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Abstract
The continued increase in availability of economic data in recent years and, more impor-

tantly, the possibility to construct larger frequency time series, have fostered the use (and
development) of statistical and econometric techniques to treat them more accurately. This
paper presents an exposition of structural time series models by which a time series can be
decomposed as the sum of a trend, seasonal and irregular components. In addition to a
detailled analysis of univariate speci�cations we also address the SUTSE multivariate case
and the issue of cointegration. Finally, the recursive estimation and smoothing by means
of the Kalman �lter algorithm is described taking into account its di¤erent stages, from
initialisation to parameter�s estimation.
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1 Introduction

The continued increase in availability of economic data in recent years and, more impor-

tantly, the possibility to construct larger frequency time series, have fostered the use (and

development) of statistical and econometric techniques to treat them more accurately. In

fact, given these new series it is becoming harder and harder to keep the assumption of a

�xed pattern or behaviour through time - indeed, a statistical property of a large proportion

of socio-economic series is its evolutive character - and, in this context, structural time series

models constitute themselves as the appropriate technique, as they allow that each of the

typical unobserved components within those series to possess a stochastic nature. In other

words, the di¤erent components describing the evolution of a time series - trend, seasonality,

cycle and irregular - have been traditionally modelled in a deterministic way; however, when

these series are su¢ ciently large, one is able to assess the volatility of such components and,

moreover, it may be reasonable to consider that they evolve randomly over time. This is the

starting assumption of structural models.

Consider, for instance, a time series which can be decomposed as the sum of a trend,

seasonal and an irregular component, then its behaviour could be captured by formulating

a regression model whose explanatory variables were a deterministic trend and a set of

seasonal qualitative variables. If these components are not stable then this formulation

would be inadequate and it would be necessary for the regression coe¢ cients to change over

time. This �exibility is possible with structural models, such that "they are not more than

regression models in which explanatory variables are a function of time and the parameters

change with time" (Harvey, 1989).

In the next section we will introduce the basic formulation of structural time series models.

Section 3 discusses the di¤erences between Structural Time Series Models and ARIMA-type

models. Finally, Section 4 presents a general overview of the Kalman �lter algorithm.

2 Structural Time Series Models

2.1 Univariate time series models

A univariate time series model can be de�ned as follows:

yt = �t +  t + t + "t
1 (1)

1Even though a multiplicative model could be more appropriate in some cases, this could be treated as
an additive one, just by taking a logarithmic transformation.
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where �t represents the trend,  t the cycle, t the seasonal component and "t the irregular,

which re�ects the random movements. One peculiarity of a structural model is its �exibility

in recognizing changes in the behaviour of a given series, by taking its di¤erent components

as stochastic processes governed by random disturbances. As we will show from the di¤erent

speci�cations described in this section, a structural model may not be necessarily de�ned in

terms of all its unobserved components2. The following will describe some of the possible

di¤erent formulations for each component or combinations among them.

The simplest formulation to the irregular component is to consider a white noise process,

i.e., a sequence of serially uncorrelated random variables with constant (zero) mean and

constant (�2") variance. One can also consider more general models in which the stochastic

process "t is a stationary autoregressive process of order p.

As far as the trend is concerned - i.e., the component that indicates the direction to which

the series moves over the long run3 - it is not speci�ed as a deterministic function of time;

on the contrary, one assumes that the trend component is a stochastic process whose value

at a given point in time (stochastic level) results from adding to the value of the previous

component a certain random amount (stochastic slope) as well as a random disturbance

term. Certainly, it is possible that either the level or the slope do not possess a stochastic

nature and, most importantly, the slope term may or not be present in the model.

The most simple example is a series whose observations move around an average level

which is itself constant over time. If these movements are stationary - in the sense that

although some values move away from the average level in the short run, they will always tend

to that level in the long run - and if one assumes additionally that there are no correlation

among them, then a formulation able to capture the such dynamic behaviour is yt = �0+ "t,

for all t = 1; :::; T , where "t is a Gaussian white noise process with variance �2" . In this case

we have a model in which the level component, �0, is deterministic.

The above formulation can be relaxed in order to allow the series�level to change through

time, leading to the "local level model", in which the level at each moment in time is the

sum of the previous period value and a random element. This model can be de�ned as:

yt = �t + "t (2)

with �t = �t�1 + �t, such that �t � NID(0; �2�), there is a random disturbance term

around an underlying level which moves without a particular direction. This is also know

2In fact, the components to be considered depend, inter alia, on the size and time span of the sample
under scrutiny.

3According to Harvey (2000) the trend is that part of the series which, when extrapolated, it allows for
a clearer indication of the future long-run movement of the series. This de�nition is consistent with the idea
of indicating a general direction.
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as random walk with noise. If the variance of the level is zero, we obtain the deterministic

level model as speci�ed before. If the variance of the irregular component is zero but the

variance of the level is di¤erent from zero, the series only possess a level component whose

generating process follows a random walk4.

If we add a slope to the level component as described above, then the average increase

per unit of time is constant; alternatively, one can also refer to more �exible formulations

such as the local linear trend model:

yt = �t + "t (3)

with �t = �t�1 + �t�1 + �t and �t = �t�1 + �t, where �t � NID(0; �2� )
5 The disturbance

term �t gives to the slope a random character, while given the level and slope of the previous

period, the stochastic nature of the level at moment t derives from the presence of the

disturbance term �t.6 Hence, if the variance of �t is zero, such that the slope is constant,

then the model becomes a "local level with drift" type, which takes a stochastic level together

with a �xed slope, as follows:

�t = �t�1 + � + �t
7 (4)

If the slope is not only constant but zero, the previous model collapses into the local level

version, previously discussed. Finally, it is possible to keep the stochastic nature of the slope

and, simultaneously, assume that, given the values of the level and slope at t� 1, the value
of the level at t is non-stochastic:

�t = �t�1 + �t�1 (5)

�t = �t�1 + �t
8 (6)

Moreover, the local level trend model can be modi�ed by introducing a damping factor

in the slope component of the trend, as follows:

4The inclusion of a random walk component means that the process is not stationary and, furthermore,
it is equivalent to a ARIMA(0,1,1) process, where the MA parameter covers only half of its usual space, i.e.,
�1 < � < 0; if �2� = 0, then we obtain an ARIMA process in which the MA parameter takes the value �1.

5In these type of models, the local linear trend may be generalized to higher order polynomials and,
though those trends are no longer linear in the sense that give rise to quadratic or cubic forecasting functions,
they can still be formulated as time series linear models (Harvey, 1989 for the case of a quadratic linear trend
model). The local linear trend model is equivalent to an ARIMA (0,2,2); moreover, it will be a non-invertible
process when �2� = 0 and, contrarily, if �

2
� > 0 the process is invertible no matter the value of �

2
�:

6Furthermore, one assumes that these random disturbance terms are mutually and serially uncorrelated.
7If �2� = 0 then we obtain a linear deterministic trend.
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�t = ��t�1 + �t (7)

where 0 < � < 1. We obtain therefore the damped local linear trend model.9

Now, at the time of choosing from and electing one of these speci�cations, it is important,

a priori, to examine the behaviour of the series at hands and, a posteriori, check which has

a better adjustment (although, you cannot ignore the implications of each speci�cation and

objectives one pursues with the chosen model).

In many economic time series it is important to distinguish between a long run trend

and the cyclical or short-run movements, which admits as well a deterministic or stochastic

speci�cation. A deterministic cycle describes a perfectly periodic behaviour with a given

frequency, which can be described as a function of sines and cosines of the following type:

	t = � cos(�t) + � sin(�t) (8)

where � is the angle frequency of the cycle, in radians.10 If we assume that the parameters

� and � evolve randomly through time, then the cycle has a stochastic nature. But before

incorporating a stochastic character, it is convenient to express the cyclical component in a

recursive way such as:

�
	t
	�t

�
=

 
cos� sin�

� sin� cos�

!�
	t�1
	�t�1

�
; t = 1; :::; T (9)

with 	0 = � and 	�0 = � (Harvey, 1993). The new parameters are 	t�1, the value of the

cycle at t � 1, and 	�t�1, which appears by construction. Therefore, the cycle is stochastic
when we introduce Gaussian white noise disturbance terms kt and k�t such that:�

	t
	�t

�
=

 
cos� sin�

� sin� cos�

!�
	t�1
	�t�1

�
+

�
kt
k�t

�
(10)

Due to identi�cation reasons and parsimony, we assume that kt and k�t are mutually

uncorrelated and possess the same variance �2k: On the other hand, in order to recognize the

pseudocyclical behaviour that characterizes many economic time series, it is convenient to

include a damping factor � which gives for �exibility to the stochastic cycle, as follows:

9These models may be used to �nd global non-linear trends as, for example, those cases with a satura-
tion level. This solution, although feasible for some periods of time, does not capture certain behavioural
characteristics in an adequate way as other alternative formulations, such as growth curves (Harvey, 1989).

10That is, the parameter � represents the number of times the cycle repeats itself over a period of 2�.
Therefore, the ratio �=2� expresses the number of times the cycle repeats per unit of time.
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�
	t
	�t

�
= �

 
cos� sin�

� sin� cos�

!�
	t�1
	�t�1

�
+

�
kt
k�t

�
(11)

where 0 < � < 111 If � = 0 or � = �, the stochastic cycle converts itself into a �rst order

autoregressive process12. If � = 0 and � = 1 the cyclical component transforms into a local

level model speci�ed for the trend13.

The cyclical component may be combined with a trend in many di¤erent ways, but the

most common formulations are: 1) the cyclical model,

yt = �+	t + "t (12)

with 0 < � < 114; 2) the trend cycle model,

yt = �t +	t + "t (13)

where �t is a local linear trend15; a cyclical trend model,

yt = �t + "t (14)

where �t = �t�1 +	t�1 + �t�1 + �t and �t = �t�1 + �t
16

Other speci�cations consist in adding an AR(2) component to yt = �t + "t or �t =

�t�1 + �t�1 + �t
17

If the observations in the series under scrutiny have a period smaller than one year, often

seasonality e¤ects may appear and, therefore, it is convenient to introduce such a component

11Notice that the incorporation of a damping factor smaller than one gives the cycle a representation
equivalent to a VAR(1) process and then, in forecasting exercises, the cyclical �uctuation tends to disappear.

12Although � � 0; the parameter in the equivalent �rst order autoregressive formulation may be either
positive (� = 0) or negative (� = �).

13Notice that the cycle variance, �2	, is related to the variance of the cycle disturbance term, �
2
k, through

the expression �2k = (1� �2)�2	, when 0 < � < 1:
14This is equivalent to an ARMA (2,2) process with constant. The cycle is itself an ARMA (2,1). The

MA part is subject to restrictions, however the most important ones refer to the AR part. If 0 < � < �,
the roots of the AR polynomial are a pair of complete roots together with a module ��1 and a phase �. If,
on the other hand, 0 � � < �, those roots lie outside the unit circle and the process is therefore stationary.
Given that the roots of an AR(2) polynomial can be either real or complex, the formulation of the cyclical
model is restricted to a feasible range of values for the AR coe¢ cients such that it generates a pseudocyclical
behaviour (Harvey, 1993).

15This representation is equivalent to an ARIMA(2,2,4) process (Harvey, 1989).
16If in this model one assumes � = 0 and one eliminates the term �t�1, then 	t is a trend component

and we obtain a damped local linear trend model. If we assume that � = 1 and �2k = 0 then we end up with
a deterministic linear trend.

17Notice that if the time series presents a cyclical behaviour of frequency �; such a behaviour can be
captured by an autoregressive polynomial as (1� 2 cos(�)L+ L2), with L being a lag operator.
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into a model. If the seasonal �uctuations are stable, the seasonal component can be de�ned

either as deterministic or �xed. If the number of seasons is s and, given that the sum of the

seasonal e¤ects throughout the year should equal zero, then the seasonal component at time

t can be spe�cied as:

t =

s�1X
j=1

zj;tj (15)

where zj;t, j = 1; :::; s� 1; is equal to 1 if t belongs to season j, -1 if t belongs to season
s, and 0 otherwise.

Formally, we have:

t =

8>><>>:
t, if t belongs to season j,

�
s�1X
j=1

j; if t belongs to season s
j = 1; :::; s� 1 (16)

Instead, if the seasonal pattern evolves over time, it seems more adequate to incorporate

a stochastic seasonal, which admits, at least, two possible formulations.

One way of getting the seasonal pattern to evolve through time is to allow that the sum

of the seasonal e¤ects over the year does not exactly equal zero, but are equal to a random

disturbance term. That is, the values of the seasonal component at times t; t�1; :::; t� s+1
are related through

Ps�1
j=0 t�j = !t; or t =

Ps�1
j=0 t�j + !t, being !t a random disturbance

term such that !t � NID(0; �2!): Another possibility is to assume that each season�s e¤ect

evolves according to a random walk (Harrison and Stevens, 1976). Hence, if t belongs to

season j, t = t;;j; where

t;;j = t;j�1 + !j;t; j = 1; :::; s (17)

and !j is a random disturbance term such that !t � NID(0; �2!):

Another alternative is a trignometric formulation18 in which

t =

[s=2]X
j=1

j;t (18)

where [s=2] denotes the integer part of s=2 and each j;t is generated by

18Modelling a �xed seasonal pattern through a set of trignometric terms was initially introduced by
Hannan et al. (1970).
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�
j;t
�j;t

�
=

 
cos�j sin�j

� sin�j cos�j

!�
j;t�1
�j;t�1

�
+

�
!j;t
!�j;t

�
(19)

for j = 1; :::; [s=2] and t = 1; :::; T ; �j = 2�j=s is the frequency, in radians, and !j;t and

!�j;t are the random disturbance terms mutually uncorrelated according to NID(0; �2!) in

both cases19. If s is even, s=2;t = �s=2;t�1 + !s=2;t. Notice that �j;t exists by construction

with the same purpose as the cyclical component20.

Notice additionally that in both speci�cations the number of parameters involved in the

seasonal component is the same and, if �2! = 0, the seasonal pattern is deterministic
21.

As the seasonal pattern changes relatively smoothly over time, some times it is reasonable

to eliminate some of the trignometric terms corresponding to the highest frequencies (Ander-

son (1971) and Abraham and Box (1978)). However, when these terms are responsible for an

important part of the seasonal variation, this would not be a adequate way to proceed. This

happens when one has weekly observations in which there is an important intra-monthly

e¤ect, that is re�ected in cycles with periods of 4 weeks (Pierce et al., 1984); in this case,

the seasonal component could be formulated using trignometric terms associated with both

low frequencies and frequencies of �=2 and �, as follows:

yt = �t + bft + imt + "t (20)

where bft contains, e.g., the variations corresponding to frequencies 2�j=52; j = 1; :::; 6,

and imt the ones associated with frequencies �=2 and �22

Furthermore, in the case of weekly observations, the number of weeks per year varies

between 52 and 53 and the same week does not correspond to the same period in a given

year. Certain festivities, as the Easter week, do not coincide with the same moment in

time from year to year. One way to address this problem is to consider that the seasonal

component is the result of a combination of components, as follows:

19Assigning di¤erent variances to the random disturbance terms corresponding to trignometric terms asso-
ciated to di¤erent frequencies, one can have distinct cyclical �uctuations with di¤erent degrees of variability.
However, from a practical point of view it is desirable that they have the same variance because there is a
small loss in terms of goodness of �t and there is a big gain in computation time. On the other hand, the
speci�cation for the seasonal component could be modi�ed by replacing the white noise disturbance term by
an ARMA process.

20This formulation may be more e¤ective to model seasonal behaviour in economic time series, as it
assumes a seasonal pattern that evolves over time according to an MA(s-2) process, which implies the
�uctuations are smoother than the ones generated by a white noise disturbance term that characterizes
formulations based on qualitative variables.

21This option is recommended when the number of years in the sample is small such that there aren�t
enough observations to allowing a changing seasonal pattern.

22An alternative simpli�ed formulation of the seasonal component can be obtained through polynomial
functions of order three de�ne in branches (cubic spline).
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t = pt + ft (21)

where pt represents the periodic component, which is a function of the number of days

in a given year that have passed until the observation is recorded23, and ft is the calendar

component, which recognizes the e¤ects associated with festivities that always take place at

the same day of the week although at di¤erent dates in two distinct years24.

If one has daily observations it is possible to incorporate into the model a component

�t to pick up the behaviour attributed to the weekly day to which belongs the observation

recorded at time t: Denote by w the number of di¤erent types of days within a week and by

kj the number of j� type days in some given week, for j = 1; :::; w, then the e¤ect associated
to the jth day-type is �j;t where

�j;t = �j;t�1 + �j;t; j = 1; :::; w � 1 (22)

being �j;t the zero mean disturbance term with variance �2�(1� k2j=K); j = 1; :::; w � 1,
withK =

Pw
j=1 k

2
j and disturbance covariances, �j;t and �h;t respectively equal to -�

2
�kjkh=K;

h; j = 1; :::; w � 1; j 6= h. Although each one of the w daily e¤ects, �j;t, evolves over time,

the value of the daily component at some point in time, �t, is given by the e¤ect value

associated to the day of the week to which the observation recorded at time t belongs, such

that, �t = �j;t; t = 1; :::; T where j is the type of day to which the observation belongs to.

As the model is formulated to the �rst w � 1 daily e¤ects, the e¤ect for the day of type w
is obtained through the condition that, at each moment in time, the sum of the daily e¤ects

corresponding to di¤erent days of the week equals zero, that is, �w;t = �k�1w
Pw�1

j=1 kj�j;t
25.

The application scope of this last model is limited to daily e¤ects, but may be interpreted as

a generalization of the model formulated for the seasonal component in which one assumes

that not all seasons are equally weighted.

Lastly, if the frequency of observations is of order less than annual and the analysis reveals

the absence of seasonal variations or the data has been seasonally adjusted26, one can apply

a structural model without a seasonal component.

23The most common speci�cations used to recognize this periodic component are the well known spline
functions (Koopman, 1992).

24This approach requires working on a daily basis such that one knows the number of days passed since
the beginning of a given year until each observation is recorded (Harvey, Koopman and Riani, 1995).

25�w;t has exactly the same statistical properties as �j;t, j = 1; :::; w � 1.
26Notice that seasonally adjusted data not always present the desired properties, especially if the seasonal

pattern changes in such a way that it is not captured by usual adjustment methods. In general, it is recom-
mended not to use data that has been previously transformed aiming at eliminating some of its components;
hence, the advantage of the structural approach is that it allows to jointly estimate the di¤erent elements
composing a time series (Harvey, 1991).
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Taking the trend to be formulated as a local linear trend model and the seasonal com-

ponent as one of the several basic stochastic formulations, i.e., without allowing possible

intra-monthly nor calendar e¤ects, we obtain the Basic Structural Model27. If we select a

trignometric formulation for the seasonals, then the Basic Structural Model is speci�ed as

follows:

yt = �t + t + "t; "t � NID(0; �2") (23)

�t = �t�1 + �t�1 + �t; �t � NID(0; �2�) (24)

�t = �t�1 + �t; �t � NID(0; �2� ) (25)

t =

[s=2]X
j=1

j;t (26)

�
j;t
�j;t

�
=

 
cos�j sin�j

� sin�j cos�j

!�
j;t�1
�j;t�1

�
+

�
!j;t
!�j;t

�
; j = 1; :::; [s=2]; �j = 2�j=s; (27)

!j;t � NID(0; �2!); !
�
j;t � NID(0; �2!); Cov

�
!j;t; !

�
j;t

	
= 0 (28)

The model speci�cation is closed assuming the inexistence of correlation between the dis-

tinct disturbance terms due to identi�cation reasons28. Given that the statistical properties

of the model depends on the complete set of disturbances, then the autocovariance matrix

of the series is simply the sum of the autocovariances of the di¤erent components.

Lastly, as a natural extension, the model may include lagged values of a dependent

variable as well as other exogenous regressors:

yt = �t + t +  t +

pX
�=1

'�yt�� +
kX
i=1

qkX
�=0

�i�xi;t�� + "t (29)

where xi;t are exogenous variables29, and '� , and �i� are unknown parameters. In case

27This is equivalent to a process ��syt � MA(s + 1) or alternatively to yt = �t=�
2 + S�1(L)!t + "t.

Given that the operators �2yS(L) do not possess common roots, changes in the seasonal pattern are not
misunderstood with changes in the trend (Harvey, 1989). A Basic Structural Model with qualitative seasonal
variables constitutes an equivalent formulation in forecasting terms to Box and Jenkin�s (1976) proposal to
analyse the series "number of passengers".

28The independence of innovations, which implies independence of their respective components, has been
commonly established in the literature. The justi�cation for the decomposition rests, indeed, on the need to
break down di¤erent types of evolutions, although they are observed all together. According to Harvey and
Koopman (1992) and Koopman (1992), estimates of these innovations can present high correlation levels.
In general, one may assume that there are correlation structures between disturbance terms and, therefore,
the relationship between distinct components is more adequate when dealing with economic time series.

29xi;t is exogenous if it does not give any information about the non-observed components at time t+ s;
for s = 0; 1; 2; :::, over and above the information contained in yt�1; :::; y1 (Hamilton, 1994).
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the model has some lagged values of the dependent variable, e.g.:

yt = �yt�1 + :::+ �pyt�p + �t + "t (30)

then the trend is rede�ned as:

�+t = �
�1
p (L)�t (31)

such that,

yt = �+t + �
�1
p (L)"t (32)

being �p(L) = (1��1L�:::��pLp): In this case, both the trend and irregular components
are subjected to similar autoregressive e¤ects.

When one has high frequency data, usual speci�cations for the seasonal component re-

quire the incorporation of a large number of parameters which may bring additional esti-

mation problems. In this context, an alternative is to use spline functions, which constitute

more parsimonious speci�cations that assume the use of qualitative variables.

A case of particular interest is when explanatory variables are intervention variables which

allow to pick up outlier observations and/or structural breaks (Harvey 1989, and Harvey and

Koopman 1992). In the simplest case, i.e., an outlier observation at some place in time is

dealt with an intervention or impulse variable at that point. Similarly, a structural break

characterized by a permanent increase or decrease of the level component of a given series

from a certain point in time, may be captured through an intervention variable as a step

or, alternatively, by adding an impulse intervention variable in the level equation. If, on the

contrary, there is a permanent change in the slope of the trend component at some moment

in time, then this change may be modelled as an intervention variable taking values 1,2,3...

from that point onwards, or alternatively, by adding an impulse intervention variable into

the slope equation30.

2.2 Multivariate time series models and Cointegration

When we have more than one time series each of them may be analysed independently,

however, as they might be subjected to similar in�uences and, therefore, be correlated, then a

joint estimation should be considered to capture such interaction and common e¤ects. Hence,

the need to refer to multivariate types of time series models, as such correlation between

30Although impulse or step-type intervention variables are appropriate to model sudden changes in the
level or slope, one can also use them to pick up unexpected changes in the seasonal component.
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di¤erent series is introduced through the non-zero elements outside the main diagonal of the

disturbances�covariance matrix.

In this context, the focus on multivariate analysis means a greater approximation to

reality, as one is able to capture dynamic interactions between series; however, in any case,

the underlying main assumptions rest on the univariate ones. The latter can be easily

generalized to a multivariate version, in which we analyse a vector of N � 1 observable
variables yt = (y1;t; :::; yN;t)

0. As an example, the local level version of the multivariate

model is yi;t = �i;t + "i;t, with �i;t = �i;t�1 + �i;t, for all i = 1; :::; N and t = 1; :::; T , as

follows: 0BB@
y1;t
...

yN;t

1CCA =

0BB@
�1;t
...

�N;t

1CCA+
0BB@

"1;t
...

"N;t

1CCA (33)

with 0BB@
�1;t
...

�N;t

1CCA =

0BB@
�1;t�1
...

�N;t�1

1CCA+
0BB@

�1;t
...

�N;t

1CCA (34)

such that "t = ("1;t; :::; "N;t)0 � NID(0;�") and �t = (�1;t; :::; �N;t)
0 � NID(0;��). Each

of the variables in vector yt has its own stochastic level and the matrix �� contains the

covariances between di¤erent levels. This model is commonly referred as SUTSE model

(seemingly unrelated time series equations), as series are only linked through contempora-

neous correlations established between matrices �" and ��.

Henceforth, these multivariate models can incorporate much more complete speci�cations

for the trend component, as well as both cycles and seasonals. As far as the cyclical compo-

nent is concerned, in particular when dealing with economic time series, it seems reasonable

to assume that movements in di¤erent series are related to a common economic cycle. Similar

considerations can be formulated to seasonals.

Under certain assumptions, the multivariate local level structural model allows for the

following representation of the irregular:

yi;t = �i;t + "t + "�i;t (35)

�i;t = �i;t�1 + �t + ��i;t (36)

being "t � NID(0; �2"); "
�
i;t � NID(0; �2"�); �t � NID(0; �2

�
) and ��i;t � NID(0; �2

��
); for
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all i = 1; :::; N and t = 1; :::; T 31 and where "t and �t capture the common e¤ects, whereas

"i; t
� and �i; t� capture the especi�c e¤ects. A especially interesting case is when �2�>0, but

��
�
2=0; then the N series have trend components that move in a parallel fashion and therefore,

they are cointegrated.

In general, multivariate models should admit the possibility of common trends to some

variables composing the vector yt32. In this case, there exist cointegration between series,

which can be incorporated in a model such as:

yt = ��
�
t + �0 + "t (37)

��t = ��t�1 + ��t (38)

with "t � NID(0;�") and �
�
t � NID(0;���) for all t = 1; :::; T , being ��� a diagonal

matrix k� k, �0 a N � 1 vector whose �rst k elements are non-zero, and � is a N � k �xed
matrix such that �ij = 0; 8j > i and �ii = 1;8i. If there are k common trends, then there
will exist N�k cointegrating relations. The N�k correspondent cointegrating vectors de�ne
the N � k rows in the matrix A(N�k)�N , such that A� = 0, i.e., Ayt = A�0 +A"t, such

that Ayt is a stationary process of dimension (N � k) � 1: If k = N , there are no trends,

therefore, no cointegration33. As ��� is diagonal, then common trends (the elements of ��t )

are independent.

For a model with local level trend with drift, the common trend speci�cation is:

yt = ��
�
t + �0 + "t (39)

��t = ��t�1 + � + ��t (40)

for all t = 1; :::; T; "t � NID(0;�") and �
�
t � NID(0;���), being � a k � 1 vector of

slopes. As an example, take a bivariate local level model a follows: 
y1;t

y2;t

!
=

 
�1;t

�2;t

!
+

 
"1;t

"2;t

!
(41)

31Note that �" = �2"�I+ �
2
" ii

0 and �� = �2��I+ �
2
�ii

0, where i is a unit vector of dimension N and I is the
identity matrix.

32Those series which have the same source of growth are an example in which it makes sense to model
common trends.

33One way to determine k is based on estimating the original model as if no common factors exist, apply
a principal components analysis on the estimated matrix �� and then take the value k that captures an
important part of total variability. A more formal approach was suggested by Stock and Watson (1988).
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�1;t

�2;t

!
=

 
�1;t�1

�2;t�1

!
+

 
�1;t

�2;t

!
(42)

for all t = 1; :::; T; where

�" =

 
�2"1 �2"12
�2"21 �2"2

!
(43)

and

�� =

 
�2�1 �2�12
�2�21 �2�2

!
(44)

Alternatively, its representation with an error components model is: 
y1;t

y2;t

!
=

 
�1;t

�2;t

!
+ "ti2 +

 
"1;t

"2;t

!
(45)

 
�1;t

�2;t

!
=

 
�1;t�1

�2;t�1

!
+ �ti2 +

 
�1;t

�2;t

!
(46)

for all t = 1; :::; T; being i2 = (1; 1)0; "t � NID(0; �2"), "
�
t � NID(0; �2"�) for i = 1; 2;

�t � NID(0; �2�) and �
�
t � NID(0; �2��); for i = 1; 2. If �

2
�� = 0 we obtain �1;t = �1;t�1 + �t

and �2;t = �2;t�1 + �t such that trend components in both series follow parallel paths.

It follows that processes y1;t and y2;t are non-stationary, hence they don�t move around a

constant level, however, there is a common trend shared by the two series. That is, y1;t and

y2;t are I(1) and there exists a stationary linear relation, i.e., the series are cointegrated. If

�1;0 = �2;0 such a relation is in fact y1;t � y2;t.

In general, one can check the presence of cointegration in the bivariate case through a

common trend model given by: 
y1;t

y2;t

!
=

 
1

�2;1

!
��t +

 
0

�2

!
+

 
"1;t

"2;t

!
(47)

where ��t = ��t�1 + ��t .

In this context we have the following representation for the two series:

y1;t = ��t + "1;t (48)

y2;t = �2;1�
�
t + �2 + "2;t (49)
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where ��t = ��t�1 + � + ��t .

So,

y1;t �
1

�2;1
y2;t = �

�2
�2;1

+ "1;t �
1

�2;1
"2;t (50)

is a stationary linear combination which implies cointegration. The cointegrating vector�
1 �1=�2;1

�
is such that

�
1 �1=�2;1

� 1

�2;1

!
= 0, and the element causing the non-

stationarity is eliminated.

Common trends as speci�ed before imply cointegration at frequency zero, however all

these concepts can be extended to other frequencies, including additionally the existence

of cyclical and seasonal common components, which may be interpreted in the sense that

changes in cyclical or seasonal patterns in di¤erent time series are driven from a common

source.

The properties of a multivariate model and, more speci�cally, the multivariate local

level model depend on the structure of the variance-covariance matrices �" and ��. Under

the constraint of homogeneity, which establishes that �� = q�" (Harvey, 1989), all linear

combinations of elements of yt have the same stochastic properties34.

When in a multivariate model all but one variables composing yt are exogenous, it is

not necessary to formulate a N -equations system, as one can simply formulate a single-

equation dynamic regression model. In the context of structural models, one can obtain a

single-equation model with exogenous variables of the type:

yt = �t +Xt� + "t (51)

with �t = �t�1 + �t, Xt = (x1;t; :::; xN�1;t) and � = (�1; :::; �N�1):

If the level variance equals zero, we obtain the classical basic regression model. When

the irregular component variance equals zero, but the level component is di¤erent from zero,

we obtain a regression in �rst di¤erences. Finally, when both variances are di¤erent from

zero, we get a transference function model. Cases with the inclusion of explanatory vari-

ables in multivariate structural models include intervention analysis and the error correction

mechanism model (Harvey and Scott, 1984).

34That is, for a local level model, yt is homogenous if the stationary process �w0yt has the same spectral
density and the same autocorrelation function for all vector w of �xed parameters (non stochastic). In that
case, the structural model for any combination w0yt veri�es the relation �� = q�" and the autocorrelation
function and spectral density depend solely on q:
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3 Structural Models versus ARIMA

Structural models have several advantages when compared with ARIMA models, some

of which will be discussed in this section. ARIMA models can be formulated in state space

form35 and many structural models admit an ARIMA representation. In fact, when time

series have a simple underlying structure both formulations are basically equivalent to each

other; however, when such structure is more complex, then di¤erences between both ap-

proaches become more evident36.

In a time series structural model each component, such as the trend, cycle or seasonal

changes, is explicitly formulated and, therefore, it is possible to get speci�c information

about them. Moreover, the researcher can identify and introduce any characteristic which

might require a particular treatment in special circumstances. This is perhaps, the main

advantage of a structural model vis-a-vis an ARIMA approach, in which the trend and

seasonal components are eliminated by applying convenient di¤erences to the original series

before carrying out the analysis. In sum, the ARIMA methodology constitutes itself as a

kind of black-box in which the adopted model depends entirely from the data, without a

prior analysis of the structure underlying the generating system. Structural models are, from

this point of view, more transparent as they allow to check if the predicted behaviour by the

model for each component corresponds to what is expected from the data.

One should take into account that eliminating both the trend and seasonality may have

strong inconveniences if , as it happens with o¢ cial statistics or in many econometric appli-

cations, those components have interest in themselves in addition to forecasting exercises.

Furthermore, the requirement of stationarity in Box and Jenkins�(1976) approach implies

di¤erentiating the series, however not always one is able to decide the right integration or-

der. In fact, basic tools to identify ARIMA models, i.e., autocorrelation functions, are quite

imprecise and very often do not allow to opt for a unique model37.

State space models are also more �exible. The recursive nature of the model and the

computation techniques used for its analysis allow the direct incorporation of known breaks

in the system structure over time. On the contrary, Box and Jenkins�models are based on the

assumption that di¤erenced series are stationary, which incorporates more rigidity. In this

35Some examples of ARIMA models in State Space Form can be found in Harvey (1989), Brockwell and
Davis (1991) and Hamilton (1994).

36Harvey (1985) shows some of these di¤erences by analysing annual macroeconomic time series. In partic-
ular, he observes that ARIMA models selected under a parsimonious principle may give place to formulations
which, though providing good short-term forecasts, do not recognize the most important characteristics of
the series under scrutiny and they have little economic interpretation. Some of these di¤erences are also
discussed in Durbin and Koopman (2001).

37Under the ARIMA methodology it is common to �nd that economic magnitudes behave as integrated
processes of order one, i.e., processes that are characterized by persistent changes.
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context, with the structural approach forecasting is relatively straightforward38 and missing

observations are easier to treat39. Brockwell and Davis (1991) consider that state-space rep-

resentation and recursive equations which characterize the Kalman Filter are ideal to analyse

series with missing observations.40. Using an ARIMA approach, however, is more di¢ cult to

handle missing observations, and the incorporation of explanatory variables, calendar e¤ects

and structural breaks is not always are immediate as with state space representation.

On the other hand, observations corresponding to multivariate series can be manipulated

by direct extension of the univariate structural formulation; which does not happen with

ARIMA. Moreover, the Markovian nature of state space models allows the necessary com-

putations to be implemented in a recursive way; this, in fact, allows manipulation of high

dimensional models without an overwhelming increase of the computational task.

In this sense, multivariate structural models of economic time series have some advan-

tages over the VAR representation, which in general required a large number of parameters.

In particular, when some series are non-stationary, a VAR in di¤erences might not be an

adequate speci�cation if di¤erent series have distinct integration orders. So, the applica-

tion of di¤erences would allow the appearance of strictly non-invertible MA components. In

these cases, it seems more likely to formulate the model in levels; however, when series are

non-stationary it may be necessary to use an higher order VAR. A structural model o¤ers a

better alternative formulation.

Furthermore, these last models allow the imposition of cointegration restrictions as well as

consider explanatory variables (Harvey, 1989). Given that in a multivariate structural model

the trend is explicitly modelled, short-term movements can be captured by a low order VAR

and cointegration will appear when there are common trends. Hence, although structural

models are the adequate way to provide the most important characteristic in observed series,

they convert into behavioural models once one incorporates restrictions introducing short-run

dynamic movements and including exogenous variables in some of their equations.

According to Durbin and Koopman (2001) the main advantage of structural models

compared with ARIMA models rests of the fact that the former are taught and used in few

universities, there is scarce literature about them in statistical-econometric terms and only

recently they were provided with speci�c software. The complete reverse is true for the Box

and Jenkins methodology.

38Harvey and Todd (1983) compare forecasts from ARIMA and structural models and they conclude that
there are strong arguments in favour of the structural approach from a practical point of view.

39In order to get �ltered estimates corresponding to missing observations, we simply assume that et = 0
and Kt = 0 in those missing values (Harvey and Koopman, 1992 and Durbin and Koopman, 2001).

40The authors show several advantages of this approach vis-a-vis ARIMA models by evaluating a Gaussian
likelihood function at the observed values together with a minimum mean squared error for missing observa-
tions. Jones (1993) also presents a procedure to deal with missing observations in state space representation.
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4 The Kalman Filter - an introductory note

The purpose of this section is to provide an introduction to the Kalman �lter as well

as to establish the relation between this �lter and the state-space form representation. The

importance in studying the Kalman algorithm41 is based on the fact it constitutes the main

procedure to estimate dynamic systems represented in state-space form, which have many

interesting econometric applications (as seen in the previous sections).

The �lter has its origin in Kalman�s (1960) paper who describes a recursive solution

to the linear �ltering problem of discrete data. Kalman�s derivation took place within the

context of state-space models, whose core is the recursive least squares estimation. Since

the 1960s, greatly due to the computer and digital revolution, the Kalman �lter has been

object of extensive study and application, especially in the �elds of autonomous and assisted

navigation, missile�s tracking and economics.

The state-space representation is essentially a convenient notation to estimate stochastic

models in which one assumes measurement errors in the system which allows handling a

large set of time series models. Among its uses one can refer to unobserved components

modelling and time varying parameters, as well as representation of ARIMA-type models

and some others which may be approximated by maximum likelihood.

The �lter is a mathematical tool which operates by means of a prediction and correction

mechanism. Essentially, this algorithm predicts the new state (which contains all information

up to that point in time) starting from a previous estimation and adding a proportional

correcting term to the prediction error, such that the latter is statistically minimized.

Within the state-space notation, the Kalman �lter derivation rests on the assumption of

normality of the initial state vector and well as the disturbances of the system. Hence, it

is possible to compute the likelihood function of the prediction error, which is then used to

estimate the unknown parameters of the system.

The complete estimation procedure is as follows: the model is formulated in state-space

form and for a set of initial parameters, the model prediction errors are generated from

the �lter. These are then used to recursively evaluate the likelihood function until it is

maximized.

41An algorithm is a speci�c set of instructions to solve a problem, usually required that such procedure
comes to an end eventually. Speci�c algorithms are sometimes named method, procedure or technique. The
word algorithm is a deformation of "al-Khwarizmi", a Persian mathematician who wrote an important treaty
on algebrical methods.
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4.1 Recursive Estimation and the Kalman Filter

Beginning with a bit of history, the concept of least squares regression is partly associ-

ated with Legendre (1805) who �rst published this theory in 1805 and actually named it

"least squares". Nevertheless, it was Gauss (1809) who developed the method as a statis-

tical method by incorporating least squares in a context in which there is a probabilistic

treatment of the error terms (D.S.G. Pollock, The Kalman Filter). The �rst exposition of

the least squares method by Gauss is intrinsically linked to the estimation of six coe¢ cients

to determine the elliptical orbit of a planetary body, when the number of observations ex-

ceed the number of parameters. The second exposition has been presented in a series of

papers published in 1821, 1823 and 1826, under the title Theoria Combinatonis Observa-

tionum Erroribus Minimis Obnoxiae (1823), which contains the famous theorem that states

the amongst all the unbiased linear estimators, the ordinary least squares has the smaller

mean squared error - the Gauss Markov Theorem.

The relevance of Gauss� second exposition to the estimation theory of recursive least

squares and to the concept of the Kalman �lter is found in a brief paragraph in which Gauss

shows that is possible to detect, with increased probability, changes of an unknown event

when a new equation is incorporated with some (ex-ante) computed weights. In fact, Gauss

developed the estimation algorithm of recursive least squares.

Gauss�algorithm has been ignored for more than one and a half century by the time

it was rediscovered by two di¤erent people. The �rst one was Plackett (1950) before the

computing age and who also ended up forgotten. The second rediscover of the recursive

algorithm was R. E. Kalman in 1960 in this context of control theory42. Since Kalman�s

(1960) and Kalman and Bucy�s (1961) papers, which described a recursive solution to the

problem of linear �lters in discrete data, this algorithm has gained an extensive attention in

research and subsequent applications.

Plackett�s exposition of the recursive ordinary least squares rests on algebra employing

statistical concepts from classical linear regression models. Kalman�s derivation was made

within a wider context of state-space models with time-varying parameters. Hence, the core

of the Kalman �lter is the Gauss-Plackett estimation algorithm of recursive least squares,

however in a context where the extension and algebrical complexity increases, Kalman has

based the construction of the �lter in probabilistic theory, more speci�cally, on the condi-

tionally Gaussian properties of random variables. The proposed criterion was to minimize

the norm of the state vector covariance matrix generating the classical recursion: the esti-

mation of the new state is computed by adding the previous estimate to a correction term

42It is the mathematical study of how parameter�s manipulation a¤ect the behaviour of a given system
in order to reach an optimal or desired result.
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proportional to the forecast error.

From Kalman�s original paper many other derivations have followed. The great majority

of those intent to reduce the terminology to something close to the OLS regression theory.

Others have arisen: from maximum likelihood functions to Bayesian econometrics. The truth

is that the Kalman �lter is a complex topic: its derivation, by any method, is lengthy and its

equations di¢ cult to obtain. Nevertheless, it is this complexity with grants to the Kalman

�lter its enormous power to solve a wide range of problems of statistical inference.

The Kalman �lter comprises a set of mathematical equations which result from an optimal

recursive solution given by the least squares method. The purpose of this solution consists

in computing a linear, unbiased and optimal estimator of a system�s state43 at time t, based

on information available at t � 1 and update, with the additional information at t, these
estimates (Clar et al. 1998). The �lter�s performance assumes that a system can be described

through a stochastic linear model with an associated error following a normal distribution

with mean zero and known variance. The solution is optimal provided the �lter combines all

observed information and previous knowledge about the system�s behaviour such that the

state estimation minimizes the statistical error. The recursive term means that the �lter

re-computes the solution each time a new observation is incorporated into the system.

The Kalman �lter is the main algorithm to estimate dynamic systems in state-space

form. This representation of the system is described by a set of state variables. The state

contains all information relative to that system at a given point in time. This information

should allow to infer about the past behaviour of the system, aiming at predict its future

behaviour. What makes the Kalman �lter so interesting is its ability to predict the past,

present and future state of a system, even when the precise nature of the modelled system

is unknown. In practical terms, the individual state variables of a dynamic system cannot

be exactly determined through a direct measurement. In this context, their measurement is

done by means of stochastic processes involving some degree of uncertainty.

4.2 Kalman Filter and Smoothing

Take a simple model in which trend �t = �t, where �t is a random walk, with no seasonals

and all variables normally distributed. Assume that the error term "t has constant variance

�2" : This model is given by:

43The state should contain the most relevant information of the system at each moment in time, trying
to consider the lowest possible number of variables.
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yt = �t + "t; "t � N(0; �2") (52)

�t+1 = �t + �t; �t � N(0; �2�) (53)

for t = 1; :::; n where "t and �t are mutually independent and independent from �1.

Despite its simplicity, the model - known as Gaussian linear State Space model - provides

the basis for several practical problems when analysing time series. It presents a structure

characteristic in state space models in which there is a set of non observed values �1; :::; �n,

which represents the development of the system over time, and a set of observations y1; :::; yn
that relate with state �; by means of the state space model above. The purpose of the

methodology is to infer the relevant properties about the �0s through ex-ante knowledge

about the available observations.

We assume that initially �1 � N(�1; P1) where �1 and P1 are known as well as �2"
and �2�. Given that random walks are non-stationary, the model is also non-stationary. In

order to apply the model to observed series we need to compute values such as the mean

of �t given y1; :::; yt�1 or the mean of �t given y1; :::; yn together with their variances; we

need additionally to adjust the model to the data by computing the maximum likelihood

estimates of parameters �2" and �
2
�. The proposed methodology is to employ �ltering and

smoothing techniques as outlined below.

The main purpose of �ltering is to update our knowledge about the system each time a

new observation yt is known. As all distributions are Gaussian, conditional joint distributions

of a set of observations given another set, also follow a Normal distribution. Take Yt�1 the

set of past observations fy1; :::; yt�1g and assume that the conditional distribution of �1 given
Yt�1 is N(at; Pt); where at and Pt are known. Given that the latter two are known, the aim

is to compute at�1 and Pt�1 when yt becomes known. This is done by means of well known

regression results.

The set of updating relations of t+ 1 starting from t, the Kalman �lter, is given by:

vt = yt � at; Ft = Pt + �2" ; Kt = Pt=Ft (54)

at+1 = atKtvt; Pt+1 = Pt(1�Kt) + �2� (55)

for t = 1; :::; n. Note that a1 and P1 are assumed to be known and Pt depends solely on

�2" and �
2
� and not on Yt�1.

The Kalman �lter residuals, vt = yt � at, and their variance Ft are respectively the
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forecast errors and the one-step-ahead error variance of yt given Yt�1. The forecast errors

are known as innovations as they represent the new part of yt which cannot be predicted

from the past t = 1; :::; n. De�ne the state estimation error as being

xt = �t � at, V ar(xt) = Pt (56)

It follows from the Kalman �lter that

vt = xt + "t, xt+1 = Ltxt + �t �Kt"t, Lt = 1�Kt = �2"=Ft (57)

Analogously, these relations are valid for the local level model Eq. 52 and 53, t = 1; :::; n

with x1 = �1 � a1:

Now consider the estimation of �1; :::; �n given the entire sample, Yn. As long as all

distributions are normally distributed, the conditional density of �t given y = (y1; :::; yn)

is N(b�; Vt); where b�t = E(�t j y) and Vt = (�t j y): b�t is the smoothed state and Vt is
the variance of the smoothed state, and the operation of computing b�1; :::; b�n is known as
smoothing.

The forecast errors v1; :::; vn are mutually independent and are a linear transformation

of y1; :::; yn and the v0is are independent of y1; :::; yt�1, with mean zero. Furthermore, when

y1; :::; yn are �xed, Yt�1 and v1; :::; vn are �xed and vice-versa. Using the properties of the

multivariate normal regression theory we obtain:

b�t = E(�t j y) = at +
nX
j=t

Cov(�t; vj)F
�1
j vj (58)

We arrive at the recursions of the smoothed state

rt�1 = F�1t vt + Ltrt, b�t = at + Ptrt�1, t = n; :::; 1 (59)

with rn = 0, for t = n; n�1; :::; 1 and

rt�1 =
vt
Ft
+ Lt

vt+1
Ft+1

+ LtLt+1
vt+2
Ft+2

+ LtLt+1:::Ln�1
vn
Fn

(60)

is a weighted sum of innovations after t� 1. Note that the smoothed state is computed
by backward recursion.

The variance of the smoothed states can be computed by backward recursion procedure

given by

Nt�1 = F�1t + L2tNt, Vt = Pt � P 2t Nt�1, t = n; :::; 1 (61)
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with Nn = 0 and

Nt�1 =
1

Ft
+ L2t

1

Ft+1
+ L2tL

2
t+1

1

Ft�2
+ :::+ L2tL

2
t�1:::L

2
n�1

1

Fn
(62)

is a weighted sum of the inverted variances of innovations after t � 1. From the above

recursions we have that V ar(rt) = Nt as the forecast errors are independent. With b�0ts
squared roots V 1=2

t one can construct con�dence intervals for �t; for t = 1; :::; n.

Consider now the computations of the smoothed errors of observations b"t = E("t j y) =
yt� b�t and the smoothed disturbances of the states b�t = E(�t j y) = b�t+1� b�t, together with
their respective variances. The smoothed disturbances of the observations are computed as

b"t = �2"ut, ut = F�1t vt �Ktrt, t = n; :::; 1 (63)

and its smoothed variance given by

V ar("t j y) = �2" � �4"Dt, Dt = F�1t +K2
tNt, t = n; :::; 1 (64)

where the recursions of Nt are given by Eq. 61 and 62. Given that vt is independent of

rt and V ar(rt) = Nt we have that V ar(ut) = Dt.

The state smoothed error is computed by

b�t = �2�rt, t = n; :::; 1 (65)

where the rt recursion is given by Eq. 59. Its smoothed variance is given by:

V ar(�t j y) = �2� � �4�Nt, t = n; :::; 1 (66)

where the Nt recursions are given by Eq. 61 and 62. As V ar(rt) = Nt, we have that

V ar(b�t) = �4�N . These results are interesting as they provide an interpretation for the

values of rt and Nt; these are respectively the smoothed estimates of �t = �t+1 � � and of

its non-conditional variance.

4.3 Initialization

Assume at �rst that the distribution of the initial state �1 is N(a1; P1), where a1 and

P1 are known. Now consider starting the �lter Eq. 54 and 55 when nothing is known ex-

ante about the distribution of �1, which in practice is the usual situation. In that case, we

represent �1 as having a di¤use prior density, that is, we �x �1 to an arbitrary value and let

P1 !1. From Eq. 54 and 55 we have:
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v1 = y1 � a1, F1 = P1 + �2" (67)

and substituting a2 and P2 in (Eq. 54 and 55) it follows:

P2 =
P1

P1 + �2"
�2" + �2� (68)

Making P1 ! 1 we obtain a2 = y1, P2 = �2" + �2� and then we proceed as usual with

the Kalman �lter in Eq. 54 and 55 for t = 2; :::; n. This procedure is known as di¤use

initialization of the Kalman �lter and the resulting �lter is called the di¤use �lter. Note that

the same values of a1 and P1 for t = 2; :::; n can be obtained by taking y1 as �xed and taking

�1 � N(0; �2"):(Durbin and Koopman, 2004).

It is necessary to take into account the di¤use distribution of the initial state �1 in the

smoothing recursions. From the previous paragraphs we noted that the �ltering equations

"aren�t" a¤ected by making P1 ! 1. Therefore, the state equations and the smoothing
disturbances aren�t a¤ected as well for t = 2; :::; n, as they depend solely on the results from

the Kalman �lter. From Eq. 59 the smoothed mean of the state �1 when P1 ! 1 is given

by b�1 = a1 + v1 + �2"r1 and substituting v1 one obtains b�1 = y1 + �2"r1.

The conditional smoothed variance of state �1, given y when P1 ! 1 is equal to b"t =
��2"r1. Note that r1 depend on the results of the Kalman �lter for t = 2; :::; n and the

variance of these disturbances for t = 1 by Eq. 63 depends on D1 and N1, being D1 the only

a¤ected by P1 ! 1; hence we obtain D1 = N1 and then V ar(b"t) = �4"N1. The variance of

the smoothed estimates of �1 remains unchanged with V ar(b�t) = �4"N1:

4.4 Parameters estimation

The model is now de�ned. The �ltering and smoothing algorithms are associated with the

state space form and can be conditionally applied to the states and the system of matrices

of known errors. The unknown values in these matrices are treated as parameters to be

estimated. The next step is to estimate these parameters using maximum likelihood methods.

Consider brie�y the issue of adjust the local level model to the data from the point of view

of classical inference (Durbin and Koopman, 2004). Consequently, this involves deriving a

number of formulae under the hypothesis that the parameters are known, and then substitute

them by the maximum likelihood estimates. Parameters in state space models are known as

hyperparameters.

The computation of the log-likelihood considers the joint density:
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p(y1; :::; yt) = p(Yt�1 = p(yt j Yt�1) (69)

t = 2; :::; n and can be expressed as P (Y ) =
nY
t=1

p(yt j Yt�1), where p(y1 j Y0) = p(y1):

Now p(yt j Yt�1) = N(at; Ft) and vt = yt�at and taking logs and assuming that both a1 and
P1 are known, the log-likelihood function is given by

logL = log p(y) = �n
2
log(2�)� 1

2

nX
t=1

(logFt +
v2t
Ft
) (70)

The exact log-likelihood can be constructed from the Kalman �lter Eq. 54 and 55.

Alternatively, the log-likelihood may be derived from the local level model in matrix

form, which gives us the following expression

logL = log p(y) = �n
2
log j 
 j �1

2
(y � a11)

0
�1(y � a11) (71)

which follows the multivariate normal distribution y � N(a11;
)
44:

The log-likelihood can then be de�ned for the di¤use case by keeping all terms �nite as

we make P1 !1 with y �xed, except for t = 1. In order to remove the in�uence of P1 when

P1 !1, de�ne the di¤use log-likelihood as

logLd = lim
P1!1

(logL+
1

2
logP1) = �

n

2
log(2�)� 1

2

nX
t=1

(logFt +
v2t
Ft
) (72)

as long as F1=P1 ! 1 and v21=F1 ! 0 when P1 ! 1: Note that vt and Ft remain �nite

when P1 !1 for t = 2; :::; n:

Given that P1 does not depend neither on �2" nor on �
2
�, the values of these parameters

that maximize the logL are identical to the ones maximizing logL + (1=2) logP1. When

P1 ! 1 these values converge to the values the maximize logLd as the �rst and second

derivatives with respect to �2" and �
2
� are �nite and strictly negative. It follows that the

maximum likelihood estimators of �2" and �
2
� obtained by maximizing Eq. 70 converge to

the values obtain with the maximization of Eq. 72 when P1 ! 1 (Durkin and Koopman,

2004).

The unknown parameters �2" and �
2
� are estimated by numerical maximization of expres-

sions Eq. 70 and 72, taking into account is a1 and P1 are known or not. In practice it is more

convenient to numerical maximize with respect to the quantities  " = log �2" and  � = log �
2
�

(see KHDS, 2000). The optimization procedure is based on the quasi-Newton scheme known

44Note that 1 = (1; :::; 1)0:
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as BFGS (Durbin and Koopman, 2004).

It is more advantageous to reparameterize the model prior to the maximization in order

to reduce the dimension for the numerical iteration. For example, in the local level model,

one can de�ne q = �2�=�
2
" and obtain

yt = �t + "t, "t � N(0; �2") (73)

�t�1 = �t + �t, �t � N(0; q�2") (74)

and estimate the pair �2" ; q instead of �
2
" and �

2
�. By making P

�
t = Pt=�

2
" and F

�
t = Ft=�

2
" ,

from Eq. 54 and 55 and the previous section, the di¤use Kalman �lter for the local level

model is reparameterized as follows

vt = yt � at, F �t = P �t + 1 (75)

at+1 = at +Ktvt, P �t = (1�Kt) + q (76)

whereKt = P �t =F
�
t = Pt=Ft for t = 2; :::; n and it is initialized with a2 = y1 and P �2 = 1+q:

Note that F �t depends on q but not on �
2
" . The log-likelihood Eq. 72 becomes:

logLd = �
n

2
log(2�)� n� 1

2
log �2" �

1

2

nX
t=1

(logF �t +
v2t
�2"F

�
t

) (77)

Maximizing Eq. 76 with respect to �2" given F
�
2 ; :::; F

�
n we obtain

b�2" = 1

n� 1

nX
t=2

v2t
F �t

(78)

The value of logLd obtained by substituting �2" by b�2" in Eq. 76 is called the concentrated
di¤use log-likelihood denoted by logLcd yielding

logLcd = �
n

2
log(2�)� n� 1

2
� n� 1

2
log �2" �

1

2

nX
t=1

(logF �t ) (79)

This function is maximized with respect to q by a unidimensional numerical iteration.
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4.5 Steady-State

Consider the convergence of the Kalman �lter to a steady-state value when n!1. This
would be the case if Pt converges to a positive values P . Then we would have Ft ! P + �2"

and Kt ! P=(P + �2"): In order to check if there exists a steady-state, make Pt+1 = Pt = P

in Eq. 54 and 55 and verify than the resulting equation in P has a positive solution. The

equation itself is

P = P

�
1� P

P + �2"

�
+ �2" (80)

which can be reduced to a quadratic form x2�xh�h = 0, where x = P=�2" and h = �2�=�
2
" ,

with solution x = (h+ (h2 + 4h)1=2=2:

This expression is positive when h > 0 which is true for non-trivial models. When it

takes negative values, it is inapplicable for h > 0: Hence, every non-trivial local level model

has a steady-state solution.

The practical advantage of the model having a steady-state solution is that, once it is

veri�ed that convergence between Pt and P is close, one can stop the computation of Ft
and Kt: Therefore, the Kalman �lter is reduced to a single relation at+1 = at + Kvt, with

K = P=(P + �2") and vt = yt � at. This is an important property for more complicated

models, where P may be a very large matrix.

5 The Kalman Filter: advantages and disadvantages

At this stage it is relevant to distinguish this �lter with the Hodrick-Prescott and Baxter-

King ones. The latter two �lters are useful tools to analyse business cycles and extract trends.

On the other hand, the Kalman �lter consists of a set of equations which provide an optimal

recursive solution, by means of least squares methodology, to a dynamic linear system.

5.1 Advantages

It avoids the in�uence of possible structural breaks during the estimation. The recursive

estimation starts from an initial sample and it then updates the estimates by successive in-

corporation of new observations until all data are covered. This means that the most recent

estimates are a¤ected by the distant history of the series, which under the presence of struc-
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tural breaks could end up biased. This bias may be corrected by sequential estimations45,

however, at the cost of a higher standard error. Hence, the Kalman �lter, as the recursive

methods, uses the entire history of the series with the advantage that it aims to estimate the

stochastic path of the coe¢ cients instead of a deterministic one (which solves any possible

estimation bias in the presence of structural breaks).

The Kalman �lter uses the least squares method to generate recursively a state estimator

at time k, which is linear, unbiased and with minimum variance. The �lter is in line with

the Gauss-Markov theorem and this gives the Kalman �lter a great power to solve a large

range of statistical inference problems. The �lter distinguishes itself by its ability to predict

the state of a model at the past, present and future, even when the precise natural of the

modelled system is not known. The dynamic modelling of a system is one of the main

characteristics of this �lter. Dynamic linear models are models with linear transition from

one period to the next, which in fact are able to describe the majority of models commonly

used in time series applications.

5.2 Disadvantages

Amongst the disadvantages of the Kalman �lter one can refer the need for initial condi-

tions for the mean and variance of the state vector in order to start the algorithm. About

the way to determine these initial conditions there is still no consensus. For example, a

Bayesian focus of this �lter requires a ex-ante set of values for initial coe¢ cients and their

respective variances. One way to obtain such information is through the estimation of a

similar model as desired but with �xed coe¢ cients for a sample sub-period. On the other

hand, it is necessary to specify the variances which according to Doan et al. (1984) should

be small and proportional relative to the ones obtained for the initial coe¢ cients.

The application of the Kalman �lter, as it is presented in the original document, assumes

a large knowledge of probabilistic theory, speci�cally Gaussian conditional properties of

random variables, which may limit its study and application scope. When it is applied to

autoregressive models, then the results are conditional on past information of the variable

under scrutiny. In this sense, the prognosis with time series represents the strength or inertia

that currently characterizes the system and are e¢ cient solely in the short term.

45Given a time series with T observations, a sequential estimation of a given model is simply a sequence
of estimates for a set of samples of size n, such that the �rst sample contains observations from 1 to n; then,
from 2 to n + 1; etc., until the last sample covers the range T � n + 1 till T (with n < T ). This implies a
sequence of T �n+1 estimators associated to the model under scrutiny. E.g., take T = 50 and n = 20, then
one would end up with 31 sequential estimates. The sequential estimation procedure keeps the sample size
constant.
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