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Abstract: The temporal nature of static and dynamic deformation of fibre metal laminates is discussed
here. The aim of the study is to verify the proposed innovate model using layered composites.
The modified relaxation model is based on the earlier formulated plasticity relaxation model for
homogeneous materials. The proposed relaxation model makes it possible to describe the deformation
of the layered composites from elastic to irreversible deformation, finalised by the failure moment.
The developed approach allows us to consider the effects of the transition from static to dynamic
loading. This means that the model-calculated dynamic limiting characteristics of the metal and the
strength of brittle materials will have a determining character, depending on the loading history. The
verification of the model using a glass fibre reinforced aluminium composite, glass fibre reinforced
titanium composite, carbon fibre reinforced aluminium composite, and Kevlar fibre reinforced
aluminium composite with different thickness ratios between metal and polymer layers is given.
It is shown that the theoretical deformation curves of the metal composites at the various strain
rates, finalised by brittle fracture of the polymer layers or continued irreversible deformation of
remaining unbroken metal layers with destroyed polymer (fibre/epoxy) layers, are predicted. Based
on the same structural−temporal parameters for five (Ti/GFRP (0/90)/Ti/GFRP(90/0)/Ti) and three
(Ti/GFRP(0/90/90/0)/Ti) layers glass fibre reinforced titanium composites and the polymer layers,
one-stage and two-stage stress drops during the irreversible deformation of the composite under
static and dynamic loading are simulated. The change of the multi-stage fracture of the composite
from static to dynamic loading and the fracture characteristic times of the polymer (100 s and 15,400 s)
and the metal (8.4 ms) are correlated. Continued plastic deformation of the composite after fracture of
the polymer layers is related with different values of the characteristic relaxation times of the polymer
(fibre/epoxy) and the metal layers.

Keywords: strain rate; layered composites; deformation curve; relaxation plasticity model; fibre;
stress drop

1. Introduction

Two types of theories are used to numerically simulate the nonlinear initial defor-
mation of the layered metal composite structures under static loads. The first type [1,2]
considers the composite as a combination of two homogeneous materials, and through
mixing of the deformation dependencies of brittle polymer layers and ductile metal lay-
ers, the complete deformation dependence of the composite is modelled. In the classical
theory of laminates [3–5] (the second most used type), the deformation of the composite is
determined through the plane stress state, and the deformation dependence is calculated
according to Hooke’s law by creating a stiffness matrix of the composite. Both types of the-
ories apply to polymer or metal matrix laminated composites, but are not used in modeling
the static failure of concrete composites with different types of aggregates [6–8]. Using the
finite element method without failure criteria, it is possible to simulate the initial deforma-
tion response of the composite [9]. The multi-stage process of composite fracture under
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static loads can be predicted using various nonlinear damage models [10–12]. Determining
the contact condition between the layers, it is possible to simulate the deformation of the
composite before failure using the finite element method [13,14].

The multi-stage process of the fracture of the multilayer metal composites leads
to the dynamic deformation dependencies of the metal composites differing from the
typical deformation dependencies of homogeneous materials [15,16]. The simultaneous
deformation of plastic and brittle materials complicates the preparatory process of fracture,
and new types of deformation diagrams arise under both static and dynamic loading,
depending on the combination of materials in the composite [17–20]. The appearance of
the time factor in the case of irreversible deformation of the composite under dynamic
loads requires the expansion of typical elastic criteria for plastic materials [21–23], as well
as the introduction of new characteristics that take into account the temporal or strain rate
features of the deformation of materials.

To formulate the deformation model of the layered metal composites subjected to
dynamic loads, the classical Johnson−Cook model for plastic deformation of metals, the
Johnson−Cook damage model, and the delamination model are used [24,25]. The number
of fitting parameters that do not have a physical meaning increases when considering
the deformation process under dynamic loads. The study shows that numerical models
cannot be used for various homogeneous materials under static and dynamic loads, as the
parameters of these models depend on the loading history. In other words, for each load
range, a different dynamic plasticity model for homogeneous materials must be selected.

The studies listed above show the impossibility of using some of the unified ap-
proaches for predicting the deformation of multilayer composites. When studying compos-
ite materials under dynamic loads, new difficulties are added related to the dependence of
the material response on the applied loading rate and generally on the loading history. For
homogeneous materials, there is also no unified approach for calculating the deformation
of a material under a dynamic load, as there are many different constitutional models. The
main difficulty in using dynamic models for homogeneous materials is the binding of one
material to a model and the applicability of the model in a certain range of strain rates.
Undoubtedly, the integral approach of Tuler and Butcher shows a good result [26], but
there is no understanding regarding determining the stable parameters of the material
responsible for the dynamic response of the material when using this model. Thus, the
development of a unified dynamic model for the deformation of multilayer composites
remains an urgent task today.

In this paper, the development of our idea, proposed earlier in [27,28], by applying
the relaxation model of heterogeneous materials, is continued. The verification of the
proposed model for composites (glass fibre reinforced aluminium composite, glass fibre
reinforced titanium composite, carbon fibre reinforced aluminium composite, and Kevlar
fibre reinforced aluminium composite) tested under dynamic and static conditions is
given. The proposed model is based on the relaxation plasticity model for homogeneous
materials [29–31] and the fracture criteria for homogeneous materials [32,33]. Using the
proposed model, it is possible to calculate the elastic, inelastic, and irreversible stages
of composite deformation until the composite is completely destroyed. The proposed
relaxation model makes it possible to describe the deformation of the layered composites
from elastic to irreversible deformation, finalised by the failure moment. The developed
approach allows for considering the effects of the transition from static to dynamic loading.
It means that the model-calculated dynamic limiting characteristics of the metal and
the strength of brittle materials will have a determining character, depending on the
loading history. The peculiarity of the model used is the use of invariant parameters to
the deformation history, called the structural−temporal approach. When modelling the
fracture process, the structural and temporal parameters of both the composite itself
and its composite materials are taken into account. It is assumed that the proposed
relaxation model for the heterogeneous materials takes into account the strain rate effects at
different loading histories, as well as the relaxation model for homogeneous materials. The
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model predicts the deformation dependence, which is typical for brittle and ductile−brittle
fractures of the composite materials with different structural and temporal parameters. So,
it has been proven that the idea of using a united set of characteristic times of plasticity and
fracture, which previously worked well for predicting ductile−brittle transitions [34,35] and
dynamic phase transformations [33], also makes it possible to effectively predict important
competitive phenomena in materials with a complex internal structure.

2. Fracture Criterion of Brittle Materials

To predict the strength of brittle materials in a wide range of strain rates, the
structural−temporal approach [32,33] is considered, based on the idea of a material incuba-
tion time [35]. The corresponding fracture criteria proposed in [36–40] allowed for studying
a large set of different phenomena of the dynamic brittle fracture process successfully. The
set of material parameters in this approach is invariant to the history of loading, Σ(t). These
parameters allow for comparing the dynamic characteristics of the material obtained from
experiments with different shapes of the loading pulse [41]. The fracture condition in our
particular case is determined by the incubation time criterion, which can be represented by
the following relation:

ϕ
(

t, Σ(t), σf , τf , α f

)
≤ 1, ϕ

(
θ, L(θ), a∗, a1

IT , a2
IT

)
=

1
a1

IT

∫ θ

θ−a1
IT

(
L(θ1)

a∗

)a2
IT

dθ1 (1)

where τ is the incubation time of fracture associated with the dynamics of the micro-
cracking relaxation processes preceding the macro-fracture event, Σ(t) is the time depen-
dence of the local tensile stress in the specimen, and σf is the static strength of the brittle
fibres. The time of fracture tf is defined as the moment at which the equality sign in Equa-
tion (1) is attained. The parameter α characterizes the sensitivity of the material to the level
(amplitude) of force field causing the fracture (or structural transformation). The set of
material constants τ and α determines the fracture process on a given scale level.

3. Plasticity Relaxation Model for Homogeneous Materials

The relaxation model of plasticity [29–31] for the development of the structural−temporal
approach for plasticity [34,42] is based on the material incubation time concept [42]. The
use of the material incubation time to describe the temporal effects of plastic deformation
considers shear stress relaxation to be a temporal process related to the development and
motion of defects [29,30]. The relaxation itself can be realized by various physical mechanisms,
depending on the particular material. In terms of the material incubation time, the relaxation
mechanism is not explicitly described, but it is stated that it requires some characteristic time
owing to the development and motion of microdefects.

The dimensionless relaxation function γ(t) (0 < γ(t) ≤ 1) is given by the following:

γ
(
t, Σ(t), σy

)
=

 1, ϕ
(

t, Σ(t), σy, τf , α f

)
≤ 1,(

ϕ
(

t, Σ(t), σy, τf , α f

))−1/α
, ϕ

(
t, Σ(t), σy, τf , α f

)
> 1.

(2)

Here, t is time, Σ(t) is the stress function of time, σy is the static yield stress, and α is a dimen-

sionless parameter of the material’s amplitude sensitivity. Inequality 1
τ

∫ t
t−τ

(
Σ(t1)

σy

)α
dt1 ≤ 1

is the incubation time criterion of yielding [34,42], equality in which assign the time of the
beginning of plastic yielding for an arbitrary pulse. The equality γ(t) = 1 in Equation (2)
corresponds to the case of accumulating elastic deformation before the onset of the macroscopic
yield at t*. A decrease in the relaxation function in the range of 0 < γ(t) < 1 corresponds to the
transition of the material to the plastic deformation stage. During the plastic deformation stage,
where t≥ t*, the following condition is satisfied for γ(t):

γ
(
t, Σ(t), σy

)
ϕ
(

t, Σ(t), σy, τf , α f

)
= 1 (3)
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Equality in Equation (3) is retained because the state is fixed at the yield moment when
t = t* (a detailed calculation scheme for t* is given in [31]), and the accumulated elastic
stresses are subsequently relaxed in the material (0 < γ(t) < 1). True stresses, σtrue(t, Σ(t)),
are determined by the following form:

σtrue(t, Σ(t)) = ψ
(
t, Σ(t), Emod, σy, β

)
ε(t),

ψ
(
θ, Σ(θ), B, σy, aγ

)
= B

{
γ
(
θ, Σ(θ), σy

)}1−aγ (4)

where ψ(t, Σ(t), Emod, σy, β), is the coefficient related to the behaviour of stresses and β is
the dimensionless scalar parameter (0 ≤ β < 1), which describes the degree of hardening of
the material. Where β = 0, this corresponds to the absence of hardening. Considering the
stages of elastic and plastic deformations separately, the general stress-strain relationship
from Equation (4) is written as follows:

σtrue(t, Σ(t)) =

{
Emodε(t), t < t∗,

Emodε(t)γ
(
t, Σ(t), σy

)1−β, t ≥ t∗.
(5)

The set of fixed parameters used in drawing the deformation curve is independent of
the strain rate and is only related to the changes in the material’s structure. The method for
determining the parameters is considered in Selyutina and Petrov 2022 [31].

4. Plasticity Relaxation Model for Layered Materials

The multistage irreversible deformation of the multilayer composites under tension is
studied based on the model outlined by Selyutina [27,28]. Utilizing the structural−temporal
approach, Selyutina and Petrov [43] suggested an incubation time-based criterion of dy-
namic yielding that turned out to be an effective tool for predicting the limiting loading
parameters of plastic deformation and to explain the instability of the strain rate depen-
dencies on the dynamic yield point. One of the basic conclusions that were already driven
by previous papers utilizing the incubation time criterion of yielding is that the strain-rate
effect on any material yield strength could not be considered as an intrinsic material prop-
erty. These investigations eventually resulted in the relaxation theory of plasticity [29,43].
Let us briefly consider the numerical scheme of the model:

σtrue(t) =



E0ε(t), ε/
.
ε < te f f

y ,

ψ
(

t, E0
.
εt, E0, σ

e f f
y , β0

)
ε(t), te f f

y ≤ ε/
.
ε < t1

∗,

ψ
(

t, E1
.
εt, E0, σMe

y , β1

)
ε(t), t1

∗ ≤ ε/
.
ε < t2

∗,
. . .

ψ
(

t, En−1
.
εt, E0, σMe

y , βn−1

)
ε(t), ε/

.
ε > tn

∗ .

(6)

Here, σ(t) is the temporal dependence of the stress of the fibre metal laminate, E0 is
the initial Young’s modulus of the fibre metal laminate, ε(t) is the temporal dependence
of the strain of fibre metal laminate,

.
ε denotes the strain rate, ty

eff is the yielding time of
the metal layers, γ(t) is the relaxation function, t*

1, t*
2 . . . t*

n are the fracture times of the
brittle fibre layers of the composite, E1, E2, . . . En−1 are the Young’s modulus of fibre metal
laminate upon fracture of brittle 1 . . . n − 1 fibrous layers, n is the number of fibrous layers,
β1, β2, . . . βn−1 are the degree of hardening of fibre metal laminate upon fracture of brittle
1 . . . n − 1 fibrous layers, and Σ(t) is the temporal dependence of the load function in the
specimen of the fibre metal laminate. Based on this function we built a model (Section 3)
that predicts various forms of reactions of homogeneous materials to dynamic loading. The
critical times, tyeff and t*

i, were determined on the basis of the structural-time approach (1)
written for the metal layers, as follows:

ϕ
(

t, Σ(t), σ
e f f
y , τ

e f f
y , αe f f

)
= 1 (7)
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and brittle layers:
ϕ
(

t, Σ(t), σi
f , τi

f , αi
f

)
= 1 (8)

where τi
f and τ

e f f
y are the characteristic times of the fibre layers and metal layers, and

αeff and αi
f are sensitivity parameters of the material to the amplitude of the force field

causing irreversible deformation of the aluminium and fibrous layers. Structural−temporal
parameters α, αeff, αi

f , τi
f , τ

e f f
y and βi have constant values at any strain rate and different

values for structurally different materials. σAl
y and σi

f are the static yield strength of the
aluminium and the static strength of the brittle fibres, respectively. Detailed physical
interpretations of the model parameters are given in following papers [27,30,34,43]. This
model takes into account the change in the elastic modulus of the composite from Eor to
Efin upon fracture of the brittle fibre layers and the change in the cross-sectional area of
FML from Sor to Sfin, as follows:

EorSor = E f inS f in (9)

The process of deformation of a multilayer composite can be represented in the form
of a rheological model, as schematically shown in Figure 1. In this paper, the St. Venant
element (sliding element), designated as p element in Figure 1, is given by the homogeneous
relaxation model of plasticity, just like in the paper of [31]. The model consists of a combined
AA body (effective compound material), which describes the deformation of an aluminium
alloy, and Hooke elastic bodies connected in parallel to it, which describe the deformation
of fibres. The AA body consists of two Hooke elastic bodies and a plastic p body, and
models elastic−plastic deformation with hardening. The yielding point te f f

y , determined
by Equation (7), defines the reference point of the deformation of the plastic p body in two
stages, ε 6= .

ε 6= 0, to which the deformation is zero ε =
.
ε = 0. The general rheological

equation of the model in Figure 1 is divided by the start point of the plastic flow, as follows:

σe f f =


Ee f f εe f f , 1

τe f f

∫ t∗
t∗−τe f f

(
Σ(s)
σ

y
e f f

)αe f f

ds < 1

Ee f f εe f f +
(

Ee f f − Eh − E f

)(
εe f f − εp

)
, 1

τe f f

∫ t∗
t∗−τe f f

(
Σ(s)
σ

y
e f f

)αe f f

ds ≥ 1
(10)

To establish the relationship between the parameters of the relaxation model of plastic-
ity and the rheological model of the composite in Figure 1, there are two limiting cases of
deformation:

Eh + E f
β = 0→ 0 (11)

Eh + E f
β = 1→ Ee f f (12)
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Delamination between aluminium layers and fibres leads to a sharp drop in stress,
corresponding to the removal of Hooke’s elastic elements, Ei

f . A stepped stress drop is
observed with a multilayer composite with two or more prepreg layers.

Using the proposed model, it is possible to calculate the elastic, inelastic, and irre-
versible stages of composite deformation until the composite is completely destroyed. The
proposed relaxation model for layered composites makes it possible to effectively describe
the deformation response of the composite from elastic deformation to irreversible deforma-
tion, and to investigate further until the moment of failure. Moreover, this approach allows
us to consider the effects of transition from static to dynamic loading, in which the dynamic
limiting characteristics of the metal yield strength and the strength of brittle materials
will have a determining character, depending on the loading history Σ(t). A united set of
characteristic plasticity and fracture characteristic times also makes it possible to effectively
predict important competitive phenomena in materials with a complex structural structure.

5. Results and Discussions

In this section, the structural−temporal parameters of the composite and its com-
ponents are determined for metal composites with different structures. Table 1 lists the
materials [17–20,44–46] used for numerical simulation of the plasticity relaxation model for
layered materials. We used the notations Me/F/Me/F/Me or Me/F/Me for general defini-
tion of the sequence of metal (Me) and polymer fibre/epoxy layers (F). For instance, the
abbreviation Me/F/Me/F/Me means that the fibre metal laminate consists of three metal
layers and two polymer layers. We used the following abbreviations for notations materials:
GFRP—glass fibre reinforced polymer; CFRP—carbon fibre reinforced polymer; KFRP—
Kevlar fibre reinforced polymer; (0/90/90/0), (0/0/0/0), (0/90), and (90/0)—sequence of
polymer layers with orientations of 0 and 90.

Table 1. Review of the layered materials utilised for numerical modelling using the relaxation model
of plasticity for layered materials.

Reference Composite
Structure Metallic Layer Type of Fibre Thickness One

Me Layer, mm
Thickness of

Composite, mm
Thickness Ratio of Metal

and Polymer Layers

[44] Me/F/Me/F/Me Al 2024-T3 alloy GFRP 0.4 2.2 1.2

[17,18] Me/F/Me Al 2024-T3 alloy GFRP 0.6 3.7 0.48

[19,20]
Me/F/Me Ti-6Al-4V alloy GFRP 0.6 3.1 0.63

Me/F/Me/F/Me GFRP 0.4 3.15 0.62

[45] Me/F/Me/F/Me LY12CZ Al alloy CFRP 0.246 1.34 1.23

[46] Me/F/Me/F/Me Al alloy KFRP 0.24 1.34 1.16

Figures 2–4 show the theoretical deformation curves of different fibre metal laminates,
plotted by experimental data in the studies [17–20,44–46]. The verification of the proposed
relaxation model, as an example of the static and dynamic deformation dependencies, is car-
ried out for various layered composites: Al/GFRP/Al/GFRP/Al, Ti/GFRP/Ti/GFRP/Ti,
Al/GFRP/Al, Ti/GFRP/Ti, Al/CFRP/Al/CFRP/Al, and Al/KFRP/Al/KFRP/Al. Each
of the presented static and dynamic theoretical dependencies shows the model perfor-
mance for two composites: with different thickness ratios for the metal and polymer layers
(Figure 2), with different metal layer materials for the composite (Figure 3), and with
different polymer layer materials for the composite (Figure 4). The structural−temporal
parameters of the layered composites for calculation of the theoretical dependencies are
presented in Tables 2–6. The parameters of the relaxation plasticity model are invariant
to the loading history, and using the table data, one can predict the rate sensitivity of the
composites with an increase in the strain rate on the theoretical deformation dependencies
(Figures 2–4). Tables 3 and 4 show that the same structural−temporal parameters for the
Ti/GFRP(0/90/90/0)/Ti and Ti/GFRP (0/90)/Ti/GFRP(90/0)/Ti laminates and GFRP
(0/90/90/0) of the polymer layers of composites, presented in Figures 2b and 3, are used.
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The multistage of irreversible deformation of the layered composites are conditionally
divided into three stages: elastic, nonlinear viscous-elastic, and preparation to fracture.
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(a) Al/GFRP/Al [17,18] and (b) Ti/GFRP/Ti [19,20] are marked by points.
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(b) Al/KFRP/Al/KFRP/Al [46] are marked by points.

The pre-fracture stage may consist of the fracture of the polymer epoxy/glass fibre
layers (including delamination process), which is different depending on the thickness of
the composite layers (Figure 2). As the thickness of the metal layers in comparison with the
polymer epoxy/fibre layers was greater in [44] (Figure 2a) than in [19,20] (Figure 2b), the
pre-fracture stage on theoretical and experimental deformation curves had a stress drop at
a strain rate of

.
ε = 386 s−1 (Figure 2a), and continued to experience plastic deformation of

the retained metal layers until fracture of the polymer epoxy/fibre layers at strain rates of
.
ε = 0.001 s−1 and

.
ε = 500 s−1 (Figure 2b).

The theoretical static and dynamic deformation curves, marked by solid lines in
Figure 2, have a good correspondence with the static and dynamic experimental defor-
mation curves, marked by symbols (Figure 2a,b), which verify that the relaxation model
for the layered materials is capable of simulating two initial stages of deformation and
both cases of pre-fracture stages. Note that to model of the theoretical deformation depen-
dencies in Figures 2a and 4, Equation (9) was not taken into account and the stress drops
were also plotted as the thickness of the metal layers was greater than that the polymer
epoxy/fibre layers.

The two-stage stress drop for statics (in Figure 2b) differs from the one-stage stress drop
for dynamics. Continuing the dynamic theoretical dependence in Figure 2b, the second
step of stress drop is also observed. The characteristic relaxation time of polymer glass
fibre/epoxy layers (11 s in Table 2; 15,400 s and 100 s in Table 3) is usually several orders
of magnitude higher than that of metal (1 ms in Table 2; 8.4 ms in Table 3); therefore, the
fracture processes proceed faster. Figure 5 shows a comparison of the strain rate dependence
of the strength for Ti-6Al-4V, calculated using the structural−temporal approach in [47],
and the strain rate dependencies of the polymer fibre/epoxy strength in Table 3. Thus,
the disappearance of the second stress release for the dynamic deformation curve of the
composite with a high percentage of polymer can be explained by the predominance of
preparatory processes for the fracture of these polymer layers in comparison with metal
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layers. Thus, the use of the technique for determining the characteristic times of the
destruction of polymeric materials, the characteristic relaxation times of the metal material
that is part of the composite, and the characteristic time of the composite make it possible
to simultaneously take into account competing processes such as ductile−brittle transition,
phase transition, and transient processes in the composite for different impact rates and
materials of different structures.

Table 2. Parameters of the model and materials [44] for the calculated deformation curves of the
GLARE Al/GFRP/Al/GFRP/Al composite in Figure 2a.

Material Property Unit Value

Al/GFRP/Al/GFRP/Al

σ
e f f
y MPa 235
E0 GPa 65

αe f f – 15

τ
e f f
y ms 1
β – 0.43

Al 2024-T3 alloy σMe
y MPa 302.29
β – 0

GFRP (0/90/90/0)

σ1
f MPa 340

E f GPa 14
α1

f – 1
τ1

f s 11

Table 3. Parameters of the model and materials [17,18] for the calculated deformation curves of
the GLARE Ti/GFRP(0/90/90/0)/Ti composite laminate and Ti/GFRP(0/90)/Ti/GFRP(90/0)/Ti
laminate in Figures 2b and 3b.

Material Property Unit Value

Ti/GFRP(0/90/90/0)/Ti laminate or
Ti/GFRP (0/90)/Ti/GFRP(90/0)/Ti

laminate

σ
e f f
y MPa 430
E0 GPa 53

αe f f – 15

τ
e f f
y ms 8.4

β at 0.001 s−1 – 0.2
β at 500 s−1 – 0.36

Ti-6Al-4V alloy σMe
y MPa 984
β – 0.03

GFRP (0/90/90/0)

σ1
f MPa 310

E f GPa 14
α1

f – 60
τ1

f s 15,400

GFRP (0/0/0/0)

σ2
f MPa 665

E f GPa 33.26
α2

f – 10
τ2

f s 1000

Invariant structural−temporal characteristics of the loading history Σ(t) allow for
the application of the proposed model for various combinations of metal and polymer
layers. As shown in Table 3, theoretical deformation curves in Figure 3 are plotted with
the same structural−temporal model parameters as the polymer glass/fibre layer [17–20].
The characteristic time of the Ti-based layered composite (8.4 ms in Table 3) is greater than
the characteristic time of the Al-based layered composite (10 µs in Table 4). By changing
only the structural−temporal parameters of the aluminium alloy to the titanium alloy, the
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theoretical deformation dependences of composites with one polymer layer, but a different
metal matrix, are calculated on the basis of the proposed model with parameters (Tables 2
and 3). The absence of smooth stress relief for the theoretical dynamic curve in Figure 3a
is explained by taking into account the processes of destruction, without the process of
delamination of the fibrous layers.

Table 4. Parameters of the model and materials [19,20] for the calculated deformation curves of the
GLARE Al/GFRP/Al/GFRP/Al composite in Figure 3a.

Material Property Unit Value

Al/GFRP/Al/GFRP/Al laminate

σ
e f f
y MPa 160
E0 GPa 27.22

αe f f – 1

τ
e f f
y µs 10

β at 0.001 s−1 – 0.45
β at 1000 s−1 – 0.65

Al 2024-T3 alloy σMe
y MPa 302.29
β – 0.14

GFRP (0/90/90/0)

σ1
f MPa 310

E f GPa 14
α1

f – 60
τ1

f s 15,400

Table 5. Parameters of the model and materials [45] for the calculated deformation curves of the
GLARE Al/CFRP/Al/CFRP/Al composite laminate in Figure 4a.

Material Property Unit Value

Al/CFRP/Al/CFRP/Al laminate

σ
e f f
y MPa 160
E0 GPa 70

αe f f – 1

τ
e f f
y µs 7
β – 0.67

LY12CZ aluminium alloy σMe
y MPa 302.29
β – 0

CFRP (0/90/90/0)

σ1
f GPa 1

E f GPa 32
α1

f – 1
τ1

f µs 47.3

Typical dynamic dependences of layered composites with carbon [45] and Kevlar
fibres [46] are also predicted based on the proposed model (Figure 4). Irreversible deforma-
tion of layered composites and the level of stress relief at the preparatory stage to fracture
corresponded well with the experimental deformation curves [45,46]. A slight increase in
the deformation curve at the second non-linear viscous-elastic stage of deformation of the
layered composite was modelled using the structural−temporal parameters.
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Table 6. Parameters of the model and materials [46] for the calculated deformation curves of the
Al/KFRP/Al/KFRP/Al composite in Figure 4b.

Material Property Unit Value

Al/KFRP/Al/KFRP/Al laminate

σ
e f f
y MPa 170
E0 GPa 46

αe f f – 60

τ
e f f
y ms 1
β – 0.51

Aluminium alloy σMe
y MPa 302.29
β – 0

KFRP (0/90/90/0)

σ1
f GPa 1.3

E f GPa 28
α1

f – 1
τ1

f µs 10
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6. Conclusions

The modified plasticity relaxation model for heterogeneous materials was applied and
verified for metal layered composites with different metallic and polymeric (fibre/epoxy)
materials, tested under static (

.
ε = 0.001 s−1) and dynamic loads (

.
ε = 100–1300 s−1). The

proposed relaxation model for the layered composites makes it possible to consider the
effects of the transition from static to dynamic loading, in which the dynamic limiting
characteristics of the metal yield strength and the strength of brittle materials will have a
determining character, depending on the loading history.

Based on the proposed model, the pre-fracture stages of the composite with stress
drops and continuous plastic deformation of the unbroken metal layers were predicted.
Based on the same structural−temporal parameters for five- (Ti/GFRP (0/90)/Ti/GFRP
(90/0)/Ti) and three-layer (Ti/GFRP(0/90/90/0)/Ti) glass fibre reinforced titanium com-
posites and polymer layers, one-stage and two-stage stress drops during the irreversible
deformation of the composite under static and dynamic loading were simulated. The
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one-stage stress drop on the dynamic curve of the composite and the two-stage stress drop
on the static curve of the composite were compared according to the competition principle of
the temporal preparatory processes of the layers fracture stress of the polymer and the metal.

The various deformation responses of metal composites in a wide range of strain
rates, characterised by brittle, ductile, or ductile−brittle fractures, were predicted by
the relaxation model of plasticity for heterogeneous materials. To model the important
competitive phenomena on composite materials, a united set of characteristic times for
plasticity and fracture was used.

Thus, the use of the plasticity relaxation model is not limited to homogeneous mate-
rials, but can be very effective for layered composites. Using examples of the composites
with different thickness layers and calculated characteristic relaxation times for polymer (fi-
bre/epoxy) and metal layers, the presence of elastic−plastic deformation after the fracture
of the polymer (fibre/epoxy) layers of the composite is interpreted.

We believe that the basic ideas regarding the incubation time approach and the relax-
ation plasticity can serve as an effective tool in developing a new experimental standard and
corresponding numerical schemes accounting for the unstable behaviour of deformation
diagrams in the composite materials and their different components.
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