respect to random RNA as computed by Algorithm 3
in the former and by Algorithm 4 in the latter. Figure 4
presents histograms of Z-score data for the seven classes of
riboswitches that are found in the current Rfam release,
using Algorithm 4. As an additional test of our assertion

that structural RNA13 has lower folding energy than ran-
dom RNA of the same dinucleotide frequency (as generated
by Algorithm 4), Figure 6 graphs p-scores against Z-scores
for nonstructural RNA, while Figures 7 and 8 graph p-
scores against Z-scores for structural RNAs and for the
seven classes of riboswitches in the current release of Rfam,
respectively. Note that Figure 6 is similar to Figure 2 of
Workman and Krogh (1999), although we additionally
compute separate Z-scores for 5�-UTR, 3�-UTR, and cds
regions of mRNA as well as whole mRNA, and we use the
Altschul-Erikson algorithm to generate random RNA. Fig-
ures 7 and 8 furnish additional evidence that tRNA and
other structural RNA has lower folding energy than random
RNA of the same dinucleotide frequency. A Web server and
Python source code for our implementation of this algo-
rithm is available at the previously given Clote Lab Web site.
We are currently computing Z-scores and p-values for all of
Rfam. When completed, results will be summarized on this
Web site.

In the Results section (explained in more detail in Ma-
terials and Methods), we introduce the new concept of “as-
ymptotic Z-score” and state a new theorem, whose proof is
given in the Appendix. This theorem postulates that for
every complete set of dinucleotide frequencies q�xy, there
exist values µ(q�xy) (asymptotic mean minimum free energy
per nucleotide) and �(q�xy) (asymptotic standard deviation
of minimum free energy per nucleotide), with the following
properties. If x0, x1, x2, … is a sequence of random variables
generated by a first-order Markov process from the di-
nucleotide frequencies q�xy, then the limits

12Z-score is often used as a statistical measure of deviation from the
mean in units of standard deviation. See Materials and Methods for formal
definition.

13By structural RNA, we mean naturally occurring classes of RNA whose
functionality depends on the native state, where we identify the native state
with the minimum free energy secondary structure if the structure is not
experimentally determined.

TABLE 2. Z-score and p-value statistics for structural RNA compared to random RNA of the same dinucleotide frequency using Algorithm 4

RNA type Number of sequences Mean Stdev Max Min p-value

tRNA 530 −1.591106 0.889903 0.732033 −4.034804 0.123123
Hammerhead III 114 −3.188341 0.870615 −1.202616 −5.34491 0.007526
SECIS 5 −4.736209 1.122621 −3.48201 −6.944927 0.0
srpRNA 94 −3.564441 2.139954 −0.099144 −9.254801 0.045528
U1 53 −1.750205 0.930827 0.156993 −4.041211 0.101509
U2 62 −4.224552 1.215934 −1.83139 −7.068373 0.002468
mRNA whole length 41 −0.180843 1.619402 2.90517 −4.207065 0.478049
mRNA 3�-UTR 41 −0.111613 1.021312 1.483879 −3.198117 0.526512
mRNA 5�-UTR 41 0.17506 1.092026 1.862059 −2.97943 0.459195
mRNA cds 41 −0.132962 1.646607 3.284421 −3.739057 0.514634
S-box leader (SAM) 70 −2.391071 1.039610 0.163915 −4.81384 0.047614
RFN element (FMN) 48 −1.430811 0.919783 0.225564 −3.460798 0.150170
THI element (TPP) 141 −0.819171 0.996411 1.825061 −3.646955 0.279965
Purine ribos. 37 −1.570689 1.305818 0.453687 −4.412738 0.171417
Lysine ribos. 48 −2.156423 1.575269 0.791328 −8.927446 0.104809
Cobalamin ribos. 82 −1.388310 1.378731 1.643258 −6.089820 0.205617
ykoK ribos. 40 −2.406571 1.391506 −0.095575 −6.506148 0.073231
5S rRNA 100 −1.537079 1.128463 0.59728 −5.788211 0.154

Structural RNA has lower energy than random RNA
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lim
n→�

E�mfe�x0, . . . , xn��

n
= ��q�xy�

and

lim
n→�
�E��mfe�x0, . . . , xn��2� − E�mfe�x0, . . . , xn��

n2
= ��q�xy�

both exist and depend only on q�xy.
We can now pre-compute a table of values µ(q�xy) and

�(q�xy) for all complete sets q�xy of dinucleotide frequencies,
where dinucleotide frequencies are specified up to (say) two
decimal places. Given RNA nucleotide sequence a1, …, an,
compute the dinucleotide frequencies q�xy of a1, …, an. The
asymptotic minimum free energy Z-score, defined by

mfe�a1, . . . , an��n − ��q�xy�

��q�xy�
,

can be computed by one application of Zuker’s algorithm
with input a1, …, an, together with table look-up of the
pre-computed (approximations) of µ(q�xy), �(q�xy). Figure 9
displays both Z-scores and asymptotic Z-scores for all win-
dows of size 32 in the artificial genome constructed by
planting RNA SECIS element fruA in the middle of random
RNA of the same expected mononucleotide frequency. In
this figure, Z-scores were computed using the Altschul-
Erikson dinucleotide shuffle, Algorithm 4, and asymptotic

Z-scores were computed by Algorithm
7. Note that although we are unsure
why this is the case, there is a great-
ly improved signal-to-noise ratio in us-
ing asymptotic Z-scores compared to Z-
scores.

DISCUSSION

In Seffens and Digby (1999), it was ob-
served that mRNA has lower folding en-
ergy than random RNA of the same
mononucleotide frequency, which latter
is obtained by permuting nucleotide po-
sitions. Later, Workman and Krogh
(1999) made an important observation
that preserving dinucleotide frequency
is critical, because of the nature of base-
stacking free energies, and that mRNA
cannot be distinguished from random
RNA of the same dinucleotide frequency
with respect to folding energy. Work-
man and Krogh additionally asserted
that it appeared, according to their lim-
ited data set of five tRNAs, that the same
was true of tRNA.

Our computation of both Z-scores
and p-scores on the much larger data set

of 530 tRNAs from the tRNA database of M. Sprinzl, K.S.
Vassilenko, J. Emmerich, and F. Bauer, at URL http://www.
staff.uni-bayreuth.de/∼btc914/search/, indicates that tRNAs
from Sprinzl’s database have lower Z-scores than random
RNA of the same dinucleotide frequency, although the p-
value is only around 0.12. More generally, by considering
tRNAs, type III hammerhead ribozymes, SECIS sequences,
srpRNAs, snRNAs, and so on, we show that many impor-
tant classes of structural RNA have lower folding energy
than random RNA of the same dinucleotide frequency. Our
careful tabulation of Z-scores may prove useful in future
work involving a moving-window, genome-scanning algo-
rithm, where one might attempt to detect particular struc-
tural RNA by looking at regions whose Z-score is close to
that listed in Table 2.

It is known that tRNA has certain modified nucleotides;
for example, aspartyl tRNA from Saccharomyces cerevisiae
with PDB identity number 1ASY includes two dihydrouri-
dines, three pseudouridines, one 5-methylcytidine, and one
1-methylguanosine. For this paper, we replaced all modified
nucleotides
as annotated in Sprinzl’s database by unmodified nucleo-
tides (e.g., dihydrouridine is replaced by uridine) and sub-
sequently applied RNAfold to the resulting tRNA se-
quences. It seems likely that computed energies of tRNA
might differ from their experimentally determined energies,
and that such a discrepancy would similarly influence pre-

FIGURE 1. Histograms of Z-scores of minimum free energy (mfe) of RNA classes versus 1000
random RNAs of the same expected dinucleotide frequency using Algorithm 3. The curves, in
left to right order, correspond to signal recognition particle (srp) RNA, U2 small nucleolar
particle, Hammerhead type III ribozyme, 530 tRNAs from Sprinzl’s database, U1 small nucleo-
lar particle, and the 41 whole length mRNAs considered in Workman and Krogh (1999).
Structurally important RNAs have Z-score curves shifted toward negative values with respect
to the curve for mRNA.
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dicted energies of randomizations of tRNA. This might ex-
plain the relatively high Z-scores and p-values of tRNA,
when compared to other structural RNA classes.

While Workman and Krogh (1999) had considered
whole mRNA, we additionally considered 5�-UTR, 3�-UTR,
and cds of the same mRNA analyzed in those investigated
by Workman and Krogh. Tables 1 and 2 provide evidence
that these mRNA subclasses do not have lower folding en-
ergy than random RNA of the same dinucleotide frequency,
although it should be noted that Table 2 shows negative
Z-scores of -0.111613 (respectively, −0.132962) for 3�-UTR
(respectively, cds) of mRNA, suggesting a slightly discern-
able signal in both the 3�-UTR and cds of mRNA (for a
recent review, see Wilkie et al. 2003). A possible explanation
for the statistically insignificant signal in the 3�-UTR, which
contains regulatory elements, is that these structural, regu-
latory elements are short and dispersed in the UTR, which
in many cases may be very long.

Moreover, we present evidence that riboswitches (me-
tabolites binding domains that are found within certain
messenger RNAs) have lower folding energy than random
RNA of the same dinucleotide frequency similarly to struc-
tural RNAs, with the only exception of the THI element
(TPP riboswitch). The TPP riboswitch is found in the 5�
region of mRNAs of genes involved in thiamine biosynthe-
sis and transport (Miranda-Rios et al. 2001), and is able to
bind thiamine and its pyrophosphate derivatives (Winkler
et al. 2002), resulting in the reduction of translation. The

interaction with thiamine is thought to
be dependent on the secondary struc-
ture assumed by this riboswitch; there-
fore, the Z-score close to zero of this
class of riboswitches is unexpected, and
we do not have any valid argument to
justify this observation.

Figures 1–5 present superposed histo-
grams of Z-scores for the RNAs ana-
lyzed. The general trend is a shift toward
negative values in the curves associated
with structural RNAs; Z-score curves
obtained using both Algorithms 3 and 4
are quite similar, although the small dis-
crepancy between algorithms in the case
of 3�-UTR regions of mRNA suggests
that one should prefer the use of Algo-
rithm 4, if possible.

The work of Seffens and Digby (1999)
and of Workman and Krogh (1999) to-
gether provide strong evidence that the
mononucleotide shuffle, Algorithm 2,
and the 0-order Markov chain, Algo-
rithm 1, should never be used when
computing Z-scores. The slight discrep-
ancy between Tables 1 and 2 for 3�-UTR
regions of mRNA suggests that Algo-

rithm 4 should be used if possible over Algorithm 3, when
computing Z-scores.

Additionally, based on new mathematical results con-
cerning asymptotic comportment of random RNA (see the
Appendix), we define the concept of “asymptotic Z-score”
(see Definition 6 in Materials and Methods) and show how
to radically reduce the computation time for moving-win-
dow, whole-genome algorithms that compute Z-scores of
window contents. Rather than computing Z-scores on the
fly for each window’s randomized contents, we use table
look-up for precomputed asymptotic Z-scores and call Zuk-
er’s algorithm only once, rather than tens or hundreds of
times, per window. Our approach, combined with the
O(NL2) genome-scanning version14 of Vienna RNA Pack-
age RNAfold (Hofacker et al. 2004), permits O(NL2) ge-
nome-scanning asymptotic Z-score computations of whole
genomes.15

Asymptotic Z-scores are computed with respect to large
random RNA sequences (in the current paper, we used
sequences of length 1000 nt) of the same expected dinucleo-

14For a genome of length N, successive applications of Zuker’s algorithm
to window contents of size L require time O(NL3). By re-using partial
computations from previous window contents, Hofacker et al. (2004) de-
scribe an improvement to O(NL2).

15In this paper, we present a proof of concept. In work in progress, we
are computing dinucleotide frequencies, within two decimal places, of viral
and bacterial genomes and are computing tables necessary for a general
application of our method, to be reported elsewhere.

FIGURE 2. Histograms of Z-scores of minimum free energy (mfe) of RNA classes versus 1000
random RNAs of the same expected dinucleotide frequency using Algorithm 3. The curves, in
left to right order, correspond to 530 tRNAs from Sprinzl’s database, and to coding sequence
(cds), 3�-untranslated region (UTR), 5�-UTR, and whole length mRNA of the 41 mRNAs
considered in Workman and Krogh (1999). Different regions of the mRNAs show similar
curves, centered around the 0.
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tide frequency as that of window con-
tents using Algorithm 3, unlike compu-
tations of Z-scores in Le et al. (1990a),
Seffens and Digby (1999), and Rivas and
Eddy (2000), which used random RNA
sequences of the same size as that of the
moving window, generated by Algo-
rithm 2. Although we have no explana-
tion at the present, in all cases we have
observed a greater signal-to-noise ratio
in using asymptotic Z-scores to detect
RNA genes (data not shown). This is,
indeed, the case for Figure 9, which
plots Z-scores and asymptotic Z-scores
for 32-nt windows of artificial data ob-
tained by planting SECIS element fruA
CCUCGAGGGGAACCCGAAAGGGAC
CCGAGAGG in the middle of random
RNA of compositional frequency
A = 0.28125, C = 0.28125, G = 0.40625,
and U = 0.03125 (i.e., of same compo-
sitional frequency as that of fruA). Our
preliminary work on the asymptotic Z-
score raises the hope of effectively using
this approach along with other heuristic
filters to detect RNA of interest.

MATERIALS AND METHODS

For expository reasons, in this section, we describe the computer
experiments we performed for tRNA. Additional experiments on
mRNA, SECIS elements, hammerhead type III ribozymes, and so
on were set up identically. Unless otherwise stated, we generated
1000 random RNAs per (real) RNA sequence, for each experi-
ment. Using the mono- and dinucleotide frequencies for tRNA
from Table 1, we generated random RNAs for each of the 530
tRNAs in the database of Sprinzl et al. (1998) according to two
methods, which we respectively dub First-order Markov (Algo-
rithm 3) and Dinucleotide Shuffle (Algorithm 4), and computed
the mfe using RNAfold. The method First-order Markov generates
random RNAs as a first-order Markov chain, and was considered
in Workman and Krogh (1999), although it is unclear whether
they generated the first nucleotide using sampling (as we do), or
using the uniform probability of A, C, G, and U.

Algorithm 1 (sampling from 0-order Markov chain)

INPUT: An RNA sequence a = a1, …, an

OUTPUT: An RNA sequence x1, …, xn of the same
expected mononucleotide frequency as a1, …, an

1. Compute the mononucleotide frequency F1(a) of a = a1, …, an;
thus, F1(a)[A] = qA, F1(a)[C] = qC, F1(a)[G] = qG, F1(a)[U] = qU.

2. for i = 1 to n
x = random in (0,1)
if x < qA return ‘A’
else if x < qA + qC return ‘C’
else if x < qA + qC + qG return ‘G’
else return ‘U’

In their computation of Z-scores, Rivas and Eddy (2000) consid-
ered the following mononucleotide shuffle.

Algorithm 2 (Mononucleotide Shuffle)

INPUT: An RNA sequence a1, …, an

OUTPUT: An RNA sequence x1, …, xn of the same (exact)
mononucleotide frequency as a1, …, an

1. generate a random permutation � ∈ Sn

for i = 1 to n
xi = a�(i)

Recall that Seffens and Digby (1999) observed negative Z-scores
having large absolute value, when computing Z-scores of mRNA
using Algorithm 2, while Workman and Krogh (1999) computed
Z-scores approximately equal to 0 when computing Z-scores of
mRNA using Algorithm 3.

FIGURE 3. Histograms of Z-scores of minimum free energy (mfe) of RNA classes versus 1000
random RNAs of the same expected dinucleotide frequency using Algorithm 4. The curves, in
left to right order, correspond to U2 small nucleolar particle, signal recognition particle (srp)
RNA, Hammerhead type III ribozyme, U1 small nucleolar particle, tRNAs from Sprinzl’s
database, 100 5S rRNAs sampled from the Rfam seed alignment, and the 41 whole length
mRNAs considered in Workman and Krogh (1999). As in Figure 1, structurally important
RNAs have Z-score curves shifted toward negative values with respect to the curve of mRNA.
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Algorithm 3 (sampling from first-order Markov chain)

INPUT: An RNA sequence a1, …, an

OUTPUT: An RNA sequence x1, …, xn of the same
expected dinucleotide frequency as a1, …, an

1. Compute the mono- and dinucleotide frequency of a1, …, an.
2. Generate x1 by sampling from mononucleotide frequency.
3. Generate remaining nucleotides x2, …, xn by sampling from the

conditional probabilities Pr[Y | X], where Pr[Y | X] equals the
dinucleotide frequency that nucleotide Y follows X divided by
the mononucleotide frequency of nucleotide X.

Algorithm 4 (Dinucleotide Shuffle)

Altschul and Erickson (1985).

INPUT: An RNA sequence a1, …, an

OUTPUT: An RNA sequence x1, …, xn of the same (exact)
dinucleotide frequency as a1, …, an, where x1 = a1, xn = an;
moreover, the Altschul-Erikson algorithm even produces the
same number of dinucleotides of each type AA, AC, AG,
AU, CA, CC, etc.

1. For each nucleotide x ∈ {A, C, G, U}, create a list Lx of edges
x → y such that the dinucleotide xy occurs in the input RNA.

2. For each nucleotide x ∈ {A, C, G, U} distinct from the last
nucleotide xn, randomly choose an edge from the list Lx. Let E

be the set of chosen edges (note that E
contains at most three elements).

3. Let G be the graph, whose edge set is E
and whose vertex set consists of those
nucleotides x, y such that x → y is an edge
in E. If there is a vertex of G that is not
connected to the last nucleotide an, then
return to (2).

4. For each nucleotide x ∈ {A, C, G, U}, per-
mute the edges in Lx − E. Append to the
end of each Lx any edges from E that had
been removed.

5. For i = 1 to n − 1, generate xi + 1 by taking
the next available nucleotide such that
xi → xi + 1 belongs to the list Lxi

.

The proof of correctness of the Altschul-
Erikson dinucleotide shuffle algorithm de-
pends on well-known criteria for the exist-
ence of an Euler tour in a directed graph. See
Altschul and Erickson (1985) for details of
Algorithm 4 and its extensions.

Before describing our experiments, we
need to recall that the Z-score of a number x
with respect to a sequence s1, …, sN of num-
bers is defined by (x − µ)/�, where µ, respec-
tively �, is the average respective standard
deviation of s1, …, sN. In (Workman and
Krogh 1999), p-values associated with
Z-scores are computed as the ratio N/D,

where the numerator N is the number of Z-scores of random
RNAs that exceed the Z-score of a fixed mRNA, and D is the
number of Z-scores considered (see Workman and Krogh 1999 for
details and an explicit graph of Z-scores vs. p-values for mRNA).
Following the method of Workman and Krogh, we compute p-
values and plot Z-scores and associated p-values for all classes of
RNA investigated, where random RNA sequences were obtained
by the Altschul-Erikson method.

We now describe our experiments. Lengths in Sprinzl’s collec-
tion (Sprinzl et al. 1998) of 530 tRNAs range from 54 to 95. For
each tRNA, we generated 1000 random RNAs of the same ex-
pected dinucleotide frequency (using Algorithm 3) and 1000 ran-
dom RNAs of the same dinucleotide frequency (using Algorithm
4). For each tRNA, we computed the Z-score of its minimum free
energy (mfe) using version 1.5 of Vienna RNA Package RNAfold
with respect to the mfe of the corresponding 1000 random RNAs,
separately using Algorithm 3 and Algorithm 4 to generate the
random sequences. We followed the same procedure for each class
of RNA we investigated: 530 tRNAs from Sprinzl’s database, five
SECIS elements from A. Böck of Ludwig-Maximilians-Universität
München (pers. comm.), 114 hammerhead type III ribozymes, 53
U1 and 62 U2 small nucleolar spliceosomal RNAs, 94 signal rec-
ognition particle RNAs (srpRNAs), seven classes of riboswitches
(namely, 70 S-box leaders, 48 RFN elements, 141 THI elements, 37
purine riboswitches, 48 lysine riboswitches, 82 cobalamin ribo-
switches, 40 ykoK elements), and 100 5S rRNAs. The hammerhead
ribozymes, U1, U2, srpRNAs, and riboswitches sequences were
taken from their respective Rfam seed alignment (Griffiths-Jones
et al. 2003). The 100 5S rRNAs were sampled randomly from the
very large Rfam seed alignment. Moreover, we considered the

FIGURE 4. Histograms of Z-scores of minimum free energy (mfe) of RNA riboswitch classes
versus 1000 random RNAs of the same expected dinucleotide frequency using Algorithm 4. The
curves, in left to right order, correspond to lysine riboswitch, ykoK element, cobalamin ribos-
witch, S-box leader (SAM riboswitch), RFN element (FMN riboswitch), tRNAs from Sprinzl’s
database, purine riboswitch, THI element (TPP riboswitch), and whole length mRNAs con-
sidered in Workman and Krogh (1999).
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same mRNAs previously considered by Sef-
fens and Digby (1999) and Workman and
Krogh (1999); here, owing to the sequence
length of mRNAs, we generated only 10 ran-
dom RNAs per mRNA. Seffens and Digby
considered 51 mRNAs.

Workman and Krogh considered a subset
of 46 mRNAs, previously investigated in Sef-
fens and Digby (1999), and explained their
reasons for not including five spurious
mRNAs considered by Seffens and Digby.
We were not able to find five of these
mRNAs in the latest GenBank release
(namely, HUMIFNAB, HUMIFNAC,
HUMIFNAH, SOYCHPI, XELSRBP); there-
fore, we included in the analysis 41 mRNAs,
for which we considered the whole-length
mRNA, and separately the untranslated re-
gions (3�-UTR and 5�-UTR) and the coding
sequence (cds) alone.

We now describe a new concept of “as-
ymptotic Z-score,” motivated by a new theo-
rem concerning an asymptotic limit result
for the mean and standard deviation of
minimum free energy per nucleotide for ran-
dom RNA. This result, formalized in Theo-
rem 5, is proved in detail in the Appendix.

Let F2 = {qxy : x, y ∈ {A, C, G, U}} be any
complete set of dinucleotide frequencies; that is, 0 � qxy � 1 for
all x, y ∈ {A, C, G, U} and ∑x, yqxy = 1, where the sum is taken over
all x, y ∈ {A, C, G, U}. Define F1 = {qx : x ∈ {A, C, G, U}} to be the
corresponding set of mononucleotide frequencies; that is,
qx = ∑uqux, where the sum ranges over u ∈ {A, C, G, U}. We may
at times say that the mononucleotide distribution F1 is induced by
the complete dinucleotide distribution F2; moreover, we may use
the notation q�xy to abbreviate F2, and q�x to abbreviate F1.

Theorem 5

Let q�xy be a complete set of dinucleotide frequencies, let q�x be the
induced set of mononucleotide frequencies, and let X denote the
infinite sequence of random variables x0, x1, x2, … such that x0 has
the distribution q�x, and for all i, xi + 1 has the distribution given by
the conditional probabilities

Pr�xi+1 = x� =
qu,x

Pr�xi = u�
.

For all 0 � s � t, define random variables Xs,

t = mfe(xs, …, xt − 1), where mfe denotes
minimum free energy as measured by Zuk-
er’s algorithm. Then the limits

lim
n→�

E�mfe�x0, . . . , xn��

n
=

E�X0,n�

n
= ��q�xy�

and

lim
n→�

�E�X0,n
2 � − �E�X0,n��2

n2
= ��q�xy�

both exist and depend only on q�xy.

Although the proof gives no information on
the rate of convergence, convergence appears
to be fast (data not shown), and hence

FIGURE 5. Histograms of Z-scores of minimum free energy (mfe) of RNA classes versus 1000
random RNAs of the same expected dinucleotide frequency using Algorithm 4. The curves, in
left to right order, correspond to 530 tRNAs from Sprinzl’s database, whole length mRNAs
considered in Workman and Krogh (1999), coding sequences (cds), 3�-untranslated region
(UTR), and 5�-UTR.

FIGURE 6. Z-score and p-value correlation for nonstructural RNAs.
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we can compute an approximation for the asymptotic mean, de-
noted by µ(q�xy), [respectively standard deviation, denoted by
�(q�xy)] per nucleotide of the minimum free energy of random
RNA generated by a first-order Markov chain from dinucleotide
frequencies q�xy.

1. Compute minimum free energies for m random RNAs, each of
length n nucleotides, as generated by Algorithm 3. In Figure 9,
we used m = 50 and n = 1000.

2. Compute the mean and (sample) standard deviation for this
collection, and divide both values by n so as to normalize these
values with respect to sequence length.

Since m, n must be fixed for this computation, we denote the
approximate mean by µ(q�xy, m, n), and the approximate standard
deviation by �(q�xy, m, n). Thus, if s1, …, sm is a collection of m
random RNA sequences, each s1 has length n and is generated by
Algorithm 3 from dinucleotide frequencies q�xy, then

��q�xy, m, n� =
�k=1

m
mfe�si��m

n

��q�xy, m, n� =

��k=1

m
mfe2 �si�

m − 1
− ��k=1

m
mfe�si�

m �2

�
m

m − 1

n
.

We now define as follows the “asymptotic, normalized mfe Z-
score,” with respect to random RNA of dinucleotide frequencies
qxy: Given RNA sequence s of length n0 (generally n0 is much less
than n), compute the dinucleotide frequencies qxy of s, and define

Zm,n
2 �s� =

mfe�s��n0 − ��q�xy, m, n�

��q�xy, m, n�
.

Notice that when n0 = n, we obtain the usual
definition of Z-score, where randomization
is performed with Algorithm 3.

As noted above, one should respect di-
nucleotide frequencies when performing Z-
score computations. Taking this into ac-
count, we now define the “asymptotic, nor-
malized mfe Z-score,” with respect to
random RNA of dinucleotide frequency qxy,
as follows.

Definition 6

Given RNA sequence s of length n0

(generally n0 � n), compute the
dinucleotide frequencies qxy of s. Define

Zm,n
2 �s� =

mfe�s��n0 − ��qxy, m, n�

��qxy, m, n�

This concludes the description of asymptotic
Z-scores. Figure 9 illustrates the approach on
small artificial data involving the SECIS ele-
ment fruA. In future work, we plan to make
available pre-computed tables of µ(qxy, m,

n), �(qxy, m, n) for n = 1000, m = 50 over a range of dinucleotide
frequencies found in windows of viral and bacterial genomes. Al-
though not yet available, we can now describe an algorithm to
efficiently compute asymptotic Z-scores in a moving-window
scanning algorithm on a whole genome.

Algorithm 7

INPUT: An entire genome g1, …, gN, and window size n0

OUTPUT: Values (i, zi), where 1 � i � N − n0 + 1 is the
starting position for the i-th window, and zi is the asymptotic
Z-score of the (reverse complement) of the i-th window

for i = 1 to N − n0 + 1
s = reverse complement of gi, . . . , gi+n0−1

compute mfe �s�
compute dinucleotide frequencies qxy of s
for x,y ∈�A, C, G, U�

qxy = int�100 *qxy��100

find ��qxy, m, n�, ��qxy, m, n� by table look−up

return zi =
mfe�s��n0 − ��qxy, m, n�

��qxy, m, n�

Note that the instruction qxy = int(100 * qxy)/100 truncates each
dinucleotide frequency qxy to two decimal places. By using arrays
with indirect addressing, table look-up does not require linear or
logarithmic time, but rather unit time. Since Zuker’s algorithm is
applied only once, for each window, the run time of Algorithm 7
is O(Nn0

3). By using the genome-scan version of RNAfold (see
Hofacker et al. 2004), we can reduce the run time of Algorithm 7
to O(Nn0

2).
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APPENDIX

In this section, we state and prove Theorem
5, which provides the mathematical justifi-
cation for our algorithm to compute (ap-
proximate) asymptotic Z-scores. The follow-
ing theorem, due to Kingman (1973), pro-
vides the existence of a limit for certain types
of subadditive stochastic processes.

Theorem 8 (Kingman 1973)

Let Xs, t, for nonnegative integers 0 � s � t,
denote a family of doubly indexed random
variables that satisfy the following.

1. Xs, t � Xs, r + Xr, t for all s < r < t.
2. The joint distribution of Xs, t is the same

as that of Xs + 1, t + 1 for all 0 � s � t.
3. There exists K < 0 such that the expecta-

tion E[X0, n] = µn exists and satisfies
µn � K · n, for all natural numbers n.

Then there exists �, for which limn → �E[X0,

n]/n = �.

Kingman’s theorem has applications
ranging from Ulam’s problem concerning
the asymptotic expected length of the
longest increasing sequence [i.e.,
1 � i1 < i2 < … < ik � n such that
�(i1) < �(i2 < … < �(ik)] in a random per-
mutation � ∈ Sn (Kingman 1973), to prob-
lems concerning restriction enzyme coverage
(Waterman 1995). While Kingman’s theo-
rem proves the existence of an asymptotic
limit �, it can be a very difficult open prob-
lem to determine the precise value of � for
concrete cases.

Let q�xy denote any complete set {qxy : x,
y ∈ {A, C, G, U}} of dinucleotide frequen-
cies; that is, 0 � qxy � 1 for all x, y ∈ {A, C,
G, U} and ∑x, yqxy = 1, where the sum is
taken over all x, y ∈ {A, C, G, U}. Define q�x

to denote the set {qx : x ∈ {A, C, G, U}} of
induced mononucleotide frequencies; that is,
qx = ∑uqux, where the sum ranges over
u ∈ {A, C, G, U}. We say that the mono-
nucleotide distribution qx� is induced from
the complete dinucleotide distribution q�xy.

FIGURE 8. Z-score and p-value correlation for riboswitches.

FIGURE 9. A plot of Z-scores and asymptotic Z-scores for 32-nt windows of artificial data
obtained by planting SECIS element fruA CCUCGAGGGGAACCCGAAAGGGACCC
GAGAGG in the middle of random RNA of compositional frequency A = 0.28125,
C = 0.28125, G = 0.40625, and U = 0.03125 (i.e., of the same compositional frequency as that
of fruA). For each size 32 window, Z-scores were computed with respect to 25 random RNAs
of length 32, obtained by applying Algorithm 4 to the current window contents; thus, each
randomization of current window contents had the same dinucleotide frequency as that of the
corresponding current window contents. Asymptotic Z-scores were computed by table look-up
of pre-computed means and standard deviations of 50 random RNAs, each of length 1000,
having the same expected dinucleotide frequency as that of current window contents (only
within two decimal places), as computed by Algorithm 3. We computed and stored all di-
nucleotide frequencies (only up to two decimal places), and pre-computed Z-scores with
respect to much larger (1000 nt vs. 32 nt) random RNA. Justification for this approach follows
from an asymptotic limit stated in the text.
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Theorem 9

Let q�xy be a complete set of dinucleotide fre-
quencies, let q�x be the induced set of mono-
nucleotide frequencies, and let X denote the
infinite sequence of random variables x0, x1,
x2, … such that x0 has the distribution q�x,
and for all i, xi + 1 has the distribution given
by the conditional probabilities

Pr�xi+1 = x� =
qu,x

Pr�xi = u�
.

For all 0 � s � t, define random variables Xs,

t = mfe(xs, …, xt−1), where mfe denotes
minimum free energy as measured by Zuk-
er’s algorithm. Then the limits

lim
n→�

E�mfe�x0, . . . , xn��

n
=

E�X0,n�

n
= ��q�xy�

and

lim
n→�

�E�X0,n
2 � − �E�X0,n��2

n2
= ��q�xy�

both exist and depend only on q�xy.

PROOF: To prove the existence of the
first limit stated in Theorem 9, we claim that
the collection of doubly indexed random
variables Xs, t satisfies the three conditions of
Kingman’s subadditive ergodicity Theorem 8.

By analysis of the pseudocode of Zuker’s algorithm, it is clear
that minimum free energy of RNA is subadditive, and hence con-
dition (1) holds. Indeed, in the Turner energy model (Mathews et
al. 1999), stacking free energies and loop energies are additive,
hence the minimum free energy of the concatenation xs, …, xt−1 of
subsequence xs, …, xu−1 and subsequence xu, …, xt−1 satisfies
mfe(xs, …, xt−1) � xs, …, xu−1 + mfe(xu, …, xt−1). Here is a
concrete example:

mfe(ACGUACGUACGU) = −1.20
mfe(CAGUCCAUUUGGG) = −0.90

mfe(ACGUACGUACGUCAGUCCAUUUGGG) = −2.20

To show that condition (2) holds, we first claim that for all non-
negative integers s, Pr[xs = x] = Pr[x0 = x] = qx, for any given
x ∈ {A, C, G, U}. This is done by induction on s. When s = 0, this
is by definition of x0. Assume that Pr[xs = x] = Pr[x0 = x] = qx, and
consider xs+1. Then

Pr�xs+1 = x� = �
u

Pr�xs = u� � Pr�xs+1 = xxs = u�

= �
u

Pr�xs = u� �
Pr�xs = u, xs+1 = x�

Pr�xs = u�

= �
u

Pr�xs = u, xs+1 = x� = qx

where the last equality follows from the definition of induced
mononucleotide frequency qx. It thus follows by induction

that Pr[xs = u] = qu, for all natural numbers s and all u ∈ {A,
C, G, U}. Since the sequence x0, x1, x2, … of random variables
follows a first-order Markov condition, clearly
Pr[xs + 1 = yxs = x] = Pr[xs� + 1 = yxs� = x] holds for all natural
numbers s, s�, and thus by induction on n, we have

Pr[xs = a0, …, xs + n = an] = Pr[xs� = a0, …, xs� + n = an]

and hence the doubly indexed random variable Xs,t has the
same joint distribution as that of Xs+1,t+1, for all natural num-
bers 0 � s � t. Thus, condition (2) of Kingman’s theorem is sat-
isfied.

We now turn to establish condition (3) of Kingman’s theorem.
For fixed n, E[X0, n] = µn must exist, since the sample space
	 = {A, C, G, U} is finite, all probability distributions for fixed n
are finite, and we consider only finitely many random variables
x0, …, xn. Let K0 be the minimum value, −3.42 kcal/mol, over all
base stacking free energies from Turner’s current rules (Xia et al.
1998)—for example, see “Stacking enthalpies in kcal/mol” from
M. Zuker’s Web site, http://www.bioinfo.rpi.edu/∼zukerm/rna/
energy/. Note that base stacking free energies are all negative;
hence, we are choosing that base stacking free energy whose ab-
solute value is largest. Except for the (negative) base stacking free
energies, all other energies (hairpin, bulge, internal loop, mul-
tiloop) are positive. The nearest neighbor energy model with
Turner’s experimentally measured energies (Mathews et al. 1999)
is additive, and there are at most n/2 base pairs in an RNA se-
quence of length n + 1 (going from 0 to n); hence, K0 · n/2 � µn

for all n. It follows that (3) holds, and hence the existence of limit

FIGURE 10. A plot of asymptotic Z-scores for 32 nt. Windows of artificial data obtained by
planting SECIS element fruA at position 1000 in random RNA of compositional frequency
A = 0.28125, C = 0.28125, G = 0.40625, and U = 0.03125 (i.e., of the same compositional fre-
quency as that of fruA). Asymptotic Z-scores were computed by table look-up of pre-computed
means and standard deviations of only 10 random RNAs, each of length 1000, having the same
expected dinucleotide frequency as that of current window contents (only within two decimal
places), as computed by Algorithm 3. We computed and stored all dinucleotide frequencies
(only up to two decimal places), and pre-computed Z-scores with respect to much larger (1000
nt vs. 32 nt) random RNA.
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lim n→�

E�mfe�x0, . . . , xn��

n
= ��q�xy�

depending only on q�xy follows by application of Kingman’s theo-
rem.

To prove the existence of the second limit stated in Theorem 9,
let K = 3.42 = −K0, and define random variables
Zs, t = K(t − s) + Xs, t, and

Ys,t =
Zs,t

2

t − s
=

�K�t − s� + mfe�xs, . . . , xt−1��
2

t − s

for all 0 � s � t. We will show that the collection Ys, t, for all
0 � s � t, satisfies conditions (1), (2), and (3) of Kingman’s er-
godicity theorem. To prove the subadditivity condition (1), that is,
that Ys, t � Ys, r + Yr, t for all 0 � s � r � t, fix 0 � s � r � t, and
temporarily let

A = Zs,t = K�t − s� + Xs,t

B = Zs,r = K�r − s� + Xs,r

C = Zr,t = K�t − r� + Xr,t

m = r − s
n = t − r

m + n = t − s.

Now

0 � �nB − mC�2

0 � n2B2 + m2C2 − 2mnBC

2mnBC � n2B2 + m2C2

mnB2 + mnC2 + 2mnBC � n�m + n�B2 + m�m + n�C2

mnB2 + mnC2 + 2mnBC

mn�m + n�
�

n�m + n�B2 + m�m + n�C2

mn�m + n�

B2 + C2 + 2BC

m + n
�

B2

m
+

C2

n

�B + C�2

m + n
�

B2

m
+

C2

n

.

Replacing B, C, m, n by the values they denote, we have shown that

�Zs,r + Zr,t�
2

t − s
�

Zs,r
2

r − s
+

Zr,t
2

t − r
.

Since we have already established that Xs, t � Xs, r + Xr, t, it follows
that K(t − s) + Xs, t � K(r − s) + Xs, r + K(t − r) + Xr, t; hence Zs,

t � Zs, r + Zr, t. Since Zs, t � 0, Zs, r � 0, Zr, t � 0, it follows that
Zs, t

2 � ( Zs, r + Zr, t)
2.16 Thus

Zs,t
2

t − s
�

Zs,r
2

r − s
+

Zr,t
2

t − r

and hence Ys, t � Ys, r + Yr, t. This establishes subadditivity condi-
tion (1).

The proof that the joint distribution of Ys, t is the same as that
of Ys+1,t+1 for all 0 � s � t is as in our treatment of Xs,t and
Xs+1,t+1. This establishes condition (2) of Kingman’s theorem.

Finally, since

Ys,t =
Zs,t

2

t − s
� 0,

condition (3) of Kingman’s theorem holds, thus by application of
Kingman’s theorem, it follows that the limit

lim
n→�

E�Y0,n�

n
= 
�q�xy�

exists and depends only on complete dinucleotide frequencies q�xy.
Note that

lim
n→�

E�Y0,n�

n
= 
�q�xy�

= lim
n→�

E��Kn + X0,n�2�n�

n

= lim
n→�

E�K2n�

n
+

2KE�X0,n�

n
+

E�X0,n
2 �

n2

= K2 + 2K ��q�xy� + lim
n→�

E�X0,n
2 �

n2
.

Define �(q�xy) = 
(qxy) − K2 − 2Kµ(q�xy). It follows that

lim
n→�

E�X0,n
2 �

n2
= ��q�xy�.

Now the variance of X0, n satisfies Var[X0, n] = E[X0, n
2 ] − (E[X0, n])2,

thus dividing by n2 and taking square roots of both sides of the
equality, we have

��q�xy� = lim
n→�
�E�X0,n

2 � − �E�X0,n��2

n2

=�lim
E�Y0,n�

n
− �lim

E�X0,n�

n �2

= 	��q�xy� − �2�q�xy�.

This completes the proof of Theorem 9.
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