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Abstract 

This paper describes a specification-based black-box technique for 

testing program units. The main contribution is the method that we 

have developed to derive test conditions, which are descriptions of 

test cases, from the formal specification of each program unit. The 

derived test conditions are used to guide test selection and to mea- 

sure comprehensiveness of existing test suites. Our technique com- 
plements traditional code-based techniques such as statement 

coverage and branch coverage. It allows the tester to quickly 
develop a black-box test suite. 

In particular, this paper presents techniques for deriving test 

conditions from specifications written in the Assertion Definition 

Language (ADL) [SH94], a predicate logic-based language that is 
used to describe the relationships between inputs and outputs of a 

program unit. Our technique is fully automatable, and we are cur- 

rently implementing a tool based on the techniques presented in 
this paper. 

1 Introduction 

Structural testing usually refers to techniques where test cases are 
intended to cover some structure of the implementation. The tech- 

nique that we present in this paper is a structural specification- 
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based testing technique, where test cases are intended to cover 

some structure of the specification. These specification-based test 
cases are interesting because they relate directly to what the pro- 

gram is supposed to do and can detect certain errors (in particular, 

missing path errors) that sometimes are not detected by implemen- 

tation-based testing. 

Test selection is an activity that attempts to partition the input 

and the output domains of the program into a finite number of sub- 

domains that are approximations of equivalence classes. In our 

approach, we use test conditions to characterize each subdomain. 
A test condition evaluates to true only for test data that are mem- 

bers of the subdomain associated with that test condition. 

In this paper, we discuss how structural specification-based 

test conditions can be derived from ADL (Assertion Definition 

Language) specifications. One uses ADL to describe the behavior 
of a program unit (a procedure or a function). An ADL specifica- 

tion consists of a set of assertions that must hold immediately after 

the termination of any call to the specified program unit. ADL 

assertions are based on first order predicate logic. Each assertion 

is a boolean expression that constrains values of input and output 
parameters of the specified unit. 

Two kinds of test conditions can be  derived from ADL specifi- 

cations: call-state test conditions and return-state test conditions. 

Call-state test conditions are test conditions that are derived from 
the input conditions of the function as described in the specifica- 
tion and constrain values of input parameters only. They charac- 

terize subdomains that are partitions of a function's input domain. 

Return-state test conditions are derived from both the input and 

output conditions of the function and constrain values of both 

input and output parameters. They characterize subdomains that 

are partitions of both input and output domains. Call-state test 

conditions can be used to measure comprehensiveness of test data 

even if an implementation is not available. This adheres to the 

sound principle of developing the black-box test suite during 

design and not after the implementation has been developed. 
Return-state test conditions provide more thorough test coverage, 

but cannot be evaluated without an implementation. 

The ADL Translator (ADLT) provides automated support for 
testing C programs. Given the ADL specification of a C function 

and specifications of user selected test data (Test Data Descrip- 

tion), ADLT generates a test driver that executes the function 
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Figure 1: ADL Translator and Specification Coverage Tool 

under test with those test data and automatically checks test 

results. 

We are currently developing a tool, called the Specification 

Coverage Tool (SCT), that derives test conditions from ADL spec- 

ifications. Figure 1 shows how SCT is integrated with ADLT. SCT 

generates coverage condition functions. Coverage condition func- 

tions are C functions that determine whether the derived test condi- 

tions are satisfied by some test data. Coverage condition functions 

are compiled and linked with the ADLT-generated test driver and 

the function under test. The compiled and linked executable is 

called the test program executable. During testing, the test pro- 

gram executable collects coverage information and updates the 

coverage information file. The coverage information file records 
the number of times each coverage condition is satisfied. SCT also 
generates a pretty-printed listing of derived test conditions. This 
listing can be used by the tester to develop actual test inputs. 

2 Summary of ADL 

We shall use an Elevator example to illustrate some of the con- 

structs of ADL. Figure 2 shows an ADL specification of part of an 
elevator system. The part that we have chosen to specify is a func- 

tion that computes which floor the elevator should move to next, 

given its current direction, current location, and pending calls and 

requests. For our purpose, a call for the elevator is made on a floor 

to move either up or down. A request is made inside the elevator to 
visit a particular floor. 

An ADL specification consists of a set of modules. Each mod- 

ule encapsulates a set of constituents that describe the entities in 

the specified program. A module may import other modules. The 

constituents of an imported module are visible to the importing 

module. In the Elevator example, the elevator module imports 

the f l o o r s  module. The f l o o r s  module specifies a set abstract 

data type (ADT). The operations of the f l o o r s  module are 
described in the Appendix. 

There are three types of constituents: type constituents, object 
constituents, and function constituents. A type constituent defines a 

type. An object constituent introduces an object of some type. A 
function constituent introduces a function with its parameters and 

the return type. The e l e v a t o r  module has these following con- 

stituents: (1) INVALID_FLOOR and INVALID_CALL are con- 
stants of type i n t ,  (2) e r r o r  is an object of type i n t ,  (3) 

d i r e c t i o n  is an enumeration type that has two enumeration 

constants: UP and DOWN, (4) m o v e E l e v a t o r  is a function con- 
stituent. 

Function constituents may contain semantic descriptions. The 
semantic description of a function constituent describes the func- 

tion's behavior. There are two types of semantic descriptions: 

bindings and assertions. Bindings bind names to expressions. The 

names then represent abbreviations for their associated expres- 

sions. The names n o r m a l  and e x c e p t i o n  have special mean- 

ings in ADL, that is, the expressions that they are bound to 

characterize the normal and exceptional behaviors of the function. 

The first binding of m o v e E l e v a t o r  binds the expression 

( r e t u r n  == - 1 )  to the name e x c e p t i o n ,  and the second 
binding binds ! e x c e p t i o n  to n o r m a l .  

An assertion is a boolean expression that must evaluate to true 

at the termination of function execution. An assertion is a post- 

condition of the function. An important predefined ADL operator 

is the call-state operator ("0")  that takes an expression as an argu- 

ment  and evaluates it at the call state. The call state refers to the 

time an implementation of the specified function is called. Simi- 

larly, the return state refers to the time of return from a call to an 

implementation of the function. Another important ADL expres- 

sion is the exception expression (p < : > q) .  An exception expres- 

sion prescribes an exceptional outcome of the specified function 
and is defined as follows (here "-->" is the ADL logical implica- 
tion operator): p < : > q is equivalent to 

(p --> exception) && 

((exception && q) --> p) 

We shall use the term exception pre-conditions to refer to the left 
operands of exception expressions. 

The first two assertions of m o v e E l e v a t o r  describe its 
exceptional behavior. The first exception expression (Assertion 1) 

represents the situation where the current location of the elevator is 

above the highest floor or lower than the bottom floor. The second 

exception expression (Assertion 2) represents the situation where 

an up call is made on the highest floor or a down call is made on 

the lowest floor. The specification therefore requires that in either 

of these cases, m o v e E l e v a t o r  behaves exceptionally, that is, it 

returns -1 .  In addition, the specification also prescribes that 

e r r o r  be set to INVALID_FLOOR if the first exception pre-con- 

dition is true, and that e r r o r  be set to INVALID_CALL if the 

second exception pre-condition is true. The specification also 
requires that if e r r o r  is equal to INVALID_FLOOR after a func- 

tion call that returns -1 ,  the first exception pre-condition must be 

true. Similarly, if error is equal to INVALID_CALL after a 

function call that returns - 1 ,  the second exception pre-condition 
must be true. 

The normal behavior of the function is specified by the nor- 
mally expression. It has the following form: 

normally { e I, e 2 .... } 
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module elevator imports floors ( 

const int INVALID_FLOOR; 

const int INVALID_CALL; 

int error; 

typedef enum direction { UP, DOWN ) direction; 

int moveElevator( 

direction *currentDirection, 

floor *currentFloor, 

floorSet requests, 

floorSet upCalls, 

floorSet downCalls) 

semantics { 

exception := (return == -i), 

normal := !exception, 

prevFloor := O(*currentFloor), 

prevRequests := 0(duplicate(requests)), 

prevUpCalls := @(duplicate(upCalls)), 

prevDownCalls := 8(duplicate(downCalls)), 

/* Assertion 1 */ 

8(*currentFloor > MAX_FLOOR 

II *currentFloor < i) 

<:> error == INVALID_FLOOR, 

/* Assertion 2 */ 

@(isMember(MAX_FLOOR, upCalls) 

II isMember(l, downCalls)) 

<:> error == INVALID_CALL, 

normally { 

/* Assertion 3 */ 

8(*currentDirection == UP 

&& *currentFloor 

<= max(setUnion(requests, upCalls))) 
--> 

(*currentDirection == UP 

&& *currentFloor == 

min(deleteElements(setUnion(prevRequests, 

prevUpCalls), I, prevFloor - i)) 

&& equal(requests, deleteElement(prevRequests, 

*currentFloor)) 

&& equal(upCalls, deleteElement(prevUpCalls, 

*currentFloor)) 

&& equal(downCalls, prevDownCalls)), 

/* Assertion 4 */ 

8(*currentDirection == DOWN 

&& *currentFloor 

>= min(setUnion(requests, downCalls))) 
--> 

(*currentDirection == DOWN 

&& *currentFloor == 

max(deleteElements(setUnion(prevRequests, 

prevDownCalls),prevFloor + i, MAX_FLOOR)) 

&& equal(requests, deleteElement(prevRequests, 

*currentFloor)) 

&& equal(downCalls,deleteElement(prevDownCalls, 

*currentFloor)) 

&& equal(upCalls, prevUpCalls)), 

/* Assertion 5 */ 

8(*currentDirection == UP 

&& *currentFloor > 

max(setUnion(requests, upCalls)) 

&& !empty(setUnion(requests, downCalls))) 
__> 

(*currentDirection == DOWN 

&& *currentFloor == max(setUnion(prevRequests, 

prevDownCalls)) 

&& equal(requests, 

deleteElement(prevRequests, *currentFloor)) 

&& equal(upCalls, prevUpCalls) 

&& equal(downCalls,deleteElement(prevDownCalls, 

*currentFloor))), 

/* Assertion 6 */ 

O(*currentDirection == DOWN 

&& *currentFloor 

< min(setUnion(requests, downCalls)) 

&& lempty(setUnion(requests, upCalls))) 
--> 

(*currentDirection == UP 

&& *currentFloor == min(setUnion(prevRequests, 

prevUpCalls)) 

&& equal(requests, deleteElement(prevRequests, 

*currentFloor)) 

&& equal(upCalls, deleteElement(prevUpCalls, 

*currentFloor)) 

&& equal(downCalls, prevDownCalls)), 

/* Assertion 7 */ 

8(*currentDirection == UP 

&& lempty(upCalls) 

&& *currentFloor > max(upCalls) 

&& empty(setUnion(downCalls, requests))) 
--> 

(*currentDirection == UP 

&& *currentFloor == min(prevUpCalls) 

&& equal(requests, prevRequests) 

&& equal(upCalls, deleteElement(prevUpCalls, 

*currentFloor)) 

&& equal(downCalls, prevDownCalls)), 

/* Assertion 8 */ 

8(*currentDirection == DOWN 

&& !empty(downCalls) 

&& *currentFloor < min(downCalls) 

&& empty(setUnion(upCalls, requests))) 
--> 

(*currentDirection == DOWN 

&& *currentFloor == max(prevDownCalls) 

&& equal(requests, prevRequests) 

&& equal(upCalls, prevUpCalls) 

&& equal(downCalls, 

deleteElement(prevDownCalls, *currentFloor))) 

); 
}; 

Figure 2: ADL specification ol~the elevator module. 
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Each of the ei's must be true for all function calls that behave nor- 
mally. For m o v e E l e v a t o r ,  there are six assertions in the nor- 

mally expression. The specification states that i f m o v e E l e v a t o r  
behaves normally, that is, it returns anything other than -1 ,  all six 

assertions must be true. 

Here we provide an informal description of the elevator's nor- 

mal behavior to help the reader understand the Elevator specifica- 

tion. The elevator will alternate upward and downward cycles. In a 

upward cycle, the elevator will move up to the nearest higher floor 

with an outstanding request or up call (Assertion 3). It will repeat 

this until there is no longer a higher floor for a request or an up 

call. If there are down calls or requests for a lower floor, it will 

change direction (Assertion 5) and will then execute an analogous 

downward cycle (Assertion 4). It may also be that there are no 

requests and the only outstanding calls are up calls from lower 

floors. Since a downward cycle would not service these, the eleva- 
tor will travel to the lowest floor having such an up call (Assertion 

7) and then behave according to the rules for an upward cycle. A 

dual situation exists at the end of a downward cycle and is handled 

analogously (Assertions 6 and 8). 

3 Terminology 

A test condition is a set of boolean conditions that are constraints 

on values of parameters - -  input parameters, output parameters, 

global variables, and the return value - -  of the function under test. 

A call-state test condition is a test condition that constrains values 

of input parameters and input values of global variables. Below is 

a call-state test condition for the Elevator example: 

{ @(*currentFloor <= MAX_FLOOR) , 

@(*currentFloor >= i) , 

@(! (isMember(MAX_FLOOR, upCalls))) , 

@(! (isMember(l, downCalls))), 

@(*currentDirection == UP), 

@ ( * currentFloor 

> max(setUnion(requests, upCalls))) } 

This test condition represents a condition that some test data 
should satisfy. It can be used by a tester to select test data that sat- 

isfy this condition. It can also be used by tools to automatically 
determine whether this condition is satisfied by some test suite. For 

example, assuming MAX_FLOOR is greater than 4, a tester can 
select the following test data to satisfy this test condition: 

@ (*currentDirection) : UP 

8(*currentFloor) : 4 

0(requests) : { 1 } 

@(upCalls) : { 3 } 

@(downCalls): { 2, 5 l 

As will be discussed in more details later, call-state test conditions 

are derived from call-state evaluatable expressions in ADL speci- 
fications. A call-state evaluatable expression is an expression 

where the values of variables in the expression either cannot 

change during the execution of the function or are evaluated before 

the function is called. In C, all parameters are passed by value. 

Thus, the value of any parameter cannot change 1. However, the 
value of an object pointed by a pointer parameter can change. Ele- 

ments of an array parameter can change. Function calls may also 

modify values of global variables. Therefore, any subexpression of 

an assertion that does not contain any pointers, arrays, function 
calls, or global variables (except constants) is a call-state evaluat- 

able subexpression of that assertion. Also, the operands of the call- 

state operator ("0") is evaluated before the function call. Thus, 

they are also call-state evaluatable. 

A return-state test condition is a test condition that constrains 

values of input parameters, output parameters, global variables, 

and the return value. Below is a return-state test condition for the 

Elevator example: 

{ O(*currentFloor <= MAX_FLOOR), 

@(*currentFloor >= i), 

@(! (isMember(MAX_FLOOR, upCalls))), 

@(! (isMember(l, downCalls))), 

return != -i, 

@(*currentDirection == UP) , 

@ ( * currentFloor 

<= max(setUnion(requests, upCalls))), 

• currentDirection == UP, 

• currentFloor == min(deleteElements ( 

setUnion (O (duplicate ( requests ) ) , 

8(duplicate(upCalls) ) ) , I, 

@(*currentFloor) - i)) , 

equal (requests, deleteElement ( 

@(duplicate(requests)) , *currentFloor)), 

equal (upCalls, deleteElement ( 

@(duplicate(upCalls)), *currentFloor)), 

equal (downCalls, 8 (duplicate (downCalls)) ) } 

For example, a test case with the following test input values and 

output values would satisfy this test condition: 

@ (*currentDirection) : UP 

8(*currentFloor) : 3 

@(requests): { 2 } 
@(upCalls) : { i, 4 } 

8(downCalls): { 3, 4 } 

return: 0 

• currentDirection: UP 

• currentFloor : 4 

requests: { 2 } 

upCalls: { 1 } 

downCalls: ( 3, 4 } 

4 Approach 

In short, our approach derives test conditions by traversing the 
parse tree of the specification, collecting and combining boolean 

conditions from various parts of the specification. The methods for 

generating and combining these boolean conditions are called 
rules. Rules are associated with the types of nodes in the parse tree 
and are based on various test selection strategies. 

To generate call-state test conditions, rules are only applied to 

call-state evaluatable expressions in the specification. To generate 
return-state test conditions, rules are applied to all expressions. 

I. Actually this not entirely true. If a parameter is aliased (referenced by 
another parameter or a global variable), the value of the parameter could 
change. We do not consider this situation in this paper. 
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4.1 Test Selection Strategies 

The ADL constructs that are most relevant to testing are logical 

expressions (e.g. "&&", "1 ]", " - - > " )  and relational expressions 
(e.g. ">", = , "<", For logical expressions, rules based 
on the multicondition strategy [Mye79] and the meaningful impact 
strategy [Fos84, WGS94] can be used. The multicondition strategy 
selects every possible value for each operand of  a logical expres- 
sion. The meaningful impact strategy requires each logical oper- 
and to individually affect the value of the expression. Rules for 
relational expressions are based on boundary value strategy 
[Mye79] and domain testing strategies [WC80, CHR82]. These 
strategies select test points on or near a boundary. 

Rules can be developed for other constructs also. For a particu- 

lar application, strategies that are suitable for that application can 
be developed. For example, rules that are based on computation 
testing strategies [Fos80, CR83] can be used on mathematical 
expressions to test scientific or numerical programs. 

For the Elevator. example, we shall use the multicondition 
strategy for logical expressions. For clarity, we provide two exam- 
ples of the multicondition strategy here. For the expression (a [ I 
b) ,  the multicondition strategy produces the following conditions: 
{ ! a ,  !b}, { : a ,  b} ,and  {a}.Fortheexpression(a-->b), the 
following conditions are produced: { :a},  {a, :b} and {a, b}. 
Our approach uses a top-down tree traversal algorithm where each 

parse tree node may have an inherited attribute. This attribute is a 
constraint on the value of the expression associated with the node. 
When such a constraint is present, only the cases, as required by 
the multicondition strategy, that are consistent with the constraint 
are generated. For example, we might require the value of (a I I 
b) be true, the multicondition strategy would yield only the cases 
that make the expression true: { : a ,  b} and {a}. If  the value of 
(a I I b) is constrained to false, only one case is generated: 
{ !a ,  :b}. 

For relational expressions, we shall use a simple boundary 
testing strategy. This strategy selects test points on both sides of a 
boundary. For example, for (a > b) ,  this strategy requires: {a 
== b + 1} and {a == b } . If  there is a boolean constraint on the 
value of the expression, only cases that are consistent with the con- 
straint will be generated. For example, if (a > b) is constrained 
to true, assuming a and b are integers, one condition, {a == b + 
1} is generated. If the value of (a > b) is constrained to false, 

only {a == b} is generated. 

4.2 Generating Test Conditions 

ADL allows the specification of both the normal behavior and the 
exceptional behavior of the function under test. Both of these 
behaviors should be tested. 

4.2.1 Testing N o r m a l  Behavior  

To test the normal behavior, exception must have the value 
f a l s e. Also, all the exception pre-conditions must be suppressed, 

that is, for all exception expressions Pi <:> qi, we require that all 

pi's must have the value false. In addition, each expression e i in 

the normally expression, n o r m a l l y  { e 1 , e 2 . . . .  }, should 
have the value t r u e .  

In the Elevator example, e x c e p t i o n  is bound to the expres- 
sion ( r e t u r n  == -1  ) .The multicondition strategy requires all 
cases that would make this expression false. The boundary testing 
strategy does not apply since there is no relational operator in this 
expression. Our algorithm traverses the parse tree of this expres- 
sion in a top down manner and passes the "false" constraint down 
the tree as a parameter. Upon reaching the equality node ("=="), 
the algorithm generates a boolean condition, M~, to make the equal- 
ity "false": 

( return != -1 I. (MI) 

As mentioned earlier, we require that all the exception pre-condi- 

tions, pi's, must be false.The pi's in the Elevator example are: 

O(*currentFloor > MAX_FLOOR 

II *currentFloor < I) 

and 

0 (isMember (MAX_FLOOR, upCalls) 
I I isMember(l, downCalls)) . 

For the first expression, the algorithm traverses the parse tree of 
that expression top-down with the "false" constraint. Upon reach- 
ing the logical OR node ("11"), the multicondition strategy 
requires that both the left-hand side and the right-hand side must 
be false. Thus, the algorithm traverses the left subtree with the 
"false" constraint. It then traverses the right subtree also with the 

"false" constraint. For the left subtree, requiring the value of ( 
* c u r r e n t F l o o r  > MAX_FLOOR) be false, the algorithm gen- 

erates the following condition: 

{ O(*currentFloor <= MAX_FLOOR) }. (M2) 

Requiring the expression be false, the boundary testing strategy 
generates the following boundary condition B1: 

{ O(*currentFloor == MAX_FLOOR) }, (BI) 

Requiring the value of the right subtree (*currentFloor < 

1 ) be false, the algorithm generates: 

{ 8(*currentFloor >= I) } (M 3) 

and the boundary condition: 

{ 8(*currentFloor == i) }. (B 2) 

We use the same algorithm to generate conditions from the second 

exception expression: 

( O ( ! isMember (MAX_FLOOR, upCalls) ) } (M4) 

and 

( O(!isMember(l, downCalls)) }. (M5) 

Note that no boundary conditions are generated from the second 

exception expression. 

Each expression e i in the normally expression, n o r m a l l y  { 
e l ,  e 2 . . . .  }, should have the value t r u e .  For each ei, we use 
the same top-down tree traversal to generate conditions. For Asser- 
tion 3 of the Elevator example, the multicondition strategy requires 
the following conditions: 

{ O(*currentDirection l= UP) }, (M 6) 
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{ O(*currentDirection == UP), 

8(*currentFloor > 

max(setUnion(requests, upCalls))) 

and 

{ 

}, (MT) 

@(*currentDirection == UP), 

@(*currentFloor <= 

max(setUnion(requests, upCalls))), 

*currentDirection == UP, 

*currentFloor == 

min(deleteElements(setUnion(prevRequests, 

prevUpCalls), i, prevFloor - i)), 

equal(requests, deleteElement(prevRequests, 

*currentFloor)), 

equal(upCalls, deleteElement(prevUpCalls, 

*currentFloor)), 

equal(downCalls, prevDownCalls)) 

}. (Ms) 

M 6 and M 7 represent all possible cases that make the left-hand side 
of the impl~ation expression of Assert~n 3 ~lse. M s represents 
the c ~ e  where both the le~-band side and the right-band side of 
the implication expression are true. 

The boundary testing strmegy requires the ~11owing condi- 
tions ~ r  Ass~tion 3: 

{ 0(*currentDirection == UP), 

O(*currentFloor == 

max(setUnion(requests, upCalls)) + i)}, ~3) 

[ @(*currentDirection == UP), 

@(*currentFloor == 

max(setUnion(requests, upCalls))), 

*currentDirection == UP, 

*currentFloor == 

min(deleteElements(setUnion(prevRequests, 
prevUpCalls), i, prevFloor - i)), 

equal(requests, deleteElement(prevRequests, 

*currentFloor)), 

equal(upCalls, deleteElement(prevUpCalls, 

*currentFloor)), 
equal(downCalls, prevDownCalls))}. (B4) 

Finall~ we combine the conditions gener~ed from the expression 
bound to e x c e p t i o n  and the exception pre-conditions with the 
boolean conditions generated from ~e  asse~ion in the normally 
expression. For Asse~ion 3 of the Elevator exam~e, the multicon- 
di t~n strategy requires three return-state test conditions (~, ~ ,  
and ~) :  

T l = M  1 u M  2 u M 3 u M  4 ~ M  5 u M  6, 

Te = MI U M2 U M3 U M4 U Ms U M 7, 

~ = MI ~ M2 U M3 U M4 U Ms U Ms • 

For claritB we show the conditions associated with ~ :  

[ return != -I, 

O(*currentFloor <= MAX_FLOOR), 

O(*currentFloor >= i), 

O(!isMember(MAX_FLOOR, upCalls)), 

O(!isMember(l, downCalls)), 

@(*currentDirection != UP) }. 

We can generate two kinds of boundary test conditions. Both rep- 
resent boundary cases of the normal behavior. Test conditions of 
the first kind are obtained by combining the boundary conditions 
generated from the normally expression with the non-boundary 
conditions generated from the expression bound to e x c e p t i o n  
and the exception pre-conditions. For Assertion 3, the boundary 
testing strategy requires these return-state test conditions: 

T4 = MI k.g M2 L) M3 kJ M4 k.J Ms U B3, 

Ts = Mt L) M2 U M3 kg M4 LJ Ms k.) B4. 

We can also combine boundary conditions generated from the 
exception pre-conditions and the expression bound to e x c e p -  
t i o n  with non-boundary conditions generated from the normally 
expression. For Assertion 3, the following return-state test condi- 
tions are required: 

T6 = M 1 k) B 1 t..J M3 t..g M 4 kg M 5 U M6, 

T 7 = M  1 W B 1 k.) M3 U M 4 k.) M 5 kJ M 7, 

rs=M~ u B~ k.) M3 u M 4 kg M 5 Lg M s, 

Tg=M, u M2 w/~2u M4 uMs uM6, 

rlo = Ml L.) M2 U B2 ~ M4 kJ Ms U M7, 

r n =Mr k 3 M 2 U B 2 u M  4 kJM 5 U M  s, 

Note that in the above test conditions, each boundary is tested sep- 
arately. We could also generate additional test conditions, each 
with multiple boundaries, but this would substantially increase the 
number of test conditions. Also we could have generated fewer 
boundary test conditions if we have chosen not to generate bound- 
ary conditions from exception pre-conditions. Whether to generate 
more or fewer test conditions depends on what level of rigor is 
required and also on how much resource is allocated to testing. 

The call-state test conditions are obtained exactly the same 
way except that only call-state evaluatable expressions are consid- 
ered. In the Elevator example, the expression bound to e x c e p -  
e i o n  is not call-state evaluatable. Thus, no condition is generated 
from it. The conditions that are derived from exception pre-condi- 
tions are the same as those generated for return-state analysis (M2, 
Ms, M4, Ms, Bl, and B2) since both exception pre-conditions are 
call-state evaluatable. Since only the left operand of the implica- 
tion expression of Assertion 3 is call-state evaluatable, only the left 
operand is considered. The following conditions are required by 
the multicondition strategy: 

{ ~(*currentDirection !=  UP) }, 

and 

{ 8(*currentDirection == UP), 

@(*currentFloor > 

max(setUnion(requests, upCalls))) }, 

{ 8(*currentDirection == UP), 

O(*currentFloor <= 

max(setUnion(requests, upCalls))) }. 

The ~llowing conditions are required by the boundary testing 
strategy: 

{ O(*currentDirection == UP), 

O(*currentFloor == 

max(setUnion(requests, upCalls)) + i) }, 
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and 

( O(*currentDirection == UP), 

O(*currentFloor == 

max(setUnion(requests, upCalls))) }. 

The conditmns are combined in the same way as in return-state 
analysis. For example, the call-state test conditions generated 
using only the multicondition strategy for Assertion 3 of the Eleva- 

~ r  exampM are shown below: 

{ @(*currentFloor <= MAX_FLOOR), 
8(*currentFloor >= I), 

@(!isMember(MAX_FLOOR, upCalls)), 

O(lisMember(l, downCalls)), 

8(*currentDirection l= UP) }, 

and 

{ @(*currentFloor <= MAX_FLOOR), 

O(*currentFloor >= I), 

0(lisMember(MAX_FLOOR, upCalls)), 

O(lisMember(l, downCalls)), 

@(*currentDirection == UP), 

@(*currentFloor > 

max(setUnion(requests, upCalls))) }, 

{ 8(*currentFloor <= MAX_FLOOR), 

O(*currentFloor >= I), 

@(!isMember(MAX_FLOOR, upCalls)), 

O(!isMember(l, downCalls)), 

@(*currentDirection == UP), 

O(*currentFloor <= 
max(setUnion(requests, upCalls) ) }. 

The method that we have des~ibed also applies ~ Assertions 4-8 
of the Elev~or exam~e.  

4.2.2 Testing Exceptional Behavior 

To test the specified exceptional behavior of the function, e x c e p -  
t i o n  must have the value t r u e .  In the Elevator example, requir- 

ing e x c e p t i o n  be true produces 

{ (return ==-i) } (M 9) 

To test the exceptional behavior prescribed by an exception 

expression Pi <:> qi in the specification, we require that all other 
exception pre-conditionspj's inpj <:> qj take the value f a l s e  and 

require both pi and qi be t r u e .  

To test the behavior prescribed by Assertion 1 of the Elevator 
example, the exception pre-condition of Assertion 2 must be false. 

Applying the multicondition strategy to the pre-condition of Asser- 
tion 2, requiring its value be false yields: 

{ 8( !isMember(MAX_FLOOR, upCalls) ) } (MI0) 

and 

{ O(!isMember(l, downCalls)) }. (MII) 

Requiring both operands of Assertion I be true, the multicondition 

strategies requires: 

( @(*currentFloor > MAX_FLOOR) , 

error == INVALID_FLOOR ),  (MI2) 

( O(*currentFloor <= MAX_FLOOR) , 

@(*currentFloor < i), 

error == INVALID_FLOOR }, (MI3) 

Applying the boundary testing strategy yields the following 

boundary conditions: 

( O(*currentFloor == MAX_FLOOR + I), 

error == INVALID_FLOOR }, (B 5) 

( @(*currentFloor == MAX_FLOOR), 

O(*currentFloor < i), 

error == INVALID_FLOOR }, (Bt) 

( 8(*currentFloor <= MAX_FLOOR), 

8(*currentFloor == 1 - i), 

error == INVALID_FLOOR }. (B 7) 

Our algorithm then combines conditions generated from the excep- 
tion expression being considered, from other exception expres- 
sions (pj <:> qj), and from the expression bound to e x c e p t i o n .  

Two return-state test conditions are generated using the multicon- 
dition strategy on Assertion 1 of the Elevator example: 

TIE = M 9 u Mlo k.) MII L) MI2, 

T13 = Mg U M1o U MI1 U M13. 

Three return-state test conditions are generated using the boundary 

testing strategy on Assertion h 

TI4 =M 9 U Mlo U M u U BS, 

TIs=M9 U MIo U Mn U B 6, 

TI6 =M 9 U MlO %) MII U B 7. 

Call-state test conditions can be obtained using the same method 

except that only call-state evaluatable expressions are considered. 
Call-state test conditions for Assertion 1 of the Elevator example 

are: 

{ O( !isMember (MAX_FLOOR, upCalls) ) , 
@(!isMember(l, downCalls)), 
8(*currentFloor > MAX_FLOOR) }, 

G(!isMember(MAX_FLOOR, upCalls)), 

8(!isMember(l, downCalls)), 

@(*currentFloor <= MAX_FLOOR), 

@(*currentFloor < i) }, 

O(!isMember(MAX_FLOOR, upCalls)), 

O(!isMember(l, downCalls)), 

@(*currentFloor == MAX_FLOOR + i) }, 

and 

{ 

0(!isMember(MAX_FLOOR, upCalls)), 

O(!isMember(l, downCalls)), 

8(*currentFloor == MAX_FLOOR), 

8(*currentFloor < I) }, 

@(!isMember(MAX_FLOOR, upCalls)), 

0(!isMember(l, downCalls)), 

8(*currentFloor <= MAX_FLOOR), 

8(*currentFloor == 1 - I) }. 

The method we have descfibed also appliesto Assertion2. 
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4.2.3 Elevator Results 

Using the multicondition strategy, our algorithm would generate a 
total of 28 call-state test conditions and 28 return-state test condi- 
tions 2 from the Elevator specification. These test conditions are all 
feasible. 

Applying the boundary testing strategy to the normally expres- 
sion, our algorithm would generate 16 call-state test conditions and 

16 return-state test conditions. These test conditions are all feasible 

also. 

Applying the boundary testing strategy to exception pre-condi- 
tions and requiring exception take the value true, our algo- 
rithm would generate 3 call-state and 3 return-state test conditions. 

One call-state test condition and one return-state test condition (T~5 
in Section 4.2.2) are infeasible. Both conditions require * c u r -  
rentFloor be equal to MAX_FLOOR and be less than i. 

Applying the boundary testing strategy to exception pre-condi- 
tions and requiring e x c e p t i o n  take the value f a l s e ,  our algo- 
rithm generates 48 call-state and 48 return-state test conditions. 
Six call-state and six return-state test conditions are infeasible. 

5 Related Work 

Many papers have focused on specification-based testing. Goode- 
nough and Gerhart [GG76] and Gourlay [Gou83] demonstrate the 
importance of specification-based testing. Many papers have since 
focused on deriving tests from the specification. Weyuker and 
Ostrand [WO80] develop theories of program testing using reveal- 
ing subdomains. They emphasize the importance of deriving test 
cases from both the specification and the implementation. How- 
ever, they do not provide a systematic way for creating the specifi- 
cation partition. Richardson and Clarke [RC85], Cartwright 
[Car81], and Richardson, O'Malley, and Tittle [ROT89] all pro- 
pose using symbolic execution techniques to create the specifica- 
tion partition. However, symbolic execution techniques cannot 
easily be applied to several languages, ADL being one of them. 
Our technique is an alternative approach that does not require sym- 
boric execution. Several other papers are also related. Ostrand and 
Balcer [OB88] provide a methodology, the Category-partition 
Method, for developing functional tests from informal system- 
level specifications. Stocks and Carrington [SC93] introduce the 
Test Template Framework in which specification-based testing can 
be conducted. Whereas their approach focuses on providing a 
framework for deriving specification-based tests, the focus of our 
approach is on actually deriving the test conditions. Chang, San- 
kar, and Richardson [CSR95] present some early ideas on deriving 
tests from ADL. This paper is the continuation of that work. 
Doong and Sankar [DS95] describe an implementation of a cover- 
age analyzer for measuring multicondition coverage based on 

2. It so happens that for the Elevator example, there is a one-to-one corre- 
spondence between a call-state test condition and a return-state condition. 
Thus, the number of call-state test conditions is the same as the number 
return-state conditions. In general, this is not the case. 

ADL. We adopted a few ideas from this work, in particular, on 

how exception expressions are handled. 

6 Conclusion and Future Work 

Having the ability to automatically derive test conditions from for- 

mal specifications offers several benefits. It provides a systematic 
method for developing a black-box test suite. It also provides a 
way to measure coverage of test data with respect to the specifica- 
tion. We believe that having this capability would further encour- 

age the use of formal specifications. 

We are currently working on a tool based on the techniques 
discussed in this paper. As part of future work, we would like to 

apply our work to industrial applications and experiment with dif- 
ferent test selection strategies. In addition, we would like to con- 
duct an experiment to measure code coverage of test data 
developed from test conditions that are generated by our method. 
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Appendix The floors Module 

i s M e m b e r  ( e ,  s )  returns t r u e  if e is a member of the set s.  
duplicate ( s ) returns a copy of the set s. setUnion ( s, t ) 

returns the union of sets s and t. max (s) returns the largest ele- 

ment of the set s. m i n ( s )  returns the smallest element of s.  

d e l e t e E l e m e n t  ( s ,  e) retums a copy of s with e removed 
from the copy. d e l e t e E l e m e n t s  ( s ,  a ,  b) returns a copy of 
s with elements ranging from a to b removed, e q u a l  ( s ,  t )  
returns t r u e  if two sets have the same set of elements, emp-  
t y ( s )  returns t r u e  if s is empty. 
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