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ABSTRACT: Despite its importance in some structures, shear deformation is systematically neglected by most static structural 
system identification methods. This paper analyzes for the first time in the literature the effect of this deformation in the static inverse 
analysis of thin web bridges. This study is focused on the observability techniques. The most recent formulation found in the 
literature is based in the Euler-Bernoulli beam theory. This formulation is unable to identify correctly the characteristics of a 
structure (such as flexural stiffness) when shear deformation is not negligible. To solve this problem, the observability method is 
updated according to Timoshenko’s beam theory. This formulation uses an algebraic method which combines a symbolical and a 
numerical application. Thus, the updated observability formulation is able to obtain not only the flexural stiffness but also the shear 
one. Besides this, a parametric equation of the estimates is obtained for the first time in the literature. Some examples of growing 
complexity are used to illustrate the validity of the new formulation.
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1. INTRODUCTION
Damage in structures might produce changes in their mechanical properties. In order to quantify the magnitude of this damage 

Structural System Identification (SSI) might be used. This process is based on a subset of measured inputs and outputs (e.g. forces 
and/or displacements). Numerous papers about SSI have been written over the years. Sanayei et al. [1,2], Yan & Golinval [3] or 
Liao et al. [4], proposed various methods to deal with different problems in SSI.

The subset of measured inputs can be obtained by non-destructive tests that measure the structural response under a certain 
load case. According to the load nature, these tests can be classified as dynamic ([5, 6]) or static ([7-9]). Focusing on static tests, 
Sanayei & Onipede [10] presented an iterative optimization-based algorithm of the displacement equation error function for the 
parameter identification based on static test measurements. Banan et al. [11, 12] proposed an optimization method to estimate 
member constitutive properties of the Finite Element Model, FEM, from measured displacements under static loading. Sanayei et 
al. [13] used measured strains in a real bridge under static truck loads for FEM updating. However, in all these methods it is assumed 
that shear stiffness does not govern the problem and, therefore, it is not taken into account. This assumption is traditionally used in 
most SSI methods (see [14]). 

Matrix methods of structural analysis are universally accepted in structural design. These methods enable a rapid and accurate 
analysis of complex structures under both static and dynamic conditions. However, when applying matrix methods, the system must 
be modeled as a set of simple, idealized elements interconnected at the nodes. Matrix SSI methods are based on simplified models 
of structures too. These include axial and flexural deformation. Therefore, neglecting this deformation can be assumed as a modeling 
error which is a simplifying assumption well justified in most of the cases. However, in some cases for both direct and inverse 
analysis, this modelling error can lead to unjustified rough results.

The assumption of neglecting shear deformation is explained by the fact that, for most structures, this effect is usually much 
smaller than the flexural one. Nevertheless, shear deformation might play an important role in some structures, such as deep beams. 
Eurocode EN 1992-1-1:2004 [15] defines deep beams as a beam for which the span is less than three times the overall section depth. 
ACI committee 318 [16], defines these elements based on two criteria: beams with clear spans equal to or less than four times the 
overall member depth or beams with concentrated loads within twice the member depth from the face of the support. In these 
structures, neglecting the shear deformation may affect adversely the stiffnesses estimated by SSI methods. Shear deformation also 
might be an important factor to be considered in some structures, for example, in high rise buildings (see [17, 18]). In this field, Li 
et al. [19] modeled slender structures such as high rise buildings and chimneys as cantilevers with both flexure and shear 
deformation. Recently, Ebrahimian & Todorovska [20] presented a non-uniform Timoshenko beam model of a building, with 
piecewise constant properties along the height, along with an algorithm for structural system identification from earthquake records. 
In both papers, shear stiffness is clearly taken into account on damage detection. However, other authors neglect this phenomenon. 
Kang et al. [21] presented a system identification scheme in time domain to estimate stiffness and damping parameters of a structure 
using measured acceleration. Lei, Y. et al. [22] proposed an algorithm based on the extended Kalman estimator approach for the 
identification of structural parameters and unknown excitation of high rise shear-type buildings with partial acceleration responses. 
These papers are limited to identify the flexural stiffness and the story stiffness respectively. 

According to Sahraei and Mohareb [23], shear deformation is traditionally neglected in thin-walled structures. Nevertheless, a 
number of studies discourage this assumption. Bhat and Oliveira [24] proposed the formulation of the shear coefficient of thin-
walled prismatic beams. A formulation to incorporate the effects of shear deformation in thin-walled structures was proposed by 



Chen and Blandford [25] and Back and Will [26]. Shakourzadeh et al. [27] and Erkmen and Mohareb [28] studied the torsion 
analysis of thin-walled beams including the shear deformation effects. Van Phan and Mohareb [29] showed the importance of 
incorporating shear deformation effects when capturing predominantly torsional responses. Erkmen [30] studied the formulation for 
buckling analysis of thin-walled beams incorporating the shear deformation. Poul et al. [31] studied experimentally CFRP 
strengthened thin plated under shear loading. Chen et al. [32] analyzed the dynamic behavior of shear deformable sandwich beams. 
Hossain et al. [33] studied the impact shear resistance of double skin composite walls. Tong et al. [34] analyzed the behavior of 
plates subjected to combined bending and shear loading. Rassol and Singha [35] studied the nonlinear behavior of shear panels. 
Kim and Choi [36], Henriques et al. [37] and Sabouri-Ghomi et al. [38] studied the effects of shear deformation in composite beams. 
Analyses of the effect of shear in thin web bridges can be found in [39, 40].

The literature review shows that the effect of shear deformation is mainly based on the structural response at the element level. 
The studies about structural system identification including this phenomenon are restricted to dynamic excitations and the effects 
on static tests are not studied. This is the case of the observability techniques [41, 42]. As most of the static methods presented in 
the literature, it neglects the effect of the shear deformation into the structural system identification analysis. This paper analyzes 
how sensitive observability techniques are to shear deformation effects. Moreover, in order to take these into account, a new 
formulation including the shear effects in observability simulation is proposed. All numerical simulations are based on measurement 
error free data obtained from numerical analyses. Paper will focus on evaluating the modeling error linked with shear effects, being 
numerical and measurement errors on structural system identification by observability treated elsewhere [43, 44].

This article is organized as follows. In Section 2 the original observability method for structural system identification is briefly 
presented. This technique does not include the shear deformation. To illustrate the important role of this deformation in the 
identification of structures and to motivate the paper an example is analyzed. Section 3 introduces a new formulation to include the 
shear deformation into the observability analysis. To illustrate the application of this algorithm, a step by step example is presented. 
In addition, a numeric example is analyzed. Section 4 presents the application of the proposed algorithm for the structural system 
identification of a composite thin web bridge during its cantilevered construction. Finally, the conclusions obtained are displayed in 
Section 5.

2. OBSERVABILITY ANALYSIS WITHOUT SHEAR DEFORMATION

The stiffness matrix method is the most common implementation of the Finite Element Method (FEM) for structural analysis. 
The implementation of this method requires that the structure is modeled as a set of simple, idealized elements interconnected at the 
nodes. The material and stiffness properties of these elements are then compiled into a single matrix equation which governs the 
behavior of the entire idealized structure. In 2D, the traditional stiffness matrix for a six degrees of freedom (two deflections (u [K] 
and v) and one rotation (w) at the initial and final beam element nodes), beam element of length L and constant cross-section is:
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(1)

where E, A and I are Young modulus, area and inertia respectively.

2.1 Direct analysis of the stiffness matrix method 
In static structural analysis, a statement of the equilibrium conditions together with strength of materials theory leads to a 

relation between forces and displacements that has the form of a system of equations:

[𝐾]·{𝛿} = {𝑓}, (2)

where  and  are the vectors of displacements and forces, respectively, in which the stiffness matrix is a singular matrix that {𝛿} {𝑓}
leads to a system with infinite solutions For a more detailed explanation about the unicity of the solution of a system of polynomial 
equations the reader is addressed to [50, 51].

2.2 Inverse analysis of the stiffness matrix method by observability techniques
As it was mentioned in the introduction, in actual structures, unknown parameters, such as the flexural stiffness  or axial 𝐸𝐼𝑗

stiffness  of element j, may appear into the matrix  due to damage or other uncertainties. These unknowns might be due to 𝐸𝐴𝑗 [𝐾]
damage (e.g. by material degradation, such as carbonation or corrosion, or accidental actions, such as fires or impacts) or other 
uncertainties (e.g. lack of knowledge about the mechanical properties of the material). If the external forces applied to the structure 
in a non-destructive test are known and some displacements are measured, the observability method can be applied into the SSI to 
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found the values of these unknown parameters. Taking Eq. (2) where the matrix  is partially unknown and with the aim of [𝐾]
determining the value of the unknown stiffnesses  a modified system of equations can be rewritten as: (𝐸𝐴𝑗 𝑎𝑛𝑑 𝐸𝐼𝑗)

[𝐾 ∗ ]·{𝛿 ∗ } = {𝑓}, (3)

in which the products of unknowns are located in the modified vector of displacements  and the modified stiffness matrix  {𝛿 ∗ } [𝐾 ∗ ]
is a matrix of known coefficients with different dimensions than the initial stiffness matrix . The new system leads to a non-[𝐾]
linear problem due to the fact that unknown parameters, such as axial stiffness  and flexural stiffness  of the cross section are 𝐸𝐴𝑗 𝐸𝐼𝑗
multiplied by the unknown horizontal displacements , vertical displacements  and rotations at the ith node  of vector (𝑢𝑖) (𝑣𝑖) (𝑤𝑖)

. This fact implies that non-linear products of variables, such as , , ,  and  might appear, leading to {𝛿 ∗ } 𝐸𝐴𝑗𝑢𝑖 𝐸𝐴𝑗𝑣𝑖 𝐸𝐼𝑗𝑢𝑖 𝐸𝐼𝑗𝑣𝑖 𝐸𝐼𝑗𝑤𝑖
a polynomial system of equations. These kinds of problems usually appear in science and engineering fields, (see [46, 47]). 
Depending on the known information, the unknown variables of vector  may be the non-linear products presented above, as {𝛿 ∗ }
well as other factors of single variables, such as ,  or nodal deflections and rotations.𝐸𝐼𝑗 𝐸𝐴𝑗

Once the boundary conditions and the applied forces in the nodes have been defined, an inverse analysis can be performed to 
identify the unknown parameters. To do so, some deflections and rotations are measured in a known static test. This known 
information is clustered in a subset  of  and a subset of respectively. In this way, the remaining subset  of  𝛿 ∗

1 {δ ∗ } 𝑓1 {𝑓} , 𝛿 ∗
0 {δ ∗ }

and of are unknown. Hence, (3) can be written as follows:𝑓0 {𝑓} 

[𝐾 ∗ ]·{δ ∗ } = [𝐾 ∗
00 𝐾 ∗

01

𝐾 ∗
10 𝐾 ∗

11
]·{δ ∗

0

δ ∗
1

} = {𝑓0
𝑓1} = {𝑓}

(4)

To join the unknowns, this system can be rewritten in the equivalent form:

[𝐵]·{𝑧} = [𝐾 ∗
10 0

𝐾 ∗
00 ‒ 𝐼]·{δ ∗

0
𝑓0 } = {𝑓1 ‒ 𝐾 ∗

11δ ∗
1

‒ 𝐾 ∗
01δ ∗

1
} = {𝐷},

(5)

where 0 and  are the null and the identity matrices, respectively. In this system, the vector of unknowns, , appears on the left-𝐼 {𝑧}
hand side and the vector of observations, , on the right-hand side. Both vectors are related by a matrix of known coefficients {𝐷} [

. 𝐵]

To evaluate if the system has a solution, it is sufficient to calculate the null space  of  and check that . Note [𝑉] [𝐵] [𝑉]𝑇{𝐷} =  0
that the null space can be easily obtained from the singular value decomposition by using computer programs. If this holds, the 
system is compatible; otherwise, it has no solution [48]. The general solution (the set of all solutions) has the structure:

{δ ∗
0

𝑓0 } = {δ ∗
00

𝑓00} + [𝑉]·{𝜌},
(6)

where is a particular solution of the system. This particular solution can be obtained by using two different subroutines in {δ ∗
00

𝑓00} 

Matlab [49]. The first one is the backslash function  that is able to find the parametric equations of the systems and therefore the (\)
symbolic and the numerical solution. The other one is the Moore-Penrose pseudoinverse function (pinv) with which only the 
numerical solution can be found.

is the set of all solutions of the associated homogeneous system of equations (a linear space of solutions, where the [𝑉]{𝜌} 
column of  is a basis and the elements of the vector  are arbitrary real values that represent the coefficients of all possible [𝑉] {𝜌}
linear combinations). It is interesting to note that a variable has unique solution not only when matrix  has zero dimensions (it [𝑉]
does not exist), but when the associated row in matrix is null. Thus, examination of matrix and identification of its null rows [𝑉] [𝑉] 
lead to identification of the observable variables (defined as the subset of variables with a unique solution) of vector . By solving {𝑧}
system (5), the numerical value of the observed parameters obtained by the particular solution of Equation (6) can be easily found. 
To obtain these numerical values of the observable parameters it is necessary to combine the symbolical and the numerical analysis 
as proposed by Nogal et al. [50].

A recursive process is used to minimize the number of required deflections in measurement sets to obtain the unknown 
parameters. This process takes advantage of the connectivity of the beams in the stiffness matrix that is included in the partitioned 
matrices of  in system (5). In this way, when in the initial observability analysis any deflection, force or structural parameter [𝐾 ∗ ]
is observed, this information might help to observe new parameters in the adjacent elements through the recursive process. In this 
analysis, the observed information is successively introduced as input data in the observability analysis. A more detailed explanation 
of this process can be found in [51].A new approach for the numerical solution of the system based on compatibility equations can 
be found in [52].

In order to show the role of the shear deformation in the SSI by observability techniques an illustrative example is numerically 



analyzed in the following section. 

2.3 Example 1: Effect of the shear deformation on beams
To motivate this paper, a sensitivity analysis is performed to evaluate the effect of the shear deformation on the SSI of a simply 

supported concrete beam loaded with a concentrated load Q at mid span (Fig. 1). Young’s modulus is  and Poisson’s 𝐸 = 27000 𝑀𝑃𝑎
ratio is . The beam has a rectangular cross section 1 m deep  and 0.1 m wide , so its area is 𝑣 = 0.25 (ℎ = 1 𝑚) (𝑏 = 0.1 𝑚) 𝐴 = 0.1

 and its inertia is . Besides this, and according to [53], the shear coefficient  for rectangular cross-sections  𝑚2 𝐼 = 0.00833 𝑚4 (𝑘)
when width/depth ratio approaches zero is . With this shear factor, the shear area  is equal to . 𝑘 = 5/6 (𝐴𝑣) 𝐴𝑣 = 0.08333𝑚2

In this simple example with only one unknown (I), inertia can be inferred from the deflected shape of the beam, that will include 
shear deformation. If this is neglected, Euler-Bernoulli theory will be used to obtain the estimated inertia . Otherwise, (𝐼 )
Timoshenko’s theory will be used to obtain the allegedly real inertia  (𝐼 )

Fig. 1.A shows the increment of deflections due to shear and bending deformability for a particular example of a simply 
supported beam with a concentrate load Q at mid span in terms of L/h. The shear deflection varies linearly with L while the bending 
deformability depends on L3. Fig. 1.B shows the error on estimating the inertia (in percentage) using Euler-Bernoulli theory in 
beams with non-negligible shear deformation. This error is presented as a function of the span-to-depth ratio. Span length is the 
variable used to modify the  ratio. This variable is changed from 2 to 20 m. The lowest value of 2 m is selected to avoid a very 𝐿/ℎ
deep beam where Saint-Venant’s principle cannot be applied at all. The limits of 2 % and 5% are highlighted in this figure. In 
addition, the ratio limits for deep beams proposed by the Eurocode EN [15] and by the ACI Committee 318 [16] are also indicated. 
As expected, this graph illustrates how the slender the beam, the lower the effect of the shear deformation is. 
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Figure 1: Example 1.(A) Increment of deflection at mid span due to bending and shear for a specific beam. (B) Percentage of inertia estimation error depending 
on the span-to-depth ratio when shear deformation is not modelled. Deep beam ratio limit for EN and ACI highlighted.

In Fig. 1.B, 5 % error is achieved when the span-to-depth ratio is greater than 7.75. In the same way, 2 % error corresponds to 
a beam span-to-depth ratio of 12.25. If a uniform distributed load  along the beam is used instead of the concentrated load , (𝑞) (𝑄)
the span-to-depth ratios associated with a 2 % and 5 % error are reduced to 6.9 and 10.95, respectively. This analysis shows how 
shear deformation effects are only negligible for SSI of beams with high span-to-deep ratios. 

2.4 Example 2: Effect of the shear deformation on SSI by observability techniques
To illustrate the problems of neglecting the shear deformation into the observability analysis, the simply supported beam 

described in Figure 2.A is analyzed. This beam has a length of 6 meters and it is simulated with a Finite Element Model composed 
by 6 beam elements and 7 nodes. The length of each of these elements is defined as 1 meter. The mechanical and geometrical 
properties of the analyzed example correspond with the beam presented in the preceding section, giving a length to depth ratio of 6. 
The boundary conditions of the structure are horizontal and vertical displacements restricted in node 1 and vertical displacement 
restricted in node 7  and the only external force applied is a concentrated vertical force in node 3: . (𝑢1 = 𝑣1 = 𝑣7 = 0) 𝑉3 =‒ 100 𝑘𝑁

The beam is analyzed with Midas/Civil software [45] with and without shear deformation. The deformed shapes of the beam 
including only bending deformation, corresponding to vi and wi, or bending and shear deformation, vsi and wsi, are presented in 

(A)

(B)



Figure 2.B, being i the node number. 

                                      

        

Figure 2: Example 1. (A) Structure with applied load including vertical deflections, v, and rotations, w. Nodes in italics. (B) Deformed 
shape with bending deformation, v, or with bending and shear deformation, vs.

The deformed shapes will be used to estimate the value of all the flexural stiffnesses . In order to do so, the (𝐸𝐼1 𝑡𝑜 𝐸𝐼6)
measurement of at least 6 deflections or rotations that represent the flexural behavior of the beam are required. The selection of 
these measurements was analyzed by the observability trees method proposed in [41]. From the application of this procedure, it can 
be concluded that measuring the five vertical deflections of the inner nodes (v2 to v6), and the rotation of node 3 (w3) will enable the 
estimation of all the unknown stiffnesses, or in other words, will provide full observability of the system. 

Once the measurement set is selected, the observability method proposed by Nogal et al. [50] is applied using the two following 
measurement sets: (1) Measurements without shear deformation, which is v2 to v6 and w1. (2) Measurement with shear deformation, 
that is vs2 to vs6 and ws1. The observable flexural stiffnesses  obtained throughout the recursive process for both measurement (𝐸𝐼)
sets are presented in Figure 3 as percentage deviations. 
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Figure 3: Example 2: Percentage deviation between EI and   for measurement set (v2 to v6 and w3) without and with shear deformation. Horizontal axis 𝑬𝑰
represents the beam elements.

The analysis of Figure 3 shows no deviations in  when measurements without shear deformation are considered. 𝐸𝐼
Nevertheless, this is not the case when the shear deformation is included, as large errors are found in . For example errors of -𝐸𝐼
149.9% are found in the first beam element. This disproportionate error is explained by the fact that the used model does not consider 
shear effects. In fact, shear deformation is considered as a modeling error [13] into the observability analysis. 

The obtained results show that the role of shear deformation cannot be always neglected in the structural system identification 
by observability techniques. Thus, it can be concluded that a reformulation of the observability algorithm is required to include the 
effect of the shear deformation. This new algorithm is presented in the following section.

3. INTRODUCING SHEAR DEFORMATION INTO THE SSI BY OBSERVABILITY ANALYSIS

With the aim of including shear deformation into the SSI by observability analysis a new formulation of the stiffness matrix 
method is implemented. This formulation is based on the Timoshenko’s beam theory. Then, an illustrative step by step example is 
presented to explain the differences with the traditional observability method presented in the preceding section and in the literature.

(A)
          
 
(B)
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3.1 Shear formulation
The stiffness matrix  for a beam element with uniform cross section with 3 degrees of freedom per node ( and ) is [𝐾] 𝑢𝑖, 𝑣𝑖 𝑤𝑖

of order 6x6. The forces developed in the beam member when a unitary displacement is imposed along each degree of freedom 
holding all other displacements equal to zero leads to the finding of all the single elements of this stiffness matrix. According to the 
existing literature [54], the stiffness matrix  for a 2D analysis of a six degrees of freedom (two deflections (u and v) and one [𝐾𝑠]
rotation (w) at the initial and final beam element nodes), beam element including the shear deformation is:

 A comparison with the traditional stiffness matrix presented in Equation (1) shows that differences appear in some terms in 
the form of a new coefficient. This coefficient is known as the shear parameter (Ø) and can be expressed as:

,∅ =
12𝐸𝐼

𝐺𝐴𝑣𝐿2
(8)

where  is the shear modulus and can be calculated as:𝐺
 𝐺 =

𝐸
2(1 + 𝑣)

(9)

As it can be appreciated in Equation (7), the shear stiffness matrix has the same coefficients  for the axial stiffness as the (𝐸𝐴
𝐿 )

traditional stiffness matrix. This is because the shear and flexural stiffnesses are uncoupled from the axial stiffness. However, for 
the rest of the non-null elements of the matrix, shear and flexural stiffnesses are coupled. 

When the beam is subjected to shear forces and associated moments, the vertical deflection is  (where  is the 𝑣 = 𝑣𝑏 + 𝑣𝑠 𝑣𝑏
deflection due to the flexural strains and  is the additional deflection due to shear strains). Analysis of Equation  shows that 𝑣𝑠 (7)
the shear parameter Ø appears in both the numerator and the denominator of the matrix terms. Its location complicates significantly 
its estimation. In fact, the resulting system cannot be easily solved with observability techniques. To solve this problem a change of 
variable from Ø to Q is proposed. This change simplifies the mathematical resolution of the system and enables the application of 
observability techniques as the new unknown parameter appears uniquely in the numerator of the matrix terms. The definition of 
parameter Q is as follows:”

𝑄 =
∅

1 + ∅, (10)

where  is the so called observability shear parameter of the stiffness matrix [Ks]. It is to highlight that the value of this ranges from 𝑄
0 to 1. After introducing this change of variable, the stiffness matrix presented in Equation  is updated to the following form: (7)

                                                                                                                       (11)[𝐾𝑠] = [
𝐸𝐴
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]
Note that the shear parameter Ø appearing in Equation (7) is replaced by the observability shear parameter  in Equation (11). Thus, 𝑄
new nonlinear products of variables appear.

When this new formulation of the stiffness matrix is applied to the observability method a new observability variable has to be 
calculated in addition to the axial  and flexural  stiffness. This new variable is named observability shear stiffness  (𝐸𝐴) (𝐸𝐼) (𝐸𝐼𝑄)
and it is related to the shear deflections and to the shear parameter Ø. Besides this, the observability shear parameter can be expressed 
in terms of  with the following equation: (𝐸𝐴𝑣)

𝐸𝐴𝑣 =
‒ 24𝐸𝐼(𝑣 + 1)(𝑄 ‒ 1)

𝐿2𝑄
(12)

[𝐾𝑠] = [
𝐸𝐴
𝐿 0 0 ‒

𝐸𝐴
𝐿 0 0

0
12𝐸𝐼

𝐿3(1 + ∅)

6𝐸𝐼

𝐿2(1 + ∅)
0 ‒

12𝐸𝐼

𝐿3(1 + ∅)

6𝐸𝐼

𝐿2(1 + ∅)

0
6𝐸𝐼

𝐿2(1 + ∅)

𝐸𝐼(4 + ∅)
𝐿(1 + ∅) 0 ‒

6𝐸𝐼

𝐿2(1 + ∅)

𝐸𝐼(2 ‒ ∅)
𝐿(1 + ∅)

‒
𝐸𝐴
𝐿 0 0

𝐸𝐴
𝐿 0 0

0 ‒
12𝐸𝐼

𝐿3(1 + ∅)
‒

6𝐸𝐼

𝐿2(1 + ∅)
0

12𝐸𝐼

𝐿3(1 + ∅)
‒

6𝐸𝐼

𝐿2(1 + ∅)

0
6𝐸𝐼

𝐿2(1 + ∅)

𝐸𝐼(2 ‒ ∅)
𝐿(1 + ∅) 0 ‒

6𝐸𝐼

𝐿2(1 + ∅)

𝐸𝐼(4 + ∅)
𝐿(1 + ∅)

]
(7)



The fact of having new unknowns  leads to the necessity of adding additional measurements to be able to identify them. Thus, (𝐸𝐼𝑄)
it is necessary to use a new measurement set to be able to obtain all the observable variables  of the structure.(𝐸𝐴, 𝐸𝐼 𝑎𝑛𝑑 𝐸𝐼𝑄)

3.2 Step by step application of observability to shear stiffness 
The proposed algorithm is applied into a step by step example. In this example, a simple structure will be analyzed to illustrate 

the whole process necessary to obtain the unknown stiffnesses. This example is not focused on the numerical approach but on a 
symbolical one. In fact, for the first time in the literature, the parametric equations of the estimations are presented. Therefore, the 
numerical values could be easily obtained if necessary.

The structure considered in this academic example is a simply supported beam composed by 2 beam elements of a length  𝐿
and 3 nodes as shown in Figure 4. There are two concentrated forces applied at node 2  and six non-restrained (𝑈2 𝑎𝑛𝑑 𝑉2)
displacements and rotations: two horizontal displacements in nodes 2 and 3 , one vertical displacement in node 2  (𝑢2 𝑎𝑛𝑑 𝑢3) (𝑣2)
and three rotations in nodes 1, 2 and 3 . Finally, the unknowns in this structure are: two axial stiffnesses (𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3)

, one flexural stiffness  and one observability shear stiffness . The fact that elements with the same (𝐸𝐴1 𝑎𝑛𝑑 𝐸𝐴2) (𝐸𝐼) (𝐸𝐼𝑄)
bending stiffness have different axial stiffness does not have any physical meaning. However, this choice is purposely done for the 
sake of a better representation of the step-by-step example. The set of measurements needed to obtain the unknown parameters has 
to be composed at least by the same number of unknown stiffnesses (this is, 4 measurements). The selected measurements are 𝑤1, 𝑢2

., 𝑣2 𝑎𝑛𝑑 𝑤2

Figure 4: Two element simply supported beam model including unknown stiffnesses, load cases and measurement set.

In the structure presented in Figure 4, the equation that links displacements  and forces  through the stiffness matrix {δ1} {𝑓}
is as follows:[𝐾𝑠1] 

                                                                                                                                                                                         (13) [𝐾𝑠1]·{δ1} = {𝑓}

I(
𝐸𝐴1

𝐿 0 0 ‒
𝐸𝐴1

𝐿 0 0 0 0 0

0
12𝐸𝐼

𝐿3 ‒
12𝐸𝐼𝑄

𝐿3

6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2 0
12𝐸𝐼𝑄

𝐿3 ‒
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2 0 0 0

0
6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

4𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0

6𝐸𝐼𝑄

𝐿2 ‒
6𝐸𝐼

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0 0 0

‒
𝐸𝐴1

𝐿 0 0
𝐸𝐴1

𝐿 +
𝐸𝐴2

𝐿 0 0 ‒
𝐸𝐴2

𝐿 0 0

0
12𝐸𝐼𝑄

𝐿3 ‒
12𝐸𝐼

𝐿3

6𝐸𝐼𝑄

𝐿2 ‒
6𝐸𝐼

𝐿2 0
24𝐸𝐼

𝐿3 ‒
24𝐸𝐼𝑄

𝐿3 0 0
12𝐸𝐼𝑄

𝐿3 ‒
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

0
6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0 0

8𝐸𝐼
𝐿 ‒

6𝐸𝐼𝑄
𝐿 0

6𝐸𝐼𝑄

𝐿2 ‒
6𝐸𝐼

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿

0 0 0 ‒
𝐸𝐴2

𝐿 0 0
𝐸𝐴2

𝐿 0 0

0 0 0 0
12𝐸𝐼𝑄

𝐿3 ‒
12𝐸𝐼

𝐿3

6𝐸𝐼𝑄

𝐿2 ‒
6𝐸𝐼

𝐿2 0
12𝐸𝐼

𝐿3 ‒
12𝐸𝐼𝑄

𝐿3

6𝐸𝐼𝑄

𝐿2 ‒
6𝐸𝐼

𝐿2

0 0 0 0
6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0

6𝐸𝐼𝑄

𝐿2 ‒
6𝐸𝐼

𝐿2

4𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿

)·(
𝑢1
𝑣1
𝑤1
𝑢2
𝑣2
𝑤2
𝑢3
𝑣3
𝑤3

 

) = (
𝐻1
𝑉1
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑉3
𝑀3

 

) 

In matrix , the flexural and the observability shear stiffnesses are mixed in columns 2, 3, 5, 6, 7 and 8. To separate these [𝐾𝑠1]
unknowns it is necessary to uncouple these terms. To do this, the system of equations in Equation  is rewritten, modifying the (13)
stiffness matrix by separating the terms made of several summands. After this step, a new matrix , where each parameter [𝐾𝑠2]
corresponds to a single column is obtained. The new system is as follows:

                                                                                                                                                                                      (14) [𝐾𝑠2]·{δ2} = {𝑓} 



(
𝐸𝐴1

𝐿 0 0 0 0 ‒
𝐸𝐴1

𝐿 0 0 0 0 0 0 0 0 0

0
12𝐸𝐼

𝐿3 ‒
12𝐸𝐼𝑄

𝐿3

6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2 0 ‒
12𝐸𝐼

𝐿3

12𝐸𝐼𝑄

𝐿3

6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2 0 0 0 0 0

0
6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

4𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0 ‒

6𝐸𝐼

𝐿2

6𝐸𝐼𝑄

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0 0 0 0 0

‒
𝐸𝐴1

𝐿 0 0 0 0
𝐸𝐴1

𝐿 +
𝐸𝐴2

𝐿 0 0 0 0 ‒
𝐸𝐴2

𝐿 0 0 0 0

0 ‒
12𝐸𝐼

𝐿3

12𝐸𝐼𝑄

𝐿3 ‒
6𝐸𝐼

𝐿2

6𝐸𝐼𝑄

𝐿2 0
24𝐸𝐼

𝐿3 ‒
24𝐸𝐼𝑄

𝐿3 0 0 0 ‒
12𝐸𝐼

𝐿3

12𝐸𝐼𝑄

𝐿3

6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

0
6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0 0 0

8𝐸𝐼
𝐿 ‒

6𝐸𝐼𝑄
𝐿 0 ‒

6𝐸𝐼

𝐿2

6𝐸𝐼𝑄

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿

0 0 0 0 0 ‒
𝐸𝐴2

𝐿 0 0 0 0
𝐸𝐴2

𝐿 0 0 0 0

0 0 0 0 0 0 ‒
12𝐸𝐼

𝐿3

12𝐸𝐼𝑄

𝐿3 ‒
6𝐸𝐼

𝐿2

6𝐸𝐼𝑄

𝐿2 0
12𝐸𝐼

𝐿3 ‒
12𝐸𝐼𝑄

𝐿3 ‒
6𝐸𝐼

𝐿2

6𝐸𝐼𝑄

𝐿2

0 0 0 0 0 0
6𝐸𝐼

𝐿2 ‒
6𝐸𝐼𝑄

𝐿2

2𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿 0 ‒

6𝐸𝐼

𝐿2

6𝐸𝐼𝑄

𝐿2

4𝐸𝐼
𝐿 ‒

3𝐸𝐼𝑄
𝐿

)·(
𝑢1
𝑣1
𝑣1
𝑤1
𝑤1
𝑢2
𝑣2
𝑣2
𝑤2
𝑤2
𝑢3
𝑣3
𝑣3
𝑤3
𝑤3

 

) = (
𝐻1
𝑉1
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑉3
𝑀3

 

)
As all the stiffnesses are unknown, they have been moved to the vector , as it is shown in Equation . This vector is 𝛿 ∗

2 (15)
composed of non-linear terms including the stiffnesses  coupled with nodal deflections . This (𝐸𝐴1, 𝐸𝐴2, 𝐸𝐼 𝑎𝑛𝑑 𝐸𝐼𝑄) (𝑢𝑖, 𝑣𝑖, 𝑤𝑖)
rearrangement transforms matrix to a matrix of known coefficients. Equation  shows the modified system:[𝐾𝑠 ∗

2 ] (15)

                                                                                                                                                                                        (15) [𝐾𝑠 ∗
2 ]·{δ ∗

2 } = {𝑓} 

(
1
𝐿 0 0 0 0 ‒

1
𝐿 0 0 0 0 0 0 0 0 0 0

0
12

𝐿3 ‒
12

𝐿3

6

𝐿2 ‒
6

𝐿2 0 0 ‒
12

𝐿3

12

𝐿3

6

𝐿2 ‒
6

𝐿2 0 0 0 0 0

0
6

𝐿2 ‒
6

𝐿2

4
𝐿 ‒

3
𝐿 0 0 ‒

6

𝐿2

6

𝐿2

2
𝐿 ‒

3
𝐿 0 0 0 0 0

‒
1
𝐿 0 0 0 0

1
𝐿

1
𝐿 0 0 0 0 ‒

1
𝐿 0 0 0 0

0 ‒
12

𝐿3

12

𝐿3 ‒
6

𝐿2

6

𝐿2 0 0
24

𝐿3 ‒
24

𝐿3 0 0 0 ‒
12

𝐿3

12

𝐿3

6

𝐿2 ‒
6

𝐿2

0
6

𝐿2 ‒
6

𝐿2

2
𝐿 ‒

3
𝐿 0 0 0 0

8
𝐿 ‒

6
𝐿 0 ‒

6

𝐿2

6

𝐿2

2
𝐿 ‒

3
𝐿

0 0 0 0 0 0 ‒
1
𝐿 0 0 0 0

1
𝐿 0 0 0 0

0 0 0 0 0 0 0 ‒
12

𝐿3

12

𝐿3 ‒
6

𝐿2

6

𝐿2 0
12

𝐿3 ‒
12

𝐿3 ‒
6

𝐿2

6

𝐿2

0 0 0 0 0 0 0
6

𝐿2 ‒
6

𝐿2

2
𝐿 ‒

3
𝐿 0 ‒

6

𝐿2

6

𝐿2

4
𝐿 ‒

3
𝐿

)·(
 𝐸𝐴1𝑢1

𝐸𝐼𝑣1
𝐸𝐼𝑄𝑣1
𝐸𝐼𝑤1

𝐸𝐼𝑄𝑤1
𝐸𝐴1𝑢2
𝐸𝐴2𝑢2
𝐸𝐼𝑣2

𝐸𝐼𝑄𝑣2
𝐸𝐼𝑤2

𝐸𝐼𝑄𝑤2
𝐸𝐴2𝑢3
𝐸𝐼𝑣3

𝐸𝐼𝑄𝑣3
𝐸𝐼𝑤3

𝐸𝐼𝑄𝑤3

) = (
𝐻1
𝑉1
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑉3
𝑀3

 

)
The next step is to impose the boundary conditions  and include the measured deflections and rotations (𝑢1 = 𝑣1 = 𝑣3 = 0)

, removing them from vector  and introducing them into the modified stiffness matrix  to obtain (𝑤1, 𝑢2, 𝑣2 𝑎𝑛𝑑 𝑤2) δ ∗
2 [𝐾𝑠3

∗ ]
Equation . In this way, the columns associated with measured variables are multiplied by their corresponding values and the (16)
associated factors are removed from the vector of variables . The modified system after incorporating the boundary conditions {δ ∗

3 }
and the measured variables is as follows:

                                                                                                                                                                                        (16) [𝐾𝑠 ∗
3 ]·{δ ∗

3 } = {𝑓} 

(
0 0 0 0 0 ‒

𝑢2

𝐿 0 0 0 0 0 0 0 0 0 0

0 0 0
6𝑤1

𝐿2 ‒
6𝑤1

𝐿2 0 0 ‒
12𝑣2

𝐿3

12𝑣2

𝐿3

6𝑤2

𝐿2 ‒
6𝑤2

𝐿2 0 0 0 0 0

0 0 0
4𝑤1

𝐿 ‒
3𝑤1

𝐿 0 0 ‒
6𝑣2

𝐿2

6𝑣2

𝐿2

2𝑤2

𝐿 ‒
3𝑤2

𝐿 0 0 0 0 0

0 0 0 0 0
𝑢2

𝐿

𝑢2

𝐿 0 0 0 0 ‒
1
𝐿 0 0 0 0

0 0 0 ‒
6𝑤1

𝐿2

6𝑤1

𝐿2 0 0
24𝑣2

𝐿3 ‒
24𝑣2

𝐿3 0 0 0 0 0
6

𝐿2 ‒
6

𝐿2

0 0 0
2𝑤1

𝐿 ‒
3𝑤1

𝐿 0 0 0 0
8𝑤2

𝐿 ‒
6𝑤2

𝐿 0 0 0
2
𝐿 ‒

3
𝐿

0 0 0 0 0 0 ‒
𝑢2

𝐿 0 0 0 0
1
𝐿 0 0 0 0

0 0 0 0 0 0 0 ‒
12𝑣2

𝐿3

12𝑣2

𝐿3 ‒
6𝑤2

𝐿2

6𝑤2

𝐿2 0 0 0 ‒
6

𝐿2

6

𝐿2

0 0 0 0 0 0 0
6𝑣2

𝐿2 ‒
6𝑣2

𝐿2

2𝑤2

𝐿 ‒
3𝑤2

𝐿 0 0 0
4
𝐿 ‒

3
𝐿

)·(
 𝐸𝐴1

𝐸𝐼
𝐸𝐼𝑄
𝐸𝐼

𝐸𝐼𝑄
𝐸𝐴1
𝐸𝐴2
𝐸𝐼

𝐸𝐼𝑄
𝐸𝐼

𝐸𝐼𝑄
𝐸𝐴2𝑢3

𝐸𝐼
𝐸𝐼𝑄

𝐸𝐼𝑤3
𝐸𝐼𝑄𝑤3

) = (
𝐻1
𝑉1
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑉3
𝑀3

 

)



The next step showed in Equation  consists of clustering together the repeated coupled variables in the vector of unknowns (17)
 by joining together the corresponding columns of . In this example, this is the case of the columns related to {δ ∗

4 } [𝐾𝑠3
∗ ] 𝐸𝐴1, 𝐸𝐼

. If after this process null columns are obtained, these columns will be removed together with the corresponding variables  and 𝐸𝐼𝑄
from  to obtain a simpler matrix.{δ ∗

4 }

                                                                                                                                                                                        (17) [𝐾𝑠 ∗
4 ]·{δ ∗

4 } = {𝑓} 

(
‒

𝑢2

𝐿 0 0 0 0 0 0

0 0
6𝑤1

𝐿2 ‒
12𝑣2

𝐿3 +
6𝑤2

𝐿2 ‒
6𝑤1

𝐿2 +
12𝑣2

𝐿3 ‒
6𝑤2

𝐿2 0 0 0

0 0
4𝑤1

𝐿 ‒
6𝑣2

𝐿2 +
2𝑤2

𝐿 ‒
3𝑤1

𝐿 +
6𝑣2

𝐿2 ‒
3𝑤2

𝐿 0 0 0

𝑢2

𝐿

𝑢2

𝐿 0 0 ‒
1
𝐿 0 0

0 0 ‒
6𝑤1

𝐿2 +
24𝑣2

𝐿3

6𝑤1

𝐿2 ‒
24𝑣2

𝐿3 0
6

𝐿2 ‒
6

𝐿2

0 0
2𝑤1

𝐿 +
8𝑤2

𝐿 ‒
3𝑤1

𝐿 ‒
6𝑤2

𝐿 0
2
𝐿 ‒

3
𝐿

0 ‒
𝑢2

𝐿 0 0
1
𝐿 0 0

0 0 ‒
12𝑣2

𝐿3 ‒
6𝑤2

𝐿2

12𝑣2

𝐿3 +
6𝑤2

𝐿2 0 ‒
6

𝐿2

6

𝐿2

0 0
6𝑣2

𝐿2 +
2𝑤2

𝐿 ‒
6𝑣2

𝐿2 ‒
3𝑤2

𝐿 0
4
𝐿 ‒

3
𝐿

)·(
𝐸𝐴1
𝐸𝐴2
𝐸𝐼

𝐸𝐼𝑄
𝐸𝐴𝑢3
𝐸𝐼𝑤3

𝐸𝐼𝑄𝑤3

) = (
𝐻1
𝑉1
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑉3
𝑀3

 

)
According to (4) the system (17) can be rearranged as follows:

                                                                                                                                                                                           (18)[𝐵]·{𝑧1} = {𝐷} 

(
0 0

4𝑤1

𝐿 ‒
6𝑣2

𝐿2 +
2𝑤2

𝐿 ‒
3𝑤1

𝐿 +
6𝑣2

𝐿2 ‒
3𝑤2

𝐿 0 0 0 0 0 0

𝑢2

𝐿

𝑢2

𝐿 0 0 ‒
1
𝐿 0 0 0 0 0

0 0 ‒
6𝑤1

𝐿2 +
24𝑣2

𝐿3

6𝑤1

𝐿2 ‒
24𝑣2

𝐿3 0
6

𝐿2 ‒
6

𝐿2 0 0 0

0 0
2𝑤1

𝐿 +
8𝑤2

𝐿 ‒
3𝑤1

𝐿 ‒
6𝑤2

𝐿 0
2
𝐿 ‒

3
𝐿 0 0 0

0 ‒
𝑢2

𝐿 0 0
1
𝐿 0 0 0 0 0

0 0
6𝑣2

𝐿2 +
2𝑤2

𝐿 ‒
6𝑣2

𝐿2 ‒
3𝑤2

𝐿 0
4
𝐿 ‒

3
𝐿 0 0 0

‒
𝑢2

𝐿 0 0 0 0 0 0 ‒ 1 0 0

0 0
6𝑤1

𝐿2 ‒
12𝑣2

𝐿3 +
6𝑤2

𝐿2 ‒
6𝑤1

𝐿2 +
12𝑣2

𝐿3 ‒
6𝑤2

𝐿2 0 0 0 0 ‒ 1 0

0 0 ‒
12𝑣2

𝐿3 ‒
6𝑤2

𝐿2

12𝑣2

𝐿3 +
6𝑤2

𝐿2 0 ‒
6

𝐿2

6

𝐿2 0 0 ‒ 1

){
𝐸𝐴1
𝐸𝐴2
𝐸𝐼

𝐸𝐼𝑄
𝐸𝐴𝑢3
𝐸𝐼𝑤3

𝐸𝐼𝑄𝑤3
𝐻1
𝑉1
𝑉3
 

} = {
𝑀1
𝐻2
𝑉2
𝑀2
𝐻3
𝑀3
0
0
0
 

}
Matrix  is formed by the partitioned matrices  and  and the null and the identity matrices. The vector  includes [𝐵] 𝑘 ∗

00 𝑘 ∗
10 {𝑧1}

the reactions due to the boundary conditions , the axial stiffnesses , the flexural stiffness , the (𝐻1, 𝑉1 𝑎𝑛𝑑 𝑉3) (𝐸𝐴1 𝑎𝑛𝑑 𝐸𝐴2) (𝐸𝐼)
observability shear stiffness  and nonlinear products of axial, flexural and observability shear stiffnesses coupled  with (𝐸𝐼𝑄)
deflections and rotations .(𝐸𝐴2𝑢3, 𝐸𝐼𝑤3 𝑎𝑛𝑑 𝐸𝐼𝑄𝑤3)

Afterwards, the null space  of  has to be obtained. Then, the system can be expressed in terms of a particular solution [𝑉] [𝐵] {
 added to the null space  multiplied by a vector of coefficients . The analysis of the null space leads to determine the 𝑧𝑝1} [𝑉] {𝑝1}

observable variables (variables with a unique solution) by identifying the null rows of the null space. Hence, the general solution of 
 for this first recursive step is as follows:{𝑧1}



{𝑧1} = {𝑧𝑝1} + [𝑉]·{𝑝1} = (
𝑬𝑨𝟏
𝐸𝐴2
𝑬𝑰

𝑬𝑰𝑸
𝐸𝐴2𝑢3
𝑬𝑰𝒘𝟑

𝑬𝑰𝑸𝒘𝟑
𝑯𝟏
𝑽𝟏
𝑽𝟑

) = {𝑧𝑝1} + (
0

1
𝑢2

0
0
1
0
0
0
0
0

)·{𝑝1} (19)

The general solution is the set of all possible solutions to the system. The solution for all the unknown parameters of the 
structure includes a particular solution and the set of all solutions of the associated homogeneous system of equations. Therefore, 
the determination of the null rows of the null space leads to determine the observable parameters (highlighted in bold in Equation 
(19)). 

The last step is to calculate the numeric value of the observed parameters. This solution can be symbolically obtained from the 
parametric equations of  Once identified the observed parameters, their value can be numerically calculated. The parametric [𝐵].
equations are presented as follows:

𝐸𝐴1 =
𝐻2𝐿

𝑢2
(20)

𝐸𝐼 =
𝐿2𝑉2

4(𝑤1 ‒ 𝑤2) (21)

𝐸𝐼𝑄 =
𝐿(2𝐿2𝑉2𝑤1 ‒ 3𝐿𝑉2𝑣2 + 𝐿2𝑉2𝑤2)

6(𝑤1 ‒ 𝑤2)(𝐿𝑤1 ‒ 2𝑣2 + 𝐿𝑤2)
(22)

 𝑄 =
4𝐿𝑤1 ‒ 6𝑣2 + 2𝐿𝑤2

3𝐿𝑤1 ‒ 6𝑣2 + 3𝐿𝑤2
(23)

For the first time in the literature, a parametric equation of  depending on the measured data (Equation (22)) is obtained. 𝐸𝐼𝑄
The parametric equation of  is calculated by Equation (22), can be used to obtain the shear parameter  as presented in Equation 𝐸𝐼 𝑄
(23). This equation shows that  can only be determined when the value of the corresponding flexural stiffness is known. Finally, 𝑄
once the values of the observable variables are calculated, the observability shear stiffness can be expressed in terms of  using (𝐸𝐴𝑣)
Equation (11). Finally, as new information is obtained from observable parameters in the current analysis (recursive step), this 
information can be reintroduced in the system. This recursive process would continue until no additional variables are observed 
between two subsequent steps. 

To illustrate the required measurement set to obtain the full observability of a structure, an example with a more complex 
structure, a simple supported beam with more unknowns is presented in the following section.

3.2 Example 2 with the new formulation 
To evaluate the application of the observability analysis in structures with a higher number of unknowns and to define the 

characteristics of the required measurement set to achieve full observability of a structure, the simply supported beam depicted in 
Figure 2.A is analyzed. The targeted unknowns are: . The mechanical and geometrical (𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3,𝐸𝐴𝑣1,𝐸𝐴𝑣2 𝑎𝑛𝑑 𝐸𝐴𝑣3)
properties of the analyzed example corresponds with the beam presented in Section 2.2, The deformed shape including shear 
deformation is presented in Figure 2.B. Different sets including vertical deflections, vs, and rotations, ws, obtained by this simulation 
are introduced as input data. 

All possible sets made out of 3 to 12 measurements were analyzed. Results are presented in Figure 5. This figure includes how 
many times a unique solution (observability) is obtained when the same number of measurements is used.

Figure 5 shows, from all the possible measurement sets, the percentage of sets able to obtain the solution for all the unknown 
flexural stiffness  and shear stiffness . This illustrates that no set with 3 measurements provides any result. However, (𝐸𝐼) (𝐸𝐴𝑣)
when the number of measurements per set is increased to 4, a small number of combinations (4.24%) is able to obtain all the EI. All 
of these combinations are always composed by 4 rotations, w.

If the set is composed by more measurements, the percentage of sets providing full observability increases. For example: in the 
case of the sets with 6 measurements, the total number of possible combinations is 924 and the number of combinations enabling 
the observability of all the unknown parameters is only 168. Therefore, only the 18.18% of the combinations with 6 measurements 
provides the values all the unknown parameters. All the adequate combinations for this set are composed by 2 vertical displacements, 
v, and 4 rotations, w. For the sets of 7 measurements, the total number of possible combinations is 792 and the number of observable 
combinations is 305. So, the percentage of useful combinations increases to 38.51%. Moreover, even in the case of the sets of 7 



measurements, the minimum number of rotations, w, is always 4. Thus, it can be said that, for this problem, 4 are the least possible 
number of rotations needed to determine all the unknown parameters. 

Figure 5: Frequency of observability for Ei, EAv and EI+EAv for all possible combinations of different number of measurements.

Figure 5 also shows that no shear  parameter can be obtained unless the corresponding  is first observed. (𝐸𝐴𝑣) (𝐸𝐼)
Furthermore, to fully observe the 6 structural unknowns, at least six measurements have to be introduced as input. Thus, any set 
with less than 6 measurements is inadequate to find all the unknown variables. 

In order to show the results obtained, some representative sets have been selected and presented in Table 1. This table also 
shows the unknown variables obtained by using the observability algorithm.

Table 1: Observable variables for different measurement sets

Parameters observed
Set Measurements

𝑬𝑰𝟏 𝑬𝑰𝟐 𝑬𝑰𝟑 𝑬𝑨𝒗𝟏
𝑬𝑨𝒗𝟐

𝑬𝑨𝒗𝟑

1 𝑣2, 𝑤1 & 𝑤2      

2 𝑣2, 𝑣3, 𝑣4,𝑣5, 𝑣6, 𝑤1 & 𝑤2      

3 𝑣2, 𝑣3, 𝑣4,𝑣5 & 𝑣6      

4 𝑣2, 𝑣3, 𝑣4,𝑣5, 𝑣6 & 𝑤1      

5 𝑤1,𝑤2, 𝑤3, 𝑤4,𝑤5 & 𝑤6      

6 𝑤1,𝑤3, 𝑤5, 𝑤7, 𝑣4 & 𝑣6      

Sets 1  and 2 ( ) show that additional measurements ) do not mean necessarily (𝑣2, 𝑤1 & 𝑤2) 𝑣2, 𝑣3, 𝑣4,𝑣5, 𝑣6, 𝑤1 & 𝑤2  (𝑣4,𝑣5, 𝑣6
obtaining more variables. The importance of selecting the correct measurement set is highlighted. Set 3 and 4 show that the 
measurement of all displacements gives little information if it is not combined with enough rotations. However, measurement set 5, 
which only includes rotations, gives an accurate result for all the flexural stiffnesses but does not provide the information to observe 
any of the . Finally, measurement set 6 is able to determine all the observable parameters. This measurement set is composed (𝐸𝐴𝑣)
by 4 rotations  and 2 vertical displacements (𝑤1,𝑤3, 𝑤5 𝑎𝑛𝑑 𝑤7)

Hence, the new formulation is able to find the correct solution of the observability variables when the correct set of 
measurements is used. The set of measurements to find all the flexural stiffnesses and the observability shear stiffnesses of the beam 
must include information about rotations and vertical displacements. This information is required to uncouple all the unknown 
parameters properly. Furthermore, only with rotations the algorithm is unable to determine the observability shear stiffnesses. Thus, 
it is essential to choose the right combination of rotations and deflections to determine all the unknown parameters.

Accurate estimations of all the observed parameters are obtained for all the analyzed sets when the shear deformation is 
included into the formulation and numerical free-error measurements are considered.

 
4. APPLICATION TO THIN WEB BRIDGES

Accurate models to control construction of cantilever bridges are of uttermost importance. Deflection should be both controlled 
and forecast in order to give an adequate geometry to the segments. Hence, to calculate precamber, an accurate model upon which 
an analysis has to be performed is needed. As an example on how to use this technique to help model updating, a simplified model 
of the Yunbao Bridge over the Yellow Riverin China (see Fig. 6.A) will be studied. The span of the structure is 90m long. The 
model represents a simplification of an intermediate construction stage. This model includes two symmetric spans in cantilever 
supported by an intermediate pile. The analyzed construction stage considers balanced cantilevers 13.5m long, composed by three 
deck segments of 4.5m. A detail of the steel web of the composite section is presented in Fig. 6.B. The structural response at this 
stage is simulated numerically without considering actual site data. The creep and shrinkage effects in concrete were neglected.



(A) Bridge under construction (B)  Detail of the steel web

Figure 6: Composite bridge on site in China. (A) Cantilever erection and (B) Detail of the steel web.

This structure is simulated by the mean of the simplified FEM presented in Fig. 7.A. This FEM includes 8 nodes and 7 beam 
elements. The cross section of the composite deck is presented in Fig. 7.B and the mechanical and material properties are listed in 
Table 2. Whereas in the real bridge webs are corrugated, in the analyzed example they are considered 25mm thick steel sheets. The 
connection between concrete and steel is assumed as rigid, and the relative slip between both materials is neglected. In order to 
make the calculations of the theoretical properties of the composite cross section, full interaction is considered (no slip at the 
interphase between steel and concrete). In order to evaluate axial and bending stiffness any formulation of strength of materials of 
composite sections can be used. However, as the axial stiffness of the corrugated web is smaller than the one of the straight web due 
to the accordion effect, this has to be taken into account. In order to do so, simple finite element models or Castigliano theorem can 
be used to calculate the reduction of axial stiffness that crippled webs imply [55, 56]. According to these calculations axial and 
bending mechanical properties of the steel part of the composite section of this particular bridge should be multiplied by 0.001136. 
Hence, the steel section contributes very little to the axial and bending stiffness of the composite cross section. It is assumed that 
shear is transferred by the steel webs. Crippled web also reduces shear stiffness compared with straight webs as the actual length of 
the web is bigger than the one of the segment. In order to take this into account in a model made out of straight elements, shear 
stiffness of the crippled web has to be reduced so as to take into account the real length of the web. Shear stiffness KS can be 
calculated according to the following equation

𝐾𝑠 =
𝑉
𝛾 = 𝐺·𝐴𝑞·

𝐿𝑠

𝐿𝑤
(24)

Where V is the shear force, γ is the shear distortion,  is the longitudinal length of the segment or the length of the longitudinal 𝐿𝑠
axis of the corrugated web and  is the actual length of the web, considering the cripples. Shear stiffness of the crippled web is 𝐿𝑤
reduced by 0.879. The properties in Table 2 were defined by the method of the transformed section [57].

Studies (such as [58]) show that the classical beam theory fails to reproduce the shear force flow near the joints and supports. 
This phenomenon is neglected in this study. Nevertheless, for a more accurate simulation, K-truss mechanism [59, 60] can be 
introduced in the model.

Figure 7: Bridge in China (A) Finite Element Model and geometry. (B) Cross Section.

Table 2: Properties of the Finite Element Model of the Bridge 

Area, m2 12.59

Shear Area, m2 9.83

Inertia, m4 35.62

Steel Young’s Modulus, GPa 210

Concrete Young’s Modulus, GPa 35

Poissons’ ratio, ν 0,3



The flexural and shear stiffnesses of all 7 beam elements (that is to say EI1 to EI7 and EAv1 to EAv7) are assumed as unknown. 

4.1 Static load test 
In order to identify the 14 unknown stiffnesses the measurement of 14 deflections and/or rotations in a static load case that 

excites the flexural mechanism is required. Observability will take into account the variation of deflections and rotations due to the 
movement of the form traveler. The load case used is derived from Fig. 8. There, it is assumed that the weight Q of the formwork 
traveler (weight of formwork included) is around 60 % of the weight of the segment (1041 kN). The effect of each form traveler in 
the deck is assumed to be a pair of vertical forces of values 0.25Q and 1.25Q (226 kN, upwards and 1267 kN, downwards). Load 
case used for the SSI is calculated by deducing the effects of the stage i (Fig. 8.A), from stage i+1 (Fig. 8.B), in which the formwork 
is moved forward to the construction of the next segment. The resulting load case in Stages i and i+1 are presented in Figures 8.C 
and 8.D, respectively. The resultant load case introduced in the simulation is shown in Fig. 8.E. In this paper, measurement errors 
are neglected. The effect of these unavoidable errors will be addressed by the authors in future works

Figure 8: Definition of the load case: (A, C) Stage i. (B, D) Stage i+1, (E) Load case used for the inverse analysis.

The vertical deflections in the nodes of the structure are calculated with the software Midas/Civil [45] both without including 
and including the shear deformation of the deck. Fig. 9 includes a comparison of both deflections.

Figure 9: Variation of vertical deflections at an intermediate construction stage with and without shear deformation.

This figure shows that the maximum deflection variations are located at the tips of the cantilevers. Shear deformation accounts 
for 0,1mm of the vertical displacement, which is not negligible as it represents the 7,6% of the total deformation. To get accurate 
measurements of the vertical deflections on site, different measuring devices can be used. An example of these devices, valid for 
static and dynamic identification [61] is the measurement system proposed in Ribeiro et al. [62]. In this procedure, a precision of 
0.067mm can be achieved on site conditions.



4.2 SSI by observability techniques
In this section the measured response of the structure is used to estimate the unknown stiffnesses. A flexural observability tree [42] 
has been used to select an adequate measurement set. When shear stiffness is neglected the measurement set consists on all the 
deflections (v1, v2, v3, v6, v7, v8) and one rotation (w4). On the other hand, when shear stiffnesses is considered in the formulation 
the rest of rotations are also required. The rotations can be measured with inclinometers with high resolution. For example, the 
device 210/220 from the German company Leica has a resolution of 1e-6 rad [63]. This type of inclinometer has been applied in the 
construction control of the vertical alignment of some skyscrapers, such as World Trade Center [64].

Considering the shear stiffness, parametric equations can be obtained for the different elements. The equations of the stiffnesses 
at some beam elements,  and , are presented. 𝐸𝐼 𝐸𝐼𝑄

𝐸𝐼1 =
‒ 81𝐿2𝑉1

8(𝑤1 ‒ 𝑤2) (25)

𝐸𝐼2 =
‒ 9𝐿( ‒ 27𝐿𝑉1 + 9𝐿𝑉2)

8·(𝑤2 ‒ 𝑤3) (26)

𝐸𝐼3 =
‒ 9𝐿( ‒ 45𝐿𝑉1 ‒ 27𝐿𝑉2 + 9𝐿𝑉3)

8·(𝑤3 ‒ 𝑤4)

(27)

𝐸𝐼4 =
‒ 5𝐿(27𝐿𝑉1 + 18𝐿𝑉2 + 9𝐿𝑉3)

8·(𝑤4 ‒ 𝑤5)

(28)

𝐸𝐼𝑄1 =
9𝐿( ‒ 18𝐿𝑉1𝑣1 + 18𝐿𝑉1𝑣2 ‒ 54𝐿2𝑉1𝑤1 ‒ 27𝐿2𝑉1𝑤2)

4(𝑤1 ‒ 𝑤2)·(4𝑣1 ‒ 4𝑣2 + 9𝐿𝑤1 + 9𝐿𝑤2)

(29)

These equations can be used to determine how sensitive the different estimates are to errors.

Figure 10 presents a comparison of the differences between the estimated flexural stiffnesses ( ) and the actual values (EI) in 𝐸𝐼
the seven elements of the beams with two observability procedures (with or without the shear effects into the stiffness matrix).

Figure 10: Percentage deviation of  without and with shear deformation in the SSI.𝑬𝑰

This figure shows that deviations when the shear formulation is included into the stiffness matrix and error-free measurements 
are considered are negligible. The reduced deviations obtained in this case can be explained by the fact numerical and non-actual 
site measurements are considered. It also illustrates that shear deformation cannot be neglected for the structural system 
identification of this structure. In fact, significant errors (e.g. -65,5 % in segments 1 and 7 or +26,7% in segments 2 and 6) appear 
when this phenomenon is not considered. 

5. CONCLUSIONS
Most Structural System Identification (SSI) methods neglect shear deformation as this phenomenon is usually much less 

significant than the flexural one. Despite of the important role that this deformation might play especially in members with low 
span-to-depth ratio, no detailed study addressing the particular effects of this deformation in static SSI tests can be found in the 
literature. To fill this gap, this paper presents the first study focused on the shear deformation effects in a structural system 
identification method: the observability technique. This is a parametric method based on static measurements. 

An illustrative example shows how important the role of the shear deformation might be. In fact, this example illustrates that 



the difference between Timoshenko’s theory and Euler-Bernoulli theory is remarkable for members with moderate span-to-depth 
ratio. To solve this modeling error, the formulation of the observability method is updated to include shear deformation. A detailed 
step by step example is presented to illustrate the algorithm. This new procedure enables, for the first time in the literature, the 
definition of parametric equations of the observability shear stiffness depending on the measured data for simple structures. The 
study of this equation might provide useful insight of the sensitivity to the estimation for each measurement. The proposed technique 
is also applied into a simply supported beam with six unknown parameters. This example proves the applicability of the observability 
techniques in actual structures including shear deformation, providing that enough information is obtained from a static test. 
Rotations and deflections should be measured in order to get full observability (bending and shear stiffness). If only the bending 
stiffness is targeted, rotations can provide enough information to get so. 

In order to show the applicability of the method on an actual thin web structure, an intermediate construction stage of a 
cantilever composite bridge in China is analyzed. The results of this structure illustrate how an adequate formulation can be used to 
reduce adequately the modeling errors without the need of optimization processes. This updated formulation enables also the 
calculation of parametric equations of the estimates that gives us information about their sensitivity to measurement errors.
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