
Structural Specification-based Testing with ADL

Juei C h a n g and D e b r a J. R icha rdson
{ j u e ± c , d j r } 0 i c s . u c i . o d u

Information and Computer Science, University of California, Irvine, CA 92717-3425

Sriram Sankar
sankar~eng, sun. com

Sun Microsystems Laboratories, 2550 Garcia Avenue, Mountain View, CA 94043-1100

Abstract

This paper describes a specification-based black-box technique for

testing program units. The main contribution is the method that we

have developed to derive test conditions, which are descriptions of

test cases, from the formal specification of each program unit. The

derived test conditions are used to guide test selection and to mea-

sure comprehensiveness of existing test suites. Our technique com-
plements traditional code-based techniques such as statement

coverage and branch coverage. It allows the tester to quickly
develop a black-box test suite.

In particular, this paper presents techniques for deriving test

conditions from specifications written in the Assertion Definition

Language (ADL) [SH94], a predicate logic-based language that is
used to describe the relationships between inputs and outputs of a

program unit. Our technique is fully automatable, and we are cur-

rently implementing a tool based on the techniques presented in
this paper.

1 Introduction

Structural testing usually refers to techniques where test cases are
intended to cover some structure of the implementation. The tech-

nique that we present in this paper is a structural specification-

This work is sponsored in part by the Air Force Material Command, Rome
Laboratory, and the Advanced Research Projects Agency, under Contract
Number F30602-94-C-0218, by Hughes Aircraft Company and the Univer-
sity of California under MICRO Grant Number 94-105, and by a gift from
Sun Microsystems Laboratories. The content does not necessarily reflect the
position or the policy of the U.S. Government, Hughes Aircraft Company,
Sun Microsystems Laboratories, or the University of California, and no offi-
cial endorsement should be inferred.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
I S S T A '96, San Diego C A U S A
e 1996 A C M 0 - 8 9 7 9 1 - 7 8 7 - 1 / 9 5 / 0 1 . . $ 3 . 5 0

based testing technique, where test cases are intended to cover

some structure of the specification. These specification-based test
cases are interesting because they relate directly to what the pro-

gram is supposed to do and can detect certain errors (in particular,

missing path errors) that sometimes are not detected by implemen-

tation-based testing.

Test selection is an activity that attempts to partition the input

and the output domains of the program into a finite number of sub-

domains that are approximations of equivalence classes. In our

approach, we use test conditions to characterize each subdomain.
A test condition evaluates to true only for test data that are mem-

bers of the subdomain associated with that test condition.

In this paper, we discuss how structural specification-based

test conditions can be derived from ADL (Assertion Definition

Language) specifications. One uses ADL to describe the behavior
of a program unit (a procedure or a function). An ADL specifica-

tion consists of a set of assertions that must hold immediately after

the termination of any call to the specified program unit. ADL

assertions are based on first order predicate logic. Each assertion

is a boolean expression that constrains values of input and output
parameters of the specified unit.

Two kinds of test conditions can be derived from ADL specifi-

cations: call-state test conditions and return-state test conditions.

Call-state test conditions are test conditions that are derived from
the input conditions of the function as described in the specifica-
tion and constrain values of input parameters only. They charac-

terize subdomains that are partitions of a function's input domain.

Return-state test conditions are derived from both the input and

output conditions of the function and constrain values of both

input and output parameters. They characterize subdomains that

are partitions of both input and output domains. Call-state test

conditions can be used to measure comprehensiveness of test data

even if an implementation is not available. This adheres to the

sound principle of developing the black-box test suite during

design and not after the implementation has been developed.
Return-state test conditions provide more thorough test coverage,

but cannot be evaluated without an implementation.

The ADL Translator (ADLT) provides automated support for
testing C programs. Given the ADL specification of a C function

and specifications of user selected test data (Test Data Descrip-

tion), ADLT generates a test driver that executes the function

62

Pretty-printed
Test Conditions I

[~- ~ Coverage Condition I
I --[Functions I

ADL
Specif cat on] ~

I Test P
k . . I I -\ LinKer j / "7 Exec,

I o=":~ ~ Driver I ~ReTE=.

Figure 1: ADL Translator and Specification Coverage Tool

under test with those test data and automatically checks test

results.

We are currently developing a tool, called the Specification

Coverage Tool (SCT), that derives test conditions from ADL spec-

ifications. Figure 1 shows how SCT is integrated with ADLT. SCT

generates coverage condition functions. Coverage condition func-

tions are C functions that determine whether the derived test condi-

tions are satisfied by some test data. Coverage condition functions

are compiled and linked with the ADLT-generated test driver and

the function under test. The compiled and linked executable is

called the test program executable. During testing, the test pro-

gram executable collects coverage information and updates the

coverage information file. The coverage information file records
the number of times each coverage condition is satisfied. SCT also
generates a pretty-printed listing of derived test conditions. This
listing can be used by the tester to develop actual test inputs.

2 Summary of ADL

We shall use an Elevator example to illustrate some of the con-

structs of ADL. Figure 2 shows an ADL specification of part of an
elevator system. The part that we have chosen to specify is a func-

tion that computes which floor the elevator should move to next,

given its current direction, current location, and pending calls and

requests. For our purpose, a call for the elevator is made on a floor

to move either up or down. A request is made inside the elevator to
visit a particular floor.

An ADL specification consists of a set of modules. Each mod-

ule encapsulates a set of constituents that describe the entities in

the specified program. A module may import other modules. The

constituents of an imported module are visible to the importing

module. In the Elevator example, the elevator module imports

the f l o o r s module. The f l o o r s module specifies a set abstract

data type (ADT). The operations of the f l o o r s module are
described in the Appendix.

There are three types of constituents: type constituents, object
constituents, and function constituents. A type constituent defines a

type. An object constituent introduces an object of some type. A
function constituent introduces a function with its parameters and

the return type. The e l e v a t o r module has these following con-

stituents: (1) INVALID_FLOOR and INVALID_CALL are con-
stants of type i n t , (2) e r r o r is an object of type i n t , (3)

d i r e c t i o n is an enumeration type that has two enumeration

constants: UP and DOWN, (4) m o v e E l e v a t o r is a function con-
stituent.

Function constituents may contain semantic descriptions. The
semantic description of a function constituent describes the func-

tion's behavior. There are two types of semantic descriptions:

bindings and assertions. Bindings bind names to expressions. The

names then represent abbreviations for their associated expres-

sions. The names n o r m a l and e x c e p t i o n have special mean-

ings in ADL, that is, the expressions that they are bound to

characterize the normal and exceptional behaviors of the function.

The first binding of m o v e E l e v a t o r binds the expression

(r e t u r n == - 1) to the name e x c e p t i o n , and the second
binding binds ! e x c e p t i o n to n o r m a l .

An assertion is a boolean expression that must evaluate to true

at the termination of function execution. An assertion is a post-

condition of the function. An important predefined ADL operator

is the call-state operator ("0") that takes an expression as an argu-

ment and evaluates it at the call state. The call state refers to the

time an implementation of the specified function is called. Simi-

larly, the return state refers to the time of return from a call to an

implementation of the function. Another important ADL expres-

sion is the exception expression (p < : > q) . An exception expres-

sion prescribes an exceptional outcome of the specified function
and is defined as follows (here "-->" is the ADL logical implica-
tion operator): p < : > q is equivalent to

(p --> exception) &&

((exception && q) --> p)

We shall use the term exception pre-conditions to refer to the left
operands of exception expressions.

The first two assertions of m o v e E l e v a t o r describe its
exceptional behavior. The first exception expression (Assertion 1)

represents the situation where the current location of the elevator is

above the highest floor or lower than the bottom floor. The second

exception expression (Assertion 2) represents the situation where

an up call is made on the highest floor or a down call is made on

the lowest floor. The specification therefore requires that in either

of these cases, m o v e E l e v a t o r behaves exceptionally, that is, it

returns -1 . In addition, the specification also prescribes that

e r r o r be set to INVALID_FLOOR if the first exception pre-con-

dition is true, and that e r r o r be set to INVALID_CALL if the

second exception pre-condition is true. The specification also
requires that if e r r o r is equal to INVALID_FLOOR after a func-

tion call that returns -1 , the first exception pre-condition must be

true. Similarly, if error is equal to INVALID_CALL after a

function call that returns - 1 , the second exception pre-condition
must be true.

The normal behavior of the function is specified by the nor-
mally expression. It has the following form:

normally { e I, e 2 }

63

module elevator imports floors (

const int INVALID_FLOOR;

const int INVALID_CALL;

int error;

typedef enum direction { UP, DOWN) direction;

int moveElevator(

direction *currentDirection,

floor *currentFloor,

floorSet requests,

floorSet upCalls,

floorSet downCalls)

semantics {

exception := (return == -i),

normal := !exception,

prevFloor := O(*currentFloor),

prevRequests := 0(duplicate(requests)),

prevUpCalls := @(duplicate(upCalls)),

prevDownCalls := 8(duplicate(downCalls)),

/* Assertion 1 */

8(*currentFloor > MAX_FLOOR

II *currentFloor < i)

<:> error == INVALID_FLOOR,

/* Assertion 2 */

@(isMember(MAX_FLOOR, upCalls)

II isMember(l, downCalls))

<:> error == INVALID_CALL,

normally {

/* Assertion 3 */

8(*currentDirection == UP

&& *currentFloor

<= max(setUnion(requests, upCalls)))
-->

(*currentDirection == UP

&& *currentFloor ==

min(deleteElements(setUnion(prevRequests,

prevUpCalls), I, prevFloor - i))

&& equal(requests, deleteElement(prevRequests,

*currentFloor))

&& equal(upCalls, deleteElement(prevUpCalls,

*currentFloor))

&& equal(downCalls, prevDownCalls)),

/* Assertion 4 */

8(*currentDirection == DOWN

&& *currentFloor

>= min(setUnion(requests, downCalls)))
-->

(*currentDirection == DOWN

&& *currentFloor ==

max(deleteElements(setUnion(prevRequests,

prevDownCalls),prevFloor + i, MAX_FLOOR))

&& equal(requests, deleteElement(prevRequests,

*currentFloor))

&& equal(downCalls,deleteElement(prevDownCalls,

*currentFloor))

&& equal(upCalls, prevUpCalls)),

/* Assertion 5 */

8(*currentDirection == UP

&& *currentFloor >

max(setUnion(requests, upCalls))

&& !empty(setUnion(requests, downCalls)))
__>

(*currentDirection == DOWN

&& *currentFloor == max(setUnion(prevRequests,

prevDownCalls))

&& equal(requests,

deleteElement(prevRequests, *currentFloor))

&& equal(upCalls, prevUpCalls)

&& equal(downCalls,deleteElement(prevDownCalls,

*currentFloor))),

/* Assertion 6 */

O(*currentDirection == DOWN

&& *currentFloor

< min(setUnion(requests, downCalls))

&& lempty(setUnion(requests, upCalls)))
-->

(*currentDirection == UP

&& *currentFloor == min(setUnion(prevRequests,

prevUpCalls))

&& equal(requests, deleteElement(prevRequests,

*currentFloor))

&& equal(upCalls, deleteElement(prevUpCalls,

*currentFloor))

&& equal(downCalls, prevDownCalls)),

/* Assertion 7 */

8(*currentDirection == UP

&& lempty(upCalls)

&& *currentFloor > max(upCalls)

&& empty(setUnion(downCalls, requests)))
-->

(*currentDirection == UP

&& *currentFloor == min(prevUpCalls)

&& equal(requests, prevRequests)

&& equal(upCalls, deleteElement(prevUpCalls,

*currentFloor))

&& equal(downCalls, prevDownCalls)),

/* Assertion 8 */

8(*currentDirection == DOWN

&& !empty(downCalls)

&& *currentFloor < min(downCalls)

&& empty(setUnion(upCalls, requests)))
-->

(*currentDirection == DOWN

&& *currentFloor == max(prevDownCalls)

&& equal(requests, prevRequests)

&& equal(upCalls, prevUpCalls)

&& equal(downCalls,

deleteElement(prevDownCalls, *currentFloor)))

);
};

Figure 2: ADL specification ol~the elevator module.

64

Each of the ei's must be true for all function calls that behave nor-
mally. For m o v e E l e v a t o r , there are six assertions in the nor-

mally expression. The specification states that i f m o v e E l e v a t o r
behaves normally, that is, it returns anything other than -1 , all six

assertions must be true.

Here we provide an informal description of the elevator's nor-

mal behavior to help the reader understand the Elevator specifica-

tion. The elevator will alternate upward and downward cycles. In a

upward cycle, the elevator will move up to the nearest higher floor

with an outstanding request or up call (Assertion 3). It will repeat

this until there is no longer a higher floor for a request or an up

call. If there are down calls or requests for a lower floor, it will

change direction (Assertion 5) and will then execute an analogous

downward cycle (Assertion 4). It may also be that there are no

requests and the only outstanding calls are up calls from lower

floors. Since a downward cycle would not service these, the eleva-
tor will travel to the lowest floor having such an up call (Assertion

7) and then behave according to the rules for an upward cycle. A

dual situation exists at the end of a downward cycle and is handled

analogously (Assertions 6 and 8).

3 Terminology

A test condition is a set of boolean conditions that are constraints

on values of parameters - - input parameters, output parameters,

global variables, and the return value - - of the function under test.

A call-state test condition is a test condition that constrains values

of input parameters and input values of global variables. Below is

a call-state test condition for the Elevator example:

{ @(*currentFloor <= MAX_FLOOR) ,

@(*currentFloor >= i) ,

@(! (isMember(MAX_FLOOR, upCalls))) ,

@(! (isMember(l, downCalls))),

@(*currentDirection == UP),

@ (* currentFloor

> max(setUnion(requests, upCalls))) }

This test condition represents a condition that some test data
should satisfy. It can be used by a tester to select test data that sat-

isfy this condition. It can also be used by tools to automatically
determine whether this condition is satisfied by some test suite. For

example, assuming MAX_FLOOR is greater than 4, a tester can
select the following test data to satisfy this test condition:

@ (*currentDirection) : UP

8(*currentFloor) : 4

0(requests) : { 1 }

@(upCalls) : { 3 }

@(downCalls): { 2, 5 l

As will be discussed in more details later, call-state test conditions

are derived from call-state evaluatable expressions in ADL speci-
fications. A call-state evaluatable expression is an expression

where the values of variables in the expression either cannot

change during the execution of the function or are evaluated before

the function is called. In C, all parameters are passed by value.

Thus, the value of any parameter cannot change 1. However, the
value of an object pointed by a pointer parameter can change. Ele-

ments of an array parameter can change. Function calls may also

modify values of global variables. Therefore, any subexpression of

an assertion that does not contain any pointers, arrays, function
calls, or global variables (except constants) is a call-state evaluat-

able subexpression of that assertion. Also, the operands of the call-

state operator ("0") is evaluated before the function call. Thus,

they are also call-state evaluatable.

A return-state test condition is a test condition that constrains

values of input parameters, output parameters, global variables,

and the return value. Below is a return-state test condition for the

Elevator example:

{ O(*currentFloor <= MAX_FLOOR),

@(*currentFloor >= i),

@(! (isMember(MAX_FLOOR, upCalls))),

@(! (isMember(l, downCalls))),

return != -i,

@(*currentDirection == UP) ,

@ (* currentFloor

<= max(setUnion(requests, upCalls))),

• currentDirection == UP,

• currentFloor == min(deleteElements (

setUnion (O (duplicate (requests)) ,

8(duplicate(upCalls))) , I,

@(*currentFloor) - i)) ,

equal (requests, deleteElement (

@(duplicate(requests)) , *currentFloor)),

equal (upCalls, deleteElement (

@(duplicate(upCalls)), *currentFloor)),

equal (downCalls, 8 (duplicate (downCalls))) }

For example, a test case with the following test input values and

output values would satisfy this test condition:

@ (*currentDirection) : UP

8(*currentFloor) : 3

@(requests): { 2 }
@(upCalls) : { i, 4 }

8(downCalls): { 3, 4 }

return: 0

• currentDirection: UP

• currentFloor : 4

requests: { 2 }

upCalls: { 1 }

downCalls: (3, 4 }

4 Approach

In short, our approach derives test conditions by traversing the
parse tree of the specification, collecting and combining boolean

conditions from various parts of the specification. The methods for

generating and combining these boolean conditions are called
rules. Rules are associated with the types of nodes in the parse tree
and are based on various test selection strategies.

To generate call-state test conditions, rules are only applied to

call-state evaluatable expressions in the specification. To generate
return-state test conditions, rules are applied to all expressions.

I. Actually this not entirely true. If a parameter is aliased (referenced by
another parameter or a global variable), the value of the parameter could
change. We do not consider this situation in this paper.

65

4.1 Test Selection Strategies

The ADL constructs that are most relevant to testing are logical

expressions (e.g. "&&", "1]", " - - > ") and relational expressions
(e.g. ">", = , "<", For logical expressions, rules based
on the multicondition strategy [Mye79] and the meaningful impact
strategy [Fos84, WGS94] can be used. The multicondition strategy
selects every possible value for each operand of a logical expres-
sion. The meaningful impact strategy requires each logical oper-
and to individually affect the value of the expression. Rules for
relational expressions are based on boundary value strategy
[Mye79] and domain testing strategies [WC80, CHR82]. These
strategies select test points on or near a boundary.

Rules can be developed for other constructs also. For a particu-

lar application, strategies that are suitable for that application can
be developed. For example, rules that are based on computation
testing strategies [Fos80, CR83] can be used on mathematical
expressions to test scientific or numerical programs.

For the Elevator. example, we shall use the multicondition
strategy for logical expressions. For clarity, we provide two exam-
ples of the multicondition strategy here. For the expression (a [I
b) , the multicondition strategy produces the following conditions:
{ ! a , !b}, { : a , b} ,and {a}.Fortheexpression(a-->b), the
following conditions are produced: { :a}, {a, :b} and {a, b}.
Our approach uses a top-down tree traversal algorithm where each

parse tree node may have an inherited attribute. This attribute is a
constraint on the value of the expression associated with the node.
When such a constraint is present, only the cases, as required by
the multicondition strategy, that are consistent with the constraint
are generated. For example, we might require the value of (a I I
b) be true, the multicondition strategy would yield only the cases
that make the expression true: { : a , b} and {a}. If the value of
(a I I b) is constrained to false, only one case is generated:
{ !a , :b}.

For relational expressions, we shall use a simple boundary
testing strategy. This strategy selects test points on both sides of a
boundary. For example, for (a > b) , this strategy requires: {a
== b + 1} and {a == b } . If there is a boolean constraint on the
value of the expression, only cases that are consistent with the con-
straint will be generated. For example, if (a > b) is constrained
to true, assuming a and b are integers, one condition, {a == b +
1} is generated. If the value of (a > b) is constrained to false,

only {a == b} is generated.

4.2 Generating Test Conditions

ADL allows the specification of both the normal behavior and the
exceptional behavior of the function under test. Both of these
behaviors should be tested.

4.2.1 Testing N o r m a l Behavior

To test the normal behavior, exception must have the value
f a l s e. Also, all the exception pre-conditions must be suppressed,

that is, for all exception expressions Pi <:> qi, we require that all

pi's must have the value false. In addition, each expression e i in

the normally expression, n o r m a l l y { e 1 , e 2 }, should
have the value t r u e .

In the Elevator example, e x c e p t i o n is bound to the expres-
sion (r e t u r n == -1) .The multicondition strategy requires all
cases that would make this expression false. The boundary testing
strategy does not apply since there is no relational operator in this
expression. Our algorithm traverses the parse tree of this expres-
sion in a top down manner and passes the "false" constraint down
the tree as a parameter. Upon reaching the equality node ("=="),
the algorithm generates a boolean condition, M~, to make the equal-
ity "false":

(return != -1 I. (MI)

As mentioned earlier, we require that all the exception pre-condi-

tions, pi's, must be false.The pi's in the Elevator example are:

O(*currentFloor > MAX_FLOOR

II *currentFloor < I)

and

0 (isMember (MAX_FLOOR, upCalls)
I I isMember(l, downCalls)) .

For the first expression, the algorithm traverses the parse tree of
that expression top-down with the "false" constraint. Upon reach-
ing the logical OR node ("11"), the multicondition strategy
requires that both the left-hand side and the right-hand side must
be false. Thus, the algorithm traverses the left subtree with the
"false" constraint. It then traverses the right subtree also with the

"false" constraint. For the left subtree, requiring the value of (
* c u r r e n t F l o o r > MAX_FLOOR) be false, the algorithm gen-

erates the following condition:

{ O(*currentFloor <= MAX_FLOOR) }. (M2)

Requiring the expression be false, the boundary testing strategy
generates the following boundary condition B1:

{ O(*currentFloor == MAX_FLOOR) }, (BI)

Requiring the value of the right subtree (*currentFloor <

1) be false, the algorithm generates:

{ 8(*currentFloor >= I) } (M 3)

and the boundary condition:

{ 8(*currentFloor == i) }. (B 2)

We use the same algorithm to generate conditions from the second

exception expression:

(O (! isMember (MAX_FLOOR, upCalls)) } (M4)

and

(O(!isMember(l, downCalls)) }. (M5)

Note that no boundary conditions are generated from the second

exception expression.

Each expression e i in the normally expression, n o r m a l l y {
e l , e 2 }, should have the value t r u e . For each ei, we use
the same top-down tree traversal to generate conditions. For Asser-
tion 3 of the Elevator example, the multicondition strategy requires
the following conditions:

{ O(*currentDirection l= UP) }, (M 6)

66

{ O(*currentDirection == UP),

8(*currentFloor >

max(setUnion(requests, upCalls)))

and

{

}, (MT)

@(*currentDirection == UP),

@(*currentFloor <=

max(setUnion(requests, upCalls))),

*currentDirection == UP,

*currentFloor ==

min(deleteElements(setUnion(prevRequests,

prevUpCalls), i, prevFloor - i)),

equal(requests, deleteElement(prevRequests,

*currentFloor)),

equal(upCalls, deleteElement(prevUpCalls,

*currentFloor)),

equal(downCalls, prevDownCalls))

}. (Ms)

M 6 and M 7 represent all possible cases that make the left-hand side
of the impl~ation expression of Assert~n 3 ~lse. M s represents
the c ~ e where both the le~-band side and the right-band side of
the implication expression are true.

The boundary testing strmegy requires the ~11owing condi-
tions ~ r Ass~tion 3:

{ 0(*currentDirection == UP),

O(*currentFloor ==

max(setUnion(requests, upCalls)) + i)}, ~3)

[@(*currentDirection == UP),

@(*currentFloor ==

max(setUnion(requests, upCalls))),

*currentDirection == UP,

*currentFloor ==

min(deleteElements(setUnion(prevRequests,
prevUpCalls), i, prevFloor - i)),

equal(requests, deleteElement(prevRequests,

*currentFloor)),

equal(upCalls, deleteElement(prevUpCalls,

*currentFloor)),
equal(downCalls, prevDownCalls))}. (B4)

Finall~ we combine the conditions gener~ed from the expression
bound to e x c e p t i o n and the exception pre-conditions with the
boolean conditions generated from ~e asse~ion in the normally
expression. For Asse~ion 3 of the Elevator exam~e, the multicon-
di t~n strategy requires three return-state test conditions (~, ~ ,
and ~) :

T l = M 1 u M 2 u M 3 u M 4 ~ M 5 u M 6,

Te = MI U M2 U M3 U M4 U Ms U M 7,

~ = MI ~ M2 U M3 U M4 U Ms U Ms •

For claritB we show the conditions associated with ~ :

[return != -I,

O(*currentFloor <= MAX_FLOOR),

O(*currentFloor >= i),

O(!isMember(MAX_FLOOR, upCalls)),

O(!isMember(l, downCalls)),

@(*currentDirection != UP) }.

We can generate two kinds of boundary test conditions. Both rep-
resent boundary cases of the normal behavior. Test conditions of
the first kind are obtained by combining the boundary conditions
generated from the normally expression with the non-boundary
conditions generated from the expression bound to e x c e p t i o n
and the exception pre-conditions. For Assertion 3, the boundary
testing strategy requires these return-state test conditions:

T4 = MI k.g M2 L) M3 kJ M4 k.J Ms U B3,

Ts = Mt L) M2 U M3 kg M4 LJ Ms k.) B4.

We can also combine boundary conditions generated from the
exception pre-conditions and the expression bound to e x c e p -
t i o n with non-boundary conditions generated from the normally
expression. For Assertion 3, the following return-state test condi-
tions are required:

T6 = M 1 k) B 1 t..J M3 t..g M 4 kg M 5 U M6,

T 7 = M 1 W B 1 k.) M3 U M 4 k.) M 5 kJ M 7,

rs=M~ u B~ k.) M3 u M 4 kg M 5 Lg M s,

Tg=M, u M2 w/~2u M4 uMs uM6,

rlo = Ml L.) M2 U B2 ~ M4 kJ Ms U M7,

r n =Mr k 3 M 2 U B 2 u M 4 kJM 5 U M s,

Note that in the above test conditions, each boundary is tested sep-
arately. We could also generate additional test conditions, each
with multiple boundaries, but this would substantially increase the
number of test conditions. Also we could have generated fewer
boundary test conditions if we have chosen not to generate bound-
ary conditions from exception pre-conditions. Whether to generate
more or fewer test conditions depends on what level of rigor is
required and also on how much resource is allocated to testing.

The call-state test conditions are obtained exactly the same
way except that only call-state evaluatable expressions are consid-
ered. In the Elevator example, the expression bound to e x c e p -
e i o n is not call-state evaluatable. Thus, no condition is generated
from it. The conditions that are derived from exception pre-condi-
tions are the same as those generated for return-state analysis (M2,
Ms, M4, Ms, Bl, and B2) since both exception pre-conditions are
call-state evaluatable. Since only the left operand of the implica-
tion expression of Assertion 3 is call-state evaluatable, only the left
operand is considered. The following conditions are required by
the multicondition strategy:

{ ~(*currentDirection != UP) },

and

{ 8(*currentDirection == UP),

@(*currentFloor >

max(setUnion(requests, upCalls))) },

{ 8(*currentDirection == UP),

O(*currentFloor <=

max(setUnion(requests, upCalls))) }.

The ~llowing conditions are required by the boundary testing
strategy:

{ O(*currentDirection == UP),

O(*currentFloor ==

max(setUnion(requests, upCalls)) + i) },

67

and

(O(*currentDirection == UP),

O(*currentFloor ==

max(setUnion(requests, upCalls))) }.

The conditmns are combined in the same way as in return-state
analysis. For example, the call-state test conditions generated
using only the multicondition strategy for Assertion 3 of the Eleva-

~ r exampM are shown below:

{ @(*currentFloor <= MAX_FLOOR),
8(*currentFloor >= I),

@(!isMember(MAX_FLOOR, upCalls)),

O(lisMember(l, downCalls)),

8(*currentDirection l= UP) },

and

{ @(*currentFloor <= MAX_FLOOR),

O(*currentFloor >= I),

0(lisMember(MAX_FLOOR, upCalls)),

O(lisMember(l, downCalls)),

@(*currentDirection == UP),

@(*currentFloor >

max(setUnion(requests, upCalls))) },

{ 8(*currentFloor <= MAX_FLOOR),

O(*currentFloor >= I),

@(!isMember(MAX_FLOOR, upCalls)),

O(!isMember(l, downCalls)),

@(*currentDirection == UP),

O(*currentFloor <=
max(setUnion(requests, upCalls)) }.

The method that we have des~ibed also applies ~ Assertions 4-8
of the Elev~or exam~e.

4.2.2 Testing Exceptional Behavior

To test the specified exceptional behavior of the function, e x c e p -
t i o n must have the value t r u e . In the Elevator example, requir-

ing e x c e p t i o n be true produces

{ (return ==-i) } (M 9)

To test the exceptional behavior prescribed by an exception

expression Pi <:> qi in the specification, we require that all other
exception pre-conditionspj's inpj <:> qj take the value f a l s e and

require both pi and qi be t r u e .

To test the behavior prescribed by Assertion 1 of the Elevator
example, the exception pre-condition of Assertion 2 must be false.

Applying the multicondition strategy to the pre-condition of Asser-
tion 2, requiring its value be false yields:

{ 8(!isMember(MAX_FLOOR, upCalls)) } (MI0)

and

{ O(!isMember(l, downCalls)) }. (MII)

Requiring both operands of Assertion I be true, the multicondition

strategies requires:

(@(*currentFloor > MAX_FLOOR) ,

error == INVALID_FLOOR), (MI2)

(O(*currentFloor <= MAX_FLOOR) ,

@(*currentFloor < i),

error == INVALID_FLOOR }, (MI3)

Applying the boundary testing strategy yields the following

boundary conditions:

(O(*currentFloor == MAX_FLOOR + I),

error == INVALID_FLOOR }, (B 5)

(@(*currentFloor == MAX_FLOOR),

O(*currentFloor < i),

error == INVALID_FLOOR }, (Bt)

(8(*currentFloor <= MAX_FLOOR),

8(*currentFloor == 1 - i),

error == INVALID_FLOOR }. (B 7)

Our algorithm then combines conditions generated from the excep-
tion expression being considered, from other exception expres-
sions (pj <:> qj), and from the expression bound to e x c e p t i o n .

Two return-state test conditions are generated using the multicon-
dition strategy on Assertion 1 of the Elevator example:

TIE = M 9 u Mlo k.) MII L) MI2,

T13 = Mg U M1o U MI1 U M13.

Three return-state test conditions are generated using the boundary

testing strategy on Assertion h

TI4 =M 9 U Mlo U M u U BS,

TIs=M9 U MIo U Mn U B 6,

TI6 =M 9 U MlO %) MII U B 7.

Call-state test conditions can be obtained using the same method

except that only call-state evaluatable expressions are considered.
Call-state test conditions for Assertion 1 of the Elevator example

are:

{ O(!isMember (MAX_FLOOR, upCalls)) ,
@(!isMember(l, downCalls)),
8(*currentFloor > MAX_FLOOR) },

G(!isMember(MAX_FLOOR, upCalls)),

8(!isMember(l, downCalls)),

@(*currentFloor <= MAX_FLOOR),

@(*currentFloor < i) },

O(!isMember(MAX_FLOOR, upCalls)),

O(!isMember(l, downCalls)),

@(*currentFloor == MAX_FLOOR + i) },

and

{

0(!isMember(MAX_FLOOR, upCalls)),

O(!isMember(l, downCalls)),

8(*currentFloor == MAX_FLOOR),

8(*currentFloor < I) },

@(!isMember(MAX_FLOOR, upCalls)),

0(!isMember(l, downCalls)),

8(*currentFloor <= MAX_FLOOR),

8(*currentFloor == 1 - I) }.

The method we have descfibed also appliesto Assertion2.

68

4.2.3 Elevator Results

Using the multicondition strategy, our algorithm would generate a
total of 28 call-state test conditions and 28 return-state test condi-
tions 2 from the Elevator specification. These test conditions are all
feasible.

Applying the boundary testing strategy to the normally expres-
sion, our algorithm would generate 16 call-state test conditions and

16 return-state test conditions. These test conditions are all feasible

also.

Applying the boundary testing strategy to exception pre-condi-
tions and requiring exception take the value true, our algo-
rithm would generate 3 call-state and 3 return-state test conditions.

One call-state test condition and one return-state test condition (T~5
in Section 4.2.2) are infeasible. Both conditions require * c u r -
rentFloor be equal to MAX_FLOOR and be less than i.

Applying the boundary testing strategy to exception pre-condi-
tions and requiring e x c e p t i o n take the value f a l s e , our algo-
rithm generates 48 call-state and 48 return-state test conditions.
Six call-state and six return-state test conditions are infeasible.

5 Related Work

Many papers have focused on specification-based testing. Goode-
nough and Gerhart [GG76] and Gourlay [Gou83] demonstrate the
importance of specification-based testing. Many papers have since
focused on deriving tests from the specification. Weyuker and
Ostrand [WO80] develop theories of program testing using reveal-
ing subdomains. They emphasize the importance of deriving test
cases from both the specification and the implementation. How-
ever, they do not provide a systematic way for creating the specifi-
cation partition. Richardson and Clarke [RC85], Cartwright
[Car81], and Richardson, O'Malley, and Tittle [ROT89] all pro-
pose using symbolic execution techniques to create the specifica-
tion partition. However, symbolic execution techniques cannot
easily be applied to several languages, ADL being one of them.
Our technique is an alternative approach that does not require sym-
boric execution. Several other papers are also related. Ostrand and
Balcer [OB88] provide a methodology, the Category-partition
Method, for developing functional tests from informal system-
level specifications. Stocks and Carrington [SC93] introduce the
Test Template Framework in which specification-based testing can
be conducted. Whereas their approach focuses on providing a
framework for deriving specification-based tests, the focus of our
approach is on actually deriving the test conditions. Chang, San-
kar, and Richardson [CSR95] present some early ideas on deriving
tests from ADL. This paper is the continuation of that work.
Doong and Sankar [DS95] describe an implementation of a cover-
age analyzer for measuring multicondition coverage based on

2. It so happens that for the Elevator example, there is a one-to-one corre-
spondence between a call-state test condition and a return-state condition.
Thus, the number of call-state test conditions is the same as the number
return-state conditions. In general, this is not the case.

ADL. We adopted a few ideas from this work, in particular, on

how exception expressions are handled.

6 Conclusion and Future Work

Having the ability to automatically derive test conditions from for-

mal specifications offers several benefits. It provides a systematic
method for developing a black-box test suite. It also provides a
way to measure coverage of test data with respect to the specifica-
tion. We believe that having this capability would further encour-

age the use of formal specifications.

We are currently working on a tool based on the techniques
discussed in this paper. As part of future work, we would like to

apply our work to industrial applications and experiment with dif-
ferent test selection strategies. In addition, we would like to con-
duct an experiment to measure code coverage of test data
developed from test conditions that are generated by our method.

Bibliography

[CHR821 L. A. Clarke, J. Hassell, and D. J. Richardson, "A close
look at domain testing." IEEE Trans. Software Eng.,
vol. SE-8, no. 4, pp. 380-390, July 1982.

[CR83] L. A. Clarke and D. J. Richardson, "A rigorous
approach to error-sensitive testing." In Proceedings of
the Sixteenth Hawaii International Conference on
System Sciences, pp. 197-206, January 1983.

[CSR951 J. Chang, S. Sankar, and D. J. Richardson, "Automated
test selection from ADL specifications." In
Proceedings of the California Software Symposium
(CSS), Irvine, California, March 1995.

[Car81] R. Cartwright, "Formal program testing." In Prec. 8th
Annual ACM Principles of Programming Languages
Symposium, 1981.

[DS95] R. Doong and S. Sankar, "Specification-based
coverage criteria for ADL." Submitted for publication,
1995.

[Fos80]

[Fos84]

[GG76]

[Gou83]

[Mye79]

K. A. Foster, "Error sensitive test case analysis
(ESTCA)." 1EEE Trans. Software Eng., vol. SE-6, pp.
258-264, May 1980.

K. A. Foster, "Sensitive test data for logic
expressions." ACM SIGSOFT Software Eng. Notes,
vol. 9, no. 2, pp. 120-126, April 1984.

J. B. Goodenough and S. L. Gerhart, "Toward a theory
of test data selection." IEEE Trans. Software Eng., vol.
SE-1, no. 2, pp. 156-173, June 1975.

J. S. Gourlay, "A mathematical framework for the
investigation of testing." IEEE Trans. Software Eng.,
vol. SE-9, no. 6, pp. 686-709, November 1983.

G. J. Myers. The art of software testing. New York:
John Wiley and Sons, 1979.

69

[OB881

[RC85]

[SC93]

[ROT89]

T. J. Ostrand and M. J. Balcer. "The category-partition
method for specifying and generating functional tests."
Communications of the A CM, 31(6), pp. 676-686, June
1988.

D. J. Richardson and U A. Clarke, "Partition analysis:
a method combining testing and verification." IEEE
Trans. Software Eng., vol. SE-11, no. 12, pp. 1477-
1490, December 1985.

P. Stocks and D. Carrington, "Test template
framework: a specification-based testing case study."
In Proceedings of the 1993 International Symposium
on Software Testing and Analysis (ISSTA), pages 11-18,
Cambridge, Massachusetts, June 1993.

D. J. Richardson, O. O'Malley, and C. Tittle,
"Approaches to specification-based testing." In
Proceedings of the ACM SIGSOFT '89 Third
Symposium on Software Testing, Analysis, and
Verification (TAV3), pages 86-96, Key West, Florida,
December 1989.

[SH94] S. Sankar and R. Hayes, "Specifying and testing
software components using ADL." Technical Report
SMLI TR-94-23, Sun Microsystems Laboratories, Inc.,
Mountain View, California, April, 1994.

[WGS94] E. Weyuker, T. Goradia, and A. Singh, "Automatically
generating test data from a boolean specification."
IEEE Trans. Software Eng., vol. SE-20, no. 5, pp. 353-
363, May 1994.

[WO80] E.J . Weyuker and T. J. Ostrand, "Theories of program
testing and the application of revealing subdomains."
IEEE Trans. Software Eng., vol. SE-6, no. 3, pp. 236-
246, May 1980.

[WC80] L . J . White and E. I. Cohen, "A domain strategy for
computer program testing." IEEE Trans. Software
Eng., vol. SE-6, no. 3, pp. 247-257, May 1980.

Appendix The floors Module

i s M e m b e r (e , s) returns t r u e if e is a member of the set s.
duplicate (s) returns a copy of the set s. setUnion (s, t)

returns the union of sets s and t. max (s) returns the largest ele-

ment of the set s. m i n (s) returns the smallest element of s.

d e l e t e E l e m e n t (s , e) retums a copy of s with e removed
from the copy. d e l e t e E l e m e n t s (s , a , b) returns a copy of
s with elements ranging from a to b removed, e q u a l (s , t)
returns t r u e if two sets have the same set of elements, emp-
t y (s) returns t r u e if s is empty.

70

