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Abstract. Standard methods for role assignment partition the vertex
set of a graph in such a way that vertices in the same class can be
considered to have equivalent roles in the graph. Several classes of equiv-
alence relations such as regular equivalence and equitable partitions have
been proposed for role assignment, but they all suffer from the strictness
of classifying vertices into being either equivalent or not. It is an open
problem how to allow for varying degrees of similarity. Proposals include
ad-hoc algorithmic approaches and optimization approaches which are
computationally hard.

In this paper we introduce the concept of structural similarity by
relaxation of equitable partitions, thus providing a theoretical foundation
for similarity measures which enjoys desirable properties with respect to
existence, structure, and tractability.

1 Introduction

Role assignment is an important tool in the analysis of, e.g., social networks
and food webs. Given a graph one tries to assign roles to vertices by looking for
partitions of the vertex set such that equivalent vertices can be considered to
occupy the same kind of structural position [20].

Whether a vertex partition yields a “meaningful” role assignment is up to
some notion of compatibility with the edges of the graph. In their seminal paper,
Lorrain and White [18] proposed that vertices have the same role if they are
structurally equivalent, i.e. have identical neighborhoods. This rather restrictive
requirement has later been weakened in many ways (see [21, 12] for an overview).

Vertex partitions are well investigated in some areas of computer science or
graph theory. E.g. equitable partitions in algebraic graph theory [15] serve to find
quotients of graphs and to determine the spectrum of highly symmetric, huge
graphs. Stable partitions (also bisimulations or regular equivalences) are used to
determine equivalent states of finite state processes in the calculus of commu-
nicating systems [19]. Shortly, a vertex coloring is called regular (equitable) if
equivalent vertices have the same (number of each) colors in their neighborhood.

However, practical applicability of these kinds of vertex partitions to social
networks or other irregular graphs is severely limited. Firstly it is NP-complete
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to decide whether a graph has a regular, or equitable, partition with a given
quotient graph (see Theorem 7). Secondly, most graphs analyzed in the social
sciences have small or even trivial automorphism groups, irregularly distributed
vertex degrees, etc., so that they hardly ever admit a non-trivial equitable parti-
tion anyway, while tractable regular partitions are often trivial as well (e.g. the
maximal regular equivalence of an undirected graph is simply the division into
isolates and non-isolates). Finally, while it makes sense that small perturbations
like adding or deleting single edges destroy or establish the equivalence of ver-
tices in, e.g., finite state processes, this is counterintuitive in the case of social
networks, which often contain measurement errors and are expected to display
regular patterns only approximately. In the case of irregular graphs we expect
that small perturbations cause vertices to be more or less similar but do not
decide about equivalence or non-equivalence.

We summarize these remarks by observing that the real obstacle in applying
role assignment methods to empirical grpahs is not an inappropriate formulation
of compatibility of equivalence and graph structure, but the equivalence relation
itself. In social networks and other graphs in which many pairs of vertices are
somehow related, but not exactly equivalent, we need a notion of similarity of
vertices, rather than equivalence.

Other attempts to introduce degrees of similarity have been unsatisfactory
so far: Algorithmic approaches like REGE and CATREGE lack “a theoretical
rationale for the measure of similarity produced” [7–p. 375], while optimization
approaches (e.g. [3]) are computationally hard and suffer from the existence of
many local optima.

We therefore propose the notion of similarities as relaxations of equivalence
relations. From a compatibility requirement generalizing equitability, we obtain
the subset of structural similarities which displays highly desirable mathematical
properties. Our main results are that the set of all structural similarities can be
described compactly by the eigenvalue decomposition of the adjacency matrix
and that, in this framework, a graph R is a quotient of a graph G if and only if
the characteristic polynomial of R divides the characteristic polynomial of G. In
particular, this implies an efficient algorithm for the role assignment problem.

This paper is organized as follows. Basic notation is provided in Sect. 2. In
Sect. 3 we derive similarities as relaxations of equivalence relations and intro-
duce the condition for similarities to be compatible with a graph’s structure. A
characterization and some interesting properties of the set of edge-compatible
similarities are given in Sect. 4. Computational issues are addressed in Sect. 5
and are illustrated on a well-studied dataset [14] in Sect. 6.

2 Preliminaries
2.1 Basic Notation

In this paper we consider undirected graphs, possibly with multiedges, loops, or
edge weights. For background on graph theory see, e.g., [11].
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We also need some definitions from linear algebra (see, e.g., [1]). In particular
we need the notions of Euclidean vectorspaces, i.e. real vectorspaces V supplied
with an inner product or dot product 〈·, ·〉 : V × V → IR, and eigendecomposition
of symmetric linear mappings in such spaces.

2.2 Graph Spaces

As in [4], we associate with a graph G = (V, E) the vertex space V := V(G) :=
{f : V → IR}, that is the vectorspace of all real-valued functions on the vertex
set. V has standard basis (fv)v∈V , where fv(v) := 1 and fv(u) := 0 if u �= v. An
element fv of the standard basis can be associated with the vertex v. Further,
we define α(G) : V → V to be the endomorphism determined by the action of
the adjacency matrix A(G) on the standard basis. This immediately generalizes
to weighted graphs. Finally, we get an inner product 〈·, ·〉 on V which is uniquely
defined by 〈fv, fv〉 := 1 and 〈fu, fv〉 := 0, if u �= v, for u, v ∈ V .

Definition 1. Given a graph G, the pair G(G) = (V(G), α(G)) is called the
graph space of G. For two vectors u, v ∈ V the weight of the pair (u, v) is
defined to be w(u, v) := 〈u, α(v)〉.

Conversely, suppose we are given a pair G = (V, α), where V is a Euclidean
vectorspace and α : V → V a symmetric endomorphism. Then G induces a
complete, weighted graph G = (V, E) by choosing an orthonormal basis of V
as the vertex set V , and defining the weight of an edge e = {u, v} by w(e) :=
〈u, α(v)〉 . Thus a graph space might be seen as a collection of graphs. We stress
that different bases will lead to different, possibly non-isomorphic, graphs.

Two graph spaces are identical if and only if the underlying vectorspaces and
endomorphisms are the same. But, as for graphs, it is reasonable to identify graph
spaces which differ only by a renaming of the vertex space. If G = (V, E) and
H = (W,F ) are graphs then an isomorphism from G to H is a bijection φ : V →
W such that for all u, v ∈ V , A(G)uv = A(H)φ(u)φ(v), i.e., the adjacency matrices
are, after appropriate ordering of vertices, identical. In the following definition,
we relax the condition that isomorphisms have to be bijections between discrete
sets to the condition that they have to be vectorspace-isomorphisms.

Definition 2. Let G = (V, α) and H = (W, β) be two graph spaces. An isomor-
phism from G to H is an orthogonal linear isomorphism ϕ : V → W, such that
for all u, v ∈ V

〈u, α(v)〉 = 〈ϕ(u), β(ϕ(v))〉 .

This is true if and only if α = ϕTβϕ. In this case G and H are called isomorphic
graph spaces.

Graph isomorphisms are special, more restrictive types of graph space iso-
morphisms.
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3 Structural Similarities

Relaxing (boolean) equivalence, we introduce a (continuous) notion of similarity.
It is derived from projections that relax the surjective mapping associated with
an equivalence relation (i.e. which maps elements to their equivalence classes).
We show that for each projection there is a unique associated similarity and
vice versa. A natural generalization of equitability then ensures that similarities
respect the structure of a graph.

Let us start by considering the discrete case. For an equivalence relation
∼ on the vertex set V of a graph G = (V, E), let W := V/ ∼ be its set of
equivalence classes. The associated surjective mapping φ : V → W , that maps
vertices to their equivalence class, defines a binary |W | × |V | matrix P where
for v ∈ V , w ∈ W , Pwv = 1 iff φ(v) = w. Such a matrix P satisfies the equation
PPT = id W , for boolean matrix multiplication.

Relaxations of such class mappings allow for the entries pwv, instead of 1’s
(“v is in class w”) and 0’s (“v is not in class w”), real numbers (“v’s degree of
membership to w is pwv ∈ IR”).

Definition 3. Let V and W be two euclidian vectorspaces. A surjective linear
homomorphism π : V → W is called a projection, if ππT = id W .

These generalized mappings to classes suggest the following generalization of
quotients of graphs to quotients of graph spaces. Considering the discrete case, let
P be the (binary) characteristic matrix of a surjective mapping of the vertices of
G onto the set W of equivalences classes. Then, following [15–Sect. 9.6], we obtain
a (directed, weighted) graph H = (W,F ) (called the quotient of G modulo ∼)
that is defined by its adjacency matrix A(H) := (PPT)−1PAPT, where A is
the adjacency matrix of G. This definition is motivated by the fact that for two
classes, say w, w′ ∈ W , A(H)ww′ is the average number of edges between vertices
in w and vertices in w′. The translation to projections is straight-forward:

Definition 4. For a graph space G = (V, α) and a projection π : V → W to a
euclidian vectorspace W, π and α induce an endomorphism β : W → W by

β := παπT .

The resulting graph space G/π = (W, β) is called the quotient of G modulo π.

Note that, since α is symmetric, β is symmetric.
We are now ready to define similarities as relaxations of equivalence relations,

such that similarities and projections are associated with each other just like
equivalence and class membership relations. Reconsidering the discrete case, let
φ : V → W be a surjective mapping and P be the (binary) characteristic matrix
of φ. The equivalence relation induced by φ has characteristic matrix S = PTP ,
since two vertices u and v are equivalent, iff the corresponding columns of P
have the 1 in the same row, iff suv = 1.

If we relax P to a projection π, then σ := πTπ is symmetric, i.e. σT = σ, and
idempotent, i.e. σ2 = σσ = σ and these properties serve to define our relaxation
of equivalence relations.
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Definition 5. For a euclidian vectorspace V an endomorphism σ : V → V is
called a similarity if it is symmetric, i.e. σT = σ, and idempotent, i.e. σ2 = σ.

An equivalence relation ∼ induces a similarity represented by the matrix S∼,
called here the normalized matrix of ∼, which is given by

(S∼)uv :=

{
0 if u �∼ v

1/c if u ∼ v and c is the size of the equivalence class of v
.

For example, the partition {{1, 2, 3}, {4, 5}} of {1, . . . , 5} has normalized matrix

S =

[[ 1
3

]
3×3 [0]3×2

[0]2×3

[ 1
2

]
2×2

]
.

Note that, when multiplying normalized matrices, idempotency corresponds
to transitivity. For a mapping σ, idempotency means that σ restricted to its
image im σ is the identity.

Like equivalence relations and their associated surjective mappings, similar-
ities and projections are just two points of view of the same concept: Let V
and W be two euclidian vectorspaces and π : V → W a projection. Then,
σπ := πTπ is symmetric and idempotent, i.e., a similarity. Conversely, let V
be a euclidian vectorspace and σ : V → V a similarity. Set W := imσ. Then,
πσ = (v �→ σ(v)) : V → W is a projection.

The next theorem states that σ �→ πσ and π �→ σπ are mutually inverse (up
to isomorphism).

Theorem 1. Let (V, α) be a graph space and σ : V → V a similarity. Then
σ = σπσ

. Conversely, let (V, α) be a graph space, W a euclidian vectorspace,
π : V → W a projection, U := im σπ and π′ := πσπ

. Then, with β := παπT and
βU := π′απ′T, (W, β) and (U , βU ) are isomorphic graph spaces and π and π′ are
the same (up to this isomorphism).

Proof. For proving the second part, note that ϕ := π|U = ππ′T is an isomorphism
of the graph spaces (W, β) and (U , βU ). The proof therefore follows from the
definitions and properties of the mappings in question. �	

As a consequence of Theorem 1 we conclude that for each similarity there is
a unique associated projection and vice versa.

A similarity σ defines for a pair of vectors u, v ∈ V a real number s(u, v),
which is a measure for the similarity of u and v, by:

s(u, v) := 〈π(u), π(v)〉 =
〈
u, πTπ(v)

〉
= 〈u, σ(v)〉 ,

where π := πσ. If u and v are basis vectors (vertices) then their similarity is the
uv’th entry of the matrix of σ.

Until now we have introduced similarities as relaxations of arbitrary equiva-
lence relations. The following condition is a natural generalization of equitability
and ensures that roles are based on the graph’s structure.
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Definition 6. Let (V, α) be a graph space, W a euclidian vectorspace and π :
V → W a projection. Then, π is called structural if, with β := παπT, the
diagram

�
� ��

�

��

�

�

��
�

� �� �

commutes, i.e., πα = βπ. The associated similarity σπ is called structural as
well.

4 Properties of Structural Similarities

We present several equivalent characterizations of structural similarity and show
that equitable partitions form a special, restrictive case. Moreover, we generalize
the partial order on the set of equivalence relations to a partial order on the set
of similarities and show that the set of structural similarities forms a sublattice
of the lattice of all similarities.

4.1 Characterization

Structural similarities can be characterized in several ways. A subspace U ⊂ V
is called α-invariant if α(U) ⊂ U .

Theorem 2. Let (V, α) be a graph space, W a euclidian vectorspace and π :
V → W a projection. Let σ := σπ be the associated similarity. Then the following
assertions are equivalent:

1. π is structural; 3. ker σ (or ker π) is α-invariant;
2. σα = ασ; 4. im σ is α-invariant.

Proof. Let β := παπT. 2 implies 1 : Multiplying σα = ασ with π from the left,
we get ππTπα = παπTπ, which implies πα = βπ. 1 implies 2 : Given π with
πα = βπ we get

σα = πTπα = πTβπ = πTπαπTπ = σασ .

Taking the transpose of this equation and using symmetry of α and σ we
obtain ασ = σασ, hence σα = ασ. 3 holds iff 4 holds since, for the symmetric
endomorphism σ, im σ is α-invariant iff ker σ is α-invariant. 2 implies 3 : Assume
that α(ker σ) �⊂ ker σ. Then there is a v ∈ V such that σ(v) = 0 and σα(v) �= 0.
Then, σα(v) �= 0 = ασ(v), whence σα �= ασ. 3 implies 2 : Let v ∈ V = kerσ ⊕
im σ. We have v = u1 + u2 with u1 ∈ ker σ and u2 ∈ im σ. Then, since α(u1) ∈
ker σ and α(u2) ∈ im σ (by 3 iff 4 ), we have that σα(v) = α(u2) = ασ(v),
whence σα = ασ. �	

As a corollary, Theorem 2 yields a compact description of structural similar-
ities by the eigenvalue decomposition of the adjacency matrix.
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Corollary 1. Let (V, α) be a graph space. A similarity σ : V → V is structural,
iff ker σ (or im σ) is generated by eigenvectors of α.

Proof. By Theorem 2, σ is structural iff ker σ (or im σ) is α-invariant. If ker σ
(im σ) is generated by eigenvectors, then ker σ (im σ) is obviously invariant.
Conversely, if U := kerσ (U := imσ) is α-invariant, then α restricted to U is a
symmetric endomorphism on U and, thus, U admits a basis of eigenvectors. �	

If follows from Theorem 2 that structural similarities are indeed a relaxation
of equitable partitions.

Theorem 3. Let G = (V, E) be a graph and S the normalized matrix of an
equivalence relation ∼ on V . Then, S defines a structural similarity for the
graph space G(G) if and only if ∼ is equitable for G.

Proof. Is a consequence of [15–Lemma 9.3.2] and the equivalence of 1. and 4. in
Theorem 2. �	

4.2 Lattice Structure

We recall the notion of a lattice (see, e.g., [16]). A lattice L is a partially ordered
set L such that for each a, b ∈ L there is a supremum (least upper bound) and
an infimum (greatest lower bound) of a and b. A lattice L is called complete if
suprema and infima exist for each subset L′ ⊂ L.

In the next lemma we establish a connection between similarities and sub-
spaces, which we use to define a partial order on the set of similarities.

Lemma 1. Let U ⊂ V be a subspace of a Euclidean vectorspace V. Then there
is a unique similarity σ : V → V such that U = ker σ.

Proof. Suppose σ is such a similarity. First we observe that, since σ has to
be symmetric, im σ is the orthogonal complement of kerσ = U , hence im σ is
determined by U . Thus, each v ∈ V admits a unique representation v = v1 + v2,
where v1 ∈ im σ and v2 ∈ U . Further, since σ is idempotent, it is the identity on
im σ. Thus

σ(v) = σ(v1 + v2) = v1, (1)

which shows the uniqueness. On the other hand, (1) can be used to define a
similarity σ, such that ker σ = U , which shows the existence. �	

By the above lemma, we get a bijection between the set of subspaces U(V) :=
{U ⊂ V} and the set of similarities S(V) := {σ : V → V ; σT = σ and σ2 = σ}.
Via this bijection S(V) can be supplied with a partial order ≤ by

σ ≤ τ ⇐⇒ ker σ ⊂ ker τ , for σ, τ ∈ S(V) .

If ∼1 and ∼2 are two equivalence relations on the vertex set V of a graph
G = (V, E) such that ∼1 is finer than ∼2, then the corresponding normalized
matrices define similarities σ1 and σ2 satisfying σ1 ≤ σ2. Thus, the embedding of
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equivalence relations on V into the set of similarities S(V(G)) is order-preserving
and the above-defined partial order is a generalization of the order on the set of
equivalence relations.

U(V) is a complete lattice, where the infimum is given by intersection and
the supremum by the sum of subspaces. Thus, S(V) is a complete lattice, too.
We show that the set Sα(V) of structural similarities forms a sublattice of S(V):

Theorem 4. Let (V, α) be a graph space. Then, the set Sα(V) of structural
similarities is a complete sublattice of S(V).

Proof. By Theorem 2 it suffices to show that the intersection of α-invariant
subspaces is α-invariant and that the sum of α-invariant subspaces is α-invariant.
Proving this is straightforward. �	

The above theorem implies (see Theorem 5) that, given a similarity σ, that is
not necessarily structural, there is always a smallest structural similarity above σ
and a biggest structural similarity below σ. Note, that this doesn’t hold, neither
for regular equivalence relations [9], nor for equitable partitions, which can easily
be verified.

Definition 7. Let (V, α) be a graph space, and σ : V → V be a similarity on V
(not necessarily structural). Then, a similarity τ : V → V is called a structural
hull of σ if τ is structural, σ ≤ τ , and for all τ ′ ∈ Sα(V), σ ≤ τ ′ implies τ ≤ τ ′.
A similarity τ : V → V is called a structural interior of σ if τ is structural,
τ ≤ σ, and for all τ ′ ∈ Sα(V), τ ′ ≤ σ implies τ ′ ≤ τ . If they exist, structural
hulls and interiors are unique.

Theorem 5. Let (V, α) be a graph space. Then, in S(V) there exist structural
hulls and interiors.

Proof. We utilize the fact that L1 := Sα(V) is a complete sublattice of the
complete lattice L := S(V). Let σ ∈ L then inf{τ ∈ L1 ; σ ≤ τ} is the structural
hull and sup{τ ∈ L1 ; τ ≤ σ} is the structural interior of σ. �	

5 Determining Structural Similarities

Corollary 1 yields a general procedure for determining structural projections:
Select a subset of eigenvalues and associated eigenvectors of a graph and project
its graph space onto the subspace generated by these eigenvectors. For exam-
ple, the equitable partition of the graph in Fig. 1 corresponds to a structural
similartity that is the projection onto the sum of eigenspaces corresponding to
eigenvalues 3, 1 and −2.

If no eigenvalue has multiplicity greater than one (or we demand that eigen-
spaces must not be divided into subspaces), then Corollary 1 implies that, for
fixed k, all structural projections onto k-dimensional image spaces can be listed
efficiently. As a consequence of [13], the corresponding task for discrete parti-
tions, i.e. to list all, say, regular equivalences with exactly k classes, is NP-hard.
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Fig. 1. Example from [6]. The vertex coloring represents an equitable partition of
the drawn graph; the same partition can be found by a structural projection onto
eigenvalues 3, 1, and −2

The following theorem characterizes role assignability with structural simi-
larities.

Theorem 6. Let G = (V, α) and R = (W, β) be two graph spaces. Then there
is a structural projection π : V → W such that β = παπT if and only if the
characteristic polynomial of β divides the characteristic polynomial of α.

Proof. The only if part can be proved along the same lines as [15–Theorem
9.3.3]. If : Let {(λ1, ν1), . . . , (λr, νr)} be the set of different eigenvalues λi of β
with multiplicity νi. For each 1 ≤ i ≤ r choose νi linearly independent eigenvec-
tors vi1, . . . , viνi

of α with eigenvalue λi. Let U ⊂ V be the subspace, generated
by (v11, . . . , v1ν1 , v21, . . . , vrνr ). Then, the projection π1 : V → U is structural
and β1 := π1απT

1 = α|U has exactly the eigenvalues, with multiplicities, of β.
Finally define ϕ : U → W to be the isomorphism which maps (v11, . . . , vrνr

)
onto an orthonormal eigenbasis of (W, β) in such a way that the image of vij

has eigenvalue λi. The assertion follows with π := ϕπ1. �	
The above theorem implies that the role assignment problem for structural

similarities is easier than its discrete counterparts.

Theorem 7. It is NP-complete to decide for two graphs G and R whether there
is

1. a regular role assignment for G with given role graph R,
2. an equitable partition for G with quotient R.

On the other hand, it can be tested efficiently whether there exists a structural
similarity for the graph space of G with quotient G(R).

Proof. 1. is proved in [13]. 2. holds since the NP-complete decision problem,
whether a 3-regular graph has a perfect code [17], can be formulated as the
problem whether this graph has an equitable partition with given quotient. The
last statement follows immediately from Theorem 6. �	

6 Example: Southern Women Data

Theorem 6 is especially useful to determine structural projections. We illus-
trate this on a well-studied network representing 18 women who are connected
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by weighted edges signifying the number of co-appearance at 14 selected so-
cial events (“Southern Women” data set [10]). A meta-analysis of this data is
presented in [14].

It is a striking observation that a number of commonly used techniques can be
seen as determining structural projections onto specific role graphs. The simple
examples below mostly serve to illustrate that our method also gives a uniform
interpretation to established, but seemingly unrelated methods of network anal-
ysis. It should be obvious that there are more sophisticated uses of Theorem 6
with more complex role graphs.

Rc :
c

1
Rc1c2 :

c1
c2

1 2
Rcp : p

c

core periphery

Fig. 2. Role graphs for centrality (left), 2-way partitioning (middle) and core/periphery
structure (right)

Eigenvector Centrality. A widely-used approach to determine the structural im-
portance of vertices in a graph is eigenvector centrality [5], in which vertices are
valued by the entries of the principal eigenvector of the adjacency matrix.

Vertices are therefore central if they have central neighbors, so that centrality
can be viewed as the degree of membership in the only role present in role graph
Rc shown in Fig. 2.

From the proof of Theorem 6 we know that a similarity σ is structural with
G/σ = Rc, if and only if σ is the projection onto a 1-dimensional space generated
by an eigenvector associated with eigenvalue c > 0 of the adjacency matrix of
G. Therefore, eigenvector centrality is precisely a structural projection onto Rc,
i.e. a 1-dimensional role assignment, and the eigenvalue determines the weight
of the loop.

Spectral k-Clustering. Eigenvectors are also frequently used to partition a graph
into dense clusters. Using the spectrum of the adjacency matrix has been ad-
vocated, e.g., in [2]. Membership in a cluster can again be seen as a role, and
partitioning into two roles thus corresponds to projecting onto role graph Rc1c2

shown in Fig. 2.
Again, Theorem 6 implies that a similarity σ is structural with G/σ = Rc1c2 ,

if and only if σ is the projection onto a 2-dimensional space generated by eigen-
vectors corresponding to eigenvalues c1, c2 > 0. The result using the first two
eigenvecctors is shown in Fig. 3(left). This figure shows the usefulness of real-
valued degrees of membership: Vertices 8 and 9 are rather between the two
clusters, which is consistent with the fact that commonly used methods disagree
largely about the cluster these vertices belong to [14]. Vertices 16, 17, and 18 are
assigned to the second cluster, but only with low degrees of membership. Again,
this is a precise result consistent with [14], where many methods did not assign
these vertices at all.
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1.Evelyn
2.Laura

3.Theresa4.Brenda

5.Charlotte

6.Frances

7.Eleanor

8.Pearl

9.Ruth

10.Verne

11.Myra

12.Katherin

13.Sylvia

14.Nora15.Helen

16.Dorothy

17.Olivia
18.Flora

19

20

21

Cluster 1

Cluster 2

Evelyn

Laura

Theresa

Brenda

Charlotte

Frances  

Eleanor

Pearl

Ruth

Core

Periphery

Verne

Myra

Katherine

Sylvia

Nora

Helen

Dorothy

Olivia

Flora

Periphery

Core

Fig. 3. projections for 2-clustering (left) and core/periphery structure in resulting clus-
ters (middle and right)

Core/Periphery Structure. Borgatti and Everett [8] discuss intuitive ideas and
formal definitions for a frequently encountered phenomenon in social networks,
namely their division into a cohesive core of densely knit actors and a loosely
connected periphery.

The degree of membership to both core and periphery of a vertex can be
determined by a structural projection onto role graph Rcp of Fig. 2, although
the spectrum of the role graph is not as trivial as those of the other two. However,
the eigenvalues λ1, λ2 of Rcp satisfy c = λ1 + λ2 and −p2 = λ1 · λ2. Since it is
reasonable to demand c, p ∈ R≥0, these equations imply w.l.o.g. λ1 ≤ 0 ≤ λ2
and |λ1| ≤ |λ2|. Standard results in spectral graph theory imply that for loopless
connected graphs the smallest and the largest eigenvalue always satisfy these
inequalities. Thus, by Theorem 6, the projection σ onto the 2-dimensional space
generated by the corresponding eigenvectors of G is structural with G/σ = Rcp.
The resulting role assignment for the two clusters suggested by [14] of the data
set is in Fig. 3(middle and right). Observe that the more a vertex is in the core,
the more it is connected to core and to peripheral vertices, whereas vertices that
have high peripheral values are connected mostly to the core.
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