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Abstract

Variations in the face appearance caused by plastic

surgery on skin texture and geometric structure, can impair

the performance of most current face recognition system-

s. In this work, we proposed to use the Structural Simi-

larity (SSIM) quality map to detect and model variations

due to plastic surgeries. In the proposed framework, a S-

SIM index weighted multi-patch fusion scheme is develope-

d, where different weights are provided to different patches

in accordance with the degree to which each patch may be

altered by surgeries. An important feature of the proposed

approach, also achieving performance comparable with the

current state-of-the-art, is that neither training process is

needed nor any background information from other dataset-

s is required. Extensive experiments conducted on a plastic

surgery face database demonstrate the potential of SSIM

map for matching face images after surgeries.

1. Introduction

Plastic surgery becomes worldwide nowadays due to the

advanced surgical technologies and the affordable cost. By

these medical procedures, people can correct defects of a

facial feature for functionality improvement or modify the

appearance for aesthetic improvement. Face recognition

across plastic surgery was first introduced to the biometric

community by Singh et al. [11]. In the presented work, a

database of face images related to various types of plastic

surgeries was publicly released. Moreover, various exist-

ing algorithms were tested on this database. The significant

performance degradation concluded that the current state-

of-the-art face recognition algorithms cannot provide good

performance for matching faces across plastic surgery.

To handle the challenges of face recognition after plas-

tic surgery, Bhatt et al. proposed an evolutionary gran-

ular approach to extract discriminative information from

non-disjoint face granules [3]. In [7], a recognition ap-

proach which integrates information derived from local re-

gion analysis was proposed to address this problem. Ag-

garwal et al. developed a sparse representation based lo-

cal facial characteristic matching approach [1]. In the re-

lated work, a sequestered face image set was used to ful-

fill the multiple image requirement of sparse representation

approach. In [4], a fusion approach by combining informa-

tion from both the whole face and the ocular regions [10]

was proposed to deal with the challenges of matching faces

across variations caused by plastic surgeries. Very recently,

Liu et al. employed an ensemble of Gabor Patch classifier-

s via Rank-Order list fusion algorithm and achieved very

promising results [6].

As presented in [11], both local and global surgeries may

result in varying amount of change in relative positioning

of facial features and texture. Generally, the positions of

these changed features and texture are unknown to a face

recognition algorithm. However, it would be of great use if

the positions could be extracted automatically. In such cas-

es, we can less consider or ignore these changed features

and texture. In this work, we consider variations caused by

surgeries as a variety of distortions on the pre-surgery facial

images. Further, we shall attempt to exploit the quality in-

formation implicated in the pre- and post-surgery images to

detect and capture these variations.

An effective image quality tool to well model variations

caused by surgeries should interpret well the degradation of

both texture and structural information. In [13], an objec-

tive image quality metric based on the Structural Similarity

(SSIM) index was developed for localized quality measure-

ment. Given a reference image and its distorted version,

through locally computing the SSIM index, this technique

can provide a spatially varing quality map of the distorted

image, which delivers much information about the quality



degradation. In our work, we consider the pre-surgery im-

age as a reference image and the post-surgery image as a

distorted one. Then the SSIM quality map between the two

images can be computed. Further, we employ this quali-

ty map in a patch level to control the contribution of each

patch to the final matching score.

In face identification on the plastic surgery database, giv-

en a probe image y (post-surgery) and N gallery individuals

(each with a pre-surgery image), the SSIM maps between y

and each gallery image are first calculated. Next, we perfor-

m the matching between y and each gallery image using our

proposed SSIM index weighted multi-patch fusion scheme.

In this scheme, the two images being compared together

with their SSIM map are first divided into the same number

of patches. When matching two corresponding patches, we

calculate the mean SSIM index of the corresponding SSIM

map patch as the weight for controlling the contribution of

the patch to the final matching score. An intuitive motiva-

tion for employing the mean SSIM index of each patch as

the patch weight is that, in the SSIM map of two images,

the value of each pixel (SSIM index) represents the struc-

tural similarity of the two image regions within a local win-

dow of the corresponding pixel. By directly employing the

SSIM index as the weight, we can give less weights (small-

er SSIM index values) to those changed features and tex-

ture, and vice versa. After matching between y and the N

gallery images, we can get a total of N SSIM index weight-

ed matching scores. The final class label is the identity ow-

ing the highest matching score (similarity score).

The proposed approach employs the SSIM map to com-

pute different weights for different image patches in accor-

dance with the degree to which each patch is altered by

surgeries. A significant advantage of the proposed approach

is that no training process, nor any background information

from other databases is required. However, when match-

ing faces of different individuals, for regions where the two

faces differ most, lower weights are also assigned. To study

the effect of our approach on genuine matching (comparing

faces of the same person) and impostor matching (compar-

ing faces of different individuals), we shall illustrate the s-

core distributions. As it can be noticed from Figure 4, the

overlap region between the genuine and impostor distribu-

tions is reduced by the SSIM weighting.

To thoroughly evaluate our proposed framework, we

perform face matching in both a holistic manner and a

component-wise manner. The proposed approach is evalu-

ated on the plastic surgery database introduced in [11]. With

our proposed approach, a significant improvement in recog-

nition performance is observed.

2. Related Work

To quantitatively measure the image quality, several met-

rics have been proposed. The Structural Similarity (SSIM),

proposed by Wang et al. [13], provides a spatially varying

quality map of the two images being compared. The result-

ing measure allows to determine the location and degree of

variations of the distorted image.

SSIM provides meaningful comparisons across different

types of image distortions by separating the task of similar-

ity measurement into three comparisons: luminance, con-

trast and structure. Suppose x and y are two image signals,

which have been aligned with each other. The SSIM index

between them is computed as follows:

SSIM (x, y) =
(2µxµy + C1) (2σxy + C2)

(

µ2
x + µ2

y + C1

) (

σ2
x + σ2

y + C2

) (1)

where µx and µy are the mean intensity values of signal

x and y, while σx and σy are their corresponding standard

deviations. σxy is the correlation coefficient between x and

y. C1 and C2 are small positive constants used to avoid

instability when the denominator is very close to zero.

For image quality assessment, it is useful to apply the

SSIM index locally rather than globally. In [13], the local

statistics µx, σx and σxy are calculated within a 11 × 11
circular-symmetric Gaussian window, which moves pixel-

by-pixel over the whole image. At each step, the local statis-

tics and SSIM index are computed within the local window.

If one of the image signals being compared is regarded as

perfect quality, then with such a windowing approach, a S-

SIM index map of the other image can be obtained. In the

SSIM map, the value of each pixel is the SSIM index com-

puted within the local window of the corresponding pixel.

The SSIM index map provides a measurement of local im-

age quality over space, in which the dynamic range of each

pixel value is [−1, 1]. A pixel with value close to 1 mean-

s less distortions in the neighborhood of the pixel, while a

pixel with a lower SSIM index value implies some varia-

tions or quality degradation within the local region of the

pixel are detected in the distorted image. A Matlab imple-

mentation of the SSIM index algorithm is available online1.

3. SSIM for face recognition across plastic

surgery

In the proposed framework, the pre-surgery image is re-

garded as perfect quality and used for the gallery image

in face identification, whereas the post-surgery image is

viewed as a distorted image and used as a probe image.

Denote the number of gallery individuals as N , that is we

have a total of N gallery images. Given a probe image with

some variations caused by surgeries, our face identification

task aims to determine which gallery individual the probe

image comes from. To get the final classification, we need

1Z. Wang, MATLAB implementation of SSIM, http-

s://ece.uwaterloo.ca/ z70wang/research/ssim/.



to first calculate the similarity scores (matching scores) be-

tween the probe and each gallery image, and the identity

owing the highest similarity score is the correct class label.

Figure 1 illustrates our approach of matching the probe with

one gallery individual, which can roughly consist of the fol-

lowing two main steps: image alignment and SSIM index

weighted multi-patch fusion. After alignment of the probe

and the gallery images according to the eye centers, the S-

SIM map between the two images is computed. Next we

divide the two images as well as their SSIM map into the

same number of patches of the same size. The general idea

of SSIM index weighted image matching is to employ this

quality map in a patch level to control the contribution of

each patch to the final matching score. The outline of using

our approach for face identification across plastic surgery

is shown in Figure 2. Next we present details of the main

steps.

3.1. Image alignment

Images from the plastic surgery database are used in this

work. For each subject, there is one pre-surgery image and

one post-surgery image. All the images are of the same size

273× 236 pixels. Like any other common face recognition

algorithms, we first need to locate some fiducial landmarks

and then normalize all the images according to the positions

of these landmarks. Here, we choose to use eye centers

for face alignment. Considering that a number of images

in the plastic surgery database present some variations in

the eye region due to expressions and poses, we choose to

use the four eye corners to determine the eye centers. That

is the mean position of the two left (right) eye corners is

computed as the position of the left (right) eye center. To

locate eye corners automatically, a publicly available tool

known as STASM [9] was employed 2. After the location

of eye centers, the distance between the eye centers is set as

60 pixels. Finally, all the images are normalized to the size

of 160× 120.

3.2. SSIM index weighted multipatch fusion

Given a pre-surgery image and a post-surgery image, we

regard the pre-surgery image as a reference image, where-

as the post-surgery image is viewed as a distorted image.

Next the SSIM map of the post-surgery image is comput-

ed using the approach outlined in Section 2. For the pa-

rameters C1 and C2, we use the same values to those used

in [13]. And the standard deviation of the 11× 11 circular-

symmetric Gaussian weighting function is set to 1.5. More

details about how to calculate the SSIM map can be found

in [13].

Figure 3 shows some SSIM index maps corresponding to

some pre- and post-surgery image pairs. In the SSIM map,

2S. Milborrow, C++ software library of STASM,

http://www.milbo.users.sonic.net/stasm/.

dark regions represent smaller SSIM index and larger dis-

tortions, while bright regions mean larger structural similar-

ity and less quality degradation. As illustrated in Figure 3,

after blepharoplasty (eyelid surgery), pouches in both lower

eyelid regions are nearly removed. Obviously, the corre-

spondig regions in the SSIM index map are darker than the

neighborhood regions. Similar results can also be found in

images after rhinoplasty (nose surgery) and lip augmenta-

tion. For global surgeries, we take laser skin resurfacing as

an example. After this surgery, the chin, cheek and mouth

regions present larger variations than other regions. Fortu-

nately, these variations are well reflected in the SSIM map.

From Figure 3, we can see the effectiveness of using SSIM

index map to model both local and global variations caused

by plastic surgery when matching a genuine pair (i.e. where

the identity of the probe and gallery faces is the same).

Next we divide the two images as well as their corre-

sponding SSIM index map into n patches of the same size.

Denote the n patches as {p1, p2, ..., pn}. For each patch pi,

feature extraction is then performed on the two images be-

ing compared. After feature extraction, we can employ a

classifier ci for each patch pi. Denote the output of the clas-

sifier ci as scoi , i.e. the matching score of the ith patches of

the two images. In a conventional fusion scheme, the final

matching score sco can be computed directly using the sum

rule as follows.

sco =
∑

i∈1,...,n

scoi (2)

Note that this provides the same weights to all the patches.

In our work, we give different weights to different patches

according to the degree of their quality degradation. Specif-

ically, the mean pixel value of each patch pi in the SSIM

map is calculated as the weight of the corresponding clas-

sifier ci. We represent the weight of ci as wi, then in our

SSIM index weighted multi-patch fusion scheme, the final

weighted matching score scw is calculate as follows.

scw =
∑

i∈1,...,n

wi × scoi (3)

As described in Section 2, the values of each pixel in the

SSIM map locate in a dynamic range of [−1, 1]. In oth-

er words, the calculated weights maybe smaller than zero.

This is not in accordance with our objective, in which re-

gions with large variations will be less considered or be ig-

nored. There are two intuitive solutions to this problem.

One can either normalize all the pixel values to [0, 1] or

normalize all the patch weights to [0, 1]. However, our ex-

periments on the plastic surgery database show that both

normalization solutions do not affect the recognition perfor-

mance significantly in contrast with the original might mi-

nus pixel values or weights. Thereby, in all our experiments



Figure 1. Outline of the process to compute the reliability weight, for face matching, from SSIM maps.

Figure 2. Outline of the process for face identification using SSIM-based image matching.

later, we directly use the original SSIM map for weight cal-

culation.

3.3. Face identification using SSIM based patch fu
sion

As shown in Figure 2, given a probe image y and N

gallery individuals, the SSIM maps of the probe y and

each of the N gallery images are first calculated. Af-

ter this, we can get a total of N SSIM maps. Next, S-

SIM index weighted multi-patch fusion scheme can be em-

ployed to match y with each of the N gallery images. Fi-

nally, we can get N SSIM index weighted matching s-

cores {scw1, scw2, ..., scwN}. The final classification is

performed as follows:

identity(y) = argmax
j

{scwj} (4)

4. Analysis of SSIM weighted patch fusion

The proposed approach employs the SSIM map in a

patch level to provide different weights to different patches

in accordance with the degree to which each patch is altered

by surgeries. The advantages of the proposed approach are

as follows:

1) Effectiveness for modeling variations caused by surg-

eries. Figure 3 well illustrated this.

2) No training cost. our approach does not employ any

training procedures.

3) No background information employed. Background

information [14], also named cohort information in

some literature[8], is extracted on an additional back-

ground dataset. Faces in the background dataset are

disjoint by identity from the test faces. As is known,



Figure 3. The SSIM maps of some pre- and post-surgery image pairs.

in most existing literature related to recognition across

plastic surgery, a background dataset is collected to

handle the problems caused by insufficient gallery im-

ages of each individual [1, 6]. Note that in our ap-

proach, we do not use any background information.

However, using our approach for matching faces of d-

ifferent individuals, also the regions where the two faces

differ most are given lower weights. Two SSIM maps cor-

responding to two pre- and post-surgery impostor pairs (i.e.

where the identity of the probe and gallery faces is not the

same) are shown in Figure 3. For both impostor pairs, the t-

wo faces differ from each other significantly around the eye,

nose and mouth regions. Even though these regions encode

most of the discriminative information in faces, the SSIM

mapping assigns lower weights in comparison with other

regions, such as the forehead and cheek regions.

To well study the effect of the SSIM approach on genuine

and impostor matching, the two score distributions on the

plastic surgery database are shown in Figure 4. The match-

ing scores were computed on the entire faces by means of

LBP features [2]. The total number of genuine and impos-

tor scores are respectively N and N × (N − 1), in this case

N = 784. More details about the experimental setting can

be found in Section 5. The dashed plots correspond to the

distributions computed without using the SSIM map, while

the solid plots correspond to the distributions resulting from

the SSIM weighting. After the SSIM weighting, both the

genuine and impostor scores decrease. Most important, the

overlap region between the genuine and impostor distribu-

tions is reduced after the SSIM weighting.

5. Experiments

The proposed approach was tested on a plastic surgery

database containing 1, 800 images of 900 subjects. These

images were collected from plastic surgery information

websites, hence, many present a number of non-ideal fac-

Figure 4. The score distributions of genuine and impostor before

and after SSIM.

tors such as duplicate entries, incomplete faces and non-

frontal faces. Similarly to the pre-selection procedure used

in [4], we excluded images which show the above negative

factors. Finally, a dataset consisting of 1, 576 images from

784 subjects was selected, i.e., N = 784. In comparison

with the evaluation schemes used in [11] which use 40%
of the dataset for training and only the remaining 60% for

testing, all our experiments were performed on the whole

dataset.

For feature extraction, we employ two widely used fa-

cial features LBP [2] and Gabor [5]. In all our experiments,

the size of each patch is set to be 8 × 8. When extracting

LBP features, for each of the (160÷ 8)× (120÷ 8) = 300
patches, we extract a 59-bin uniform LBP histogram. To

compute the Gabor feature, we adopt five scales and eight

orientations of the Gabor filters. After this, we can get a

40-dimension Gabor jet for each pixel. Directly using Ga-

bor jets from all pixels in the 8 × 8 patch as the feature



representation will result in a very large dimension feature

vector (64 × 40 = 2, 560), thus having a high compu-

tational cost. To address this problem, we use responses

at a smaller set of pixels selected uniformly with a 8 × 8
down-sampling rate. The SSIM map is down-sampled us-

ing the same down-sampling rate. The down-sampled re-

sponses have only (160÷ 8) × (120÷ 8) = 300 pixels,

each of which corresponds to a 40-dimension Gabor jet.

Here we use the down-sampled pixels to simulate the patch-

es described above, and use the 40-dimension Gabor jet at

each down-sampled pixel as the patch feature representa-

tion, thus having a much lower computational cost. For the

matching score, we compute the cosine similarity between

the two descriptor vectors.

5.1. Experimental results

To thoroughly validate the proposed approach, we per-

form face matching in both a holistic manner and a

component-wise manner. We shall first treat the case of

the holistic manner and return our discussion to the case

of component-wise manner later.

Holistic matching. The whole face image is divided into

a number of the above mentioned 8×8 patches. The accura-

cy is reported in terms of Cumulative Match Characteristic

(CMC) curves. Figure 5 shows the CMC curves for: (a)

holistic LBP without SSIM quality; (b) holistic LBP with

SSIM quality; (c) holistic Gabor without SSIM quality; (d)

holistic Gabor with SSIM quality. As expected, when using

LBP and Gabor features in a holistic manner, SSIM weight-

ed multi-patch fusion significantly outperforms approaches

without using SSIM quality information. The Rank-1 accu-

racies of these scenarios were observed to be: (a) 65.05%;

(b) 73.85%; (c) 59.95%; (d) 69.52%; SSIM quality im-

proves the Rank-1 accuracy of LBP feature about 8.80%,

while with Gabor feature, we can get an increased accuracy

of almost 9.57%.

Component-wise matching. Seven facial regions are

extracted, including: forehead, leftocolar, rightocular, nose,

leftcheek, right cheek and mouth. Figure 6 shows the seven

components and their size. The remaining process, includ-

ing feature extraction and matching, is performed individu-

ally for each facial component. For the component-wise ap-

proach, we perform experiments using only LBP features.

Figure 7 and Figure 8 show the individual CMC curves cor-

responding to the seven components. As we can see that,

the proposed approach improves the recognition accuracy

significantly. The increased Rank-1 accuracy for all the

seven components is here listed: forehead (8.80%), leftocu-

lar (16.46%), rightocular (17.35%), nose (8.29%), leftcheek

(15.95%), rightcheek (15.94%) and mouth (3.57%).

Next we fuse the outputs of the seven component classi-

fiers for the final decision. Considering that matching faces

using a component-wise manner might lose some useful in-

Figure 5. The CMC plots illustrating the performance of holistic

matching algorithms.

Figure 6. The 7 components used in the component-wise matching

mechanism and their size.

Figure 7. The CMC plots illustrating the performance of leftocular,

rightocular and nose using LBP as features.

formation of the whole face geometric structure, we auto-



Figure 8. The CMC plots illustrating the performance of forehead,

leftcheek, rightcheek and mouth using LBP as features.

matically locate 11 landmarks using STASM and construct

83 triangles using these 11 landmarks. For each triangle,

we compute the radian values of the three angles. Further,

we concatenate the three radian values of all the triangles to

form a triangle descriptor representing the whole face geo-

metric structure. Next the cosine similarity of two triangle

descriptors from two faces are calculated for the geometric

matching score. It is worth nothing that the triangle descrip-

tor for each face is computed on the original image instead

of the aligned one due to the scale-invariant property of con-

gruent triangles. The 11 landmarks and the 83 triangles are

illustrated in Figure 9. Finally, the rank-order list based fu-

sion scheme proposed in [6] is employed to generate the fi-

nal rank-order list by fusing the seven component classifiers

and the triangle classifier. The weights for the seven com-

ponent classifiers and the triangle classifiers are respective-

ly: forehead (2); leftocular (4); rightocular (4); nose (2.5);

leftcheek (3); rightcheek (3); mouth (3.5); triangle (4); The

fusion results of component LBP features and triangle clas-

sifier as well as the result of using only the triangle clas-

sifier are illustrated in Figure 10. It can be observed that

triangle descriptor shows some useful information. With

SSIM index, a significant improvement is achieved in the

component-wise manner. The Rank-1 accuracy increased

from 69.13% to 77.55%.

Comparison with the state-of-the-art Note that our

experiments are performed without exploiting any outside

dataset for providing auxiliary information [1, 6]. Hence,

it is more reasonable to compare our approach with those

existing approaches which do not use any background in-

formation. Table 1 shows the comparison results. For each

algorithm, we show not only the Rank-1 accuracy but al-

so whether it employs training and feature fusion or not.

Furthermore, the number of gallery subjects and probe im-

Figure 9. The 11 landmarks and the 83 triangles for the calculation

of the triangle descriptor.

Figure 10. The CMC plots illustrating the performance using the

component-wise manner and using solely the triangle descriptor.

ages used in each algorithm is illustrated for a better com-

parison. In [4], 661 pre-surgery images from the plastic

surgery database and 568 images from the FRGC database3

are used to form the gallery set, while the query images are

the corresponding 661 post-surgery images. Verilook 3.2 is

a commercial software from Neurotechnology4. From these

results, we can see the effectiveness of our approach for face

recognition across plastic surgery.

6. Conclusions and Future Work

In this paper, we introduced SSIM index weighted multi-

patch fusion to face recognition across plastic surgery. Ex-

perimental results on the plastic surgery database highlight

the effectiveness of our approach. In comparison with the

existing approaches, neither training process is needed nor

any background information is required. The good poten-

tial of SSIM quality map for face recognition after plastic

surgery can be seen through our work. However, there are

3NIST, Face Recognition Grand Challenge (FRGC) Database,

http://www.nist.gov/itl/iad/ig/frgc.cfm.
4Verilook 3.2, Neurotechnology, http://www.neurotechnology.com/.



Algorithms Rank-1 Training Feature fusion # of gallerys # of probes

GNN [12, 11] 54.20% yes no 540 540

Verilook 3.2 [4] 73.90% no no 661PS + 568FRGC 661

Our approach (LBP) 77.55% no no 784 784

Evolutionary Granular [3] 78.61% yes yes 540 540

Verilook 3.2 + Ocular [4] 81.50% no yes 661PS + 568FRGC 661

Table 1. The Rank-1 accuracies of our approach and those of the existing approaches on the plastic surgery database.

still several issues deserving more study on this direction.

1) Demand for more discriminative weights. As dis-

cussed in Section 4, the SSIM weighting can induce

lower weights for regions where two different faces d-

iffer most. Hence, it is important to change the SSIM

weights to make those regions more discriminative. A

function may be learned mapping the SSIM weights to

more discriminative values.

2) Extraction of holistic geometric information. For

some plastic surgeries modifying the skin texture such

as skin resurfacing and rhytidectomy, the geometric

structure of the whole face will be of great impor-

tance. For instance, in our approach, the use of the

triangle descriptor might be improved by employing

more landmarks located in the outline of the face.
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