A Structural Study of La_{1-x}Y_xScO₃, Combining Neutron Diffraction, Solid-State NMR and First-Principles DFT Calculations

Journal:	The Journal of Physical Chemistry
Manuscript ID:	jp-2012-10878b.R1
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Johnston, Karen; University of St Andrews, School of Chemistry Mitchell, Martin; University of St Andrews, School of Chemistry Blanc, Frédéric; University of Cambridge, Chemistry Lightfoot, Philip; St Andrews University, Chemistry Ashbrook, Sharon; University of St Andrews, School of Chemistry

SCHOLARONE[™] Manuscripts

1 2	
3 4 5	Alpo A structural study of $La_{1-x}Y_xScO_y$, combining neutron diffraction, solid-state NMR
6	and first-principles DFT calculations
7 8 9 10 11 12 13 14 15 16 17 18	Karen E. Johnston, ¹ Martin R. Mitchell, ¹ Frédéric Blanc, ² Philip Lightfoot ^{*1} and Sharon E. Ashbrook ^{*1}
19 20 21 22 23 24 25	¹ School of Chemistry and EaStCHEM, University of St Andrews,
26 27	North Haugh, St Andrews, KY16 9ST, United Kingdom
28 29 30 31 32 33 34 35 36	² Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
37 38 39 40 41 42 43 44 45 46 47 48 49 50	*Author to whom correspondence should be addressed. Phone: +44 (0)1334 463779 Fax: +44 (0)1334 463808 Electronic mail: <u>sema@st-andrews.ac.uk</u> and <u>pl@st-andrews.ac.uk</u>
51 52 53 54 55 56 57 58 59 60	Submitted to Journal of Physical Chemistry C

Abstract

The solid-solution $La_{1-x}Y_xScO_3$ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) has been successfully synthesized using conventional solid-state techniques. Detailed structural characterization has been undertaken using high-resolution neutron powder diffraction and multinuclear (⁴⁵Sc, ¹³⁹La, ⁸⁹Y and ¹⁷O) solid-state NMR, and is supported by first-principles density functional theory calculations. Diffraction data indicates that a reduction in both the unit cell parameters and unit cell volume is observed with increasing x, and an orthorhombic perovskite structure (space group *Pbnm*) is retained across the series. ⁴⁵Sc multiple-quantum (MQ) MAS NMR spectra proved to be highly sensitive to subtle structural changes and, in particular, cation substitutions. NMR spectra of $La_{1-x}Y_xScO_3$ exhibited significant broadening, resulting from distributions of both quadrupolar and chemical shift parameters, owing to the disordered nature of the material. In contrast to previous single crystal studies, which reveal small deficiencies at both the lanthanide and oxygen sites, the powder samples studied herein are found to be stoichiometric.

Introduction

Oxides with the perovskite structure (general formula ABX_3) are an important and attractive area of research within materials chemistry. Perovskites are extremely flexible in their composition and, as a result, can be distorted with relative ease, producing a variety of useful and diverse physical properties including ferroelectricity, superconductivity, ionic conductivity and a range of dielectric responses, each of which can be exploited in a wide range of materials and devices. Although the 'ideal' perovskite structure is cubic, perovskites typically exhibit a range of structural variations owing to distortions or, more commonly, tilting of the BX_6 octahedra and displacements of the A- and B-site cations from the centre of their coordination polyhedra. Octahedral tilting is an intrinsic property of perovskites and is a direct consequence of the relative sizes and charge of the A- and B-site cations substituted into the structure. Both the type and magnitude of the distortions govern the nature and extent of the physical properties observed.

Stoichiometric ternary perovskite-type oxides of the form $LnBO_{3^{7}}$ where Ln and B are trivalent lanthanides and first row transition metals, respectively, have been studied extensively in the past with work concentrating predominantly on rare earth scandates, vanadates, gallates, orthochromates and orthoferrites.¹⁻⁷ Many of these compounds exhibit interesting physical properties which have led to important fundamental and industrial applications. In particular, the LnScO₃ series has found application in ionic conductivity⁸ and as a substrate for ferroelectric thin films.⁹ Liferovich and Mitchell¹⁰ recently reinvestigated many ternary lanthanide orthoscandate perovskites and discovered much of the earlier literature regarding their structural behaviour to be correct. For example, many of the compounds investigated, including LaScO₃, were found to adopt the GdFeO₃ structure, which is isostructural with orthorhombic CaTiO₃.⁴ The LaScO₃ structure, in space group *Pbnm*, contains corner sharing ScO₆ octahedra displaying significant octahedral tilting described, in Glazer notation, by the symbol a⁻a⁻c⁺, with anti-phase tilts in the ab plane and in-phase tilts around the c axis, as shown in Figure 1.

The closely-related rare earth scandate YScO₃ has been investigated extensively in previous years and is well documented as requiring high-pressure techniques for successful synthesis.^{10,11} Despite several attempts having been made to synthesize YScO₃ using conventional solid-state methods, many have been unsuccessful, as samples typically contain

only trace amounts of the desired perovskite and large quantities of different impurity phases.¹¹ The structure of YScO₃ was therefore unknown until recently, when Balamurugan *et al.*, reported a single crystal study.¹² Using a flux technique originally used by Remeika *et al.*,¹³ they were able to synthesize single crystals of both LaScO₃ and YScO₃. Their single crystal X-ray diffraction studies indicated small deficiencies in each structure on both the A site and oxygen sites, leading to compositions of La_{0.94}ScO_{2.91} and Y_{0.96}ScO_{2.94}. In 1980, the first successful synthesis of YScO₃ using conventional solid-state techniques (a two-stage reaction under ambient pressure conditions) was reported by Portnikov *et al.*¹⁴

Clark¹¹ and co-workers identified a complex series of rare earth scandates that, in theory, should have produced perovskite-type structures. However, in reality they preferred to adopt 'C-type' solid-solutions, where preference for both the A- and B-site cations to be on the octahedral site is predominant. Under ambient pressure conditions and high annealing temperatures, many of the compounds investigated by Clark *et al.*, including YScO₃, contained trace amounts of the desired perovskite and large quantities of a C-type solid-solution. It was later discovered that it is possible to synthesize a phase pure sample of YScO₃ using high-pressure techniques.¹¹

There are currently no known structural studies for the related solid-solution $La_{1-x}Y_xScO_3$. Owing to its small ionic radius, Y^{3+} substitution is feasible, as well as favourable, on both the A and B sites in the perovskite structure. The precise site of substitution is, however, influenced by each of the cations present in the structure. For example, Y^{3+} and Sc^{3+} have relatively small ionic radii (1.02 Å and 0.87 Å, respectively, for eight-coordinate cations)¹⁵ when compared with (eight-coordinate) La^{3+} (1.18 Å).¹⁵

In recent years, the application of density functional theory (DFT) calculations has accelerated due to the advancement and modification of both hardware and software. Codes that exploit the inherent periodicity and translational symmetry of solids are an integral addition to the solid-state NMR community. Furthermore, the use of DFT calculations has aided with both the assignment and interpretation of often complex NMR spectra.

Here we present a comprehensive structural study of the rare earth orthoscandate perovskites $LaScO_3$, $YScO_3$ and the associated solid-solution $La_{1-x}Y_xScO_3$ at room temperature using a variety of complementary techniques, including high-resolution neutron powder diffraction (NPD), high-resolution solid-state ⁴⁵Sc, ⁸⁹Y and ¹⁷O magic-angle spinning (MAS) NMR, ¹³⁹La wideline NMR and planewave DFT calculations. We confirm that the solid-

Page 5 of 43

solution $La_{1-x}Y_xScO_3$ does not form any C-type solid-solutions across the series. Using ⁴⁵Sc and ⁸⁹Y NMR we have also confirmed that the solid-solution $La_{1-x}Y_xScO_3$ exhibits disorder, believed to result from random occupancy of the A-site cations within the structure.

Experimental and Computational Details

Synthesis and Characterization

 $La_{1-x}Y_{x}ScO_{3}$ samples were synthesized using conventional solid-state methods. Stoichiometric amounts of commercial La₂O₃ (Sigma-Aldrich, 99.99%), Y₂O₃ (Sigma-Aldrich, 99.999%) and Sc₂O₃ (Stanford Materials Ltd, 99.995%) were mixed and ground in an agate mortar and pestle with acetone as a mobile phase. Samples were pressed into pellets and heated at temperatures ranging from 1200 °C to 1450 °C. LaScO₃ was prepared using an annealing temperature of 1400 °C for 3 days.¹⁰ YScO₃ was synthesized in a two-stage reaction, 1200 °C for 65 hours followed by 1450 °C for 7 days, with intermediate regrinds.¹⁴ Samples in the series $La_{1-x}Y_xScO_3(x = 0.2, 0.4, 0.6 \text{ and } 0.8)$ were synthesized by heating at 1450 °C for up to 4 days, with intermediate regrinding. After the initial solid-state preparation small quantities of LaScO₃ and YScO₃ were enriched using ¹⁷O enriched O₂ gas. Enrichment was performed by heating the sample under 50% ¹⁷O enriched O₂ gas (Isotec, 50% ¹⁷O) for 7 days at 1000 °C. Samples were characterized by room temperature laboratory X-ray diffraction experiments (l-PXRD) using a Stoe STADI-P diffractometer using Cu K_{α_1} ($\lambda = 1.54056$ Å) radiation and timeof-flight neutron powder diffraction (NPD) using POLARIS at the ISIS neutron spallation source, Rutherford-Appleton Laboratories.^{16,17} All diffraction data were analyzed by Rietveld refinement using the General Structure Analysis System (GSAS) software package.¹⁸

NMR Spectroscopy

Spectra were acquired using either Bruker 400 Avance I or 600 Avance III spectrometers, equipped with wide-bore 9.4 T and 14.1 T magnets, respectively using Larmor frequencies of 97.2 MHz and 145.8 MHz for ⁴⁵Sc (I = 7/2), 84.77 MHz for ¹³⁹La (I = 7/2), 29.41 MHz for ⁸⁹Y (I = 1/2) and 81.4 MHz for ¹⁷O (I = 5/2). Powdered samples were packed into conventional 4- and 2.5-mm ZrO₂ rotors and MAS rates of 14 kHz and 30 kHz, respectively, were employed. Chemical shifts were referenced to 0.2 M ScCl₃ (aq), 1 M LaCl₃ (aq), 1 M YCl₃

(aq) and H_2O (aq), using LaScO₃ (s), LaAlO₃ (s), $Y_2Sn_2O_7$ (s) and 35% ¹⁷O enriched clinohumite as secondary references.

Conventional ⁴⁵Sc MAS NMR spectra were obtained using single pulse experiments at 9.4 T and 14.1 T with typical pulse lengths of 1.25 μ s and 1.4 μ s, respectively. Conventional ⁸⁹Y and ¹⁷O MAS NMR spectra were obtained using single pulse experiments at 14.1 T with typical $\pi/2$ pulse lengths of 8 μ s and 1.5 μ s, respectively. Experimentally optimized recycle intervals for ⁴⁵Sc, ⁸⁹Y and ¹⁷O were 3 s, 20 s and 20 s, respectively. Typical radiofrequency field strengths of 30-60 kHz were employed. Two-dimensional triple-quantum ⁴⁵Sc MAS NMR experiments were acquired using a z-filtered pulse sequence, ¹⁹ and are the result of averaging 96 transients with a recycle interval of 3 s for each of the 256 increments of 20 μ s. Spectra were not sheared post Fourier transformation. All spectral analysis and fitting was performed within Topspin 2.1.

A static wideline ¹³⁹La NMR spectrum was acquired in a piecewise manner using the WURST-QCPMG^{20,21} pulse sequence, with a 50 µs WURST pulse swept over 1000 kHz (sweep rate of 20 MHz/ms). An experimentally optimized recycle interval of 2 s was used. Spectra were processed with exponential apodization, followed by digital filtering, Fourier transformation and magnitude calculation. The individual subspectra were then coadded to produce the final spectrum. Analytical simulations and spectral fitting of the ¹³⁹La spectrum was performed using WSolids.²²

A static ⁸⁹Y NMR spectrum was acquired using a spin-echo pulse sequence. A halfecho was recorded and the FID was left shifted prior to Fourier transformation.

First-Principles Calculations

Planewave density functional theory (DFT) calculations were carried out using the CASTEP²³ DFT code, a planewave pseudopotential method that utilizes the gauge-including projector augmented wave (GIPAW) formalism. The generalized gradient approximation (GGA) PBE functional was used, with the core-valence interactions being described by ultrasoft pseudopotentials. Integrals over the Brillouin zone were performed using a Monkhorst-Pack grid with a k-point spacing of 0.04 Å⁻¹. Wavefunctions were expanded in planewaves, with a kinetic energy less than a cut-off energy, typically 60 Ry. Calculations were converged as far as possible with respect to both k-point spacing and cut-off energy. Calculations output both the absolute shielding tensor, σ , and the electric field gradient (EFG)

tensor, V, in the crystal frame. The isotropic chemical shift, $\delta_{iso'}$ can be obtained from the isotropic shielding, $\sigma_{iso'}$ by $\delta_{iso} = -(\sigma_{iso} - \sigma_{ref})$ where σ_{ref} is a reference shielding, determined to be 788.0 ppm for ⁴⁵Sc, 2624.5 ppm for ⁸⁹Y, 223.7 ppm for ¹⁷O and 4311.3 ppm for ¹³⁹La (from DFT calculations for LaScO₃, YScO₃ and LaAlO₃).²⁴ Crystal structures were obtained from both the Inorganic Crystal Structure Database (ICSD) and Rietveld refinement of experimental diffraction data. Where necessary, geometry optimization of the structure was performed (also using CASTEP) prior to the calculation of the NMR parameters, again using a k-point spacing of 0.04 $Å^{-1}$ and a cut-off energy of 60 Ry. In a typical optimization, the forces and energy were converged using a tolerance of $5 \times 10^{-2} \text{ eV/\AA}$ and $1 \times 10^{-4} \text{ eV/atom}$, Calculations were performed using the EaStCHEM Research Computing respectively. Facility, consisting of 152 AMD Opteron processing cores partly connected by Infinipath high speed interconnects. Typical calculation times for single unit cell calculations ranged from 9 to 15 h for geometry optimization and 7 to 22 h for NMR calculations using 8 cores. Typical calculation times for supercell calculations ranged from 25 to 31 h for geometry optimization and 24 to 27 h for NMR calculations using 20 cores.

Referencing for ⁴⁵Sc

Experimental NMR

There is some degree of confusion in the literature regarding the most suitable primary NMR reference for ⁴⁵Sc. Several different reference compounds have been suggested previously, including Sc(NO₃)₃ (aq) and ScCl₃ (aq). To determine an accurate and reliable reference static ⁴⁵Sc NMR spectra were acquired for varying concentrations of Sc(NO₃)₃ (aq) (2, 1, 0.5, 0.2, 0.1, 0.05, 0.0375, 0.025, 0.0125 M) and ScCl₃ (aq) (0.2, 0.1, 0.075, 0.05, 0.04375, 0.0375, 0.025 M). All experimental parameters were optimized for 2 M Sc(NO₃)₃ (aq) and 0.2 M ScCl₃ (aq). Typical pulse lengths were 5 µs with recycle intervals of 0.5 s in each case.

Static ⁴⁵Sc NMR spectra were acquired for each solution and are shown in Figure S1 in the Supporting Information (referenced relative to the transmitter offset). The spectrum for 2 $M Sc(NO_3)_3$ (aq) displayed two resonances (Figure S1(a)). The spectrum for 1 M Sc(NO_3)_3 (aq) also exhibited two resonances. However, one of the resonances appears shifted relative to that observed for 2 M Sc(NO_3)_3 (aq). As the concentration was reduced a similar trend was observed, as the same resonance continued to shift until for 0.025 M and 0.0125 M Sc(NO_3)_3 (aq) only a single resonance was observed. Therefore, spectra acquired for Sc(NO_3)_3 (aq) exhibited an obvious concentration dependent shift, most probably owing to hydration of the Sc and the varying number of H_2O molecules in the surrounding coordination environment. It is, therefore, not favourable to use Sc(NO₃)₃ (aq) as a primary reference.

The ⁴⁵Sc NMR spectrum for 0.2 M ScCl₃ (aq) displayed a single sharp resonance (Figure S1(b)). As the concentration of the solution was reduced the resonance position shifted. However, in contrast to Sc(NO₃)₃ (aq), a relatively small shift in peak position was observed as a function of concentration, suggesting ScCl₃ (aq) to be a more consistent and reliable reference. The single resonance displayed in the ⁴⁵Sc NMR spectrum for 0.2 M ScCl₃ (aq) was set to be 0 ppm. Using this, at 14.1 T, the resonance with maximum intensity in the spectrum of LaScO₃ was found at 162.91 ppm. LaScO₃ was then used as a solid secondary reference for ⁴⁵Sc, in subsequent experiments.

DFT Calculations

To establish the accuracy and feasibility of ⁴⁵Sc planewave DFT calculations using CASTEP initial calculations were completed on several 'model' compounds, including Sc₂O₃, LiScO₂, NaScO₂, ScPO₄ and ScVO₄. The calculated results were in excellent agreement with experimental data²⁵ as shown in Figure S2 in the Supporting Information. The NMR parameters calculated for all model compounds displayed better correlation with experiment post geometry optimization of the structure. Similar calculations were completed for several Y-containing compounds, full details of which are given in ref 26. Each of the model compounds investigated displayed good agreement with the literature, confirming that the Sc and Y pseudopotentials used in each calculation were accurate for ⁴⁵Sc and ⁸⁹Y planewave DFT calculations using the CASTEP code.

Results and Discussion

LaScO₃

NPD and ⁴⁵Sc NMR

Several samples of LaScO₃ were synthesized to establish optimal reaction conditions. The structure and phase purity of each sample were verified using l-PXRD then NPD, both of which displayed excellent agreement with the orthorhombic structure (*Pbnm*) reported in the literature.¹⁰ In contrast to the findings of Balamurugan *et al.*,¹² there was no evidence in our l-PXRD or NPD data to suggest the presence of defects on the A site or oxygen sites. The Rietveld plots are shown in Figure S3 in the Supporting Information. Full refinement details obtained from the NPD data, including anisotropic thermal parameters, are given in Tables S1 and S2.

The ⁴⁵Sc (9.4 T) MAS NMR spectrum of LaScO₃ contained a single sharp resonance (Figure 2(a)). ⁴⁵Sc is a spin I = 7/2 nucleus with high natural abundance (100%) and a quadrupole moment Q(⁴⁵Sc) of -0.22×10^{-28} m². Despite being an extremely attractive nucleus to study by NMR there are, at present, relatively few publications in the literature demonstrating the use of ⁴⁵Sc solid-state NMR.²⁷ As a consequence, little is known regarding the relationship between the ⁴⁵Sc NMR parameters and local structure. A recent study by Kim *et al.*,²⁵ investigated the ⁴⁵Sc NMR isotropic chemical shifts, $\delta_{iso'}$ and quadrupolar coupling constants, C_Q, for a series of scandium-containing oxides. It was found that both quantities were sensitive to local structure. In particular, it was shown that ⁴⁵Sc δ_{iso} is largely dominated by coordination number. For example, a difference of more than 150 ppm was observed between shifts for six- and eight-coordinate scandium.

The ⁴⁵Sc (9.4 T and 14.1 T) MAS NMR spectra obtained for LaSCO₃ (Figures 2(a) and (b), respectively) suggest the presence of a single six-coordinate site. Eight-coordinate scandium sites typically possess much lower chemical shifts when compared with six-coordinate Sc.²⁵ Each of the ⁴⁵Sc MAS NMR spectra of LaScO₃ exhibits a range of spinning sidebands (denoted by *) associated with the three satellite transitions; ST₁, ST₂ and ST₃ found for a I = 7/2 nucleus. These sidebands are better resolved in the ⁴⁵Sc (9.4 T) MAS NMR spectrum (Figure 2(c)). It is important to note the large anisotropic broadening associated with ST₃ when compared with ST₁ and ST₂. Tabulated in the Supporting Information (Table S3) are the values corresponding to the coefficients A⁰(7/2,q), A²(7/2,q) and A⁴(7/2,q) used to describe the second-order quadrupolar interaction for a transition, q.²⁸ A ⁴⁵Sc MAS NMR spectrum with a wide spectral width was also acquired for LaScO₃ at both 9.4 T and 14.1 T (Figures 2(e) and 2(f)) and in both the satellite transitions are clearly visible. This is in contrast to the ⁴⁵Sc MAS NMR data presented by Balamurugan *et al.*, where no satellite transitions were observed for LaScO₃.¹² The central and satellite transitions, ST₁, ST₂ and ST₃ were analytically simulated and fitted. The single Sc site has an isotropic chemical shift, δ_{iso} = 162.0 ppm, and a

quadrupolar coupling constant, $C_0 = 3.9$ MHz. Full details of the NMR parameters obtained for LaScO₃ are given in Table 1.

⁴⁵Sc is well documented as often exhibiting large quadrupolar coupling constants and, as a result, multiple-quantum (MQ) MAS techniques are often required to fully remove inhomogeneous second-order quadrupolar broadenings and resolve distinct resonances.^{29,30} Therefore, to confirm no additional resonances were present in the ⁴⁵Sc MAS spectrum a MQMAS experiment was performed. The triple-quantum MAS spectrum (14. 1 T) is shown in Figure 3(a) and displays a single resonance, in good agreement with published crystallographic data.¹⁰ Although the quadrupolar contribution appears to be relatively small, it is sufficiently large that one might expect to have observed a second-order quadrupolar lineshape at 9.4 T. However, the ⁴⁵Sc MAS NMR spectrum for LaScO₃ does not exhibit a welldefined quadrupolar lineshape, suggesting there is an additional degree of broadening present, most probably owing to factors such as small amounts of positional or geometrical disorder, most likely localized octahedral tilt disordering, an effect that is effectively averaged out in the diffraction data. This additional broadening is also observed in the MQMAS spectrum, as the single ridge is not aligned along 101/45 (+2.24) (the MQMAS ratio for a spin I = 7/2 nucleus) (*vide infra*).³¹

When compared with other scandium-containing compounds the quadrupolar interaction observed for LaScO₃ is relatively small, suggesting the Sc environment is more symmetrical. LaScO₃ is an orthorhombic perovskite composed of corner sharing ScO₆ octahedra, with the Sc cation directly bonded to six oxygen atoms. Crystallographically, Sc is positioned on an inversion centre. Therefore, by definition, the Sc should reside in the centre of the octahedron. However, the O – Sc – O bond angles obtained from the Rietveld refinement of LaScO₃ appear to indicate mild distortions of the octahedra (Tables S4 and S5 in the Supporting Information).

139 La and $^{17}ONMR$

Lanthanum has two NMR active isotopes, ¹³⁸La (I = 5) and ¹³⁹La (I = 7/2). The latter is more favourable for NMR experimentation owing to its half-integer spin quantum number, higher natural abundance (99.91%) and smaller nuclear quadrupole moment ($Q(^{138}La) = 0.45 \times 10^{-28} \text{ m}^2$ and $Q(^{139}La) = 0.20 \times 10^{-28} \text{ m}^2$).³² Solid-state ¹³⁹La NMR spectroscopy has been applied to a wide variety of systems, including simple lanthanum oxides and halides,^{33,34} lanthanum-

containing zeolites and metallocenes,³⁵⁻³⁹ and LaF₃ (both single crystals and nanoparticles).^{40,41} Furthermore, the use of ¹³⁹La NMR has been demonstrated in perovskite solid-solution type systems such as $La_{1-x}A_{x}MO_{3x}$ where A = Sr, Ca and M = Mn, Cr and Co.⁴²⁻⁴⁵ Using the WURST-QCPMG pulse sequence^{20,21} a static wideline ¹³⁹La NMR spectrum was acquired for LaScO₂ (14.1 T) and is shown in Figure S4 in the Supporting Information. The WURST-QCPMG pulse sequence combines the broadband excitation properties of frequency swept WURST pulses⁴⁶⁻⁴⁸ with the signal-to-noise enhancement of the QCPMG protocol,^{49,50} enabling the rapid acquisition of extremely broad powder patterns. The successful application of the WURST-QCPMG pulse sequence has been demonstrated several times in recent years for a variety of different systems, as part of numerous solid-state NMR studies.^{51,52} The static ¹³⁹La powder pattern for LaScO₃ was best simulated with $C_0 = 62.5$ MHz and $\eta_0 = 0.12$. When compared with many other lanthanum-containing compounds the quadrupolar interaction for LaScO₃ is much larger, suggesting the spherical symmetry around the La atom is reduced. To highlight this reduction in symmetry an isolated cluster displaying the La environment, derived from the NPD Rietveld structure, is shown in the Supporting Information. Here, it is evident that the eight-coordinate A site exhibits a less symmetrical environment when compared to the six-coordinate B site, where an almost 'perfect' octahedron is found. The ¹³⁹La NMR parameters reflect these differences.

To gain additional structural information regarding the local environment of oxygen in LaScO₃ a sample was post-synthetically enriched using ¹⁷O enriched O₂ gas. The structure and phase purity of the sample, post enrichment, were verified using l-PXRD. This confirmed the sample had not changed during the enrichment process. The ¹⁷O MAS NMR spectrum (Figure 4) displays two distinct O sites, $\delta = 392.8$ ppm and $\delta = 373.2$ ppm, and is in good agreement with published crystallographic data.¹⁰ Both sites exhibit small values of C_Q, suggesting each oxygen is in a spherically symmetric environment. A ¹⁷O MAS NMR spectrum with a wide spectral width was also acquired and is shown in Figure S6(a) in the Supporting Information. The spectrum was fitted and the ¹⁷O NMR parameters obtained are given in Table 1. To highlight how similar the two oxygen sites are, local oxygen environments for O1 and O2 are shown in Figure S7 with corresponding Sc – O and La – O bond distances highlighted.

First-Principles DFT Calculations

⁴⁵Sc, ¹³⁹La and ¹⁷O NMR parameters were calculated for LaScO₃ using a structural model obtained from the literature,¹⁰ and are given in Table 2. When compared with the experimentally obtained parameters (Table 1) very little agreement is observed between the two, highlighting the need for geometry optimization of the structure, *i.e.*, allowing both the unit cell and atomic coordinates to vary simultaneously. Better correlation with experiment was consistently observed for ⁴⁵Sc and ¹⁷O post geometry optimization. All calculated values of the NMR parameters obtained prior to and post geometry optimization of the structure are given in Table 2. Also shown in the Supporting Information (Table S6) are the calculated parameters obtained post geometry optimization of the structure using a fixed unit cell, *i.e.*, allowing solely the atomic coordinates to vary. One major advantage of first-principles DFT calculations over experimental methods is their ability to determine the sign of C_Q. This information is automatically generated during each calculation.

 $YScO_3$

NPD and ⁴⁵Sc NMR

A sample of YScO₃ was synthesized using the preparative method determined by Porotnikov *et al.*¹⁴ The phase purity was verified using l-PXRD and high-resolution NPD. Each confirmed the presence of $YScO_{y}$ in addition to small quantities of an unknown impurity phase. Due to similarities in ionic radii at the A site, all Rietveld refinements for YScO₃ were carried out using the structural model for HoScO₃¹⁰ as the starting point. The single phase Rietveld refinement completed for YScO₃ was in good agreement with the calculated model (wR_p = 3.0 %), as shown in Figure S8 in the Supporting Information. Full refinement details obtained from the NPD data for YScO₃, including anisotropic thermal parameters, are also given in the Supporting Information (Tables S7 and S8). It was not possible to complete a multiphase Rietveld refinement for YScO₃ as the exact composition of the impurity phase was not known. The phase, believed to be a mixed $(Y_{1}Sc)_{2}O_{3}$ -type phase, is clearly visible in the refinement and denoted by *. Again, in contrast to the findings of Balamurugan et al.,¹² no evidence of A site or oxygen site defects were observed in our NPD data. It is possible that the synthetic procedure adopted by Balamurugan et al. gave rise to the defects observed. We also note that the present samples are white, whereas the samples from the previous study are pale yellow.

The ⁴⁵Sc (14.1 T) MAS NMR spectrum for YScO₃ contained a single resonance and, in contrast to LaScO₃, a characteristic second-order quadrupolar lineshape, as shown in Figure 3(b). As observed for LaScO₃, the chemical shift of the resonance was in the known chemical shift range for six-coordinate Sc.²⁵ The two-dimensional ⁴⁵Sc MQMAS NMR spectrum also displays a single six-coordinate site and confirms no additional resonances lie under the ⁴⁵Sc MAS NMR lineshape. The resonance appears to display a small amount of additional broadening under MAS, possibly indicative of small distributions in the environment and in the NMR parameters. The MAS lineshape for YScO₃ was fitted and the ⁴⁵Sc NMR parameters $\delta_{iso} = 163.3 \text{ ppm}$, $C_Q = 7.6 \text{ MHz}$ and $\eta_Q = 0.7$ were obtained. Full details of all NMR parameters are given in Table 1.

89 Y and ^{17}O NMR

⁸⁹Y is, in theory, an attractive proposition for study using NMR experimentation. However, as with ⁴⁵Sc there are some limitations to its practical use and implementation. ⁸⁹Y is a spin I = 1/2 nucleus with 100% natural abundance and large chemical shift range (~4000 ppm). However, it possesses an extremely low receptivity (0.681 relative to ¹³C) and relaxation times are typically on the order of tens to thousands of seconds, meaning to obtain spectra of sufficiently high quality very long experimental times are required. One major advantage of ⁸⁹Y is that as a spin I = 1/2 nucleus it is free from the quadrupolar interaction and associated quadrupolar broadening.

A conventional ⁸⁹Y MAS NMR spectrum, slow spinning ⁸⁹Y MAS NMR spectrum and static ⁸⁹Y NMR spectrum were acquired for YScO₃ (14.1 T) and are shown in Figure 5. Fitting the slow spinning ⁸⁹Y MAS NMR spectrum for YScO₃ enables the isotropic chemical shift, δ_{iso} , the span, Ω , and skew, κ , to be determined. These parameters and their definitions are listed in Table 3.

YScO₃ was post-synthetically enriched using ¹⁷O O₂ enriched gas. The structure and phase purity of the sample post enrichment was verified using l-PXRD. The ¹⁷O MAS NMR spectrum (Figure 4(b)) displays two distinct O sites, $\delta = 334.5$ ppm and $\delta = 310.5$ ppm, and is in good agreement with the crystallographic data obtained from Rietveld refinement of the NPD data. Both sites exhibit relatively small values of C_Q, indicating the oxygen atoms are in a less symmetrical environment. The spectrum in Figure 4(b) was fitted and the NMR parameters obtained are given in Table 1. The two oxygen environments have similar values

of C_{Q} , indicating they are structurally very similar. To highlight how alike the two environments are isolated oxygen clusters for O1 and O2 in YScO₃ are shown in Figure S7 in the Supporting Information. When compared to the ¹⁷O NMR parameters obtained for LaScO₃, the values of C_Q obtained for YScO₃ are larger, indicating these are less spherically symmetric than those in LaScO₃. This is particularly evident when the M – O bond distances are closely compared, as there is an obvious difference between the two phases. Owing to the nature of the perovskite structure, these differences are caused by different degrees of octahedral tilting and displacements of the A-site cation: both effects being more pronounced in the case of the smaller Y³⁺ cation.

DFT Calculations

As described previously for LaScO₃, ⁴⁵Sc, ⁸⁹Y and ¹⁷O DFT calculations were completed for YScO₃. Owing to the lack of an exact crystal structure for YScO₃ structural models for HoScO₃ and LaScO₃ were used, in which the Ho and La atoms were replaced with Y. Each structure was fully optimized prior to calculation of the NMR parameters. The calculated parameters are given in Tables S11 and S12 in the Supporting Information and are in good agreement with those obtained experimentally. An additional DFT calculation was performed using the structural model obtained from Rietveld refinement of the NPD data for YScO₂. Parameters were calculated both prior to and post structural optimization. Interestingly, in this case the parameters calculated prior to optimization of the structure displayed reasonable agreement with the experimental parameters obtained, highlighting the accuracy of the Rietveld refinement obtained for YScO₃ (Table S13). Inspection of the atomic forces indicated very little change prior and post structural optimization, further indicating the accuracy of the structural model obtained. Full details of the calculated values prior to optimization and post structural optimization allowing solely the atomic coordinates to vary (*i.e.*, fixed unit cell) are given in the Supporting Information. The greatest agreement with experiment was consistently observed post geometry optimization of the structure.

Structural Comparison of LaScO₃ and YScO₃

The value of C_Q (for ⁴Sc) for YScO₃ is ~5 MHz greater than that of LaScO₃. This suggests the Sc environment in YScO₃ is less spherically symmetric than that in LaScO₃. Both structures refine to the orthorhombic *Pbnm* structure, indicating the two are structurally very

similar. The Sc1 – O2 and Y1 – O1/O2 bond lengths in YScO₃ are marginally shorter than those in LaScO₃. In contrast, the Sc1 – O1 bond distances in YScO₃ are slightly longer than those in LaScO₃. To highlight the subtle differences between the two compounds, isolated ScO₆ octahedra of each, with corresponding bond distances, are shown in Figure 6. In contrast, larger differences are observed in the bond angles (O – Sc – O) obtained from Rietveld refinement of LaScO₃ and YScO₃, as detailed in the Supporting Information (Tables S5 and S10). The differences observed suggest that greater octahedral distortions are exhibited in YScO₃ when compared with LaScO₃. The small changes in bond length for LaScO₃ and YScO₃ do not appear sufficiently large enough to cause the large difference in C_o observed between the two. However, the differences in bond angle would be sufficient to cause such a large change.

 Y^{3+} has a small ionic radius when compared with La³⁺ and, as a consequence, when Y^{3+} is substituted onto the A site the perovskite unit cell is forced to contract. This is confirmed by comparison of the lattice parameters obtained from refinement of the NPD data for each compound (Tables S1 and S7 in the Supporting Information). The substitution of a smaller cation onto the A site results in a higher degree of strain being imposed on the structure. To compensate, and relieve such strain from the structure, the A-site cation displaces and the surrounding octahedra undergo enhanced tilting. The degree of strain parameter, s, defined as 2(b - a)/(a + b), where a and b are the lattice parameters.⁵³ The orthorhombic strain found for LaScO₃ and YScO₃ are given in Table 4. As expected, s is greater for YScO₃ owing to the smaller size of the A-site cation. It is, therefore, likely that the large quadrupolar interaction exhibited by YScO₃ is due to several effects, namely the displacement of the A-site cation, pronounced tilting of the octahedra and an increase in the orthorhombic strain.

*La*_{1-x}*Y*_x*ScO*₃ *Solid-Solution NPD and* ⁴⁵*Sc NMR*

Samples in the solid-solution $La_{1-x}Y_xScO_3$, with composition x = 0.2, 0.4, 0.6 and 0.8, were synthesized using conventional solid-state methods. Structure and phase purity were initially verified using 1-PXRD and later analyzed using NPD. All compositions in the solid-solution refined well to the orthorhombic *Pbnm* model. All Rietveld refinements are shown in Figures S9 and S10. Full refinement details obtained for each composition, including lattice

parameters, atomic coordinates, anisotropic thermal parameters, bond lengths and angles are given in the Supporting Information (Tables S15 – S26).

The NPD data indicates that the orthorhombic *Pbnm* structure was retained across the La, Y.ScO₂ solid-solution. As the yttrium content was increased several important structural changes were observed. The lattice parameters a, b and c gradually decreased and, as a result, the unit cell volume reduced. The variation of each lattice parameter and cell volume with increasing Y content is shown in Figure 7(a). A near linear variation is observed with increasing x for both the lattice parameters and cell volume, in good agreement with Vegards Law. As Y is substituted into the structure the unit cell is forced to contract and, as a result, the orthorhombic strain imposed on the structure increases. A measure of the degree of octahedral tilting can be defined via the mean deviations of the Sc – O – Sc angles from 180 degrees, using the parameter φ , defined as (180 - (Sc - O - Sc))/2, where (Sc - O - Sc) is the average Sc – O – Sc bond angle obtained from Rietveld refinement.⁵³ In addition, it is possible to quantify the relative distortion of the octahedra in any perovskite structure using the parameter Δ_d .⁵³ This parameter, defined as $\Delta_d = 1/6[(d_n - \langle d \rangle)/\langle d \rangle]^2$, describes the deviation of the Sc – O distances (d_n) with respect to the average (Sc – O) value, (d), in each ScO₆ octahedron.⁵³ All values of s, ϕ and Δ_d obtained from Rietveld refinement of the NPD data for each sample in the series $La_{1-x}Y_{x}ScO_{3}$ are given in Table 4. The variation of each parameter with composition is shown in Figures 7(b) and (c). As x is increased a gradual increase in both the orthorhombic strain and the degree of tilt of the ScO₆ octahedra is observed. This is in good agreement with earlier discussions regarding the placement of a smaller cation onto the A site, *i.e.*, the strain imposed on the structure increases owing to increased displacement of the A-site cation, coupled with enhanced rotations of the ScO₆ octahedra. The value of Δ_d also increases with increasing x, with a maximum observed for YScO₃. The values of Δ_d obtained for this solid-solution are extremely small when compared to those observed in other perovskite series such as RMnO₃, where the Jahn-Teller character of the Mn³⁺ produces a dramatic electronic driven distortion. For example, large octahedral distortions have been reported for DyMnO₃ at room temperature (Δ_d = 49.7).⁵⁴

The linear variation of each parameter calculated for the solid-solution $La_{1-x}Y_xScO_3$ confirms that a true solid-solution is formed between $LaScO_3$ and $YScO_3$. The trends exhibited also confirm that no phase transitions are observed with increasing x. Furthermore,

Page 17 of 43

The Journal of Physical Chemistry

yttrium appears to be randomly distributed across the A site as there is no evidence of cation or layered ordering within the structure from diffraction.

It is evident from the NPD data that the substitution of Y^{3+} into the LaScO₃ structure introduces disorder into the system. Examination of the anisotropic thermal parameters obtained from each refinement indicates the largest values are exhibited for samples with compositions x = 0.4 and 0.6. This suggests that the greatest degree of disorder is exhibited between the two, presumably close to x = 0.5. Again, this perhaps suggests that the substitution of Y is random.

⁴⁵Sc (9.4 T and 14.1 T) MAS NMR spectra were acquired for all compositions in the series $La_{1,x}Y_{y}ScO_{3y}$ and are shown in Figures 8(a) and (b), respectively. Each spectrum displays a single resonance, suggesting the presence of a single Sc site. As observed for LaScO₃ and YScO₃ the isotropic chemical shift of each resonance is indicative of a sixcoordinate site. In each, the central transition appears broadened and shifted relative to LaScO₃. In addition, a degree of asymmetric broadening is observed with a characteristic 'tail' to low frequency, indicating the presence of disorder and a distribution of NMR parameters.⁵⁵ The extent of broadening displayed in the ⁴⁵Sc MAS NMR spectra increases with increasing Y content. Spectra acquired at 14.1 T for each composition in this series have been overlaid to highlight the extent of broadening exhibited as x increases and are shown in Figure S11 in the Supporting Information. When the ⁴⁵Sc MAS NMR spectra acquired for $La_{1-x}Y_xScO_3$ are compared with that of YScO₃ it is evident that as greater quantities of Y^{3+} are added to the system a structure more similar to YScO₃ is adopted. The broad ⁴⁵Sc MAS NMR spectra and large quadrupolar interactions exhibited for the latter samples in the series are believed to be a result of increased stress and strain on the structure and is in good agreement with the NPD data.

To gain resolution and insight into the nature and extent of disorder exhibited in the $La_{1-x}Y_xScO_3$ series, MQMAS experiments were performed for each. The triple-quantum ⁴⁵Sc MAS spectrum for $La_{0.8}Y_{0.2}ScO_3$ is shown in Figure 9(a), displaying a single ridge and indicating the presence of a single Sc site, in good agreement with the NPD data. If no disorder is present in a system the ridge observed in any z-filtered experiment (prior to shearing) will be aligned along a gradient equal to the MQMAS ratio, R, *i.e.*, for a I = 7/2 nucleus the ridge will be aligned along 101/45 (+2.24).³¹ When disorder is present the direction along which the ridge is broadened changes depending on the precise nature of the

disorder. For example, when a distribution of chemical shifts is present the centre of gravity for each environment will lie along a gradient of +3. If, however, a distribution of quadrupoles is present this alignment will be along a gradient of +1.8. In reality, many disordered systems exhibit contributions from both a distribution of chemical and quadrupolar shift interactions and, in such cases, the ridge will be broadened along more than one axis. To illustrate the effect disorder can have on the ridges in a MQMAS spectrum, MQMAS spectra have been simulated exhibiting each of these contributions and are shown in Figure S12 in the Supporting Information.

The single ridge in the ⁴⁵Sc MQMAS spectrum of La_{0.8}Y_{0.2}ScO₃ appears to be aligned along a gradient of +2.24. However, the ridge does exhibit a degree of additional broadening that is characteristic of disorder. The broadening is believed to be caused by a distribution of chemical and/or quadrupolar shift interactions. The ridge does not appear to be predominantly aligned along any one axis, suggesting the disorder is caused by a distribution of *both* chemical and quadrupolar shift interactions. As observed for LaScO₃, the ridge is relatively narrow. It is, therefore, difficult to quantify the disorder resulting from each distribution in any more detail.

Two-dimensional ⁴⁵Sc MAS NMR spectra were acquired for all remaining samples in the $La_{1-x}Y_xScO_3$ series and are shown in Figures 9(b) – (d). All spectra exhibit a single broadened ridge. For compositions La_{0.6}Y_{0.4}ScO₃ and La_{0.4}Y_{0.6}ScO₃ the ridges appear to be aligned along +2.24 with a small amount of additional broadening. As observed for the x = 0.2 sample, the disorder exhibited in each sample is believed to result from both a distribution of quadrupoles and chemical shifts. This is in good agreement with earlier discussions regarding the increase in orthorhombic strain and tilt angle producing a substantial change in the local coordination environment of the Sc and hence the quadrupolar interaction. To aid in the understanding and interpretation of the ⁴⁵Sc MQMAS spectra acquired for each sample and to obtain information regarding both the quadrupolar and chemical shift interactions, the position of the centre of gravity of the ridge lineshape (δ_1, δ_2) was obtained. This enabled the average chemical shift, $\langle \delta_{_{iso}} \rangle$, and average quadrupolar product, $\langle P_{Q} \rangle$, to be determined. Details of these parameters, including a plot highlighting the variation in $\langle \delta_{_{iso}}\rangle$ and $\langle P_{_Q}\rangle$ with increasing x are given in the Supporting Information (Figure S13 and Table S27). It was found that $\langle P_0 \rangle$ gradually increases with increasing x, whilst $\langle \delta_{iso} \rangle$ reaches a maximum at x = 0.4.

The Journal of Physical Chemistry

To gain insight into the disorder exhibited in the $La_{1-x}Y_xScO_3$ series conventional ⁸⁹Y MAS NMR spectra were acquired for compositions x = 0.2, 0.4, 0.6 and 0.8. All ⁸⁹Y spectra exhibited a single resonance, from which no fingerprint of short range cation distribution is observed (Figure 10).^{26,56} As x was increased a shift in $\langle \delta_{_{iso}} \rangle$ was exhibited. The known chemical shift range for ⁸⁹Y is extremely large (~4000 ppm). However, the shift exhibited in this particular series was very small (121 ppm), suggesting a relatively small change is observed in the local Y environment. All values of $\langle \delta_{iso} \rangle$ extracted from the ⁸⁹Y MAS NMR spectra acquired and the variation observed in $\langle \delta_{iso} \rangle$ with increasing x are given in the Supporting Information (Figure S14 and Table S28). In a similar manner to the ⁴⁵Sc MAS NMR spectra acquired, compositions x = 0.2, 0.4, 0.6 and 0.8 exhibited broadening of the lineshape, most likely caused by the disorder of Y across the A site. The linewidth, $\Delta v_{1/2'}$ of each $^{89}\!Y$ spectrum was also measured as a function of x and all values of $\Delta\nu_{_{1/2}}$ extracted from the ⁸⁹Y MAS NMR spectra acquired are given in the Supporting Information. For I = 1/2nuclei it is considerably easier to quantify the disorder present in any system, as the magnitude of the linewidth is expected to be directly proportional to disorder. The trend exhibited in $\Delta v_{1/2}$ for the La_{1-v}Y_vScO₃ series suggests the maximum level of disorder is close to x = 0.4 (as illustrated in the Supporting Information). This, in conjunction with the large anisotropic thermal parameters obtained from Rietveld refinement of the NPD data, indicates that the greatest disorder would be exhibited close to x = 0.5. This is as expected if Y is randomly distributed across the A site.

The substitution of Y^{3+} into the LaScO₃ structure appears to produce a greater effect on the local environment of the Sc, suggesting that the B site is more sensitive to changes occurring on the A site. From close inspection of the La – Y/La and Sc – Y/La distances it is apparent that the distance between the A- and B-site cations is smaller than the distance between two A-site cations. The B-site is therefore 'closer' to the A-site and, as a result, is more sensitive to any structural substitutions. The Y environment in La_{1-x}Y_xScO₃ would therefore experience a greater effect if Sc was substituted with an isovalent cation. This is in good agreement with both the ⁴⁵Sc and ⁸⁹Y MAS NMR data. Furthermore, the ⁴⁵Sc and ⁸⁹Y MAS NMR data confirm no phase transitions occur in this series and an orthorhombic structure is retained throughout, in good agreement with the NPD data.

DFT Calculations

To gain further insight into the disorder exhibited in the La_{1-x}Y_xScO₃ series several planewave DFT calculations were performed. Calculations were completed with (a) a single La atom, (b) two La atoms and (c) three La atoms in the LaScO₃ unit cell being replaced by Y atom(s), producing structures with compositions La_{0.75}Y_{0.25}ScO₃, La_{0.5}Y_{0.5}ScO₃ and La_{0.25}Y_{0.75}ScO₃, respectively. Structures for each composition are given in the Supporting Information (Figure S15). All structures were geometry optimized prior to calculation of the NMR parameters. The ⁴⁵Sc and ⁸⁹Y parameters calculated for each composition are given in the Supporting Information (Tables S29 and S30). The number of Sc and Y sites observed for each composition varied as a function of symmetry. Furthermore, for each composition a range of values of C_0 were predicted for ⁴⁵Sc that varied from ~5 – 12 MHz, as detailed in the Supporting Information. Several of the predicted values of C_0 were extremely large and would therefore result in very broad experimental resonances. To determine whether any of the calculated compositions could, realistically, be observed experimentally the values for each composition were 'summed', *i.e.*, their contributions were added and a corresponding spectrum was simulated (shown in blue in Figure 11(a)). When compared to the broad ⁴⁵Sc MAS NMR spectra obtained for samples in the $La_{1-x}Y_xScO_3$ series relatively good agreement was observed in both the position (shifted upfield from LaScO₃) and the shift range observed. This suggests that all possible compositions simulated using DFT methods are potentially present in each of the samples synthesized.

The ⁸⁹Y NMR parameters calculated for each composition also indicated a range of chemical shifts, as detailed in the Supporting Information. To determine whether any of these shifts were observed experimentally NMR spectra for each were simulated and compared with the observed experimental resonances. Tick marks corresponding to each of the calculated shifts have been added to the ⁸⁹Y MAS NMR spectrum of La_{0.6}Y_{0.4}ScO₃, and are shown in Figure 11(b). The range predicted using DFT are in good agreement with those seen experimentally and suggests that each type of environment could potentially be present in the material.

In reality, to gain a more accurate understanding of the disorder exhibited DFT calculations using much larger cells are required. Using a supercell approximation and inherent periodic boundary conditions of each system, the structure can be extended in three dimensions by a greater number of unit cells. A $2 \times 2 \times 2$ supercell extends the structure in each of the three dimensions by an additional unit cell. Calculations of this type are,

however, computationally demanding and often require large computational resources. A 2 × 1×1 supercell calculation was therefore performed using the computational resources currently available to us. Initially, a single La atom was replaced in the $2 \times 1 \times 1$ cell with Y, producing the composition $La_{0.875}Y_{0.125}ScO_{37}$ as shown in the Supporting Information (Figure S16). As with all calculations of this nature, the structure was fully geometry optimized prior to calculation of the NMR parameters. The calculated ⁴⁵Sc and ⁸⁹Y NMR parameters are given in the Supporting Information (Tables S31 and S32). Calculations were also attempted substituting two La atoms in the $2 \times 1 \times 1$ cell with Y, producing the composition La_{0.75}Y_{0.25}ScO₃. The calculated ⁴⁵Sc and ⁸⁹Y NMR parameters are given in Tables S31 and S32, respectively. As observed for the single cell calculations, the number of sites predicted varied as a function of symmetry and a large range of quadrupolar coupling constants ($C_{Q} = 4 - 14$ MHz) were predicted for each Sc site. The contribution from each of these sites was 'summed' and the resulting spectrum is denoted in purple in Figure 11(a). The simulated spectrum again highlights that each environment calculated could realistically be present in each sample. Also shown in Figure 11(a), and denoted in green, is the summation of the two simulated spectra (blue and purple). The same upfield shift from LaScO₃ is observed and is generally in good agreement with experimental findings. As previously observed for the single cell calculations, a range of ⁸⁹Y NMR chemical shifts were predicted. To illustrate whether any of these sites could be potentially present experimentally, tick marks corresponding to each shift have been added to the ⁸⁹Y MAS NMR spectrum for La_{0.6}Y_{0.4}ScO₃, and are shown in Figure 11(b). The range of chemical shifts are relatively small and indicate that each resonance could reside under the experimental lineshape. To obtain a more realistic representation of the disorder present in each sample larger supercell calculations are needed but these are beyond our present computational resources.

Conclusions

In summary, we have successfully synthesized and characterized the $La_{1-x}Y_xScO_3$ solidsolution for compositions x = 0, 0.2, 0.4, 0.6, 0.8 and 1 using high-resolution NPD, multinuclear solid-state NMR and planewave DFT calculations. All samples in the series were found to be orthorhombic and isostructural with GdFeO₃, in space group *Pbnm*. As Y³⁺ was gradually introduced to the LaScO₃ structure a corresponding decrease in both the lattice parameters and unit cell volume was observed. In addition, as x was increased the incorporation of the smaller A-site cation led to corresponding increases in both orthorhombic strain and the degree of octahedral tilting. Structurally, minor changes in the Sc – O bond lengths were observed as x increased. In addition, as these strain effects increased a substantial influence on the magnitude of the quadrupolar interaction was observed. A complete structural model (obtained from NPD data) was reported for YScO₃ and is in contrast to the findings of Balamurugan *et al.*,¹² as no defects were observed on the A site or oxygen sites within the structure.

⁴⁵Sc MAS NMR was shown to be sensitive to substitutions occurring on the A site. In contrast, the ⁸⁹Y MAS NMR spectra indicated the Y environment to be less sensitive to changes on the A site. The local environment of the Sc was therefore more sensitive to cation substitution on the A site, owing to the close proximity of the Sc to a substituted La atom. Each sample in the La_{1-x}Y_xScO₃ series exhibited disorder and using two-dimensional ⁴⁵Sc MAS NMR it was found to result from a distribution of both quadrupolar and chemical shift parameters. Using ⁴⁵Sc and ⁸⁹Y MAS NMR, in conjunction with high-resolution NPD data, the greatest disorder was found to be at compositions close to x = 0.5, as expected if cation substitution is random.

In addition, we completed a series of planewave DFT calculations to gain insight into the disorder exhibited in the $La_{1-x}Y_xScO_3$ series. Initial calculations were successful and suggested a variety of different compositional environments could be present in each sample. This is in good agreement with the random A site occupancies evidenced by both diffraction and NMR. It is highly likely that, experimentally, a 'summation' of all the calculated environments is observed (again a good indication of the random nature of the disorder). Preliminary calculations suggest that 'modelling' disorder using DFT could aid considerably in the understanding and interpretation of complex NMR spectra of disordered materials.

We, therefore, emphasise the importance of using a multidisciplinary approach to the structural investigation of complex solid-state systems such as $La_{1-x}Y_xScO_3$. Using a variety of highly complementary techniques it is possible to gain important additional structural information that may be lost by the use of a single technique alone.

Acknowledgments

Dr Ron Smith and Dr Thushitha Mahenthirarajah are thanked for experimental assistance using POLARIS. All DFT calculations were completed using the EaStCHEM Research Computing Facility, which is partially supported by the eDIKT initiative. We also acknowledge the EPSRC for support (Grant EP/E041825/1) and the award of studentships to Karen E. Johnston and Martin R. Mitchell. Dr Frédéric Blanc thanks the French foreign office for a post doctoral Lavoisier fellowship 2007-2008 (Grant 530227G).

Supporting Information Available

Additional Rietveld refinements, bond distances and angles obtained from Rietveld refinements and calculated ⁴⁵Sc, ¹³⁹La, ⁸⁹Y and ¹⁷O NMR parameters (using CASTEP) is available free of charge via the Internet at http://pubs.acs.org.

Table 1: Experimental NMR parameters, $\delta_{iso'}$, $P_{Q'}$, C_Q and $\eta_{Q'}$, for LaScO₃ (9.4 T) and YScO₃ (14.1 T). Also given are the CSA parameters, Ω and κ , obtained from the static spectrum in Figure S4.

	Site	$\delta_{iso} (ppm)$	P _Q / MHz ^a	C_{Q} / MHz ^b	η_{Q}^{c}	$\Omega \left(ppm ight)^{d}$	κ^{e}
LaScO ₃	Sc1	162.0(5)	4.0(1)	3.9(1)	0.3(1)	-	-
	La1	600(50)	61.7(5)	61.6(5)	0.10(2)	500(200)	0.0(3)
	O1	393.1(5)	0.57(1)	0.56(1)	0.3(1)	-	-
	O2	374.3(5)	1.10(1)	1.09(1)	0.2(1)	-	-
YScO ₃	Sc1	163.2(5)	8.2(1)	7.6(1)	0.7(1)	-	-
	O1	335.8(5)	1.33(1)	1.33(1)	0.09(1)	-	-
	O2	312.1(5)	1.29(1)	1.29(1)	0.1(1)	-	-

 ${}^{^{a}}P_{_{Q}} = C_{_{Q}}(1 + (\eta_{_{Q}})^{^{2}}/3)^{^{1/2}} {}^{^{b}}C_{_{Q}} = eQV_{_{33}}/h {}^{^{c}}\eta_{_{Q}} = (V_{_{11}} - V_{_{22}})/V_{_{33}} {}^{^{d}}\Omega = \delta_{_{11}} - \delta_{_{33}} {}^{^{e}}\kappa = 3(\delta_{_{22}} - \delta_{_{iso}})/\Omega$

Table 2: Calculated (using CASTEP) ⁴⁵Sc and ¹⁷O NMR parameters (δ_{iso} , P_Q , C_Q and η_Q) for LaScO₃ obtained (a) prior to and (b) post full geometry optimization of the structure.

	Site	δ_{iso} (ppm)	P_o / MHz^a	C_{Q} / MHz^{b}	η_{Q}^{c}
^(a) LaScO ₃	Sc1	160.8	6.49	5.89	0.80
	La1	129.2	-57.93	-57.91	0.04
	O1	375.0	-0.80	-0.80	0.17
	O2	360.0	-1.34	-1.32	0.31
^(b) LaScO ₃	Sc1	162.0	3.96	3.70	0.66
	La1	88.5	-51.81	-51.66	0.13
	O1	381.2	-0.68	-0.68	0.17
	O2	365.6	-1.28	-1.26	0.28

 ${}^{a}P_{Q} = C_{Q}(1 + (\eta_{Q})^{2}/3)^{1/2} {}^{b}C_{Q} = eQV_{33}/h {}^{c}\eta_{Q} = (V_{11} - V_{22})/V_{33}.$

Table 3:	⁸⁹ Y NMR	parameters,	$δ_{iso'}$ Ω	and ĸ,	, for	YScO ₃	obtained	from	fitting	of the	slow
spinning	MAS spec	ctrum shown	in Fig	ure 5.							

	δ_{iso} (ppm)	Ω / ppm ^a	κ^{b}
YScO ₃	263.1(5)	-221(4)	0.33(5)
	$^{\bullet}\Omega = \delta_{11} - \delta_{33} {}^{b}\kappa$	$=3(\delta_{22}-\delta_{iso})/\Omega$	

Table 4: The values of s, φ and Δ_{d} , obtained for the solid-solution $La_{1-x}Y_{x}ScO_{3}$.

х	S ^a	ϕ (°) ^b	$\Delta_{\rm d} (imes 10^4)^{ m c}$
0	0.019	15.5	0.099
0.2	0.025	16.4	0.051
0.4	0.032	17.4	0.119
0.6	0.038	18.5	0.183
0.8	0.044	19.6	0.414
1	0.051	20.4	0.878

^aThe orthorhombic strain is defined as $s = 2(b - a)/(a + b)^{b}\phi = (180 - \langle Sc - O - Sc \rangle)/2^{c}\Delta_{d} = 1/6([(d_{n} - \langle d \rangle)/\langle d \rangle]^{2})^{53}$

References

- 1. Keith, M. L.; Roy, R. Am. Mineral. **1954**, *39*, 1.
- 2. Geller, S.; Wood, E. A. Acta Cryst. **1956**, *9*, 563.
- 3. Geller, S.; Bala, V. B. *Acta Cryst.* **1956**, *9*, 1019.
- 4. Geller, S. J. Chem. Phys. **1956**, 24, 1236.
- 5. Gilleo, M. A. Acta Cryst. **1957**, 10, 161.
- 6. Geller, S. Acta Cryst. **1957**, 10, 243.
- 7. Schneider, S. J.; Roth, R. S.; Waring, J. L. J. Res. Nat. Bur. Stand. A **1961**, 65, 345.
- 8. Lybye, D.; Bonanos, N. *Solid State Ionics* **1999**, *125*, 339.
- 9. Pabst G. W.; Martin, L. W.; Chu, Y.-H.; Ramesh, R. Appl. Phys. Lett. 2007, 90, 072902.
- 10. Liferovich, R. P.; Mitchell, R. H. J. Solid State Chem. 2004, 177, 2188.
- 11. Clark, J. B.; Richter, P. W.; Du Toit, L. J. Solid State Chem. 1978, 23, 129.
- 12. Balamurugan, S.; Rodewald, U.; Harmening, T.; van Wüllen, L.; Mohr, D.; Deters, H.; Eckert, H.; Pöttgen, R. *Z. Naturforsch* **2010**, *65*, 1199.
- 13. Remeika, J. P. J. Am. Chem. Soc. 1956, 78, 4259.
- 14. Porotnikov, N. V.; Petrov, K. I.; Tsygankov, V. N; Bogdanova, M. E. *Inorg. Mater.* (*Transl. of Neorg. Mater.*) **1980**, *16*, 62.
- 15. Shannon, R. D. Acta Cryst. **1976**, A32, 751.
- 16 Smith, R. I.; Hull, S.; Armstrong, A. R. *Mater. Sci. Forum* **1993**, *166*, 251.
- 17. Hull, S.; Smith, R. I.; David, W. I. F.; Hannon, A. C.; Mayers, J.; Cywinski, R. *Physica B* **1992**, *180*, 1000.
- 18. Larson, A. C.; von Dreele, R. B. Report No. LA-UR-86-748; Los Alamos National Laboratory: Los Alamos, NM, 1987.
- 19. Fernandez, C.; Amoureux, J.-P. Solid State Nucl. Magn. Reson. 1996, 5, 315.
- 20. O'Dell, L. A.; Schurko, R. W. Chem. Phys. Lett. 2008, 464, 97.
- 21. O'Dell, L. A.; Rossini, A. J.; Schurko, R. W. Chem. Phys. Lett. 2009, 468, 330.
- 22. Eichele, K.; Wasylishen, R. E. WSolids: Solid-State NMR Spectrum Simulation Package; 2001.
 - Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. Z. Kristallogr. 2005, 220, 567.
- 24. Middlemiss, D. S.; Blanc, F.; Pickard, C. J.; Grey, C. P. J. Magn. Reson. 2010, 204, 1.

2								
4	25.	Kim, N.; Hsieh, CH.; Stebbins, J. F. Chem. Mater. 2006, 18, 3855.						
5 6	26.	Reader, S. W.; Mitchell, M. R.; Johnston, K. E.; Pickard, C. J.; Whittle, K. R.; Ashbrook,						
7 8		S. E. J. Phys. Chem. C 2009, 113, 18874.						
9	27.	Eckert, H.; Pöttgen, R. Z. Anorg. Allg. Chem. 2010, 636, 2232.						
11	28.	Ashbrook, S. E.; Wimperis, S. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 53.						
12 13	29.	Smith, M. E.; van Eck, E. R. H. Prog. NMR Spectrosc. 1999, 34, 159.						
14	30.	Thompson, A. R.; Oldfield, E. J. Chem. Soc. Chem. Commun. 1987, 1, 27.						
16	31.	Amoureux, JP.; Fernandez, C. Solid State Nucl. Magn. Reson. 1998, 10, 211.						
17 18	32.	Pyykko, P. <i>Mol. Phys.</i> 2001 , <i>99</i> , 1617.						
19 20	33.	Bastow, T. J. Z. Naturforsch., A: Phys. Sci. 1994, 49, 320.						
21	34.	Ooms, K. J.; Feindel, K. W.; Willans, M. J.; Wasylishen, R. E.; Hanna, J. V.; Pike, K. J.;						
22 23		Smith, M. E. Solid State Nucl. Magn. Reson. 2005, 28, 125.						
24 25	35.	Hunger, M.; Engelhardt, G.; Weitkamp, J. Stud. Surf. Sci. Catal. 1994, 84, 725.						
26	36.	Engelhardt, G.; Hunger, M.; Koller, H.; Weitkamp, J. Stud. Surf. Sci. Catal. 1994, 84, 421.						
28	37.	Hunger, M.; Engelhardt, G.; Weitkamp, J. Micoporous Mater. 1995, 3, 497.						
29 30	38.	Herreros, B.; Man, P. P.; Manoli, J. M.; Fraissard, J. J. Chem. Soc., Chem. Commun. 1992,						
31 32		464.						
33	39.	Hamaed, H.; Lo, A. Y. H.; Lee, D. S.; Evans, W. J.; Schurko, R. W. J. Am. Chem. Soc.						
34 35		2006 , <i>128</i> , 12 638.						
36 37	40.	L. O.; Proctor, W. G. Z. Kristallogr. 1968, 127, 366.						
38	41.	Lo, A. Y. H.; Sudarsan, V.; Sivakumar, S.; van Veggel, F.; Schurko, R. W. J. Am. Chem.						
40		Soc. 2007, 129, 4687.						
41 42	42.	Savosta, M. M.; Doroshev, V. D.; Kamenev, V. I.; Borodin, V. A.; Tarasenko, T. N.;						
43 44		Mazur, A. S.; Marysko, M. J. Exp. Theor. Phys. 2003 , 97, 573.						
45	43.	Papavassiliou, G.; Fardis, M.; Milia, F.; Pissas, M.; Kallias, G.; Niarchos, D.;						
46 47		Dimitropoulos, C.; Scherrer, P. Phys. Rev. B 1998, 58, 12237.						
48 49	44.	Bastow, T. J. Solid State Nucl. Magn. Reson. 1994, 3, 17.						
50	45.	Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Reyes, A. P.; Lu, J.; Wu, J.; 57. Leighton, C.						
52	Phys.	<i>Rev. B</i> 2004 , <i>70</i> , 174443/1.						
53 54	46.	Kupce, E.; Freeman, R. J. Magn. Reson. A 1995 , 115, 273.						
55 56	47.	Kupce, E.; Freeman, R. J. Magn. Reson. A 1996 , 118, 299.						
57	48.	Bhattacharyya, R.; Frydman, L. J. Chem. Phys. 2007, 127, 194503.						
50 59								
60								

- 49. Larsen, F. H.; Jakobsen, H. J.; Ellis, P. D.; Nielsen, N. C. J. Magn. Reson. 1998, 131, 144.
- 50. Larsen, F. H.; Jakobsen, H. J.; Ellis, P. D.; Nielsen, N. C. J. Phys. Chem. A **1997**, 101, 8597.
- 51. O'Dell, L. A.; Schurko, R. W. J. Am. Chem. Soc. 2009, 131, 6658.
- 52. Hamaed, H.; Ye, E.; Udachin, K; Schurko, R. W. J. Phys. Chem. B 2010, 114, 6014.
- 53. Martínez-Lope, M. J.; Alonso, J. A.; Retuerto, M.; Fernández-Díaz, M. T. *Inorg. Chem.* **2008**, *47*, 2634.
- 54. Alonso, J. A.; Martínez-Lope, M. J.; Casais, M. T.; Fernández-Díaz, M. T. *Inorg. Chem.* **2000**, *39*, 917.
- 55. Jager, C.; Kunath, G.; Losso, P.; Scheler, G. Solid State Nucl. Magn. Reson. 1993, 2, 73.
- 56. Buannic, L.; Blanc, F.; Middlemiss, D.; Grey, C. P. J. Am. Chem. Soc. 2012, 134, 14483.

Figure 1 The crystal structure of $LaScO_3$ viewed (a) along the c axis and (b) across the ab plane. Green spheres represent the lanthanum atoms, and the ScO_6 octahedra are shown as polyhedra. Crystallographic data is taken from the literature.¹⁰

Figure 2 Conventional ⁴⁵Sc MAS NMR spectra for LaScO₃ at (a) 9.4 T and (b) 14.1 T. Also shown as inserts are expansions of the centreband in each spectrum. Shown in (c) and (d) are expansions of the satellite transition spinning sidebands, marked with *. Spectra are the result of averaging 96 and 32 transients, with a recycle interval of 5 s, for spectra acquired at 9.4 T and 14.1 T, respectively. Conventional ⁴⁵Sc MAS NMR spectra of LaScO₃ with a wide spectral width at (e) 9.4 T and (f) 14.1 T. Spectra are the result of averaging 192 transients with a recycle interval of 5 s. The MAS rate was 14 kHz and 10 kHz at 9.4 T and 14.1 T, respectively.

Figure 3 Conventional ⁴⁵Sc (14.1 T) MAS NMR spectra, triple-quantum MAS NMR spectra and corresponding projections for (a) $LaScO_3$ and (b) $YScO_3$. Spectra are the result of averaging 96 transients with a recycle interval of 3 s for each of the 256 increments of 20 µs. The MAS rate was 10 kHz.

Figure 4 Conventional ¹⁷O (14.1 T) MAS NMR spectra of (a) LaScO₃ and (b) YScO₃. Also shown as inserts are expansions of the centreband in each spectrum. Spinning sidebands are marked with *. Spectra are the result of averaging (a) 576 and (b) 80 transients with a 20 s recycle interval. The MAS rate was 30 kHz.

Figure 5 (a) Static ⁸⁹Y (14.1 T) NMR spectrum of YScO₃ and conventional ⁸⁹Y (14.1 T) MAS NMR spectra of YScO₃ acquired at MAS rates of (b) 1.2 kHz and (c) 10 kHz. Spectra are the result of averaging (a) 1408 and (b,c) 720 transients with a recycle interval of 20 s.

Figure 6 Isolated ScO_6 octahedra for (a) $LaScO_3$ and (b) $YScO_3$ obtained from Rietveld refinement of NPD data, showing the Sc – O bond distances.

Figure 7 (a) Variation observed in the unit cell parameters a (diamonds), b (squares), c (circles) and the unit cell volume (triangles) with increasing x for $La_{1-x}Y_{x}ScO_{3}$. Note that for

ease of comparison the c parameter has been divided by $\sqrt{2}$. The estimated error bars are smaller than the symbols used and are therefore not shown. (b) The variation observed in the tilt angle, ϕ , (circles) and orthorhombic strain, s, (squares) with increasing x in La_{1-x}Y_xScO₃. (c) The variation observed in the bond deviation, Δ_d , with increasing x for La_{1-x}Y_xScO₃.

Figure 8 Comparison of ⁴⁵Sc (a) 9.4 T and (b) 14.1 T MAS NMR spectra obtained for samples in the solid-solution $La_{1-x}Y_xScO_3$. Spectra are the result of averaging (a) 96 and (b) 24 transients with a recycle interval of (a) 5 s and (b) 3 s. The MAS rate was (a) 14 kHz and (b) 10 kHz.

Figure 9 Conventional ⁴⁵Sc (14.1 T) MAS NMR spectra, triple-quantum MAS NMR spectra and corresponding projections for (a) $La_{0.8}Y_{0.2}ScO_{3'}$ (b) $La_{0.6}Y_{0.4}ScO_{3'}$ (c) $La_{0.4}Y_{0.6}ScO_{3}$ and (d) $La_{0.2}Y_{0.8}ScO_{3}$. Spectra were recorded using a z-filtered pulse sequence. Also shown in (a) are axes highlighting the respective gradients along which samples exhibiting a distribution of chemical shift or quadrupolar interactions will lie. The MAS rate was 10 kHz. Spinning sidebands are denoted by *.

Figure 10 Conventional ⁸⁹Y (14.1 T) MAS NMR spectra recorded for compositions x = 0.2, 0.4, 0.6, 0.8 and 1 in the series $La_{1-x}Y_xScO_3$. Spectra are the result of averaging (a) 4096, (b) 3072, (c) 1080 and (d, e) 720 transients with a recycle intervals of 20 s. The MAS rate was 10 kHz.

Figure 11 (a) Simulated ⁴⁵Sc MAS NMR spectra obtained by 'summing' the NMR parameters from the ⁴⁵Sc DFT calculations completed for a single unit cell $(1 \times 1 \times 1)$, shown in blue, and a $2 \times 1 \times 1$ supercell, shown in purple. Also shown in green is the summation of the two simulated patterns. (b) The ⁸⁹Y (14.1 T) MAS NMR spectrum of La_{0.6}Y_{0.4}ScO₃ (Figure 10) with tick marks corresponding to the calculated chemical shifts of Y sites in a $1 \times 1 \times 1$ single cell (shown in blue) and $2 \times 1 \times 1$ supercell (shown in red) calculations.

ACS Paragon Plus Environment

Page 37 of 43

The Journal of Physical Chemistry

The Journal of Physical Chemistry

 $\mathbf{x} = \mathbf{0}$

x = 0.2

x = 0.4

x = 0.6

x = 0.8

x = 1

ppm

The Journal of Physical Chemistry

Page 40 of 43

ACS Paragon Plus Environment

