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Slobodan N. Simić � , Karl H. Johansson
�
, John Lygeros

�
, and Shankar Sastry �

�
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,

CA 94720-1770, U.S.A., � simic|sastry � @eecs.berkeley.edu
�

Department of Signals, Sensors and Systems, Royal Institute of Technology,
100 44 Stockholm, Sweden, kallej@s3.kth.se

�
Department of Engineering, University of Cambridge,

Cambridge CB2 1PZ, U.K., jl290@eng.cam.ac.uk

Keywords: Stability; Hybrid automata; Hybrifold; Zeno states;
Dynamical systems

Abstract

We study hybrid systems from a global geometric perspective
as piecewise smooth dynamical systems. Based on an earlier
work, we define the notion of the hybrifold as a single piece-
wise smooth state space reflecting the dynamics of the origi-
nal system. Structural stability for hybrid systems is introduced
and analyzed in this framework. In particular, it is shown that
a Zeno state is locally structurally stable and that a standard
equilibrium on the boundary of a domain implies structural in-
stability.

1 Introduction

The study of various dynamical properties of hybrid systems
has been quite intensive the last decade, e.g., [20, 6, 13, 21, 8,
10, 4, 12, 9, 22]. Recently we suggested a geometric approach
for the analysis of a class of hybrid systems [17, 18]. We in-
troduced the notions of the hybrifold and hybrid flow in order
to study the hybrid system as a single piecewise smooth dy-
namical system. This study is continued in the current paper;
in particular, structural stability for hybrid systems is discussed
in a geometric framework.

Roughly speaking, a smooth dynamical system is structurally
stable if it is topologically equivalent to every system which is
sufficiently close to it. We will generalize this idea to hybrid
systems. To make the notion precise, we will specify what is
meant by “close” and “topologically equivalent.” Structural sta-
bility for continuous time dynamical systems (i.e., flows) was
introduced by Andronov and Pontryagin [2], who proved that
“most” smooth systems on a two-dimensional disk are struc-
turally stable. The importance of this property for models of
real-life systems is clear: if a system is structurally stable, its
qualitative properties are insensitive to small perturbations of
the system. If it is not, even a small error in measurement can
produce a system which qualitatively looks entirely different

1This work was supported by the NASA grant NAG-2-1039, EPRI grant
EPRI-35352-6089, ONR under N00014-97-1-0946, DARPA under F33615-
98-C-3614, and ARO under DAAH04-96-0341.

from the “true” system.1 The importance of structural stabil-
ity for smooth (continuous and discrete time) dynamical sys-
tems was reemphasized in the influential work of Smale [19],
Peixoto [15], and others during the 1960s. It was hoped that
in some sense “most” systems were structurally stable, as in
dimension two. However, this hope was soon shattered by the
discovery of very large sets of non-structurally stable systems
in dimensions greater than two. Despite this, robustness of its
qualitative behavior is still a very important piece of informa-
tion about a system.

The classical theory of structural stability of smooth dynami-
cal systems states, for instance, that hyperbolic equilibria are
locally structurally stable. This result extends directly to hy-
brid systems in the sense that if a hyperbolic equilibrium of a
hybrid system is in the interior of a domain, then the equilib-
rium is locally structurally stable. A standard equilibrium on
the boundary of a domain, however, is not locally structurally
stable. The main contribution of the paper is to show that Zeno
states, which necessarily lie on the boundary of a domain [18],
are locally structurally stable. This means that it may be diffi-
cult to remove Zenoness by perturbing the system.

The outline of the paper is as follows. Hybrid systems and
their executions are defined in Section 2, together with hybri-
folds and hybrid flows. In Section 3 we introduce the notions
of topologically equivalence and structural stability for hybrid
systems, and show that the Zeno state is locally structurally sta-
ble. Some discussion on related work is given in Section 4.

2 Preliminaries

We start by giving the definition of a hybrid system and its exe-
cution. Then we describe how so called regular hybrid systems
without branching can be studied on a quotient space called the
hybrifold. See [17] and [18] for more details.

2.1 Hybrid system and execution

Definition 1 (Hybrid system) An 	 -dimensional hybrid sys-
tem is a 6-tuple 
���
����������������������� !� where

1This is not to say that all important systems are structurally stable. Take,
for example, the Hamiltonian ones.



� � ��� � ������� ��� � is the set of discrete states of 
 , where
��� � is an integer;

� �
	 ��� � is the set of edges;

� � � ��
���������� � is the set of domains of 
 , where

���	 ������� R � for all ����� ;

� � ����� � ����� ��� is the set of vector fields such that � �
is Lipschitz on 
 � for all ����� ;

� � � ����
��   �!�"� ��� is the guards, where for each ���

#���%$  ���� , ��
��  �	&
 � ;

� � � �('*)"���+� ��� is the set of resets, where for each
� � 
����%$  ,� � , ' ) is a relation2 between elements of
��
��  and elements of 
 - , i.e., ' ) 	.��
/�  0��
1- .

Given 
 , the basic idea is that starting from a point in some do-
main 
�� we flow according to ��� until (and if) we reach some
guard ��
#���2$  , then switch via the reset '43 �#5 -76 , continue flowing
in 
1- according to �4- and so on. The hybrid time trajectory,
defined next, is interpreted as the time instants when discrete
transitions from one domain to another take place.

Definition 2 (Hybrid time trajectory) A (forward) hybrid
time trajectory is a sequence (finite or infinite) 8 � ��9 - �(:-7;=<
of intervals such that 9 - �?> 8 - �78A@-CB , for all $D�FE if the
sequence is infinite; if G is finite, then 9 - �H> 8 - �I8A@- B for all
EKJL$�JMGON � and 9 : is either of the form > 8 : �78A@: B or
> 8 : �78A@:  . The sequences 8P- and 8A@- satisfy: 8Q-RJS8A@- �T8Q-7UWV , for
all $ .

We use X�8ZY to denote the set ��E ������� �7G 
�8  �� if G 
#8  is finite,
and ��E � � �Q[ ��������� if G 
�8  is infinite.

Definition 3 (Execution) A (forward) execution of a hybrid
system 
 is a triple \ � 
#8 ��] �I^  , where 8 is a hybrid time
trajectory, ]���X#8ZY�_ � is a map, and ^ � ��^Z-`��$a�bX�8ZY�� isc V maps such that for all d���9P- , ^e-R�f9Q-g_h
�iP3 -76 satisfies

j^ - 
#d� �T�kiQ3 -76 
#^ - 
#d� � C�
Furthermore, for all $k�lX�8ZY , we have


�] 
m$  �7] 
m$�n �   �� � �
^A- 
#8 @-  0����
/] 
o$  !��] 
o$pn �  � �
and


�^e- 
�8 @-  !�7^e-7UWV 
#8P-7UWV  � ��"'R3qiQ3 -76 5 iP3 -7UWVI6#6 �

For an execution \ � 
#8 ��] �I^  , denote by 8(r 
#\  its execution
time:

8�r 
#\  ��
: 3os 6t
-7;=<


#8 @- N+8Q-  � uovmw-�x : 3os 6
8 @- Na8C<y�

2If a reset relation zW{ is actually a map |�}m~Q�Z����� , with ~W�a}m�/�q���=��� ,
we write ����zW{�}o�f� instead of }o���/���!�*zW{ .

An execution \ is called infinite, if G 
#8  ���� or 8�r�
�\  ���� ;
Zeno, if G 
#8  �K� and 8�r 
�\  ���� ; and maximal if it is not
a strict prefix of any other execution. The last statement means
that there exists no other execution \�@ ��
#8A@ �7]�@ �I^�@  such that 8
is a strict prefix of 8Z@ and ^��b^�@ on 8 (in the sense that ^ - �T^�@-
on 9 - for all $���X#8ZY ).
We say that an execution \ � 
�8 �7] �7^  starts at a point �K�

 ��� - 
 - if � ��^ < 
�8 <  and 8 < ��E . It passes through � if
���T^ - 
�d� for some $��lX#8ZY , d���9 - , d��&8 < .
A hybrid system is called deterministic if for every ����

there exists at most one maximal execution starting from � . It
is called non-blocking if for every �"��
 there is at least one in-
finite execution starting from � . Necessary and sufficient condi-
tions for a hybrid system to be deterministic and non-blocking
can be found in [10]. Roughly speaking, resets have to be func-
tions, guards have to be mutually disjoint and whenever a con-
tinuous trajectory of one of the vector fields in � is about to
exit the domain in which it lies, it has to hit a guard.

2.2 Hybrifold and hybrid flow

Unless specified otherwise, we will from now on assume that 

is regular. In short, this means that 
 is deterministic and non-
blocking and that all the building blocks of 
 are piecewise
smooth. Furthermore, each continuous time orbit always exits
a domain through a guard which lies on the boundary of the
domain, and enters it through the image of a reset map which
is a homeomorphism and takes values on the boundary of the
“next” domain. For a more detailed and precise formulation of
the notion of regularity, see [17] and [18].

Given 
 , define a map �0����� < _h
 , (where � < 	 R � 
 will
be specified later) as follows. Let �a�+
 be arbitrary. Because
of the assumption that 
 is deterministic and non-blocking,
there exists a unique infinite execution \ 
¡�  �� 
#8 ��] �I^  starting
at � . For any E¢J
d��£8�r 
#\ 
¤�  � there exist a unique $S� �
such that d���> 8Q- �78A@-  . Then define

� � 
�d!���  �T^ - 
�d� P�

To define � � 
#d!���  for negative d , set � � 
#d!�/�  �¥��¦� 
IN§d!���  ,
where ¨
 is the reverse hybrid system [18, 17]. Let � < be the
largest subset of R �S
 on which �0� is defined. It can be
shown [17, 18] that � < contains a neighborhood of ��E �§� int 

in R ��
 . Moreover, for all �"��
 , �0� 
�E ���  ��� , and

� � 
#d!�P� � 
2© �/�   ��ª� � 
#d!nS© �/�  !�
whenever both sides are defined.

The basic idea in construction of the hybrifold from a hybrid
system is simple: “glue” each guard to the image of the cor-
responding reset via the reset map. More precisely, let « be
the equivalence relation on 
 generated by �¬«®­'�) 
¡�  !� for all
�l� � and ��� ��
��  . Here ��
��  is the closure of the guard
��
/�  and ­'*) is the extended reset which coincides with 'p) on
��
/�  but is defined on a neighborhood of ��
/�  where it is a



piecewise smooth homeomorphism onto its image. The exis-
tence of ­' ) is ensured by regularity of 
 [17, 18]. Collapse
each equivalence class to a point to obtain the quotient space

�
� �ª
��!«��

Definition 4 (Hybrifold) We call
�
� �£
���« the hybrifold

of 
 .

Denote by � the natural projection 
 _ �
� , which as-

signs to each � its equivalence class ����« . Put the quotient
topology on

�
� . Recall that this is the smallest topology that

makes � continuous, i.e., a set �D	 � � is open if and only
if ��� V 
	�  is open in 
 . Some basic properties of the hybri-
fold include [17, 18]: the hybrifold

�
� is a topological 	 -

manifold with boundary; both
�
� and its boundary are piece-

wise smooth; and the restriction ��
 int � � int 
 _
� 
 int 
  is
a diffeomorphism. It is not difficult to see that

�
� can be nat-

urally equipped with a distance function which makes � into a
piecewise isometry. The hybrifold enables us to study the dy-
namics of a hybrid system on a single phase space.

Definition 5 (Hybrid flow) The hybrid flow of 
 , � � �e�T_�
� , is given by

� � 
#d!��� 
¡�   ����W� � 
#d!�/�  P�
Here � � � 
#d!��� 
¤�   a� 
�d!���  ¬�£��< � . In other words, orbits
of �*� are obtained by projecting orbits of �§� by � . By the
��� -orbit of � we mean the collection of points �§� 
�d!���  for all
possible d (i.e., all d such that 
#d!�/�  ��"�0< ).
In general, ��� 
#d!��� 
¤�  � may not be a single point. Therefore,
assume that 
 is without branching which, roughly speaking,
means the following: if

c
is the equivalence class of some point

lying on the boundary of a domain, then there exists at most one
�"� c which can be reached from its corresponding domain by
a trajectory of the corresponding vector field, and at most one
] � c whose trajectory enters the corresponding domain. If
the hybrid system satisfies this property, then it can be shown
that �*� 
#d!��� 
¤�   is indeed a single point, for all 
�d!���  0��� . For
details, please see [17].

Next we establish some basic properties of the hybrid flow for
a regular hybrid system without branching.

For each d�� R and ^¬� � � , let

� 
�d� �� ���k� � � ��� � 
#d!���  is defined � �
and �


#^  � ��©�� R ��� � 
/© �I^  is defined �y�
Observe that if ^ ��� 
¤�  , then

�

#^  ��&> E �Q�  �L> E �I8 r 
�^   ,

where 8 r 
�^  is the execution time of \ 
¤�  , the unique execu-
tion of 
 starting at � . Also, for d��.E , � 
�d� contains all points
^���� 
¡�  such that 8 r 
#^  0�.d .
If
� 
#d� is not empty, denote by � �� � � 
�d� *_ �

� the time
d map of ��� defined by ���� 
�^  ���*� 
#d!�I^  . It is possible

to prove the following results [17, 18]: if each vector field �
in � is smooth (in addition to being globally Lipschitz), then
for each ^�� � � the map d��_ ���� 
#^  is continuous and
smooth except at countably many points in

�

#^  ; each map�*�� is injective; whenever both sides are defined �p�� �*� � 
�^  ���*�� U � 
#^  ; and there is an open and dense subset of � on which�*� is smooth. Observe that the local flow of a smooth vector

field satisfies these properties.

A point � � � � is called an � -limit point of ^�� � � if� � umvow �§xRr��*��"! 
#^  , for some sequence d��¥_ 8�r�
#^  . The
set of all � -limit points of ^ is called the � -limit set of ^ and is
denoted by � 
�^  .
Definition 6 (Zeno state) A point #b� � � is called a Zeno
state for ^ if #���� 
#^  and 8 r 
�^  0�T� .

We will also refer to points in ��� V 
	#  as Zeno states in 
 . If the
execution starting from ^"� � � is Zeno, then � 
�^  consists of
exactly one Zeno state for ^ and

� 
#^  0	 $
)&%('*) 3,+ 6 � 
 ��
��   �

see [17, 18]. Here � r 
#^  	 � denotes the set of discrete
transitions which occurs infinitely many times in the execution
starting from ^ .

The following example illustrates Zeno.

Example 1 (Water tank system [1, 8, 18, 17])
Consider the hybrid system -/. � 
 ��� ����� ��� ��� ���� , where
� � � � �Q[ � , � � � 
 � ��[  !� 
2[ � �  �� , 
 � � ����� ��> E �Q�  ���> E �P�  ,
� � � ��[ ,

�`V � 
"0bN�1�V ��N2143  65 � �73 � 
IN21�V ��0TN8143  65 �
��
 � �Q[  � � 
 �:9 ^ V �I^;3  0��
kV�� ^<3 ��=>3 � �
��
2[ � �  � � 
/[ 9 ^ V �I^;3  0��
?3�� ^ V ��=�V � �

and

'13 V 5 376 
 �(9 ^=V ��=>3  ��
/[ 9 ^ V �6=>3  �
'13 3 5 V 6 
2[ 9 =�V �I^<3  ��
 �(9 =�V �I^;3  C�

The water tank interpretation is as follows. For �p� � , ^ � de-
notes the volume of water in tank � and 1�� the constant flow
of water out of tank � . The desired minimum volume = � of wa-
ter in tank � is to be achieved by dedicating the constant in-
flow 0 exclusively to one tank at a time. The control strategy
is to switch the inflow to the first tank whenever ^!V �@=�V and
to the second tank whenever ^�3���=>3 (assuming that the ini-
tial volumes are greater than =(V and =>3 , respectively). Assume
w7A4B 
C1�V ��143  g�D0 �E1�V nF143 and, for simplicity, =(V �G=>3 ��E .
Then, every infinite execution of -/. is Zeno. Moreover, the
“origin” of

�IH 5 is a Zeno state.



3 Structural Stability of Hybrid Systems

Intuitively speaking, a smooth dynamical system is structurally
stable if it is topologically equivalent to every system which is
sufficiently close to it. We will generalize this idea to hybrid
systems.

Definition 7 (Topological equivalence) Two regular hybrid
systems without branching 
 and 
,@ are called topologically
equivalent if their hybrid flows are topologically equivalent.
That is, there exists a homeomorphism �.� � � _ �

��� car-
rying orbits of the hybrid flow of 
 to those of 
,@ , preserving
the orientation, but not necessarily preserving the time.

In other words, 
 and 
¬@ are topologically equivalent if their
dynamics are qualitatively the same.

We now define
c��

-topology on the space of regular hybrid sys-
tems without branching. Relative to this topology we say that

"@ is close to 
 if they have exactly the same states, discrete
transitions, domains and guards; further, vector fields and reset
maps of 
"@ should be close to the corresponding vector fields
and reset maps of 
 , and the corresponding reset maps should
have exactly the same images. Let us make this more precise.

For �M� �
and two

c��
-manifolds

�
and G , denote byc�� 
 � �7G  the space of all

c��
maps from

�
to G equipped

with the
c��

-topology. So � �	�&� c�� 
 � ��G  are close if .�
+ �
is close to .�
+ � , for all ^ � � and E.J��bJ�� , where .�
+ �
denotes the � th derivative (or tangent map) of � at ^ . For more
details, see [7].

Let 
 � denote the set of all regular hybrid systems without
branching 
 � 
���� ����� ������� ���� with all components of
class

c��
. That is, all vector fields in � , guards in � , and re-

set maps in � are of class
c �

. We define a
c �

topology on 
 �
by specifying a collection of sets which we declare to be its
basis. Here is how we do that.

Let 
 � 
���� � ��� ������� ���� k��
 � . For each �1� � , choose
a neighborhood � � of � � in

c�� 
/
 � ��.g
 �  . For each �&� � ,
choose a neighborhood � ) of ' ) in

c � 
/��
��  !� im ' )  . Let � be
the set of all hybrid systems 
¬@ � 
 �p@�� �R@���� @ ����@ ����@����`@  4�

 � such that

� @ � ��� � @ � � ��� @ � ��� � @ � � �

and for every � � � and �1� � ,

� @� ��� � � and ' @) ��� ) �
Using all possible such sets � as a basis, we generate a topol-
ogy � � on 
 � .
The following result is an immediate consequence of the defi-
nition.

Proposition 1 If 
�� is close to 
�� relative to � � , then�
��� �

�
��� .

Definition 8 (Structural stability) A hybrid system 
 ��
 �
is said to be

c �
-structurally stable if it has a neighborhood �

in 
 � such that every element of � is topologically equivalent
to 
 .

We claim that the water tank system is structurally stable.

Example 1 (Cont’d)
To see that -/. is

c �
-structurally stable, for any �4� � , denote

by � the angular variable in the polar coordinate system in R 3
(see Fig. 1) and observe that for � � � ��[ ,

E���� �� JS������J�� U� �T�
on 
���N � 
/E ��E  �� . Here ����� denotes the derivative of � along
��� , i.e., ����� �! "� 
#���  . Let � be the set of all


 @ � 
 ��� ����� ��� @ ��� ��� @  ��#
 �

such that for all � � � , �a@� 
/E ��E  %$�'& ,

E4��� � �� �&� @� ����� U ��
on 
��=N � 
/E �7E  �� , im '�@) � im '*) , for all �R��� , and

( ' @) N+'�) ( ��)P) �
where � � �� ��� �� �*� U �� ��� U� , and )P) will be specified later.

For � � � , consider the map + )�� ��
��  _ ��
��  defined as the
first-return map for ��
��  of the hybrid flow of 
 . It is of classc��

and its Lipschitz constant at 
/E ��E  is less than or equal to

, �.- V0/WV - 31/ 3 �
where - V �2- 3 are Lipschitz constants of ' 3 V 5 376 ��'R3 3 5 VI6 , respec-
tively, at 
�E �7E  , and /�V � / 3 are the norms of the derivatives
at 
�E ��E  of the maps � V � im 'R3 3 5 VI6 _ ��
 � ��[  and � 3 �
im 'R3 V 5 3�6 _ ��
/[ � �  , defined by flowing from the image
of a reset to the guard along the corresponding vector field
(cf., [11]).

Let +p@) � ��
��  R_ ��
/�  be the corresponding first-return map
for 
"@ . That it is well defined is guaranteed by the above con-
dition on �a@V and �a@3 (this is not difficult to check). The map
+p@) is

c��
and, as above, its Lipschitz constant at 
�E ��E  is less

than or equal to , @ �.- @V / @ V - @3 / @3 �
where -A@V �0-e@3 � / @ V � / @3 are the corresponding numbers for 
,@
(i.e., -e@V �2-e@3 are Lipschitz constants of 'p@3 V 5 3�6 �7'�@3 3 5 V 6 , respec-
tively, at 
�E ��E  , etc.)

We know that , � � . It is not difficult to see that we can choose
� � �� �3� U �� �2)Q) to make , @ sufficiently close to , so that , @�� � .
Then for every �+� � and �ª� ��
/�  , 
�+R@)  3
 
¤�  �_ 
�E �7E  , as
�l_ � , exponentially fast, in fact, as 
 , @  *
 . Thus every exe-
cution of every 
¬@§�4� converges to 
�E �7E  . Therefore, every

 @ �5� is topologically equivalent to -/. , so -/. is struc-
turally stable.



PSfrag replacements


 V 
?3

� V
�?3

�,@V

� @3
&&

� � constant
� � constant

Figure 1: The water tank example.

Note that in concluding this it does not matter whether 
/E �7E  is
a Zeno state for 
 @ . However, we now show that every execu-
tion of 
"@ is indeed Zeno.

Let ��� 
#���2$  R� � and consider a real-valued function 8() de-
fined as follows: for ��� im ' ) , let 8 ) 
¡�  be the amount of
time it takes the �a@- -trajectory of � to first reach the boundary
of 
1- (that is, to reach ��
m$ �I�� ). Since �a@- 
�E �7E  $��& , the Im-
plicit Function Theorem guarantees that 8 ) is a smooth func-
tion. Let . ) 
¤�  be the first-return time of � � im ' ) . That is,. ) 
¤�  �b8�3 ��5 -76 
¡�  �n,8�3 - 5 � 6 
�]  , where ] is the first intersection of
the �,@- -orbit with ��
o$ �I�� . Then . ) is a smooth function and let�

be its Lipschitz constant on some neighborhood of & . Clearly,.!) 
�&  �bE . Therefore,

. ) 
 
�+ @)  
 
¡�   � 
 . ) 
�
�+ @)  
 
¤�  � �N�. ) 
�&  >

J � 
 
�+ @)  
 
¤�  �N & 

J � 
 , @  
 �

Therefore,

8 r 
¤�  ��
rt


 ;=<
.!) 
 
�+ @)  
 
¤�   �J �

rt


 ;=<

 , @  
 �T� �

for all �"� im '�) . We will soon see that this turns out not to be
a coincidence.

3.1 Structural stability of hybrid equilibria

Recall that an equilibrium of a hybrid system 
 is a point
^ � � � which does not move under the hybrid flow, i.e.,�*� 
�d!�I^  � ^ , for all dp�

�

�^  . Hence, a point in the interior

of the domain for which the vector field vanishes is an equilib-
rium of the hybrid system. Equilibria also include Zeno states
which make no time progress.

Definition 9 (Local structural stability) For a hybrid system

 � 
 � , an equilibrium ^¬� � � is called locally structurally
stable if there exists a neighborhood � of 
 in 
 � such that
every 
¬@1�'� is locally topologically equivalent to 
 at ^ .
That is, there exists an equilibrium ^ @ of 
 @ and neighbor-
hoods � ���p@ of ^ �I^�@ in

�
� � �

��� , respectively, such that
the restriction of the hybrid flow of 
,@ to ��@ is topologically
equivalent to the restriction of the hybrid flow of 
 to � .

We now state the main result of the paper.

Theorem 1 Suppose that 
 �#
 � and let ^¬� � � . Suppose

(a) for some � , ^ � � 
 int 
��� is a hyperbolic equilibrium
for ��� ,

or

(b) ^ is a Zeno sink, i.e., there is a neighborhood - of ^
in
�
� such that ^ is the Zeno state for every execution

starting in - .

Then ^ is locally structurally stable.

Proof. (a) Follows from the classical theory of dynamical sys-
tems; see, for example, Theorem 4.11 in [14].

(b) The proof is completely analogous to that for -/. . The only
difficulty is to find an analog of the function � which was read-
ily available in -/. because of the special structure of domains
and guards. However, in general, we can still do it locally: for
every domain 
 � with vector field � � we can always find a
function � � defined in some neighborhood � � of � � in 
 � , where� 
¡� �  ��^ and � � �+
 � , such that relative to � � on � � , � � has
properties analogous to those of � relative to the vector fields
in -/. . One way to do this is the following. Let � (represent-
ing an “entry set” into a domain, i.e., the image of some reset)
and � (representing an “exit set” from a domain, i.e., a guard)
are two smooth hypersurfaces in R � which meet transversely
and let �T���D��� (representing a Zeno state). Assume � is
a smooth vector field on R � transverse to both � and � which
in particular means that it has no equilibria. That this is a fair
assumption was shown in [17]: vector fields in a hybrid sys-
tem never vanish at its Zeno state. Let � be a sufficiently small
neighborhood of � in R � . Then there exists a diffeomorphism
� ��� _ R � such that � 
¤�  � & , � 
	�  ����^+��^ � � E � , and
� 
	�  � ��^ �!^ � � V �¥E � . (This is an exercise in elementary
differential geometry.) Let 
 
#^  � A���
�� A�� 
�^ � �(^ � � V  and set
� ��
��*� � V . Then � is a smooth function on ��� 
������  ,
���TE on � ����� 
	�8���  , and ��� � � [ on � ����� 
	�����  .
Furthermore, by the Flow Box theorem [14], we can choose� so small that the flow of � on � looks approximately like
a collection of straight lines from � to � . Then we also get
E���� � J&���"J���U.�b� on � , as desired.

Note that in Theorem 1 the only equilibria considered on the
boundary of domains are Zeno states. However, we will soon
see without difficulty that a standard equilibrium on the bound-
ary of a domain implies structural instability. Recall [17] that a
standard equilibrium of 
 is a point ^S� 
 at which all rele-
vant vector fields vanish, i.e., if ��� V 
#^  � �7� V ������� �/��� � where
�A-���
1- , then �4- 
¤�e-  �'& .

Proposition 2 Let 
 �#
 � and suppose that 
 has a standard

equilibrium in �! (� -#" 
1-%$ . Then 
 is structurally unstable.

Proof. A small perturbation of the vector fields will cause the
removal of the equilibrium from the boundary. In other words,



if ^ is a standard equilibrium and � � V 
#^  � �7�=V ������� �/� � �
where �A-,�ª
1- , then it is not difficult to perturb each vector
field � - to �,@- so that �,@- has an equilibrium ��@- in the inte-
rior of 
1- and no equilibria on the boundary of 
4- near �e- .
The new hybrid system is clearly not topologically equivalent
to the original one.

4 Conclusions

Structural stability for hybrid systems was introduced in the
paper. It is an important property, because a structural stable
system is robust to modeling errors. A Zeno state is an equi-
librium of a hybrid system, which arises from the interaction
of the continuous and the discrete dynamics. It was shown that
Zeno states are locally structurally stable. This means that Zeno
may be difficult to remove by perturbing the system. Similarly,
in analogy to the classical case, hyperbolic hybrid closed or-
bits [16] can be shown to be locally structurally stable as well,
as will be presented elsewhere.

Many issues on structural stability of hybrid systems remain to
be studied. For example, an important question is: in dimen-
sion two, do structurally stable systems form a “large” set (in
analogy with the case of smooth systems)? An affirmative an-
swer, in a slightly different context, was given by [3]. Namely,
even if “sliding” in the sense of Filippov [5] is allowed, then the
generic piecewise smooth vector field on a smooth, orientable,
boundaryless, compact surface is structurally stable. Moreover,
structural stability is completely characterized by a set of four
conditions, which we do not discuss here.
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