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Abstract

Although already William James and, more explicitly, Donald Hebb’s theory of cell assemblies have suggested that activity-
dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most
theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade
has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated
with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The
basic modeling units are ‘‘potential synapses’’ defined as locations in the network where synapses can potentially grow to
connect two neurons. This model generalizes well-known previous models for associative learning based on weight
plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural
plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can
achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely
connected networks is quite intuitive: Structural plasticity increases the ‘‘effectual network connectivity’’, that is, the
network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity
produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena
including graded amnesia, catastrophic forgetting, and the spacing effect.
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Introduction

Traditionally, learning and memory are attributed to weight
plasticity, that is, the modification of the strength of existing

synapses according to variants of the Hebb rule [1–5]. Although

the theory of weight plasticity has been crucially important in

neuroscience and applications of artificial neural networks, it

could not easily explain various fundamental memory-related

effects in cognitive psychology such as graded amnesia,

the prevention of catastrophic forgetting, and the spacing

effect.

Another form of synaptic plasticity is structural plasticity, that is,

the creation and erasure of synapses [6–13]. Originally thought of

setting up connectivity during development [14–16] or after

injuries [17,18], it has recently been shown to correlate with

memory formation and learning in the healthy adult brain [19–

23].

Here we introduce and analyze a simple computational model

of structural plasticity which exhibits surprisingly high memory

capacity and is able to explain the mentioned cognitive effects. A

key to understanding the role of structural plasticity in memory

has to do with the observation that the brain, even its most

densely connected local circuits, is far from being fully connected

[24,25]. Thus, for any given network computation, the existing

synapses may or may not provide the optimal structure of the

network. To assess the match between existing synapses and the

synapses required by a computation, we define effectual connectivity

as the fraction of required synapses that are present in the

network. By erasure and creation of synapses, structural plasticity

can ‘‘migrate’’ synapses and thereby increase the effectual

connectivity for a given network function. By integrating our

model with well-known Hopfield- or Willshaw-type neural

network models of memory storage and retrieval [16,26,27] we

can quantitatively asses the benefits of structural plasticity

compared to weight plasticity. In section 0.6 we show that

ongoing structural plasticity can strongly increase storage

capacity for sparsely connected networks, which is in line with

related approaches counting possible synaptic network configu-

rations [28–30] or analyzing storage capacity for structural

plasticity during development [15,16]. Moreover, our theory of

structural plasticity suggests immediate explanations for various

memory phenomena [31–33]. In particular, in section 7 we

analyze the role of structural synaptic plasticity in cortico-

hippocampal memory replay and consolidation [34,35], prevent-

ing catastrophic forgetting in brains [36,37], graded retrograde

amnesia following brain lesions [38–40], and the pedagogically

relevant spacing effect of learning [41–43].
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Concepts and Models

1 Synapse Ensembles and Effectual Connectivity
Common memory theories based on neural associative network

models consider only Hebbian-type weight plasticity in networks

with fixed structure, thus, neglecting processes involving structural

plasticity. Such models predict that the maximal information that

can be stored in a given neural network increases in proportion to

the number of synaptic connections rather than number of

neurons. Therefore, storage capacity C is often expressed in terms of

stored information per synapse. For example, C~0:69 bit per

synapse (bps) for networks of binary synapses [26,44], or C~0:72
bps for real-valued synaptic weights [45,46]. To judge how many

memories can be stored in a network W connecting two neuron

populations u and v each comprising n neurons, it is therefore

important to know the anatomical network connectivity

P :~
# synaptic connections

n2
ð1Þ

defined as the chance that there is a synaptic connection between

two randomly chosen neurons (Fig. 1A).

For memory theories including structural plasticity the situation

is different because we can assume that processes including

generation of new synapses, consolidation of useful synapses,

elimination of useless synapses, and maintenance of anatomical

connectivity at a given level P will effectively ‘‘migrate’’ synapses

to locations that are most appropriate for storing a particular set of

memories. Evidently, anatomical connectivity will then be a bad

predictor of storage capacity. Rather storage capacity will depend

crucially on the number of locations where a synapse could

potentially be generated. Such locations have been called potential

synapses [29], where potential network connectivity

Ppot :~
# potential synaptic connections

n2
ð2Þ

is the chance that there is a potential synapse between two

neurons.

It is now tempting to apply the old memory theories for weight

plasticity as well to structurally plastic networks by simply

replacing P by Ppot. The underlying argument is that the

structurally plastic network with potential connectivity Ppot would

be functionally equivalent to a structurally static network with

anatomical connectivity at the same level Ppot because real

synapses could ‘‘migrate’’ to any one of the Ppotn
2 potential

locations. Such an approach would be valid only if the number of

required synapses does not exceed the number of actual synapses,

Pn2. However, the question which or how many synapses are

actually necessary for storing a particular memory set is usually

neglected by theories for fixed networks without structural

plasticity. Moreover, from such theories it is impossible to infer

any temporal dynamics of structural modifications during memory

formation.

We therefore have to introduce another type of connectivity

measure that specifies how many synapses have actually been

formed at time t between neurons that belong to a particular

memory representation. More generally, we can specify the synapse

ensemble requested to support storage of a memory set by a

n|n matrix S. In the simplest case S is binary where non-zero

matrix entries with Sij~1 ‘‘tag’’ potential synapses from neuron i

to j that need to be realized or consolidated for storing the

memories (Fig. 1B). Then with W being the n|n matrix of

actual synaptic weights (with Wij~0 if there is no real synapse

from i to j), we define the effectual connectivity of memories as the

‘‘overlap’’ of actual and requested synaptic weights, for example,

Figure 1. Definitions of network connectivity. Illustration of different connectivity measures for a synaptic network W connecting neuron
populations u to v (which may be identical for recurrent networks). A, Anatomical connectivity P and potential connectivity Ppot are fractions of neuron
pairs (ui ,vj) connected by an actual (black circles) and potential synapse (blue rectangles), respectively. B, The consolidation signal Sij specifies the
ensemble of neuron pairs that request a synapse (Sij~1, red circles) to support storage of a given memory set. The corresponding effectual
connectivity Peff is then the fraction of neuron pairs requesting a synapse that are already connected by an actual synapse. The consolidation load P1S

is the fraction of neuron pairs that request a synapse.
doi:10.1371/journal.pone.0096485.g001
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Peff :~

Pn
i~1

Pn
j~1 WijSij

Pn
i~1

Pn
j~1 Sij

ð3Þ

for binary synaptic weights with Wij[f0,1g (Fig. 1B). For real-

valued weights one could generalize this definition (e.g.,

Peff :~

Pn
i~1

Pn
j~1 min (DWij D,DSij D)

Pn
i~1

Pn
j~1 DSij D

where Sij may be either

binary or real-valued, specifying the ‘‘desired’’ synaptic weight).

It is obviously 0ƒPeffƒ1 and, for eq. 3, effectual connectivity Peff

corresponds simply to the probability that a requested synapse is

actually realized and potentiated (Wij~1). We call the matrix S

also learning signal or consolidation signal because it specifies which

synapses should be potentiated or stabilized during memory

consolidation. For example, simple Hebbian consolidation signals

can be based on the correlations between presynaptic and

postsynaptic spike activity (see next section). Such S could be

provided either by repeated bottom-up stimulus presentation or, in

the case of episodic memory, by replay from a hippocampus-like

short-term memory buffer (Fig. 2B–D). The fraction of non-zero

entries in S is called the consolidation load P1S . In larger networks it

is typically PƒPeffƒPpot if locations of requested synapses S are

uncorrelated to the (initial) locations of potential and actual

synapses. Our main hypothesis is that the primary function of

structural plasticity is to adapt network structure to the particular

memories to be stored. This process corresponds to an increase in

effectual connectivity Peff from the level of anatomical connec-

tivity P towards the level of potential connectivity Ppot which

increases storage capacity per synapse as well as space and energy

efficiency of the network [47–49].

2 Model of Structural Plasticity and Consolidation
Figure 2A illustrates a minimal state model for a ‘‘potential’’

synapse. Here a potential synapse ijn is the possible location of a

real synapse connecting neuron i to neuron j, for example, a

cortical location where axonal and dendritic branches of neurons i

and j are close enough to allow the formation of a novel

connection by spine growth and synaptogenesis [29]. As dendrites

and axons may closely overlap at multiple locations, in general,

there may be multiple potential synapses (n~1,2, . . .) between a

neuron pair ij. Our minimal model has only three states: A

synapse can be either potential but not yet realized (state p),

realized but silent (state and weight 0), or realized and

consolidated (state and weight 1). For real synapses, state

transitions are modulated by the consolidation signal s~Sij .

Then structural plasticity means the transition processes between

states p and 0 described by transition probabilities

pg :~pr½state(tz1)~0Dstate(t)~p� and peDs :~pr½state(tz1)

~pDstate(t)~0,Sij~s�. Similarly, weight plasticity means the

transitions between states 0 and 1 described by pcDs :~

pr½state(tz1)~1Dstate(t)~0,Sij~s� and pd Ds :~pr½state(tz1)

~0Dstate(t)~1,Sij~s�. In accordance with the diagram of

Fig. 2A, the evolution of synaptic states can then be described

by probabilities pstate(t) that a given potential synapse is in a

certain state [fp,0,1g at time step t~0,1,2, . . .,

p1(t)~(1{pd Ds(t))p1(t{1)zpcDs(t)p0(t{1)

p0(t)~(1{pcDs(t){peDs(t))p0(t{1)zpd Ds(t)p1(t{1)zpgpp(t{1)

pp(t)~(1{pg)pp(t{1)zpeDs(t)p0(t{1)~1{p1(t){p0(t) , ð4Þ

where the (Hebbian) consolidation signal s(t)~Sij(t) may depend

on time. Note that we assume pg to be independent of s because it

is unclear how to provide Sij with high spatial precision ij to not

yet realized potential synapses. Instead, pg may rather be under

the control of homeostatic mechanisms to keep the number of

synapses or the resulting mean firing rates of a neuron at a desired

level [50]. The model could easily be extended towards more

biological realism by additional state transitions (e.g., from 1 to p

[51]), a cascade of further synaptic states [52], or graded synaptic

weights [53,54], but here the focus is on the essential properties of

the interplay between structural and weight plasticity.

For the microscopic simulations of individual synapses as

displayed in Figs. 4 and 6 we have used the Felix++ simulation

Figure 2. Model of structural plasticity and consolidation. A, State/transition model of a single potential synapse (see text for details). B, In
the following we consider potential synapses in a network W , for example, connecting two cortical neuron populations u and v. Memories
correspond to associations between activity patterns um and vm. We will specifically analyze how well noisy activity patterns ~uum can reactivate the
corresponding memories vm in order to estimate storage capacity. C, D: LTM storage (solid) by structural plasticity requires repetitive reactivation of
activity patterns in cortical populations u and v to provide an appropriate consolidation signal S to the synapses. This may happen by repeated
bottom-up stimulation (D) or, for episodic memories, by top-down replay (C) from a HC-type STM buffer (dashed). LTM= long-term memory;
STM= short-term memory; HC= hippocampus.
doi:10.1371/journal.pone.0096485.g002
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tool [55] to implement large networks with many

potential synapses and to simulate network evolution by

random sampling of synaptic state variables in discrete time steps.

A simple match of the simulation time scale to physiological data

can be obtained from the mean lifetime of unconsolidated

unrequested synapses: For peD0w0 the mean lifetime is
P

?

t~0 tpeD0(1{peD0)
t{1

~
peD0

1{peD0

X

?

t~1
t(1{peD0)

t
~

1

peD0

simula-

tion steps. This may be compared, for example, to the few days

lifetime reported for unstable spines in adult animals [10].

On the network level we use corresponding macroscopic variables

P
(s)
1 , P

(s)
0 , and P(s)

p defined as the fraction of neuron pairs that have

a potential synapse in a certain state and receive a certain

consolidation signal s. From this we can derive the connectivity

variables defined in the previous section, in particular,

P : ~
P

s P
(s)
1 zP

(s)
0 and Peff~P

(1)
1 =P1S for binary s (see Sect.

Mathematical Analysis I for details). In most simulations of

(adult) memory processes (Figs. 4,3D,6), we have assumed that the

rates of synapse generation and elimination are in homeostatic

balance to maintain either a constant anatomical network

connectivity P or a constant number Pn2 of actual synapses.

The relation between synapse and network variables is non-

trivial in general because there may be multiple potential synapses

n~1,2, . . . per neuron pair ij (see Sect. Mathematical Analysis

I.1), for example around 5–10 between two connected neighboring

cortical neurons [56–60]. Nevertheless, we argue that even our

simple binary model with only a single synapse per connected

neuron pair bears significant biological relevance because it has

been reported that the number of actual synapses per connected

neuron pair and also the total synaptic weight is surprisingly

similar across neurons (see discussion section; cf. [59,61]).

Therefore, we have analyzed this simple model to obtain the

results presented below and in Section 6 (see Figs. 4–5). To

improve biological realism of our simulation experiments in

Section 7 (Fig. 6), we have tested our ideas also with a second

model variant that allows multiple synapses per neuron pair, where

Figure 3. Learning in Willshaw-type associative networks. A, Memory storage by Hebbian weight plasticity (Eq. 5) in a fully connected
network (P~1). Address patterns um are associated to content patterns vm where m~1, . . . ,M (here M~2). Each memory is represented by a binary
activity vector of length n~7 having k~4 active units (which define the corresponding cell assembly). B, One-step retrieval of the first memory from
a noisy query pattern ~uu&u1 having two of the four active units in u1 (l~0:5). Here ~uu&u1 can perfectly reactivate the corresponding memory pattern
in population v (v̂v~v1) applying a firing threshold H~

P

i ~uui~2 on dendritic potentials xj~
Pm

i~1 Wij~uui . C, As a simple form of structural plasticity,
silent synapses can be pruned after learning. The resulting network has only 28 (instead of 49) synapses corresponding to a lower anatomical
connectivity P&0:57, whereas the effectual connectivity is still Peff~1. Thus, pruning does not change network function, but increases stored
information per synapse. D, Ongoing structural plasticity can similarly increase storage capacity during more realistic learning in networks with low
anatomical connectivity (here P~28=49&0:57). During each time step t~1,2,3,4, Hebbian weight plasticity potentiates and consolidates synapses ij
with non-zero consolidation signal Sijw0 (which equals Wij of panel A), whereas the remaining silent synapses are eliminated and replaced by new
synapses at random locations. Note that the resulting network at t~4 is the same as in panel C.
doi:10.1371/journal.pone.0096485.g003
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each of the Pn2 actual synapses of the network can be allocated to

one of the Ppotn
2 potential locations independently of other

synapses. Additional simulations (not shown) have indicated that

both model variants yield qualitatively very similar results unless

the replay time for a given consolidation signal was very long.

Then the second model variant tended to accumulate all available

synapses at the locations specified by the consolidation signal such

that neuron pairs were connected by a large number of synapses.

3 Models for Memory Storage and Retrieval
The model presented so far is of general relevance for any

neural theory of memory, because it is independent of any specific

mechanisms for memory storage and retrieval: Any learning and

storing mechanisms are only implicitly conveyed by the learning

signal S that ‘‘tags’’ potential synapses for later consolidation.

Similarly, memory recall is not directly described in the model so

far. Rather, our theory describes effectual connectivity Peff which

is closely linked to retrieval performance for a given memory set.

To explain this link and to allow a more quantitative performance

evaluation, the next section instantiates and analyzes our model

within a common neural network framework of memory storage

and recall.

A particularly simple memory model based on Hebbian

learning of binary synapses is the Steinbuch or Willshaw model

[26,44,62]. In the general hetero-associative setup (Fig. 3A), memories

correspond to binary spike activity vectors um and vm stored in a

synaptic connection W linking two neuron populations u and v.

By choosing the auto-associative setup with identical u and v, the

Willshaw model can be applied as well to model memory processes

in local recurrent connections (cf. Fig. 2B). The average number k

of one-entries in an activity vector is called pattern activity and

corresponds to the mean size of local Hebbian cell assemblies in

populations u and v. After storing a set of M memory associations in

a network without structural plasticity, the weight of an actual

synapse connecting neuron ui to neuron vj is

Wij~min 1,
XM

m~1
u
m
i
:vmj

� �

[ 0,1f g: ð5Þ

Note that a synapse in the Willshaw model is actually a

special case of our model of a potential synapse because Eq. 5

instantiates Eq. 4 for Sij~Wij , P~Ppot~Peff , pcD1~1, and

pg~peDs~pcD0~pd Ds~0:

Figure 4. Increase of effectual connectivity during memory consolidation with ongoing structural plasticity. Each curve shows the
evolution of effectual connectivity Peff as a function of time t for different parameters P (anatomical connectivity), Ppot (potential connectivity), P1S

(consolidation load), and P1(0) (fraction of initially consolidated synapses). Data are from single microscopic network simulations (solid black; cf. Eq. 4;
network size n~1000) and macroscopic theory (dashed gray; Eq. 11). See Table 1 for further simulation parameters. A: Peff (t) for different
consolidation loads P1S and constant P~0:1, Ppot~1, P1(0)~0. B: Peff (t) for different fractions of initially consolidated synapses P1(0) and constant
P~0:1, Ppot~1, P1S~0:01. C: Peff (t) for different anatomical connectivities P and constant P1(0)~0:1, Ppot~1, P1S~0:001.
doi:10.1371/journal.pone.0096485.g004

Figure 5. Storage capacities for a finite Willshaw network having the size of a cortical macrocolumn (n~100000). A, Contour plot of
pattern capacityME (number of stored memories) as a function of assembly size k (number of active units in a memory vector) and effectual network
connectivity Peff assuming output noise level E~0:01 and noise-free input patterns (l~1, k~0). B, Weight capacity Cwp

E
for the same setting as in

panel A. C, Total storage capacity Ctot
E

including structural plasticity for the same setting as in A. Note that even modest increases of Peff can strongly
increase storage capacity, in particular for sparse neural activity (small k) [82]. All data computed from Gaussian approximation of dendritic potential
distributions (see appendix II. 2).
doi:10.1371/journal.pone.0096485.g005
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Memory retrieval means the re-activation of a previously stored

content pattern v̂vm in neuron population v following the activation

of a (noisy) address pattern ~uum in population u. The simplest

retrieval procedure is ‘‘one-step retrieval’’ with adaptive threshold

control [63]. Specifically, an input pattern ~uu is propagated

synchronously from population u to population v as illustrated in

Fig. 3B. Then dendritic potentials of the neurons in population v

are given by simple vector-matrix-multiplication, x : ~~uuTW , and

the retrieval output v̂v is obtained from x by applying a vector of

spike thresholds H,

v̂vj~
1 j ~

Pm
i~1 ~uuiWij

� �

§Hj

0, otherwise

8

>

<

>

: , ð6Þ

where H is chosen to obtain close to k active units in v̂vj . We can

then evaluate retrieval quality by estimating the output noise level

ÊE : ~
(n{k)q01zkq10

k
ð7Þ

defined as the mean Hamming distance

dH (v̂,v
m) :~

Pn
j~1 Dv̂j{v̂

m
j D between retrieval output v̂v and the

original memory v
m normalized to the cell assembly size k. Here

q01 :~pr½v̂vj~1Dv
m
j ~0� and q10 :~pr½v̂vj~0Dv

m
j ~1� are component

error probabilities. Similarly, we can define input noise

~EE :~((n{k)p01zkp10)=k as the normalized Hamming distance

between input pattern ~uu and the original address memory um. We

will also express input noise in terms of parameters l :~1{p10
(completeness) and k :~p01(n{k)=k (add noise).

We have used one-step retrieval for some of our experiments

(Fig. 5) because it is most easy to analyze, for example, for

estimating the memory capacity of a single network (see below).

However, for the investigation of memory phenomena, there exist

more realistic retrieval methods that are based on spiking neurons

and iterative (gamma range) oscillatory activity propagation

[64,65]. As such models are computationally very demanding, in

particular, when simulating longer time intervals in the range of

months to years, it is more favorable to use simple iterative

extensions of one-step retrieval [27,63,66,67]) that can still mimic

many relevant properties of the realistic models.

In particular, iterative retrieval avoids the most serious

limitation of one-step retrieval, that is, the lack of a sufficient

attractor behavior: High output noise after one-step retrieval does

not exclude perfect retrieval after iterated retrieval steps. In fact, as

long as the output noise level after the first step is smaller than the

input noise level, the iterative retrieval procedure is likely to reduce

output noise to zero in subsequent retrieval steps. As a

consequence, for individual memories, the relation between input

and output noise will be much steeper if using the iterative models:

Figure 6. Simulation of catastrophic forgetting, Ribot gradients, and the spacing effect. A, Networks without structural plasticity suffer
from catastrophic forgetting (top), but networks with structural plasticity do not (bottom). Plots show output noise ÊE over time t simulating networks
of size n~1000 and activity k~50 storing 25 memory blocks one after the other (only the interesting part between storage of blocks 6 and 21 are
visible). Each curve (with a distinct color) corresponds to ÊE for noisy test patterns of a particular memory block with c~45 correct and f~5 false
active units. The steep descent of each curve corresponds to the time when the Hippocampus started to replay the corresponding memory block for
5 time steps. B, Networks employing structural plasticity show Ribot gradients after a cortical lesion (top) due to gradients in effectual connectivity
(bottom). The lesion was simulated by deactivating half of the neurons in population u at time t~20. C, Networks employing structural plasticity
reproduce the spacing effect of learning. In the first simulation (blue) novel memories were rehearsed once for 20 time steps (blue arrow at
t~0{19). In a second simulation (red) the same total rehearsal time was ‘‘spaced’’ or distributed to four brief intervals of five steps each (red arrows
at t~0{4, t~100{104, t~200{204, and t~300{304). Here the network achieves a higher effectual connectivity Peff (bottom) and less retrieval
noise E (top). See Sections 2, 3 and Table 1 for further details and simulation parameters.
doi:10.1371/journal.pone.0096485.g006
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A memory pattern can be retrieved either perfectly or the number

of component errors is very high. Still, one-step retrieval is useful

by providing lower bounds (because of its suboptimality) and

upper bounds (assuming zero input noise) of the true storage

capacity.

For our long-term simulations of memory phenomena (Fig. 6)

we have therefore extended the Willshaw model in two ways: First,

similar as illustrated by Fig. 2B, we have included also Willshaw-

type auto-associative connections in addition to the hetero-

associative link from u to v in order to account for the rich

recurrent connectivity of cortex and to enable iterative refinement

of retrieval outputs. Second, we have implemented an iterative

retrieval procedure as follows (cf. [63]): In an initial step, the input

pattern ~uu is propagated through the hetero-associative connections

from u to population v, in which the k neurons with the largest

dendritic potentials become active, resulting in a preliminary

retrieval result v̂v(0). In similar further steps, this preliminary result

was then iteratively propagated through the auto-associative

network of population v yielding refined retrieval outputs v̂v(i) for

i~1,2, . . . (where all recurrent connections to u were inactivated).

Typically, a small number of iterations was sufficient to obtain

stable outputs. For evaluation of output noise ÊE we used the activity

pattern v̂v(3) after 3 iterations and compared it to the original

memory pattern vm to estimate component error probabilities q01
and q10 (see Eq. 7).

For the simulations involving structurally plastic networks and

long-term consolidation (Fig. 6) we have divided the overall

memory set into multiple blocks b~1,2, . . . each containing

several individual memory patterns. Each memory block defines a

consolidation signal Sb that is identical to the Willshaw matrix

(Eq.5) obtained from the corresponding subset of memories. Thus,

memory blocks are consolidated one after the other, each for a

certain number of simulation steps, by reactivating the corre-

sponding activity patterns in populations u and v to mimic either

hippocampal short-term storage and top-down replay (Fig. 2B,C)

or repeated bottom-up rehearsal of the corresponding memories

(Fig. 2B,D). Fig. 6 shows simulations with structural plasticity in

the connection W linking u to v. By contrast, the recurrent

connections within u and v were prewired without any structural

plasticity and auto-associatively stored the individual patterns um

and vm with a fixed connectivity (P~1 for Fig. 6A, upper panel;

P~0:2 for Fig. 6A, lower panel; P~0:1 for Fig. 6B,C). Table 1

summarizes the remaining simulation parameters.

4 Definitions of Storage Capacity
The storage capacity is the amount of information (in bits) that a

neural network can store (and retrieve) per synapse. There are two

contributions to the total capacity Ctot of a synapse,

Ctot
ƒCwp

zCsp: ð8Þ

First, the weight capacity Cwp is the information stored by

modification of the synaptic weight for a fixed network structure.

(a more general definition could as well include any other

modifications of synaptic state variables such as synaptic transmis-

sion delay). Second, the structural capacity Csp is the information

stored by selecting an appropriate target location for a synapse

with fixed weight. We would like to evaluate storage capacity at a

limited small output noise level E (see Eq. 7): The ‘‘stored

information’’ can then be computed from the pattern capacity ME

defined as the maximum number of memories that can be stored

at noise level E, whereas the weight capacity Cwp
E

is the stored

information normalized to the number of synapses in a static

network (no structural plasticity) with connectivity P,

ME :~maxfM : ÊEƒ Eg ð9Þ

Cwp
E

:~
MET(k=n,q01,q10)

Pn
ð10Þ

where T(q; q01,q10) is the transinformation (or mutual informa-

tion) when transmitting independent memory components v
m
j (with

q :~pr½vmj ~1�~k=n) over a binary channel (with transition

probabilities q01 and q10 as in Eq. 7) and receiving v̂vj (for details

see appendix A in [16]). In general, it is difficult to disentangle the

two contributions Cwp and Csp. Thus, in the results section we will

compute the total capacity Ctot for some special cases.

Results

5 Structural Plasticity Increases Effectual Connectivity
In the previous section we have introduced effectual connec-

tivity Peff as a measure of how well a given set of memories is

stored in a synaptic network. Without any structural changes of the

network, Peff will obviously remain constant, for example, at the

level of anatomical connectivity P for novel memories that do not

correlate with the current network structure. It is therefore more

interesting to investigate the dynamics of Peff during phases of

ongoing structural plasticity. For consistency with experimental

observations it seems most reasonable to focus on a parameter

range where structural plasticity operates on a slower time scale

than Hebbian-type weight plasticity (peD0%pcD1), but on a faster

time scale than the lifetime of stable consolidated synapses

(peD0&pd D1).

It is indeed possible to analyze our model in such a parameter

regime: In Sect. Mathematical Analysis I.2 we compute the

temporal evolution of effectual connectivity during consolidation

of a novel memory set under the following simplifying assump-

tions: 1) Large networks with n&1 such that all macroscopic

variables P
(s)
state are close to their means; 2) at most a single synapse

per neuron pair; 3) binary consolidation signal s[f0,1g; 4) new

memories specified by S are independent of initial network

structure and any old memories; 5) immediate consolidation with

pcDs~s; 6) pd D1~peD1~0; 7) pg and peD0 in homeostatic balance such

that P(t) is constant. Then effectual connectivity for a new set of

memories increases from Peff (0)~P1(0) before any learning starts

to

Peff (t)&Ppot{(Ppot{P)=Pt{1
t1~1

1zpej0
P{(1{P1S)(1{pdj0)

t1P1(0){P1SPeff (t1)

Ppot{P

� �

&Ppot{(Ppot{P)e
{(t{1) ln 1zpeD0

P{P1(0)

Ppot{P

� �

ð11Þ

assuming that S is provided at each time step t~1,2, . . . (e.g.,

by memory replay) and P1(0) : ~P
(0)
1 zP

(1)
1 is the fraction of

initially consolidated synapses (corresponding to old memories).

The second approximation additionally presumes P1S%1 and

Structural Synaptic Plasticity and Memory
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pd D0%1. Thus, convergence of Peff towards Ppot requires

P1SƒP=Ppot (for pd D0w0) or P1Sƒ(P{P1(0))=(Ppot{P1(0))

(for pd D0~0). Also note that during the first consolidation step there

is a quick increase from Peff (0)~P1(0) to Peff (1)~P followed by

a much slower increase towards Ppot in the subsequent steps.

Section 7.1 relates this behavior to the spacing effect as a possible

explanation why several brief learning sessions are generally more

effective than a single long session.

Figure 4 shows that the approximations accurately predict

microscopic model simulations. Consolidation becomes slower for

larger consolidation loads P1S which limits maximal storage

capacity (panel A; see Section 6). Similarly, consolidation becomes

slower for increasing fractions P1(0) of initially consolidated

synapses (panel B). As P1 will correlate with the number of

previously consolidated memories and, thus, with age, this implies

that memory consolidation should be faster in young compared to

old subjects, even if the anatomical connectivity P would be

constant over lifetime. Moreover, the corresponding gradients in

Peff resulting after a fixed number of consolidation steps can be

related to gradients in memory performance in graded retrograde

amnesia (Section 7.2) and the absence of catastrophic forgetting

(Section 7.1). Finally, panel C shows that even slight increases in

anatomical connectivity (as reported after learning new concepts

or tasks [68]; cf. Fig. 7) can strongly speed-up memory

consolidation if a large proportion of synapses are in the

consolidated state (as expected for adult networks after synaptic

pruning [14,15]).

Our analysis and further simulations (data not shown) reveal

that the described increase of Peff is very stable and occurs for

virtual any plausible configuration of model parameters. Before we

discuss the mentioned memory phenomena in more detail, the

following shows that, by increasing Peff , structural plasticity can

store much more information per synapse than Hebbian-type

weight plasticity.

6 How Much Information can a Synapse Store?
It is a well-known result of information theory [69] that

optimally coding an entity taken at random from a set of

different entities takes ld bits of information [69] (where

ld : ~ log2). From this we can derive simple upper bounds for

the maximal information that a synapse can store by counting the

number of possible synaptic states, i.e. the number of possible

weights and locations, that can be realized by weight plasticity and

structural plasticity, respectively. The resulting upper bounds for

weight capacity Cwp and structural capacity Csp are

Cwp
ƒldN and Csp

ƒldn, ð12Þ

assuming that weight plasticity can choose one out of N possible

discrete weights for an individual synapse, and structural plasticity

can choose between n targets where to grow a novel synapse.

These bounds could trivially be reached by an ideal observer that

has direct access to synaptic attributes (i.e., weights and locations).

However, here we are rather interested in how much information

a synaptic network can store and safely retrieve employing

biologically plausible mechanisms. In particular, we have to

measure the amount of retrieved information from plausible

neural output variables such as spikes or mean firing rates. For this

it is necessary to link our theory to concrete neural network models

of memory storage and retrieval, such as Willshaw and Hopfield-

type models ([26,27,45,70,71]; see section 3).T
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Our theory yields the surprising result that the weight capacity

Cwp in the brain might actually be negligible compared to

structural capacity Cwp. First, it is well understood that weight

capacity of biologically plausible memory models is limited by

hard theoretical bounds suggesting Cwp
v0:72 bit per synapse

even for an infinite computing precision with N??

[27,45,46,72,73]. Second, due to noisy transmission characteristics

and various adaptation mechanisms, real synapses are likely to

have a rather small number of functionally distinctive states,

perhaps N being on the order of ten or even binary [74–76].

Third, unlike N, the number of potential targets n may actually be

very large in the brain: For example, for a cortical neuron n is on

the order of 105 corresponding to the number of neighboring cells

within the same macrocolumn [24], and the number of targets n

may be even much larger because each neuron may have a large

number of functionally distinct dendritic compartments [28].

Fourth, it has been recently shown that the upper bound of

structural capacity can be tightly reached for synaptic pruning

following learning in completely connected networks [16,53].

Before generalizing these results to ongoing structural plasticity

in sparsely connected networks, let us first re-analyze the classical

Willshaw model (without structural plasticity) as illustrated in

Fig. 3A,B. There, synaptic weight plasticity follows a simple binary

Hebbian rule (Eq. 5). Due to pd Ds~0 (cf. Eq. 4) the fraction of

consolidated synapses p1 increases monotonically with M until it

reaches a maximal value p1E beyond which the output noise ÊE

exceeds the tolerable level E. Some theory presented in Sect.

Mathematical Analysis II.1 shows that the corresponding pattern

capacity ME crucially depends on p1E: For networks of size n,

randomly generated cell assemblies of size k, and input noise with

l[(0,1� and k~0, it is (see text below Eq. 28 in Sect.

Mathematical Analysis II.1)

p1E(Peff )&max 0,

Ek

n{k

� � 1
lk
{(1{Peff )

Peff

0

B

B

B

B

@

1

C

C

C

C

A

[(0,1)

ME(Peff )&l
n2

k ln
n{k

Ek

ln (1{Peff (1{p1E)) ln (1{p1E)g ð13Þ

where factor g&(1z( ln E)= ln (k=n)){1 comes close to one for

large networks. Multiplication by the stored information per

memory and dividing by the number of synapses gives the well

known weight capacity of the Willshaw model (see Sect.

Mathematical Analysis II. 1),

Cwp
E
(Peff )&l

ld(1{Peff (1{p1E)) ln (1{p1E)

Peff

gƒ0:69 ð14Þ

where the upper bound Cwp
~0:69 bps can be reached for large

networks, Peff~1, p1E~0:5, sparse activity k* log n, and zero

input noise with l~1.

In previous works on structural plasticity we have focused on

synaptic pruning of silent synapses after learning all memories in a

fully connected network (Fig. 3C). Here we extend these results to

networks with incomplete (‘‘diluted’’) connectivity and ongoing

structural plasticity. Let us first consider synaptic pruning which

has been described as one of three phases during brain

development (e.g., in humans, synaptic density increases until

age of 2–3 years, then remains stable until 5 y, then decreases until

puberty and remains relatively stable during adulthood; cf.

[14,51,77]; see also Fig. 7):

1. Synaptic overgrowth: The synaptic generation rate is much

larger than the elimination rate, pg&peDs, such that anatomical

connectivity P can come close to potential connectivity Ppot.

2. Critical consolidation phase: Weight plasticity potentiates and

consolidates useful synapses that support memory contents

specified by the consolidation signal S, e.g., pcDs~s, pd Ds~1{s.

3. Synaptic pruning: Useless synapses are eliminated, e.g.,

peD0&pg (cf. Fig. 3C).

Because only a fraction p1 of the synapses survives phase three,

the total storage capacity at maximal ME (where p1~p1E) is

obtained from renormalizing Eq. 14,

Ctot
E

: ~Cwp
E
=p1E ð15Þ

Using p1E from Eq. 13 reveals that Ctot
*ldn for sufficiently

small cell assembly sizes k (see Sect. Mathematical Analysis II. 1).

Thus, the Willshaw model with structural plasticity comes close to

Figure 7. Sketch of network connectivity reflecting lifelong structural plasticity. During development anatomical connectivity P (thick
solid) quickly increases reaching a peak level (around 2–3y in humans), where the initial increase is followed by a short period of stable connectivity
(until age 5y in humans), a phase of significant decrease of connectivity until puberty, and finally a phase of stable connectivity during adulthood
[14,51,77]. Recent experiments suggest a temporary novelty-driven (thick arrows) increase of connectivity during adulthood [23,68,116]. Our model of
structural plasticity predicts that learning is fastest for high levels of anatomical connectivity and structural plasticity. Thus, memories acquired during

early phases can reach higher levels of effectual connectivity (P(1)
eff ,P

(2)
eff ; thin solid lines) compared to memories acquired during later phases

(P(3)
eff ,P

(4)
eff ). The resulting gradients in effectual connectivity can explain various memory phenomena (see Section 7 for details).

doi:10.1371/journal.pone.0096485.g007
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the information-theoretic capacity bound (Eq. 12). We have shown

elsewhere that C tot
~ld n

assumptions on cell assembly sizes and effectual connectivity by

inhibitory implementations of the Willshaw model [46,78] and

both excitatory and inhibitory implementations of Bayesian

networks with discrete synaptic weights [53,54,79].

Unlike in development, during adulthood anatomical connec-

tivity is stable. This means that ongoing generation and

elimination of synapses must be in homeostatic balance such that

the total number of synaptic connections remains approximately

constant over time [14,80,81]. In the following we show that

ongoing structural plasticity during adulthood can reach the same

high storage capacity as during development, although this process

may require significantly more time. The basic idea is that the

three developmental processing phases (synaptic generation,

consolidation, and elimination) run in parallel during each time

step t. For example, by choosing the synapse parameters.

pcDs~s, pd D1~0, pd D0w0, and Pp(t)pg(t)~P0(t)peDs(t) ð16Þ

the anatomical connectivity P remains constant and, in essence, all

actual synapses ‘‘migrate’’ to the locations ij specified by the

consolidation signal Sij (cf. Fig. 3D). IF S specifies all memories to

be stored, S is applied during each time step, and the consolidation

load P1S is sufficiently large such that PƒP1SPpot, THEN

memories will be stored at effectual connectivity

Peff~P=P1SƒPpot, there will be no silent synapses left, and the

resulting total capacity Ctot is given by Eq. 15. In particular, for

P~P1SPpot the resulting network will be identical as for

developmental learning described before (see Fig. 3D and compare

to Fig. 3C). This shows that also adult learning in structurally

plastic networks with constant low anatomical connectivity can

reach the information theoretic bound Ctot
~ld n (see Eq. 12).

In the following we apply our theory to networks with

biologically relevant parameters. For example, a typical network

size may correspond to a cortical macrocolumn of size 1 mm3

containing about n~105 neurons and relatively dense recurrent

connections with an anatomical connectivity of about P~0:1
[24,25]. Then we can estimate potential connectivity Ppot from

experimental measurements of the filling fraction P=Ppot defined as

the fraction of potential synapses that is actually realized (i.e., in

state 0 or state 1). For typical P=Ppot&0:2 [29], structural

plasticity of dendritic spines alone may account already for

Ppot&0:5 within a neocortical macrocolumn. The corresponding

storage capacities are depicted in Figure 5. Note that without

structural plasticity (Peff~P~0:1) the storage capacity remains

tiny, e.g., Cwp
%0:1 for P~0:1. In particular, sparse activity

patterns [82] cannot be stored at a low connectivity, e.g., kƒ64

requires Pw0:1 to stabilize even a single memory pattern.

By contrast, networks employing structural plasticity with

potential connectivity Ppotw0:1 can have a large total capacity

Ctot
&1. Interestingly, Ctot increases with decreasing connectivity.

Thus, even slight increases of effectual connectivity towards

Ppot&0:5 can strongly increase number of stored memories (M )

and even maximize stored information per synapse (Ctot). Note

that an increase in Peff during consolidation would also allow a

simultaneous decrease of activity k to maximize capacity. This

means that consolidation involving structural plasticity and

sparsification will move the ‘‘working point’’ from the lower right

towards the upper left in the contour plots of Fig. 5. Thus, by

emulating high effectual connectivity, structural plasticity may also

support the sparsification of memory representations [82–85] and

stabilize small cell assemblies that would appear unstable for a

fixed low connectivity [86,87].

The following sections show that structural plasticity, in addition

to increasing storage capacity, can explain several well known

memory phenomena in the brain much better than previous

theories.

7 Relevance of Structural Plasticity for Memory
Phenomena

7.1 Absence of Catastrophic Forgetting. Artificial neural

networks such as multi-layer-perceptrons are well known to suffer

from what was called catastrophic forgetting (CF) or the stability-

plasticity dilemma [36,88–91]. It is the problem that optimizing

synaptic weights to store a set of new memories will deteriorate or

even destroy previous memories. Freezing synaptic weights can

avoid CF, but it also hampers the ability to learn new memories.

Another form of CF has been described for Hopfield-type

network models of associative memory [92]. Here CF means that a

neural network with fixed structure can almost perfectly store and

retrieve memories until the maximal pattern capacity ME is

reached. However, exceeding ME even by a few additional

patterns can destroy the ability to retrieve any of the memories.

The same problem occurs when increasing the number of stored

memory patterns in the Willshaw-type binary learning models

(Fig. 3A, B), even before the point where all synapses are uniformly

potentiated and therefore have lost specific information about the

memory patterns.

CF poses problems for technical applications, but also for

modeling memory processes because it does not normally occur in

our brains. It has been argued that the capacity of the brain might

just be too large for running into CF during a normal lifetime. In

addition, several alternative solutions have been suggested. For

example, many previous approaches suggested to have an

additional hidden neural layer (e.g., between populations u and

v) in which a new node is allocated for each new input that

deviates significantly from previously stored items. The underlying

idea is that in a modular organization, separate subnetworks

(comprising different subsets of neuron in the intermediate layer)

could be trained independently to represent different memories or

categories. Such approaches include ART-type architectures [90],

emergent category-specific modularity [93], hard-wired modular-

ity [94], and also ideas involving grandmother cells [95] or, in

technical terms, look-up-tables [16]. One problem with these

approaches is that some high-level mechanism is required for

allocating or even generating new neurons in the intermediate

layer. However, in most parts of the adult brain, there is little

evidence for structural plasticity involving neuron genesis. But

without neurogenesis such models also predict catastrophic

forgetting at a later time unless plasticity is explicitly switched off

after all neurons in the intermediate reservoir have been allocated.

Alternative high level mechanisms for preventing CF involve

pseudo-rehearsal using self-generated training stimuli from previ-

ously learned memories [92]. In the following we are focusing on

solutions to CF that can be built at the level of synapses. For

example, palimpsests network models [96–98] assume a slow

decay of synaptic weights (pdw0) to prevent approaching the

network’s capacity limit, however, are not plausible for long-term

storage in neocortex. Similarly, synaptic cascade models [52]

introduce several consolidated states 1(i) with decreasing decay

rates p
(i)
d wp

(iz1)
d . However, this cannot prevent exponential decay

of memories unless the lowest decay rate is zero causing again CF.

A novel role in preventing CF can be attributed to structural

synaptic plasticity: Fig. 6A illustrates simulation experiments

Structural Synaptic Plasticity and Memory
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investigating consolidation of multiple memory blocks each

consisting of several novel memories. Each memory block is

stored in the hippocampus and replayed to neocortical cell

populations u and v for a certain time as described before (Fig. 2B,

C). As expected, without any structural plasticity (pg~pe~0) the

network exhibits CF when approaching the capacity limit (upper

panel). In contrast, CF is absent in networks with structural

plasticity (lower panel). In this case, early stored memories remain

stable all the time whereas the ability to store novel memories

fades gradually when approaching the capacity limit. This

behavior is more consistent with aging effects of human memory

[99] and results from the fraction of consolidated synapses steadily

increasing with age and the number of stored memories.

Correspondingly, the fraction of unconsolidated synapses partic-

ipating in structural plasticity gradually decreases with age as

observed in neurophysiological experiments [21].

More precisely, for memories stored with a certain effectual

connectivity Peff , structural plasticity can prevent CF only if the

filling fraction is below the maximal fraction of consolidated

synapses at the capacity limit, P=Ppotvp1E(Peff ) (see Eq. 13). This

condition ensures that the total number of synapses, Pn2, is smaller

than the maximally allowed number of consolidated synapses,

p1E(Peff )Ppotn
2, at the network’s capacity limit. If fulfilled, the

network can never exceed its capacity limit which effectively

prevents catastrophic forgetting. Brain networks could satisfy this

condition by maintaining a constant (or slowly decreasing; cf,

Fig. 7) anatomical connectivity P and by adapting cell assembly

size k appropriately in relation to network size n and some target

effectual connectivity Peff . Thus, early memories can be consol-

idated up to some target connectivity Peff which depends on the

replay time per memory block. However, at least if replay time per

memory remains constant over lifetime, then for later memories

Peff and p1E(Peff ) will decrease gradually with the decreasing

fraction of available structurally plastic synapses, P{P1 (see

Fig. 4B). Therefore, the ability to learn new memories will begin to

fade when p1E(Peff ) approaches P=Ppot.

7.2 Ribot gradients in retrograde amnesia. Patients with

lesions of the hippocampus or neighboring neocortex in the medial

temporal lobe often suffer from graded retrograde amnesia

[38,40,100,101]. This form of memory loss shows characteristic

‘‘Ribot gradients’’ describing the tendency that recently stored

memories are more likely to be lost than remote memories

acquired at an earlier time. Simple palimpsests-type memory

models (with pdw0) cannot account for these findings, in fact they

predict the reverse effect [96–98].

A body of previous work has proposed that the lesions may

disrupt cortico-hippocampal memory replay and, as a result,

recent memories disappear because they are not sufficiently

consolidated in intact neocortex [34,35,38,39,102–104]. Accord-

ing to such models, the cause of Ribot gradients is a gradient in

accumulated replay and consolidation time [102,104].

In one of the models [102], for example, replay is controlled by

a random walk over the attractor-landscape in Hopfield-type

networks where each stored memory vm corresponds to one of the

attractors. After acquiring the mth memory, each memory obtains

an 1=m share of replay time. It is concluded that Ribot gradients

occur because early memories (smaller m) can accumulate a larger

total consolidation time of about
PM

m1~m 1=m1 than recent

memories, resulting in a larger strength of the memory trace.

Such models predict either that memories would be replayed

and consolidated for an unlimited time [102] or that Ribot

gradients would occur only for memories acquired during a

limited time interval before the lesion occurred [104]. Although

there are not yet final experimental answers [34,105], both

predictions may be in conflict with evidence that novel memories

are buffered and replayed by the hippocampus for a limited time

only [34,38,39] and that, depending on the lesion size, graded

amnesia can reach back to early childhood [38].

Synaptic learning based on structural plasticity offers an

alternative explanation for Ribot gradients without relying on

unlimited memory replay (Fig. 6B). According to our model, the

substrate of Ribot gradients are gradients in effectual connectivity

Peff instead of (or in addition to) gradients in accumulated

consolidation time. Even with constant replay time per memory,

remote memories are stored with a larger Peff than recent

memories, for the very same reasons that explained the absence of

catastrophic forgetting. Correspondingly, output noise ÊE will be

largest for most recent memories. During normal operation ÊE is

sufficiently low to accurately retrieve both remote and recent

memories. However, cortical or hippocampal lesions will increase

noise-levels such that memories get lost for which Peff is below

some critical value, or equivalently, that have been stored after

some critical time point.

7.3 Spacing effect. Another interesting feature of memory is

that learning new items is more effective if rehearsal is spaced over

time compared to single block rehearsal [41–43,106]. For

example, learning a list of vocabularies in two sessions each

lasting 10 minutes turns out to be more effective than learning in a

single session lasting 20 minutes. This so-called spacing effect is

remarkably robust and occurs in many explicit and implicit

memory tasks in humans and many animals being effective over

many time scales from single days to months.

Previous cognitive models attributed the spacing effect either to

deficient processing of repeated items during single block rehearsal

[107] or to improved storage by exploiting context variability

between spaced rehearsal sessions [108]. Typically, these expla-

nations presumed specific high-level structures and mechanisms of

memory systems including attention, novelty, and context

processing. Although detailed modeling of memory systems may

be required to explain specific properties in particular memory

tasks, the ubiquity of the spacing effect suggests a common

underlying mechanism at the cellular level. We propose that

structural plasticity in sparsely connected neural networks is such a

mechanism.

Figure 6C shows that structurally plastic networks reproduce the

spacing effect naturally when learning a new set of memories in a

similar protocol as described for the previous simulations (only

here the memory replay should be interpreted more generally as

rehearsal, not necessarily generated by the hippocampus). In the

first simulation (blue) the memories are rehearsed in a single long

time block, while in the second simulation (red) rehearsal is spaced

over several shorter blocks such that total rehearsal time is equal

for both simulations. For spaced rehearsal the resulting effectual

connectivity Peff of the memories turns out to be much higher

and, correspondingly, the output noise ÊE much lower than for

single block rehearsal.

Further simulation experiments (not shown) have indicated that

the spacing effect induced by structural plasticity is very stable.

Similar to the psychological experiments, it is remarkably difficult

to find conditions without spacing effect. In essence, the spacing

effect occurs if weight plasticity is faster than structural plasticity

and if consolidated synapses are more stable than silent synapses

(peD0wpeD1). Both properties are strongly supported by experiments

[4,10,21,109]. In this case, our theory predicts that even in brief

rehearsal sessions Hebbian plasticity can quickly consolidate all

available synapses useful to store a set of memories. Thus, instead

of continuing a rehearsal session, it is better to wait until structural
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plasticity has grown additional useful synapses that can then be

consolidated in a brief second rehearsal session. As a consequence,

spacing effects will necessarily occur whenever learning in the

brain depends on structural plasticity. Interestingly, our model

with structural plasticity can also quantitatively reproduce long-

term spacing effects as recently observed in psychological

experiments that investigated optimal spacing intervals to maxi-

mize memory retention [110,111].

Discussion

One important limitation in the brain seems to be the number

or density of functional (non-silent) synapses, both for anatomical

and metabolic reasons. For example, the number of synapses per

cortical volume is remarkably similar across different species [112],

and theoretical considerations suggest that the energy consump-

tion of the brain is dominated by the number of postsynaptic

potentials or, equivalently, the number of functional non-silent

synapses [47–49]. In face of these limitation, it might be beneficial

that learning in brain circuits ‘‘moves’’ synapses to computation-

ally useful locations [16,31,53,113].

To get a quantitative grip of these ideas we have introduced the

concept of effectual connectivity, a macroscopic measure for how

useful network structure is for memory storage. Structural

plasticity can increase effectual connectivity while keeping the

anatomical connectivity (P) at a low constant level. This has been

analyzed for a simple model of structural plasticity assuming the

following three basic mechanisms: (1) blind synaptogenesis, (2)

consolidation of useful synapses, and (3) elimination of irrelevant

synapses. Further, we have focused on the most plausible

parameter range where structural plasticity (1,3) operates on a

slower time scale than weight plasticity and consolidation (2), but

the lifetime of consolidated synapses is long compared to the

turnover of unstable synapses (see Section 2 and Section 5 for

details; cf. [4,10,21]). In our current model implementation we

identify strong synapses with stable synapses (weight and state 1) as

well as weak synapses with unstable synapses (weight and state 0).

This contrasts with some experimental results suggesting that silent

synapses could be quite stable [114] whereas even strong synapses

could be eliminated, for example, during development [51]. Such

findings may be explained by the probabilistic nature of state

transitions in our synapse model or a dissociation between synaptic

strength and stability, perhaps including a cascade of several

different stable and unstable states [52].

Our model is applicable to learning during development, as well

as during adulthood (Fig. 7). During development the three

mechanisms appear to dominate different phases separated on a

large time scale of years [14–16,51,77,115]. Still, on a smaller time

scale of days or months [20,21,23], ongoing structural plasticity,

involving the three mechanisms simultaneously, could control the

anatomical connectivity to be approximately constant (see Eq. 16).

Such homeostatic regulation of generation and elimination of

synapses is even more evident during adulthood where the

anatomical connectivity appears almost stable over several decades

[14,51,77]. However, recent experiments demonstrate that there

can be novelty-driven excursions from homeostatic balance on the

time scale of several days in specific cortical areas of the adult

brain, for example, during learning of motor memories

[23,68,116]. This phenomenon can be understood within our

modeling framework as a different control strategy of the

anatomical connectivity, one which is driven by learning load.

Specifically, in instances of high learning load, up-regulating the

anatomical network connectivity is the means to achieve faster

learning by increasing the number of unstable silent synapses that

may be recruited into new memories by structural plasticity and

consolidation. Taken together, the model can explain the major

differences of structural plasticity during development and

adulthood by shifts in how metabolic constraints and learning

speed are leveraged.

To simulate structural and weight plasticity we have used a

simple three state Markov model of a potential synapse where state

transition probabilities (with exception of pg) depend on a

Hebbian-type consolidation signal Sij (see Fig. 2A, Eq. 4). Our

plasticity model generalizes the binary Willshaw model [26,44]

and strongly simplifies realistic weight plasticity models, for

example, those based on spike-timing dependent synaptic plasticity

(STDP) where potentiation depends on the precise temporal order

of presynaptic and postsynaptic spikes [117–119]. In fact, it has

been discussed controversially whether STDP-type learning rules

would at all be consistent with the Hebbian idea that ‘‘what fires

together wires together’’ because, unlike the Willshaw model,

simple STDP models predict decoupling of neurons firing at the

same time [120–123]. However, we have recently shown that

more realistic STDP models (including dendritic propagation

delays and parameters fitted to physiological data) are generally

consistent with Hebbian learning and local cell assemblies [124].

Similarly, we argue that our model is also consistent with more

realistic models of structural plasticity based on homeostatic

mechanisms for maintaining mean neuronal firing rates at a

constant level [20,50]. In such models, generation and elimination

of synapses is induced by firing rates being below and above the

homeostatic level, respectively. This is similar to our model with a

homeostatic constraint for maintaining a constant anatomical

connectivity P (see Section 2), because the mean firing rate of a

neuron (e.g., during phases of ongoing activity [125]) will strongly

correlate with the number of synapses on its dendrite (cf. [53,126]).

Thus, keeping firing rates in homeostasis is essentially equivalent

to maintaining the number of synapses per neuron and, thus, P, at

a constant level. In our simulations, we have explicitly adjusted the

generation rate pg in each step in order to keep P constant, but in

a more realistic setting, pg could as well be driven by factors

representing each neuron’s mean firing rate.

Thus, we argue that both Hebbian and homeostatic structural

plasticity are necessary to optimize information storage: Hebbian

structural plasticity (via peDs) is necessary to eliminate those

synapses that are not useful for storing a memory set. But

homeostatic structural plasticity (via pg) is also necessary: First, to

balance the requirements of fast learning (large P) and space and

energy efficiency (low P). Second, homeostatic structural plasticity

may also contribute to uniformly sample new memory representa-

tions vm from the space of all possible activity patterns (with unit

usages #fm : v
m
j ~1g being equal for all neurons vj ), which is

known to be optimal for minimizing output noise and maximizing

storage capacity in multi-layer networks (see Fig. 7 in [127]; cf.

[126,128,129]): For example, a neuron representing only a few

memories will have few state-1 synapses and, correspondingly, low

firing rates. This may increase pg to generate new state-0 synapses,

rendering this neuron more plastic and receptive for being used to

represent new memories, thereby increasing state-1 synapse

number and firing rates until the desired homeostatic level is

reached. Some previous works have actually argued that non-

Hebbian homeostatic structural plasticity could be sufficient to

explain memory formation [18,130]. Although this may hold true

if cell assemblies representing different memories would be

spatially separated with only little overlap, our results emphasize

also the need of Hebbian-type structural plasticity with a specific

elimination of unconsolidated synapses. Without Hebbian struc-

tural plasticity it seems impossible to stabilize a larger number of
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overlapping cell assemblies and to come close to the high memory

capacity of our model [16].

By introducing the concepts of effectual connectivity Peff and

consolidation signal S, our theory remains largely independent of

a specific underlying neural network model of memory. In fact, the

performance of the specific model in terms of output noise ÊE is

generally a non-linear monotonic function f of effectual connec-

tivity, e.g., ÊE~f (Peff ), where f depends on the network model,

network size, number of active units per memory vector, number

of stored memories, and other factors. Here we have investigated

Willshaw-type networks with binary synapses [16,26,44] because

they give a simple and intuitive answer to the question which

synapses are irrelevant and thus eligible for pruning. However, the

efficiency of structural plasticity generalizes to learning employing

graded synaptic states [53,54,79]. Previous approaches to memory

formation by structural plasticity have also discussed that

memories could be encoded in the number of synapses rather

than by changing weights of individual synapses [28].

There are several lines of evidence suggesting that the binary

weight model (corresponding to states 0 and 1) is already quite

useful, in particular, if one would add suitable noise terms to

account for distributed synaptic strength: First, experiments

indicate that real synapses may have only a small number of

functionally distinctive states or may even be binary [74–76,131].

Second, real synapses tend to scale their strengths such that in the

soma (where spikes are generated) the resulting postsynaptic

potentials have a relatively constant amplitude [61]. Third,

anatomical experiments have shown that the number of real

synapses per connected neuron pair is relatively constant in

cortical areas [59] which indicates active regulation, for example,

based on spike correlations [132,133]. Together, these findings

support the hypothesis that the number of synapses per neuron

pair and the strength of synapses at different dendritic locations

might be co-regulated in order to keep the effect of a neuron onto

a connected neighbor close to a desired constant magnitude. From a

functional viewpoint, this perfectly makes sense at least for some

functions such as memory storage (or the storage of ‘‘random’’

memory indices [134]) where binary synapses are optimal for

storing sparse neural activity patterns [46,53,73].

Although our definition of effectual connectivity Peff is tailored

for the analysis of structural plasticity and memory storage, it

shares many features with previous definitions of effective

connectivity, e.g., based on ‘‘Granger causality’’ or ‘‘transfer

entropy’’ used for analyzing the functional structure of brain

networks from measured neural activity [135–137]. For example,

transfer entropy Tu?v [137] is a measure of the directional

information flow from one brain area u to another area v. In the

simplest case the transfer entropy between activities u(t) and v(t)

measured in two brain areas u and v is defined as

Tu?v : ~
P

p(v(tz1),u(t),v(t)) log
p(v(tz1)Du(t),v(t))

p(v(tz1)Dv(t))
where p(:)

denotes the distribution of activity patterns, see Eq. 4 in [137] for

details. This measure is very similar to the transinformation-based

capacity measure Cwp(Peff ) (see Eqs. 10,14) which depends

monotonically on Peff rendering effectual connectivity an equiv-

alent measure of how well an input activity pattern um in one area

can reactivate a corresponding target pattern vm in another area.

In fact, the equivalence of the two measures, Tu?v*Cwp(Peff ),

can be shown for a simplified model of neural activity propagation

in brain areas [138].

Adding to previous results of storage capacity based on counting

possible synaptic network configurations [28–30] (cf. Eq. 12), our

model proves that simple memory networks of n neurons with

structural plasticity can indeed store and retrieve up to Ctot
* log n

bits per synapse. By comparison, even with real-valued synapses

that have an infinite number of states, Hebbian-type weight

plasticity without structural plasticity achieves less than one bit per

synapse [72,73,139,140]. Technical adaptations of our model to

applications such as information storage and pattern recognition

have exhibited advantages in terms of recognition time and

memory requirements compared to methods based on traditional

weight plasticity [16,53,127].

Besides increasing storage capacity and energy efficiency of

neural networks, our results suggest that structural plasticity is a

key element in understanding various memory phenomena. One

key prediction of the model under homeostatic maintenance of

anatomical connectivity P are time-dependent gradients in

effectual connectivity Peff , such that memories from an earlier

time have higher Peff than memories from a later time. These

gradients occur because consolidation of an increasing number of

memories will continuously decrease the number of ‘‘migratable’’

(not yet consolidated) synapses and, thus, learning of new

memories becomes slower and slower. We have shown that such

gradients in Peff can explain both aging effects and the absence of

catastrophic forgetting because learning may stop just before the

number of stored memories reaches the critical capacity limit

[31,36,99]. The same gradients in Peff can also explain Ribot

gradients in amnesic patients suffering from lesions of the medio-

temporal lobe [38–40]. Ribot gradients can also be explained by

gradients in accumulated consolidation time, assuming unlimited

cortico-hippocampal consolidation [102,104]. However, our

model is unique in producing Ribot gradients even for finite

consolidation times, in accordance with findings of a time-limited

role of the hippocampal system in consolidation [34,38,39].

Last, our model is able to bridge different models, describing the

spacing effect [43] on psychological [41,42,106] and molecular

levels [141] by identifying structural synaptic plasticity as the

potential cellular mechanism for spacing effects. The presence of

structural plasticity in the adult brain is not only strongly

supported by recent experimental evidence. As our results show,

it is necessary to achieve high storage capacity and energy

efficiency, and inevitably causes spacing effects. Structural

plasticity is consistent with psychological theories that explained

the spacing effect by encoding variability [106,108] but attributes

the increased variability for spaced rehearsal to the changing

pattern of synaptic connections rather than a changing learning

context. While previous models based on delayed synaptic

consolidation induced by molecular signaling cascades [52,141]

may account for short-term spacing effects on the time-scale of

minutes, structural plasticity can also explain long-term spacing

effects on the time scale of months to years [110,111]. As the

temporal profile of optimal learning depends on parameters of

structural plasticity, predictions from theories of structural

plasticity will be testable by future experiments that can link

memory performance (behavioral data) and structural plasticity

(physiological data) in cortical areas where these memories are

stored.

Mathematical Analysis

I Temporal Dynamics of Effectual Connectivity Peff

I.1 Relation between synapse and network states. As

Peff is a macroscopic network

state that can be computed from the (microscopic) states of

individual potential synapses. For this we first have to describe the

relation between microscopic synaptic state variables pstate(t) (Eq.

4) and the corresponding macroscopic connectivity variables

Pstate(t). As indicated in the main text this relation is non-trivial
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(see text below Eq. 4), because there may be multiple actual and/

or potential synapses between each neuron pair ij, whereas

connectivity of a neuron pair ij has to be defined in terms of the

presence of at least one synapse or the absence of all synapses. For

example, we could define neuron pair ij to be in state 1 if there is

at least one potential synapse ijn that is in state 1. Similarly, we

define that state(ij)~0 iff state(ij)=1 and there is at least one real

synapse with state(ijn)~0. Finally, state(ij)~p iff state    

state(ij n)~p.

Next we divide neuron pairs into distinct groups, where two

neuron pairs are in the same group if they receive identical

consolidation signals s(t). Then, in analogy to Eq. 4 we can define

the (macroscopic) fractions P
(s)
state of neuron pairs ij belonging to

group s~Sij and being in a certain state [fp,0,1g,

P
(s)
1 ~P

(s)
pot

X

?

~1

( ) 1{(1{p
(s)
1 )

� �

ð17Þ

P(s)
p ~P

(s)
pot

X

?

~1

( ) p
(s)
1

� �

ð18Þ

P
(s)
0 ~P

(s)
pot{P

(s)
1 {P(s)

p ð19Þ

where P
(s)
pot is the fraction of neuron pairs that have a potential

synapse and receive consolidation signal Sij~s (typically

P
(s)
pot~PpotP

(s)
1S if the matrix of potential connections is indepen-

dent of the stored memories), and ( ) is the probability that there

are exactly potential synapses given that there is at least one

potential synapse for neuron pair ij. See ref. [59] for neuroana-

tomical estimates of ( ) in various cortical areas.

From this we can compute the macroscopic state variables Pstate

defined as the fractions of neuron pairs ij that are in a particular

state [f6 0,p,0,1g (where state 6 0 denotes neuron pairs without any

potential synapses) and the various connectivity measures defined

in Section 1,

Pstate(t)~
X

s

P
(s)
state(t) for state [f6 0,p,0,1g ð20Þ

P(t)~P0(t)zP1(t) ð21Þ

Ppot(t)~Pp(t)zP0(t)zP1(t) ð22Þ

P1S~

X

s=0

X

state[f6 0,p,0,1g

P
(s)
state(t) ð23Þ

Peff (t)~

P

s=0

P
(s)
1 (t)

P1S

: ð24Þ

By these definitions we are in the position to do microscopic

simulations of networks of potential synapses and compute the

corresponding connectivity measures (e.g., as we have done for

Fig. 6; see also Section 1).

While we have worked out a general theoretical framework of

structural plasticity [142], the following analyses will be limited to

the much simpler case where a neuron pair has at most one

synapse, ( )~1. Such a setting is justified by experimental

findings that there is an active regulation of the total connection

strength of the synapses connecting two neurons towards a

constant value (see discussion section).

I.2 Increase of Peff towards Ppot. To prove Eq. 11 let us

now analyze the temporal dynamics of effectual connectivity Peff

under simplified conditions. Specifically, we analyze the increase

of Peff towards Ppot during consolidation in a large network with

constant anatomical connectivity P having at most a single potential

synapse per neuron pair. For this we will assume a simple constant

consolidation signal, i.e., ongoing rehearsal or replay with

s(t)~Sij[f0,1g for tw0. Constant P requires a homeostatic constraint

where generation and elimination of synapses are in approximate

balance,

pg(t)~
peD0P

(0)
0 (t{1)zpeD1P

(1)
0 (t{1)

Pp

, ð25Þ

where P
(s)
0 is as defined in Sect. Mathematical Analysis I.1.

Furthermore, we assume pcDs~s[f0,1g and sufficiently large

neuron populations u and v with sizes n&1 (cf. Fig. 3) such that

Peff (t) and P0(t) (and P1(t)~P{P0(t)) are always close to their

expectations. Thus, at any point in time, there exist Pn2 synapses

distributed over Ppotn
2 possible locations. Before learning starts,

the network has already P1(0)n
2 consolidated synapses (e.g., due to

earlier learned memories) that are unrelated to the novel memories

specified by Sij . Thus, initially Peff (0)~P1(0) (Eq. 24). After the

first learning step at t~1 all available synapses get potentiated and

consolidated, Peff (1)~P. For tw1 it is

Peff (t)~Ppot 1{ P
t

t1~1
(1{

G(t1)

L(t1)
)

� �

where G(t) is the number of new synapses generated at time t

(which equals the number of eliminated synapses), L(t) is the

number of potential locations to put them, and P {G=L) is the

probability that a given potential synapse ij with Sij~1 is not yet

realized and consolidated until time t. For t~1 we can assume

G(1)~Pn2 and L(1)~Ppotn
2. For tw1 it is G(t)~peD0P0(t{1)n2

and L(t)~Ppotn
2
{Pn2zG(t), where the number of unconsoli-

dated synapses, P0n
2, computes from

P0(t)&P{(1{P1S)P1(0)(1{pd D0)
t
{P1SPeff (t) :

i.e., all real synapses minus initially consolidated (and not yet

deconsolidated) synapses minus the newly consolidated synapses

marked by S. Thus, the factors in the product become

1{G(t1)=L(t1)&(Ppot{P)=(Ppot{PzpeD0P0(t1{1). Therefore

Peff (t)&Ppot 1{(1{P=Ppot) P
t

t1~2

1

1zpeD0P0(t1{1)=(Ppot{P)

� �
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p n

(ij)

and there is at least one potential synapse with

6∈ { }0,1

n

n

p n

p n
n

n

p n

n

p n

(1



proving Eq. 11. The second approximation in Eq. 11 becomes

valid if all product terms are approximately equal, i.e., if P1S%1

(set of novel memories is small) and tpd D0%1 (deconsolidation

during the time interval of rehearsal or replay is negligible). Note

that here the increase of Peff (t) does not depend on pd D1 since

synapses with Sij~1 that get deconsolidated are immediately

(pcD1~1) reconsolidated.

II Evaluation of Memory Capacity
II.1 Asymptotic analysis for one-step retrieval. As argued

in Section 6, the storage capacity of structurally plastic networks

where memories are stored with effectual connectivity Peff is

equivalent to the capacity of a structurally static network with

increased anatomical connectivity P~Peff (cf. Fig. 3). Therefore

the following computes the storage capacity for one-step retrieval

in the Willshaw network without any structural plasticity

(peDs~pg~pd Ds~0, pcDs~s; see Section 3 and Fig. 3A) where

synaptic weights are given by Eq. 5.

For the following approximate asymptotic analysis we use several

simplifications. First, Address and content memory patterns um, vm are

binary random vectors of size n each having k active units (i.e., k is the

size of a Hebbian cell assembly representing the memory in

population u or v). Second, the The query pattern ~uu has c : ~lk

randomly chosen ‘‘correct’’ one-entries of an address pattern um

(where 0vlƒ1) but no additional ‘‘false’’ one-entries (f : ~kk~0).

Third, as previously suggested [78,143–145], we assume that each

neuron j can optimize its firing thresholdHj : ~c’(j) according to the

number of connected active ‘‘correct’’ query neurons, that is,

c’(j) : ~#fi : ~uui~1 and state(ij)[f0,1gg.

Let us first estimate error probabilities after storing M

associations. We have q10~0 due to the assumptions of optimal

threshold control and zero add noise (k~0). To see this note that

Wij~1 for any actual synapse ij with ~uui~1 (which implies u
m
i ~1

due to the zero add noise assumption) and vm~1. Therefore the

dendritic potential xj will equal Hj~c’(j) and thus v̂vj~1 if v
m
j ~1.

By contrast, q01 depends on the probability p1 that a given synapse

is potentiated (see Eqs. 4, 5). After storing M memory associations

we have

p1~1{ 1{
k2

n2

� �M

: (~P1S) ð26Þ

This follows from the fact that a synapse is potentiated with

probability k=n during presentation of a single memory. After

presentation of all M memories, the synapse will therefore still be

in state 0 (unpotentiated) with probability p0~(1{k=n2)M . The

state probability p1 has been called ‘‘memory load’’ or ‘‘matrix

load’’ in previous works [16] because, for fully connected

networks, p1 corresponds to the fraction of one-entries in the

weight matrix. From Eq. 26 we obtain that a ‘‘low neuron’’ j with

v
m
j ~0 may fire with error probability

q01&
X

c

c’~0

pB(c’; c,P)p
c’
1~(1{P(1{p1))

c : ð27Þ

where pB(x;N,P) : ~ N
x

� �

Px(1{P)N{x is the binomial probabil-

ity. Note that c’(j) follows a binomial distribution such that

pr½c’(j)~c1�~pB(c1; c,P). Thus, the sum in Eq. 27 averages over

all possible values of c’ where the error probability given c’ is

pr½v̂vj~1Dv
m
j ~0�~pc’1 . This is because an error requires that all c’

relevant synapses of neuron j are potentiated, where the

probability of one synapse being potentiated is p1. An exact

analysis shows that this binomial approximation of q01 becomes

exact in the limit of large networks and sufficiently small cell

assemblies with k~O(n= log2 n) (see [129]; see also Section II.2).

Now we can compute the storage capacity by limiting output

noise (Eq. 7) by some constant Ew0. Thus, we have to solve

(n{k)q01ƒEk ð28Þ

for p1 which gives the maximal matrix load p1E of Eq. 13 that

satisfies ÊEƒE. With this, solving Eq. 26 for M yields the pattern

capacity ME of Eq. 13. For small E and k=n it is

T&{(k=n)ld(k=n) and with Eq. 10 it follows the weight capacity

Eq. 14.

For networks with structural plasticity Eq. 13 is still valid but

effectual connectivity will be typically larger than anatomical

connectivity, PeffwP. As silent synapses are functionally irrelevant

and can be pruned (but see the remarks below) we can compute

total storage capacity in bits per synapse from renormalizing Eq.

14. Thus, dividing the totally stored information by Peffp1En
2

instead of Peffn
2 yields

Ctot
E

: ~
Cwp

E

p1E
&l

ld(1{Peff (1{p1E)) ln (1{p1E)

p1EPeff

g: ð29Þ

For large Peff?1 and small p1E~(El=(n{k))lk?0 the total

storage capacity per synapse diverges with network size n,

Ctot
E
&{lgldp1E&

ld n
k

k
: ð30Þ

Together with Eq. 11 this proves that in networks with

structural plasticity, high potential connectivity, and sufficiently

small cell assembly size k, it is possible to come close to the

information theoretic capacity bound (see Eq. 12).

One limitation of this analysis is the assumption of an optimal

threshold control. In fact, an optimal threshold control as

presumed above would actually require silent synapses in order

to compute spike thresholds Hj~c’(j) in incompletely connected

excitatory networks with Peffv1 [143,144] (so they should not be

pruned). Therefore we will use the resulting expressions for Ctot

merely for approximating the storage capacity for a more

conservative threshold control (see next section). Nevertheless the

results are still asymptotically correct for high effectual connectiv-

ity Peff?1 because then the optimal spike threshold c’(j)~c gets

independent of remaining silent synapses [16]. Corresponding

results hold true also for inhibitory network models where an

optimal spike threshold control could easily be realized (including

pruning of silent synapses) because it is independent of c’(j) for any

Peff [78]. This suggests that structural plasticity could store

information in inhibitory networks even more efficiently than in

excitatory networks (cf. [13]).

II.2 Numerical evaluation for finite networks. The

analysis of the previous section is asymptotically correct for large

networks (n??), large connectivity (Peff?1), and sparse activity

(k~O(n= log2 n)) [16,129]. It is also useful to get an overview

about the qualitative effect of increasing effectual connectivity Peff

and its relation to the memory load p1. To compute storage

capacity of finite networks with large activity k and low
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connectivity Peff it is possible to do an exact analysis by

generalizing the approach of [129]. However, as such an approach

would be computationally very expensive, the following develops a

Gaussian approximation of dendritic potential distributions, which

can reduce reduce computation time by several orders of

magnitude. For example, in some preliminary experiments we

have evaluated the exact storage capacity ME~25005 for n~105,

k~724, Peff~0:5 for l~1,k~0,E~0:01 which took about 57 h

on a single core of an 2.2 GHz AMD Opteron compute server. By

comparison, using the Gaussian approximation developed in this

section yields ME~24851, quite close to the exact value, but took

only 2.5 sec computing time.

Let us first consider the Willshaw-Palm distribution

pPh(X ; k,n,M,P,z) defined as the exact probability that a content

neuron’s dendritic potential xj equals X given that M random

memories are stored in a heteroassociative Willshaw-Palm network

with size n, anatomical connectivity P, and (constant) activity k if

stimulating with a random pattern (unrelated to the stored

memories) with z active units. From Eq. 3.22 in [129] we obtain

pPh for the special case of fully connected networks (P~1),

pPh(X ; k,n,M,1,z)~
z

x

 !

X

x

s~0

({1)s
x

s

 !

(1{~pp1)
szz{x

(1{
l

n
(1{B(m,k,szz{x)))M

ð31Þ

where B(a,b,c) : ~
a{b

c

� �

=
a

c

� �

~P
c{1
i~0 (a{b{i)=(a{i)~

B(a,c,b). In network with general connectivity P each of the z

active input units is connected to neuron j with probability P.

Therefore the number of connected neurons is binomially

distributed and

pPh(X ; k,n,M,P,z)~
X

z

z’

pB(z’; z,P)pPh(X ; k,n,M,1,z’) ð32Þ

We can now determine the first two moments of this distribution, The

mean E(xj) can easily be computed from the memory load Eq. 26,

mPh : ~E(xj)~zPp1 ð33Þ

and the variance

s2Ph : ~E((xj{mPh)
2)~

X

z

X~0

(X{mPh)
2pPh(X ; k,n,M,P,z) ð34Þ

~

X

z

z’

pB(z’; z,P)
X

z

X~0

(X{mPh)
2pPh(X ; k,n,M,1,z’) ð35Þ

~

X

z

z’

pB(z’; z,P)s
�
Ph(z’) ð36Þ

can be computed from the corresponding variance of a fully connect-

ed network which is well approximated by (see Eq. 4.25 in [129])

s�Ph(z’)&z’2(p
(2)
0 {p20)zz’(p0{p

(2)
0 ) ð37Þ

where p0 : ~1{p1 (cf. Eq. 26) and p
(2)
0 : ~

(1{(k2=n2)(2{k=n))M . Therefore the variance of the diluted

network is well approximated by

s2Ph&zP(1{p0){zP2(1{2p0zp
(2)
0 )zz2P2(p

(2)
0 {p20) ð38Þ

From these results we can easily compute mean values and

variances of the dendritic potential distributions of high and low

units. Here high units are neurons vj with v
m
j ~1, i.e., neurons that

should be activated during retrieval. Similarly, low units are

neurons vj with v
m
j ~0. Thus, if the query pattern ~uu has exactly c

correct units from an address memory um and additionally f

randomly chosen false units (not active in um) then the mean and

variance of a low unit’s dendritic potential will be

mlo~(czf )Pp1 ð39Þ

s2lo~(czf )P(1{p0){

(czf )P2(1{2p0zp
(2)
0 )z(czf )2P2(p

(2)
0 {p20)

ð40Þ

and mean and variance of a high unit’s dendritic potential will be

mhi~cPzfPp1 ð41Þ

s2hi~cP(1{P)z

fP(1{p0){fP2(1{2p0zp
(2)
0 )zf 2P2(p

(2)
0 {p20)

ð42Þ

Assuming Gaussian distributions we can compute a globally

optimal firing threshold H that minimizes output noise ÊE by

applying some standard methods (e.g., see appendix D in [46]).

Then we can determine pattern capacity ME by doing a binary

search to efficiently find the maximal M that satisfies ÊEƒE. Finally,

we can determine Cwp
E

from Eq. 10 and thus also p1E from Eq. 26

and Ctot
E

: ~Cwp=p1E. Corresponding data for n~105 is shown in

Fig. 5.
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