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STRUCTURAL STABILITY OF EQUIVARIANT
VECTOR FIELDS ON TWO-MANIFOLDS

BY
G. L. DOS REIS1

Abstract. A class of vector fields on two-dimensional manifolds equivariant under
the action of a compact Lie group is defined. Properties of openness, structural
ability, and density are proved.

Introduction and statement of results. Let G be a compact Lie group acting
smoothly on a smooth compact connected two-dimensional manifold M. In this
paper we define a subset of the space %rG(M) of C, r > 1, equivariant vector fields
on M which correspond to the Morse-Smale vector fields studied by Peixoto, Palis,
Smale [17,11,15] and others (see [13]). We prove that this subset of equivariant
vector fields, which we call G-Morse-Smale vector fields, is open, and each G-
Morse-Smale vector field X is equivariantly structurally stable in £rc(M). That is, if
Y E ?irc(M) is near X then there exists an equivariant homeomorphism of M that
sends trajectories of X into trajectories of Y. Also, we prove that it is dense in
£rc(M), with some exceptions; the most important exception corresponds to the fact
that the density of the Morse-Smale vector fields for nonorientable 2-manifolds in
the Cr topology, with r s* 2, is still an open question (see Gutierrez [6]). Our results
generalize those of Peixoto [17].

The definition of G-Morse-Smale vector fields given here is different from that
given by Field [3,5] in that it allows the presence of graphs in the nonwandering set.
In this way, we have enough vector fields to get density, along with structural
stability. However, in higher dimensions the situation is unclear since no results on
structural stability have been proved so far. We believe that the concept of
"modulus of stability" (Melo [10],Palis [12]) seems to be more appropriate to the
equivariant framework. Examples of equivariant vector fields on 3-manifolds with
modulus of stability equal to one are given in [14].

In fact, this phenomenom appears even locally. A G-equivariant vector field X on
M defines a G X R action on M (see §1). A critical element of X is a compact G X R
orbit. We require that it be normally hyperbolic. Of course, normal hyperbolicity
does not imply local structural stability, but it may provide modulus of stability. We
may impose an additional condition on the G-action (see §§1,2), in order to get local
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stability (a normally hyperbolic critical element with this additional condition is
called G-hyperbolic). But this condition is very restrictive, and it would be preferable
to have a definition which avoids it.

Our results were announced in [20]. As pointed out by M. J. Field (Math. Rev.
80c: 58012), we provide a class of examples of fi-stable vector fields on 2-manifolds
which are not Axiom A in the sense of Pugh and Shub [19].

Now we state the main results in a more precise way.
Definition. A G-equivariant vector field on M is said to be G-Morse-Smale if:
(i) its nonwandering set consists of a finite number of critical elements and

graphs, all of them G-hyperbolic;
(ii) the stable and unstable manifolds of critical elements have G-transversal

intersection.
The definition of G-hyperbolic graph is in Definition 3.4. The other definitions are

found in §1.

Theorem A. The set of G-Morse-Smale vector fields is open in dLG(M).

Theorem B. G-Morse-Smale vector fields are equivariantly structurally stable.

Theorem C. Let d be the dimension of the principal G-orbits (the maximal
dimension of the G-orbits). The following hold.

(a) Let d — 0. Then the set of G-Morse-Smale vector fields is dense in £G(M). If
M/G is orientable, or otherwise the projective plane, the Klein bottle or the torus with a
cross-cap, then the set of G-Morse-Smale vector fields is dense in diG(M), r > 1.

(b) Let d = 1. If M is not the torus then the set of G-Morse-Smale vector fields is
dense inJ,G(M),r> 1. (The exceptions are described in Example 4.1(c).)

(c) Let d = 2. Then M is the sphere S2, the projective plane P2, or the torus T2. A
G-equivariant vector field on S2 or P2 must be null. On T2 it is null, the rational or the
irrational flow (see Example 4.1(b)).

Proofs of Theorems A, B and C are in §§4, 5 and 6, respectively. In § 1 we give
general definitions and results. §2 contains a proof of local stability and §3 describes
G-hyperbolic graphs. Examples are given §4.

We are grateful to J. Pahs for his advice and stimulating discussions. Conversa-
tions with A. Lins, W. Melo, G. Tavares and J. Sotomayor were very helpful. We
would like to thank the referee for some suggestions and corrections.

1. Generalities on equivariant vector fields. In this section, we recall some basic
definitions and results on equivariant dynamical systems. The main reference is
Field [5].

Let G be a compact Lie group acting smoothly on smooth manifolds M and N. A
map /: M -» N is said to be equivariant if it commutes with the group action. That
is, f(gx) = gf(x) for all g in G and x in M. The action of G on M induces a natural
linear action on the tangent bundle TM by gv — Dg(x)(v), for v E TXM, where
Dg(x): TXM -» TgxM is the differential of the diffeomorphism g: M -> M given by
the action of g E G. An equivariant vector field on M is an equivariant section X:
M -* TM. Thus X(gx) = Dg(x)X(x). The flow X, induced by X on M is equi-
variant: for each t E R, Xt(gx) = gX,(x), for all g G G and x E M. So, we canLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EQUIVARIANT VECTOR FIELDS ON TWO-MANIFOLDS 635

speak of an action of G X R on M, namely (g,t)x = Xt(gx). Similarly, if / is a
G-equivariant diffeomorphism on M, we have an action of G X Z on M defined by
(g, n)x = f(gx). Let £G(M) and Y)iffG(M) denote, respectively, the spaces of all
Cr G-equivariant vector fields and diffeomorphisms on M, with the C topology,
when M is compact.

Let /: M — M be a C1 diffeomorphism. We say that an /-invariant C1 compact
submanifold V of M is normally hyperbolic for / if there exists a T>/-invariant
splitting TV ® N" ® N" of TVM into continuous subbundles such that, relative to
some Riemannian matric on M.

sup||Z)/|A£||< inf m(Df\TxV),

sup||/)/|FxF||< inf m(Df\N»).

Hexe,m(A) = inf{||^4A'H: \\X\\ = 1} = p-'H"1 (see [8]).
If V is G-invariant and / G Diff^(M), the Riemannian metric may be taken to be

equivariant and the bundles N" and Ns axe G-vector bundles over V. If V is left
invariant by a C1 flow Xn we say that X, is normally hyperbolic at V if for some
t ¥= 0, the diffeomorphism Xt is normally hyperbolic at V. This definition is
independent of the value of t chosen.

Let/G DiffG(M). A critical element for/is a G X Z-orbit V which is compact.
Thus V = [a, f(a),.. .,fp~\a)}, where a is a G-orbit and p is the period of a, the
smallest strictly positive integer for which fp(a) — a. We say V is normally hyper-
bolic for / it is normally hyperbolic for fp. Similarly, for X E lrG(M), a critical
element is a G X Zv-orbit which is compact.

There is a natural stable and unstable manifolds theory for critical elements of
equivariant diffeomorphisms and vector fields. If V is a normally hyperbolic critical
element for / G T>iffG(M), there exist C G-invariant locally/-invariant submani-
folds WXUJV) and WfJV) of M, tangent at V to TV® Nu and TV® Ns, respec-
tively. Also, there exists a G-invariant neighborhood U of V such that

WX^(V) = (ze U:f(z) E U,n^0,andd(f(z),V)^0asn-^ -oo},

WUV) = {^ G V:f(z) E U, n>Q, and d(f(z),V) -*Qasn-> +oo}.

Moreover, WXoc(V) and WXoc(V) have the structure of Cr equivariant locally trivial
fibrations over V. The fiber Wx™(p) atp E VisC, its dimension is the dimension
of Ay, and is tangent to Ay. Similarly for Wf^.(p). Also, there exist an open
neighborhood Q of / in Diff^(M), a G-invariant neighborhood U of V, and
continuous maps F, F", Fs: Q -+ DiifG(M) such that:

(a)F(f) = Fu(f) = Fs(f) = identity map of M;
(b) for /' G Q, F(f')(V) = V is contained in U and is a normally hyperbolic

critical element of/' of the same period as V;
(c)F\f')(W^(p)) = W^(F(f')(p)),p E V,f E Q.
Similarly for Wu, Wss and Ws. As usual, the global stable and unstable manifolds

are obtained by iterating/. For vector fields the theory is similar.
For the notion of G-transversality of stable and unstable manifolds see Bierstone

[1] and Field [4]. For two-dimensional manifolds, that notion is equivalent to thatLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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one called "stratumwise transversality". This property is defined as follow. If
H = Gx is the isotropy subgroup of a point x EM, then the conjugacy class (H) of
H is called the type of the G-orbit G(x). The union Mtff) of all G-orbits of type (H)
is a differentiable G-fiber bundle with the G-orbits as fibres. The manifold M is
stratified by orbit type (see Bredon [2]). If W E M and 77 is a subgroup of G, we
denote W(fl)= W n M(H). Let Ws and W" be stable and unstable manifolds of
critical elements of an equivariant diffeomorphism or vector field. Let x E M and
H = Gx. We say IVs is stratumwise transverse to W" at x if W(SH) is transverse to
W"H) in M(//). That is, we require that the tangent spaces of W^H) and W"H) at x
generate the tangent space of Af(//) at x.

We remark that the normal hyperbolicity hypothesis for a critical element does
not imply local structural stability. In order to assure stability, we require an
additional condition, which we describe below for flows.

Let F be a normally hyperbolic critical element of X E £rG(M). Thus V —
(G X R)(x) is a compact G X /?-orbit, for some x E M. There are three cases to be
considered:

(a) V = R(x) = trajectory of X,
(b)V=G(x),
(c)V¥=R(x),G(x);

in this case, G(x) is a global Poincare section for the restriction of X to V. In fact, in
the 2-dimensional case, V is equivariantly diffeomorphic to G(x) X Sl. We recall
that the isotropy group Gx is constant along a trajectory of the vector field X. Also,
N(Gx)(x) is the subset of points of the G-orbit G(x) whose isotropy group is Gx.
Here, N(GX) — {g E G: gGxg~x — Gx) is the normalizer of Gx. It is known that
N(Gx)(x) is diffeomorphic to N(GX)/GX and G(x) is diffeomorphic to G/Gx.
Rank A^(G^) denotes the dimension of the maximal tori N(GX)/GX.

Definition. Let V — (GX R)(x) be a normally hyperbolic critical element of
X EXG(M). Let H = Gx. We say that V is G-hyperbolic if one of the following
conditions is satisfied.

(a) V = R(x) = trajectory of X.
(b) If V = G(x) and X\V=0 then rank N(H)/H = 0; if V = G(x) and X\ V * 0

then rank N(H)/H = 1.
(c) If F ^ G(x) and V * R(x) then rank N(H)/H = 0.
Remark. We discuss below the conditions of the above definition.
Case (a). Fis either a hyperbolic singularity or a hyperbolic closed trajectory of X.
Case (b). If rank N(H)/H = 0, then X is null on V. If Y is near X then Y is null

on the corresponding normally hyperbolic submanifold V. If X\Vi=Q and
rank N(H)/H = 1 then X\ V consists of closed trajectories. The trajectory through
eachy G Vcoincides with N(Gy)(y). The same happens for Y near X.

Case (c). The condition rank N(H)/H = 0 implies that each trajectory of X\ V
intersects G(x) in a finite number of points and so it is closed. The same is true of
all y near X.

2. Local stability. Let V be a G-hyperbolic critical element of X E £rG(M). In this
section, we give a proof of the structural stability of X in a neighborhood of V, by
using the followng equivariant version of a theorem of Palis and Takens [16].License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(2.1) Theorem. Let X, Y E £rG(M). Let V and V be critical elements of X and Y,
respectively. Assume that h: V'-» V is a G-equivariant conjugacy between X\ V and
Y\V that can be lifted to invertible linear bundle maps hs: Ns ^> N's and h":
N" -> N'u. Then we can extend h to a G-equivariant conjugacy H between X and Y
from a neighborhood of V to a neighborhood of V.

The proof of this theorem is a matter of checking that the pertinent constructions
in the proof in [16] can be made equivariantly. By conjugacy H between X and Y we
mean that H is a homeomorphism conjugating the flows Xt and Yt: HXt = YtH for
all t G R. If we weaken the latter condition by just requiring that H sends
trajectories of X into trajectories of Y then H is said to be a topological equivalence.
We say X is equivariantly structurally stable in a neighborhood U of V if there exists
a neighborhood Q of X in £G(M) such that, for each Y E Q, there exists a
G-equivariant topological equivalence h between X and Y, from U to h(U).

(2.2) Theorem. Let V be a G-hyperbolic critical element of X E £rG(M). Then X is
equivariantly structurally stable in a neighborhood of V.

Proof. If Y is near X, it follows from the Remark in §1 that we can get a
G-equivariant topological equivalence h: V -> V between X\V and Y\V. By
reparametrizing the vector fields, we may assume that h is a conjugacy. Since the
splitting TV,M = TV © N'u © N" is close to the splitting TVM =TV®NU®NS,
there are liftings hs: Ns -» N's and h": Nu -> A"" of h to bundle isomorphisms. Now
Theorem 2.1 applies.

The following consequence of Theorem 2.2 could be proved directly.

(2.3) Corollary. WS(V) D M{H) ¥= 0 if and only if WS(V) n M(H) =t 0; simi-
larly, for W". (M(H) is a stratum of G-orbits of type (77).)

3. G-hyperbolic graphs. In this section, we define a G-hyperbolic graph and prove
structural stability in its neighborhood.

Let M be a two-dimensional manifold. A graph of a vector field X on M is a
closed and connected subset of M consisting of saddle points and separatrices such
that:

(i) the a- and co-limit sets of each separatrix of the graph are saddle points;
(ii) each saddle point of the graph has at least one stable and one unstable

separatrix contained in the graph.

(3.1) Proposition. Let X E £rG(M). Let Lbe a graph of Xsuch that the stable and
unstable manifolds of its saddle points are G-transverse to each other. Then:

(a) Each saddle point in L is contained in a zero-dimensional stratum.
(b) If p is a saddle point in L, then Ws(p) — p and W"(p) — p are contained in

one-dimensional strata.
(c) Let p,q be saddle points in L and suppose that Wu(p) D Ws(q) ¥= 0. Then

W(G(p)) - G(p) = W\G(q)) - G(q).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. First we observe that the existence of a saddle point implies that all
G-orbits have dimension zero. Let S be a slice for the action of G at p, on which the
isotropy group Gp acts orthogonally (slice theorem, see Bredon [2]). The G-transver-
sality condition and the G-invariance of Ws and W" imply that Gp is the group
D2 = (/\(0), R(it), A(0), A(tt)}, where R(0) is the identity, R(tt) the rotation through
it, A(fY) the reflection about the jc-axis, and A(tt) the reflection about the y-axis.
There are four types of G-orbits on S, corresponding to the isotropy groups R0, A0,
Ax, D2. Here R0= (R(0)}, A0= {R(Q), A(0)}, Ax = {R(0), A(-tt)}. The stratum
S(DiX = p has dimension zero, and S{A , and S{A) have dimension one. Since, in S,
W(p) — p coincides with S,A x (or with S,A x), and similarly for Ws(p) — p, (a)
and (b) have been proved. For (c), let y be a trajectory of X contained in
W"(p) n Ws(q), so that p and q are the a- and co-limit sets of y: a(y) — p,
w(y) — 9- Then, if g E G is the reflection about Ws(p), a(gy) — ga(y) = gp = p
and co(gy) = gco(y) = gq. Hence Wu(p)-p E Ws(G(q)) - G(q) and, by G-in-
variance of Wu and Ws, W(G(p)) - G(p) E Ws(G(q)) - G(q). The reverse
inclusion is proved in the same way.

Let G be a finite group acting on M and let M = Mx U M2 U • • • U Mk be the
stratification of M by G-orbit types. Assume Mx consists of principal G-orbits, and
let A" = M2 U ■ • • U Mk be the nonprincipal part of M. As is well known, My is open
and dense in M. For each i, the quotient map tt,: M, -* Mf = Mt/G is a differentia-
hie covering map, whose fibers are the G-orbits. Although each Mf is a differentia-
ble manifold, M* = M/G is a topological manifold with boundary N* — N/G. Let
m: M -» M* denote the quotient map.

Given an equivariant vector field Xon M, we define its projection X* = tt(X) on
M* by X*(7t,(x)) = dirt(x) • X(x), for x E M,. Each Mf is left invariant by X*, and
X* | Mf is a differentiable vector field. Conversely, if Z is a vector field on M* that
leaves each Mf invariant, we can lift it to a vector field X on M, such that
tt( X) = Z. If X, and Xf denote the flows of X and X*, we have Xf ° it - it ° X,.

Let p be a singularity for X. Then 7r( p) = q is a singularity for X*. Since A is an
eigenvalue of DX(p) if and only if X is an eigenvalue of DX(gp) for each g in G, we
can define the eigenvalues of X* at q as being the eigenvalue of DX(p), where
p E M is such that tt(p) — q. If p is a saddle point for X, cy is said to be a saddle
point for X*.

We will use the following notation: px<p2 if there is a trajectory y such that
a(y) — P\ ar>d w(y)=p2. The following proposition follows immediately from
Proposition 3.1.

(3.2) Proposition. Let L be a graph as in Proposition 3.1. Let p,,...,p„ be the
saddle points of L, withpx < p2 < • • ■ < pn <P\- Then:

(a) it(L) is a graph for X*.
(b) Let qx,...,qmbe the saddle points oftt(L), and suppose that qy < q2< • ■ • < qm

< qy. Iftt(px) = qy, then tt(p2) = q2,. ..,tt(pm) = qm, and if m < n, tr(pm+x) = qx,
ir(pm+2) = q2,... ,v(p2m) = qm, and so forth, the cycle being repeated.

The following lemma may be proved by successive application of the following
facts:License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(a) By a theorem due to Hartman [7], C2 vector fields on two manifolds are C1
linearizable near hyperbolic singularities. Thus, if p is a saddle point of X, there is a
coordinate system rp: U -» R2, around p, such that X,(x\ x2) = (xieXl, xle{Lt). Here
(x\ x2) = (p(x), for x E U, and X, p are the eigenvalues of x at p. We assume that
<p(p) = (0,0),<p(x) = (x\0)foxxE Ws(p),and<p(x) = (0,x2)foxx E W"(p).

(b) Let y be a trajectory of X such that a(y) = px, co(y) = p2 axe saddle points of
X. Let <p,: U, -» /?2 be coordinate systems around p,, / = 1,2, as in (a). Let Sx C Ux
be a cross-section through a point of y such that, for some T> 0, XT(SX) — S2 is
contained in U2. Assume that the points in S, and S2 have coordinates (x\ 1) and
(1, y2), respectively. Let g: Sx -» S2 be the map (1, y2) = g(x\ 1) = -Yr(jc\1). Then
y2 = AT,*1, l)x\ where k: Sy -* Ris a continuous function bounded away from zero.

(3.3) Lemma. Let L be a graph with saddle points p,,... ,pn. Let A,, p„ A, < 0 < p,,
fee ?/ze eigenvalues of X at p,. />f <p; fre coordinate systems aroundpt, as above. Through
each separatrix of L consider cross-sections as above. Assume that an arc of the
trajectory starting from a point (x, 1) G Sy intersects each cross-section once, and
intersects Sx once again in the point (y, 1). Then

\y\=K(x,l)\xix>'K}/,1>-^

where K: Sy -» R is a continuous function bounded away from zero.

Lemma 3.3 motivates the following definition (inspired by Sotomayor [22]).
(3.4) Definition. Let L be a graph of X E 3crG(M). Let qx,...,qm be the saddle

points of tt(L), and let A,, p„ A, < 0 < p,, be the eigenvalues of X* at <?,,
i — \,...,m. We say L is a G-hyperbolic graph if:

(a) the separatrices of the saddle points of L have G-transversal intersections,
(b)|A,,...,Aj^p, •••pm.
As an immediate consequence of Lemma 3.3 we have

(3.5) Corollary. Let L be a G-hyperbolic graph and let A,, jti, (/ = 1,... ,m) be as
in 3.4. Then L is an attractor if

lAl  •■•Aml>Ml   •••Mm,
and is a repulsor if

lAl  •••^ml<Ml  ••■M„r

Remark. Corollary 3.5 is true for vector fields of class C1 [22].
The following proposition says that G-hyperbolic graphs are persistent by small

equivariant perturbations of the vector field.

(3.6) Proposition. Let L be a G-hyperbolic graph of the vector field X E X'G(M),
r> \. There exists a neighborhood Q of X in 3LrG(M) such that if Y E Q then L is a
G-hyperbolic graph for Y. Moreover, if L is an attractor (repulsor) for X then L is an
attractor (repulsor) for Y.

Proof. The proposition follows from Proposition 3.1 and Corollary 3.5.
Now we state the main result of this section.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(3.7) Proposition. Let L be a G-hyperbolic graph of a vector field X E £rG(M),
r 3* 1. Then X is structurally stable in a neighborhood of L.

Proof. Suppose that L is an attractor (similar argument applies to repulsor). Let
Q be a neighborhood of X, as in Proposition 3.6, and Y E Q. Let X* = tt(X) and
Y* = 77(F). Then tt(L) is contained in the boundary N* of M*, and is an attractor
graph for X* and Y*. In a collar neighborhood of tt(L) we define a topological
equivalence h between X* and Y* via arc length. Now, via it, we can lift A to a
G-equivariant topological equivalence between X and Y, defined on a G-invariant
neighborhood of L.

4. Examples and proof of Theorem A. In the rest of this paper M is a compact
connected boundaryless two-dimensional manifold. We denote by d the dimension
of principal G-orbits. Before we start the proof, we give some examples.

(4.1) Examples, (a) Letp: R3 — {0} -» S2 be defined byp(x) = x/\x\, where |x|
is the Euclidean norm of x. If X' is a linear vector field on /v3, we define a vector
field X on the sphere S2 via p: X(x) = Dp(x) ■ X'(x), for x E S2. If X' is
equivariant then X is equivariant for the restriction to S2 of the action of G. For
instance, if X' is the vector field defined by the diagonal matrix diag[a, a, b], a > b,
and G is SO(2) acting as rotation around the z-axis, then X is the equivariant vector
field which has the north and south poles as sources and the equator as an attractor
G-orbit of singularities. All the other trajectories of X start at the poles and end in
the equator, along the meridians. If x is a point in the equator, we have N(GX)/GX —
SO(2). So G(x) is not G-hyperbolic for X. Adding to A' a small equivariant vector
field tangent to the equator and zero outside of a neighborhood of the equator, we
obtain a G-Morse-Smale vector field with the equator as a closed trajectory.
However, if we have G = 0(2) instead of SO(2), the same vector field X is
G-Morse-Smale, since N(GX)/GX = D2/A0 (see notation in proof of 3.1) has dimen-
sion zero and so the equator is G-hyperbolic. We cannot perturb X to make the
equator a closed trajectory.

(b) Assume that G acts transitively on M (that is, M is a G-orbit). Then M is S2,
P2, or T2. Let Xbe a G-equivariant vector field on M. So the whole of M is a critical
element for X. Of course, it is not normally hyperbolic. If M is S2 or P2 then X is
null. If M is T2 then all of the trajectories of X areji) singularities or (ii) closed
trajectories or (iii) trajectories dense on T2. In fact, R(x) (the closure of a trajectory
of X) has the structure of a compact connected abelian Lie group, so is a torus (see
Field [5, §2.B1]). For S2 and P2, X is structurally stable. For T2, it depends on
k = rank N(GX)/GX. If k = 0, then X must be null and is structurally stable. If
k = 1, and X i= 0, then X consists of closed trajectories and is structurally stable. If
k = 2, X is never structurally stable. In fact, X has modulus of stability equal to one
(the parameter being rotation number). This gives a complete description in the case
of transitive action.

(c) Assume d—\.HX\&a G-equivariant vector field on M such that M —
(G X R)(x) for x EM, then M = T2. In fact, M = G(x) X S1 = S] X Sl. If
k = 0, the trajectories of X axe closed and X is structurally stable. If k = 1 then X
has modulus of stability equal to one.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(d) Let G = Z2X Z2X Z2 acting on S2 E R3 by (a, b, c)(x, y, z) = (ax, by, cz),
(a, b, c) E G, (x, y, z) E S2. Let X be a G-Morse-Smale vector field on S2 de-
scribed as follows. The boundary of the first octant of S2 is a graph L for X, with
saddle points pt = (l,0,0),p2 = (0,1,0), p3 = (0,0,1) and separatricesy,, i = 1,2,3,
such that a(y,) =p,, co(y,) =p,+1, for i = 1,2, and a(y3) =p3, co(y3) =pv In the
interior of the first octant there is a source, and all regular trajectories have that
source as their a-limit set and L as their co-limit set. The other octants are reflected
copies of the first one.

(4.2) Proof of Theorem A. If d = 2, the set of G-Morse-Smale vector fields is
empty (see Example 4.1(b)). Let d<l. Let X be a G-Morse-Smale vector field on M.
Then X is not as in example 4.1(c). So, a filtration (see [12]) for X and for all
Y E £G(M) near X can be constructed observing the following:

(i) The sources and sinks of X are G-orbits of singularities, G-orbits of closed
trajectories, or G-hyperbolic graphs, all of them persistent by small equivariant
perturbations;

(ii) when there are saddle connections between two G-orbits of saddle points, they
are contained in strata M{H) of dimension one, by the G-transversality property.
Hence they are persistent and the G-transversality is preserved by small equivariant
perturbations.

The rest of the argument is standard and is omitted.

5. Proof of Theorem B. Let X be a G-Morse-Smale vector field on M. If d = 2,
there is nothing to prove. Let d = 1. Then X is not as in Example 4.1(c). The critical
elements are attractors or repulsors. It is easy to construct a G-equivariant topologi-
cal equivalence between X and Y, for Y near X. Now let d — 0. The construction of
a topological equivalence between X and Y consists of a globalization of construc-
tions that we describe below.

(a) Let p be an isolated attractor (or repulsor) singularity for X and let p' be the
corresponding one for Y. Let d be a neighborhood of p and p' whose boundary S is
transversal to X and Y. We assume that S is invariant by Gp and that if (gD) (1 D ¥=
0 (g EG) then g G Gp (slice theorem, Bredon [21]). If h: S -> S is a G^-equivariant
homeomorphism, we extend h to D via conjugation (h = YthX_t), and h(p) = p'.
Now we equivariantly extend h to G(D).

(b) If L is a graph for X, we take a segment 5 transversal to X and Y through a
point of the graph. If h is defined on a fundamental domain contained in S, we
extend h to a neighborhood of L as in the proof of Proposition 3.7.

(c) Let y be a closed trajectory for X and let y' be the corresponding one for Y.
Let S be a section transversal to X and Y, which is invariant by X and Y (in the
sense that X,(S) C 5, for some t E R). In the usual way, if h: S -> S is a
homeomorphism sending yflS into y' n S, we extend h to a neighborhood of y via
conjugation. Then we extend h equivariantly to a neighborhood of G(y).

(d) From each saddle point we construct a transversal segment S. If we have a
separatrix between two saddle points, we extend, in an equivariant way, a homeo-
morphism defined on such a segment S to a neighborhood of the separatrix via arc
length, by using those segments as references to measure the arcs. If the separatrixLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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goes to an attractor (or repulsor) we use as a reference to measure the arcs, the circle
or segment constructed in (a), (b) or (c).

Now, to define the homeomorphism h: M -» M, we start by defining it in a
segment S, as constructed in (d), for a saddle point that does not belong to a graph.
If there is no such saddle point, S could be any section as in (a), (b) or (c). The rest
of the construction is standard, and is omitted.

6. Proof of Theorem C. When d = 2 there is no G-Morse-Smale vector field on M.
However, a complete description of the G-equivariant vector fields on M is given in
Example 4.1(b).

Let d= 1. If X is as in Example 4.1(c), then X cannot be approximated by a
G-Morse-Smale vector field. This class of vector fields, whose description is given in
4.1(c), provides the only exception for nondensity, in the case d = 1.

Now assume that X is not as in 4.1(c). Since there are no saddle points, we do not
have to worry about transversality conditions. It is easy to perturb the critical
elements of X into G-hyperbolic attractors and repulsors. We omit details.

Let d = 0. Let X E IrG(M). Let Xx E £rG(M) be a vector field near X, in the Cr
topology, whose singularities are G-hyperbolic. We also may assume that the graphs
and closed trajectories of Xx lying on N (the nonprincipal part of M) are G-hyper-
bolic. Let Yx — it(Xx) be the projection of Xx on M/G. By theorems of Peixoto [17],
Markley [9] and Gutierrez [6] we can approximate Yx by a vector field Y2, in the Cr
topology, which satisfies the properties of a Morse-Smale vector field on My/G (My
is the principal part of M) and coincides with Yx on N/G. This can be accomplished
because the required perturbations can be made outside of a collar neighborhood of
N/G. The cited theorems take care of the cases when M/G is orientable, the
projective plane, the Klein bottle and the torus with a cross-cap. Otherwise, we use
the "Closing Lemma", Pugh [18], which applies just for the C1 topology. It is easy to
see that tt~\Y2) is a G-Morse-Smale vector field near X in the Cr or C1 topology,
depending on the case.
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