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Abstract. A topology and shape optimization technique using the homogenization method was developed for stiffness of a 
linearly elastic structure by Bendsoe and Kikuchi (1988), Suzuki and Kikuchi (1990, 1991), and others. This method has also 
been extended to deal with an optimal reinforcement problem for a free vibration structure by Diaz and Kikuchi (1992). In 
this paper, we consider a frequency response optimization problem for both the optimal layout and the reinforcement of an 
elastic structure. First, the structural optimization problem is transformed to an Optimal Material Distribution problem 
(OMD) introducing microscale voids, and then the homogenization method is employed to determine an equivalent "averaged" 
structural analysis model. A new optimization algorithm, which is derived from a Sequential Approximate Optimization 
approach (SAO) with the dual method, is presented to solve the present optimization problem. This optimization algorithm is 
different from the CONLIN (Fleury 1986) and MMA (Svanderg 1987), and it is based on a simpler idea that employs a shifted 
Lagrangian function to make a convex approximation. The new algorithm is called "Modified Optimality Criteria method 
(MOC)" because it can be reduced to the traditional OC method by using a zero value for the shift parameter. Two sensitivity 
analysis methods, the Direct Frequency Response method (DFR) and the Modal Frequency Response method (MFR), are 
employed to calculate the sensitivities of the object functions. Finally, three examples are given to show the feasibility of the 
present approach. 

1 Introduction 

An urgent and realistic need in designing structures, e.g., car bodies, is to find an optimal design for 
minimizing vibration and noise, maximizing safety, minimizing the cost of products, etc. The need 
is constantly enforced in the process of contemporary commodity competition. Thus, structural 
optimization techniques have been developed rapidly to deal with these issues in recent years (e.g., 
Olhoff and Taylor 1983; Haftka and Grandhi 1986, 1992). 

The simplest idea for optimizing a structure is to modify the sizes of structural members, i.e., use 
size parameters (plate thicknesses, bar cross-sectional areas, etc.) as design variables in the 
optimization process. This approach is called the sizing optimization method. Using the sizing 
optimization method one can improve the design of a structure in order to reduce vibration and 
noise, etc. But, if a structure was well designed by an experienced designer, then just limited 
improvement may be obtained by changing sizes. It has never been guaranteed that the sizing 
optimization can yield a truly optimal structure because the shape and topology of the structure 
are, in general, not modified (Bendsoe and Kikuchi 1988; Olhoff et al. 1991). 

To attain the optimum, shape change of the structure has been considered by using boundary 
variation techniques (see, e.g., Haftka and Grandhi 1986). However, this method has some 
difficulties in practice, and still can seldomn yield a truly optimal structure. In the shape optimiza- 
tion, the initial topology of the structure must be set up by designers, which strongly depends on 
the experience of the designer, and it is very difficult to change the original topology during the 
optimization process. For example, if a singly connected domain is assumed at the initial design, 
the final structure obtained by a usual shape optimization method will remain the same topology 
as the initial one, although the truly optimal structure may have holes in the domain. 

Little work had been done on optimization of the topology of a continuum structure before 
Bendsoe and Kikuchi (1988) despite extensive work on optimum topology of discrete structures 
such as trusses and grid-type structures (e.g., Kirsch 1989; Rozvany 1992). For finding optimum 
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topology of a continuum structure, Bendsoe and Kikuchi (1988) applied a simple method of 
transforming the problem to find the Optimal Material Distribution (OMD) within a specified 

design domain from the original topology optimization problem. It is assumed that the material 
is not homogeneous, but instead has a variable solid-cavity microstructure. By using the homogen- 

ization method and a traditional Optimality Criteria (OC) updating algorithm, the optimal 
distribution of the material with respect to given loads and boundary conditions, were obtained. 

Their method provides very close results to the truly optimal structure. 
This idea has opened up a new technique in structural optimization, and it has been successfully 

applied to find the optimum layout of a linearly elastic structure for its global stiffness (Bendsoe 

and Kikuchi 1988; Bendsoe 1989; Olhoff et al. 1991; Suzuki and Kikuchi 1990, 1991; Bendsoe 

et al. 1992). It is clear that applying this method to dynamic problems is also an important subject 
that has not been significantly expored. In fact, the dynamic problem is more important than the 

static one in design practice, e.g., in a car body design. Because of the difference of the dynamic 
problem from the static one, we must investigate what kind of dynamic optimization problems 

can be solved by the same method for stiffness and what kind of new techniques must be introduced 
to do so. In the stiffness optimization problem, the objective was minimization of the mean- 
compliance of a given structure. But in optimization of vibrating structures, it is necessary to 

consider several different problems: the eigenvalue problem, frequency response problem, transient 
response problem, and others. These different problems may require different solution techniques, 

and solutions may be of very different natures. 

The technique used in the stiffness problem has been applied to solve an eigenvalue optimiza- 
tion problem to find the optimal reinforcement of a plate-like structure (Diaz and Kikuchi 1992). 

However, the problem treated there is a special problem that the previous technique, the OC 
algorithm, could be applied to without much difficulty. Since practical design requires dealing with 

other type of dynamic optimization problems, we must examine the existing method to see whether 
it can be extended. In this paper, we shall consider the Frequency Response Optimization problem 

(FOR), and shall develop a new OC method. 
Even though the existing Optimality Criteria (OC) method is well-convergent in the stiffness 

problem which uses the mean-compliance as the objective function (Bendsoe and Kikuchi 1988; 

Suzuki and Kikuchi 1990, 1991), it does not work well in the frequency response problem, especially 
when the excitation frequency becomes high. A reason for this is that in the static problem, the 

sensitivities of the objective function are almost always negative (which means that increasing the 
design variables will reduce the mean-compliance). But in the frequency response optimization 

problem, some sensitivities of the objective function may be positive. In this case, the updated 

design variables can not be determined as a positive number by the previous OC updating rule 
that has been used so far. Although one can escape from this problem by giving the artificial values 

to the design variables, e.g., using some side constraints, it could cause a discontinuous jumping 
in the design variable, and there is no guarantee that the optimization process is going to converge 
to the optimum solution. This difficulty likely can be resolved by using a conventional Mathe- 
matical Programming method (MP), but the use of a conventional MP may result in very poor 
efficiency in our problem which involves a huge number of design variables. A major goal of this 

paper is to develop an efficient optimization algorithm. To this end, a Modified Optimality Criteria 

algorithm (MOC) is proposed. 

2 Formulation of the OMD problem 

A minimum weight (i.e., minimum amount of the material) problem which is subject to a constraint 
on the specified stiffness can be transformed to a dual problem that maximizes the stiffness subject 
to a constraint on the specified amount of the material. In general, a structural optimization 
problem can be essentially conceived as a rational search for the optimal spatial distribution of 
material within a prescribed admissible structural domain assuming the loading and boundary 
conditions to be given. This kind of problem is called Optimal Material Distribution (OMD) 
problem, and has been formulated by Bendsoe and Kikuchi (1988) using the concept of micro- 
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structure for a structural stiffness problem. As shown in Fig. 1, it is considered that the structural 

domain is filled by a non-homogeneous material that has variable microstructures, and the empty 

cavity is also considered as a microstructure in which the mass and stiffness are zero. In the 

optimization process, the microstructures are changed form empty to solid or from solid to empty. 

Therefore, if one assumes that the total amount  of the material of the structure is constant, then 

the pieces of the material are moved from a part of the structure to another part while the 

optimization process is progressed. By moving the material for reduction of the objective function, 

finally, we can obtain an O M D  that gives the optimal structure. 

There are infinitely many microstructures which can be considered for defining the problem. 

To simplify the problem, in the plane-stress problem, we assume that the microstructure is formed 

inside an empty rectangle in the so-called unit cell as shown in Fig. 2, where, a, b and 0 are regarded 

as the design variables for the O M D  problem (Suzuki and Kikuchi 1990). The inside cavity of the 

microstructure is variable along with the design variables a and b. And, the microstructure becomes 

a complete void when a = b = 0 and a complete solid when a = b = 1. The orientation 0 stands for 

the rotation of the micro cell from a given fixed x-y coordinate system as shown in Fig. 2. Then 

the linear elasticity tensor Eijkt and the mass density p become functions of these three design 

variables. 

As noted earlier, there are many other ways to define microstructure with solid/cavity consti- 

tuents. As well-know already (see, e.g., Bendsoe et al. 1992), the microstructure that yields the 

so-called rank 2 material might be a better choice to attain the maximum stiffness, but its opt imum 

structural configuration tends to have a large amount  of microscale cavities and is more porous. 

In other words, it is difficult to identify a discrete structure as well as topology of the structure 

using the rank 2 material model. On the other hand, the choice made here with a rectangular 

cavity in the unit cell results a clearer opt imum structure, which can be easily identified. The choice 

of microstructure for O M D  should be further investigated, but we shall not address this issue in 
the present paper. 

Assuming g2 (~  ~ R 3) to be the structural possibly performed porous domain, F t the traction 

boundary of ~2, equilibrium of such a structure with microstructure can be formulated by the weak 

form (the principle of virtual displacement): 

~fi-v,d.(2= y f~v,d.Q+ y tivflF VveV (1) 
s~ Ft 

w h e r e ,  

insolid   :{:oinSo.d 
ijkl = o'Jk~ in cavity' in cavity (2) 
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u~ is the displacement that yields equilibrium, v~ the virtual displacement (v = {v 1, v 2, V3} T), f~ the 
body force, t~ the boundary traction, E°kt and Po are the elasticity tensor and mass density of the 

solid portion in /2, respectively• V= {veHX(.Q)[vlr. = 0} stands for the space of kinematically 
admissible displacement fields, and Fd the displacement boundary, where HI(.Q) is the Sobolev 

Here, the stress-strain and strain- space in which the strain energy of the structure is finite. 
displacement relations are assumed as 

a~.=E ~ e, e, : l ( ~ U k  Ou;~. 
tJ ijkl kl' kl 2 \t3xt + ~XkJ (3,4) 

Since E.~... and p~ are not homogeneous in .Q, Eq (1) has to be solved at both macroscopic and 
• . t f l c t  

microscopic levels. Employing the homogenization method (see, e.g., Sanchez-Plencia 1980), 
Eq. (1) can be homogenized as 

h duO ¢~Vk h ~2uO 
E . . u - - - - d ~  + ~p c3t----TvidO= ~ f~vld~ + ~ tividF (5) 

a "~ OxjOxl a rt 

where, u ° stands for the component of the average displacements in the microstructural domain, 
Ehjkl, ph and f~ the homogenized elastic coefficients, mass density and body force, respectively: 

Eh : 1 E ~ -- E~jpq P dy, ph 1 " ~d , f h =  ~ l  iju [ Y[ iju ~ ! P Y 1 ! f~dy (6-8) 
Yq / 

where Y stands for the domain of the microstructure, I YI the volume (area) of Y, and Z kl is the 
. . . . . . .  P , 

solution of the microscopic problem that characterizes the mlcromechanlcal behavior of a specific 
microstructure: 

I kl 

S E t - E . . - - / - - d y = 0  for VwVr (9) 
Y ijkl tJpq ~yq j Oyj 

where, space V r = {v(y)~Hl(Y)lv(y) is Y-periodic} is defined on the microstructural domain Y. 
The finite element method will be applied to solve the problem (5). Assuming the system is 

damped with viscous damping, the fundamental finite-element equation can be written by 

Mii + Cft + Ku = f (10) 

where u, M, C, K and f stand for the generalized displacement vector, mass matrix, damping matrix, 
stiffness matrix and generalized force vector, respectively. Here we assume the damping matrix is 
expressed by a linear combination of K and M, i.e., C = ~K + tiM for the given parameter ~ and 

ft. It is noted that 

ne l  n e l  

K =  A ke, M = A m e  (11) 
e=l e=l 

?lel 

where A stands for the finite element assembly operator, k e and m e the stiffness matrix and the 
e=l 

mass matrix, which are obtained by 

ke=  ~ BerDeBedO, me= ~ peN~NedO (12) 
-Oe I2e 

respectively. Where, D e = TheDhTe stands for the rotated homogenized stiffness matrix, Pe = ph. In 
the plane stress problem using the microstructure shown in Fig. 2, we have 

El12z 0 ~ cos20 sin20 cos 0sin 0 
F El111 h 

Dh / h h ~--- El122 E2222 0 , T e :  s in20 c0s20 - c o s 0 s i n 0  . (13,14) 
/ 

h l 0 0 E1212 - - 2 c o s 0 s i n 0  2 co s  0s in  0 cos2 0 - -  sin2 0 
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It is assumed that, in a finite-element, all microstructures have the same sizes and orientation. 

Thus, the design variables a, b and 0 can be discretely defined in each finite-element using the 

symbols ae, be and 0e- Where, the subscript e implies that the design variables ae, be and 0e are for 

a finite-element ~e. Since D e and Pe are the functions of the discrete design variables, a e, b e and 
0e, the elementary stiffness and mass matrices are the functions of the design variables, i.e., 

k e = ke(ae, be, Oe), me = me(ae, be). 

For the frequency response problem, assuming f = Fe j'~' and u = Ue j~'', we have 

(K +jcoC - c o 2 M ) U  = F 

where j = x / -  1. 

(15) 

(16) 

3 Structural optimization problems for frequency response 

3.1 Objective functions 

Many kinds of objective functions can be considered for the optimization problem. For example, 
minimizing the frequency response in some specified nodes of the structure, minimizing the strain 

or kinetic energy of the structure with respect to a given frequency, are two of many possibilities. 
In the static problem (Bendsoe and Kikuchi 1988; Bendsoe 1989; Olhoff et al. 1991; Suzuki and 
Kikuchi 1990, 1991; Bendsoe et al. 1992), the mean-compliance, i.e., f =  uTf, is considered as the 

objective function in the optimization problem. In this paper we shall extend this objective 
function to the frequency response problem. The following two problems are specially considered: 

i) Find the stiffest structure against the specified exciting frequency or the exciting frequencies 

in a frequency domain for a fixed, given volume of material. 
ii) Reduce the frequency response over whole structure with respect to the given exciting 

frequency or a frequency domain. 

Thus, we consider the following two objective functions: 

a) Minimizing the absolute value (modulus) of the mean-compliance of the structure 

f l  = [UrV[ (17) 

here, the generalized mean-compliance UTF is a function of the exciting frequency co, and, in the 

general case, is a complex number. 
b) Minimizing the integrates of the object function defined above within a certain frequency 

domain [c%, e)b]. 

¢O b 

f2 = [. f,(co)dco. (18) 
¢.Oa 

Note that Eq. (18) might be approximated by quadrature 

f2 = ~_, w i f  i(o)i) (19) 
i 

where {wi, coi} is the set of quadrature weights and points. 

3.2 Constraints 

Consider a constraint of total mass of the structure: 

[. pedg'2 <= W o 
K2 

(20) 
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where, W o stands for the given total mass of the structure. In the problem with the microstructure 

shown in Fig. 2, Pe = PO(ae + be -- aebe), therefore the constraint function becomes 

/*tel 

h = ~ po(ae + b e - aebe) - W o < O. (21) 
e = l  

In general, the lower and upper bounds for the design variables a e and b e have to be specified: 

a e < a e < ~ e ,  b e < b e < b e  ( e= l , 2 , . . . , ne~ )  (22) 

where, ae(be) and ci e (be) stand for the permissible minimum and maximum values of the design 

variables ae (be), respectively. In the theoretical case, for the unit cell shown in Fig. 2, we have 

ae = be = 0 and ~ie = be = 1 (e = 1, 2 . . . .  , ne~). But, for convenience in practical implementation, we 
consider ae = be = 6 (e = 1, 2 , . . . ,  ne,) for the lower bounds of the design variables instead of zero 

values, where 6 is a sufficiently small number. 

3.3 General formula t ion  o f  the opt imizat ion problem 

The optimization problems can be written as 

Minimize f(U),  subject to h(X) < O, x_i < xi < ~i, (i = 1, 2 , . . . ,  N )  (23a-c) 
X , O  

where, X = col{x,} ( x i ~ A  u B), ® =col{0,} are vectors of the design variables, A and B stand for 
the sets of the design variables a, and b,, respectively; x, and ~, are the minimum and maximum 

values of the design variables x,, respectively; and N = 2ne,. The object function f can be any one 
of the objective functions that we defined previously. In addition, it is assumed that the state 

equation, Eq. (16), is always satisfied by solving a structural frequency response analysis problem. 

4 Optimization algorithm 

The Lagrangian function of the constrained optimization problem can be defined as 

N 

L = f  + 2h + ~ [~_ i (x_ i -  xi) + ~ + i ( x i -  •i)] (24) 
i = 1  

where, 2, ~_, and c~ +, are the Lagrangian multipliers. Then, the Kuhn-Tucke r  conditions of the 

problem become 

0 f  Oh 0 f  
- - + 2 - - = ~ _ i - ~ + , ,  ( i=l ,2, . . . ,N);  =0, (i=l,2,...,ne~) (25, 26) 
Ox, Oxi OOi 

2 h = 0 ;  ~ _ i ( x , - x , ) = O ,  ~+ , (x i - )7 , )=0 ,  ( i = l , 2 , . . . , N )  (27) 

where, 2 > 0 ,  a_i > 0, ~+ />  0 ( i=  1 ,2 , . . . ,N) .  
An iterative optimization algorithm employed by Bendsoe and Kikuchi (1988) and Suzuki and 

Kikuchi (1990, 1991), which was utilized for solving the stiffness optimization problem, can be 

written as follows: 

a) Give the initial value of the design variables, x~ (i = 1, 2 , . . . ,  N) and 07 (i = 1, 2 . . . . .  nel), where 

k = 0 .  
b) Find the solution U k of state equation Eq. (16) with respect to x, = x~, Oi = O k 

c) Calculate Of  /gx i  and Oh/Ox i with respect to x i = x~, 0 i = O~ 

d) Modify the design variables as follows: 

x q if xk D k < X k 
--~ i i ~ - - t  

= x k o  k if xk < xkD k < ~k 
x k+l i i - i  , i i, ( i = 1 , 2  . . . . .  N) (28) 

i .~k if xkD k > ~k 
i i i ~--- i 
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where 

Dk=[_f__0h  2k'~ -l_t?f~" ," xk=max{(1--f)x~,xi}, 2 k=min{(1 + ( ) x ~ , 2 , } ,  (29,30) 

e) Determine O k+ 1 using Eq. (26) or its equivalent form (Suzuki and Kikuchi 1990). 
i 

f) Let k = k + 1, and repeat b) to e) until some convergence criteria are fulfilled. 

In above, t/and ( are given, and are regarded as the step size parameters. The k-th approximation 
of the Lagrangian multiplier, 2 k, is adjusted by an inner iteration loop to satisfy the constraint 

h(xk(2k)) = 0 by assuming this constraint is always active. 
The updating rule Eq. (28) in this algorithm is based on the traditional Optimality Criteria 

(OC) method (e.g., Berke and Venkayya 1974). Even though this algorithm is convergent for most 

of the static problems of a linearly elastic structure (Bendsoe and Kikuchi 1988; Suzuki and 

Kikuchi 1990, 1991), it does not work well in the dynamic case, especially when exciting frequency 

becomes high. The reason for this is that in the static problem, the derivatives of the objective and 
constraint functions do not change their sign during the iteration of optimization, i.e., 

c3f/c~xi <= 0 and ~?h/t?xi > O, (for V x i G A w B  , x i >= 0). (31) 

Thus, we can find a Lagrangian multiplier 2 k ~ 0 and convert D k in Eq. (29) to be a positive real 

number, and then the design variables can be updated as positive real number via Eq. (28). 
However, in the dynamic problem, some derivatives of the object function may become positive. 
In the case that Eq. (31) is not satisfied, because 2 k ~ 0 (Lagrangian multiplier has to be a positive 
number), the updated design variable x k+l calculated by Eq. (28) may be a negative or complex 

number. Even though this undesirable behavior can be avoided by letting the design variable to 
be some artificial value, e.g., x k+ 1=  xk (when c?f/~xi > 0 and t?h/t?xi > 0), where x k is a moving 

i - - i  ~ -  - - i  

limit as shown in Eq. (30); it could cause a discontinuous jump in the design variable, and it 

yields no guarantee for convergence of the optimization process to its local minima. 
In this paper, we propose a new optimization algorithm to overcome the difficulty mentioned 

in above. The basic idea is the use of a convex approximation, which is the basis of widely used 
optimization methods CONLIN (Fleury and Braibant 1986) and MMA (Svanberg 1987). The 

method introduced here is different from the CONLIN and the MMA, and it employs a shift 
parameter which corresponds to the Lagrange multiplier to make the convex approximation of 
the problem. The new algorithm can be reduced to the traditional OC algorithm, and it has the 

same simplicity as the OC method. 

Rewrite Eq. (25) as 

- #  + t?x = ~_~--e+~, ( i = l , 2 , . . . , N )  (32) 

where, # is a shift parameter, and 2* -- 2 + #. If we assume Eq. (23b) to be active, but Eq. (23c) not 

active, then Eq. (32) becomes 

_ _ _  2,  t?h 0f*  t- =0 ,  ( i=  1 ,2 , . . . ,N)  (33) 
~xi c~xi 

where, f *  = f - # h .  Now we have new optimization problem with the objective function f *  and 
the constraint h = O. This problem is equivalent to the original one. 

Using a generalized reciprocal approximation, we assume the intermediate variables for the 

linearization as 

y i=( l~  ~, (i= 1,2,...,N) (34) 
\ x i /  

where ~ > 0 is a given parameter. Assuming that x k (i = 1, 2, N )  are the k-th approximation of 
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the optima obtained in last interaction step, f * can be linearly approximated in terms of yi at the 
point yi = y: = (x:)-< (i = 1,2,. . . , N) as 

where f k, is a constant, and 

If we choose the shift parameter p in the k-th interaction step as 

(for i = 1,2,. . . , N) 

then, from Eq. (36), we have a; 2 0 (i = 1,2,. . . , N), and the approximate objective function f is 
convex. 

The constraint function h is a bilinear function of the design variables in this problem, therefore 
it can be linearized in terms of the direct design variables xi's as 

N 

hk = hk, + 1 b;xi 
i =  1 

(38) 

where, hk, < 0 is a constant, and 

k b. =- a h l  , 
, ( b f z O ; i = 1 , 2  ,..., N). 

axi xi=xk 

Then the Lagrangian function in the approximated problem becomes 

where 

Since the approximated Lagrangian function Lk(X, Ak) is convex for any 31k 2 0, we can use the 
dual method to solve the problem (see, e.g., Haftka and Gurdal1992). The dual problem is defined 

by 

Maximize Lk(Ak), subject to Ak 2 0 (43a, b) 

where 

L;(Ak) = min Lk(X, Ak). 
x<x<x 

Because the minimization problem Eq. (44) is separable, it can be replaced with N one- 
dimensional minimization problems of the form: 

Minimize lf(xi) = a:xi-< + Akb;xi, subject to xi < xi < xi (45% b) 

where, a: 2 0, b; 2 0, (i = 1,2,. . . , N). By solving this simple minimization problem, we can obtain 
the solution 

Using x* as the (k + 1)-th approximation of the solution of the optimization problem, i.e., 
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xk+i ~ = X*, and substituting Eqs. (36) and (39) into Eq. (46), we have 

x g + I  [ 1 (  k ( 6 3 f / O x i ~  ~ n  
i = ~ 1 2 -  X k (X_i<xk+l<xi ,  i = l , 2  ,. ,N) 

\ ~h/~xi /lxi=x~ /_j i i "" 

where t /= 1/(~ + 1), and 

#k> max ~(#f /~xi ' ]  }. 
= 1 <-iNN ( k  x ¢3h/c~x i Jlxi=x~ 

The solution Eq. (46) can be rewritten as 

xk+l=(2k)-"e~ ' i  where ek= ( ~ )  " . i  

Substituting Eq. (49) into Eq. (40) gives 

N 

Lk= fk  ° + 2khko + (j~k)t - ,  2 [a~(e~) -¢ + bikeik ]. 
i = l  

Because 

(47) 

(48) 

(49) 

(50) 

ai(e~)-¢=~b~e~, and 1 + 1 -  1 (51) 

substituting Eq. (51) into Eq. (50) yields 

N 

Lk --fo-- k + 2khko + (2k)1-.(1 -- t/) - t  ~ bke k ,  ,. (52) 
i = l  

To solve the maximization problem Eq. (43), we have 

•L k N 
~32 - hk° + ()~k)-~t 2 bkeki i = 0. (53) 

i=1 

Then the Lagrangian multiplier can be obtained as 

2 k (--~o ~=lbkek'] 1In 
: i i i /  (54) 

where 2 k > 0 (h~ < 0). 

Equation (54) has to be revised if some side constraints for the lower and upper bounds of the 
design variables in Eq. (23c) are active. Assuming I k_ and Ik+ are the sets of numbers of the design 
variables which arrive the minimum and maximum values respectively, and I k is the set of numbers 
of the other design variables. Then the Lagrangian function in the k-th iteration, Eq. (40), can be 
revised as 

Lk(x,2k) = Iko + Z lk, + Z lki- + Z lk+i (55) 
ieI k i~I k - i~Ik+ 

where 

lko=fko + 2khko + Z a-iX--i-- 20~+iXi (56a) 
iel k - i~Ik+ 

lk=a~x? + 2kb~xi, Iki = a~x? ~+ )ckb~xi , lk+i : a ~ x / ~  + 2kb~xi+c~+ixi • (56b-d) 

By solving the dual problem Eq. (43) with respect to the Lagrangian function defined by Eq. (55), 
we can obtain 

xk+li = (2*)-"e~, (f°rxi<(2k)-"e~<xi,- = = i =  1,2,.. ., N) (57) 

~-i = b~[ )~k --(e~/x_i)l/n], (~-i >= 0), c~+i = b~[(e~/2i) 1In - }k], (0~+ i ~ O) (58, 59) 
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I - 1 \1i,~ 
,~k l - -  V bkekl --k k = ~  ~k ~ i i !  , where ho - - ho+  ~ b~x_i+ ~ b ~  i. (60,61) 

\ ttO ielk / tel k - ieJ~ 

It should be noted that because the sets I k_, I k and I k depend on the solution of Lagrangian 
multiplier 2 k, an iterative calculations is required for solving 2 k. 

In summary, the improved optimization algorithm can be described by 

a) Give the initial value of the design variables, xki (k = 1, 2 , . .  ., N )  and 0 k (i = 1, 2, ... , ne/), where 
k = 0 .  

b) Find the solution U k of governing equation Eq. (16) with respect to x i = x k O~ = 0 k 
i '  i "  

c) Calculate c~f /Ox i and c3h/~x i with respect to x i = x k, 0 i = 0 k 
i "  

d) Calculate #k using Eq. (48) 
e) Calculate 

e k Dkxk (i=1,2,. N), where, ~ k (  (~flOXi~ ~,l. 
i = i i '  " ' '  i = ~k__ (62, 63) 

\ c3h/t3xi )I=, 
f) Determine the Lagrangian multiplier by an inner iteration loop using 

~ k  __ - -  1 ~ k  = - -k  k 
~k ~ b ~ e ~ '  where (Xk) ", h 0 = h  0+ ~ b~x_~+ ~ b~2~, (64, 65) 
h o id~ i~i ~_ i~i~+ 

I k_={ilek/-2k<=x~}, I k = { i [ x i < e ~ / ~  R<N~},  I k={i [ek/~  k>=Ng} (66) 

g) Modify the design variables as follows: 

f xi if iEI  k_ 

x k+li = e~/~ k if i d  k ,  ( i --1,2, . . . ,N).  (67) 

t 2~ if i~Ik+ 

h) Determine 0 k+i using Eq. (25) or its equivalent form (Suzuki and Kikuchi 1990). 

i) Let k = k 4- 1, and repeat b) to h) until some convergence criteria are fulfilled. 

Note that if 

~ f  < 0  for V x ~ e A w S ( x _ i < x k < 2 i )  (68) 
c~xi ~,=~ = = i = 

is satisfied, we can choose the shift parameter as/~k = 0, then the updating rule Eq. (67) is reduced 
to the previous OC updating rule employed by Bendsoe and Kikuchi (1988), i.e., Eq. (28), which is 
used for the static stiffness problems. Therefore, the new optimization algorithm obtained here is 
a generalization of the previous one, which can be applied to more general problems. It should 
be noted that the calculation of the Lagrange multiplier has also been significantly improved. In 
the previous method, the Lagrange multiplier is calculated by solving a nonlinear equation using, 
e.g., the bi-section method (Suzuki and Kikuchi 1990). But, in the new algorithm, using Eq. (64), 
the Lagrange multiplier can be obtained through only two or three iterations with much simpler 
calculation. Therefore, the optimization algorithm presented here is more efficient than the 

previous one. 
As well known in the OC method, the step size parameter q in Eqs. (29) and (63) plays very 

important rule in the optimization process. A large value of r/ can accelerate the convergence 
toward to the final solution, but it may cause oscillation in the iterative process. A small value of 
17 can prevent divergence, but it results in small change to the design variables, which slows down 
the progress of convergence [e.g., 12]. However, the OC approach could not give a theoretical 
guideline about what is the optimal value of the parameter r/. In this paper, we can see, r/is related 
to the parameter ¢, i.e., q = 1/(~ + 1), which is the exponent of the reciprocal variables used in the 
approximation process (see Eq. (34)). Therefore, the optimal value of r/is dependent on the optimal 
value of the parameter ~. It is clear that if the approximate objective function, i.e., Eq. (35), is closer 
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to the primary one, the optimal solution of the approximate optimization problem will be closer 
to the solution of the primary problem. Then less iterations will be needed for obtaining the optima 
of the primary problem. Therefore, the optimal ~ is that which can make the approximate objective 
function obtained using the intermediate variables yi of Eq. (34) to be as close to the primary one 
as possible. 

5 Derivative calculations of the object functions 

The major computation in the aforementioned problem is the calculation of the derivatives of the 
objective functions, Ofi/OXk, where Xk stands for an arbitrary design variable. Two types of 
sensitivity analysis methods have been proposed by Ma and Hagiwara (1991a, 1992) for a 
frequency response problem. One is the Direct Frequency Response (DRF) method (Ma and 
Hagiwara 1991a), the other is the Modal Frequency Response (MFR) method (Ma and Hagiwara 
1992). In this section, we shall apply these methods to the optimization problems defined in this 
paper. For the sake of simplicity, the damping matrix is omitted in the following sections. 

5.1 Derivatives via the DFR method 

Performing a partial derivative operation on Eq. (16) for the case of no damping, C = 0, with 
respect to design variable XR, results in 

OK o~2 0 M ~ u  + ( K - ~ 2 M ) 0 U = 0 .  (69) 
Oxk / Oxk 

Suppose that the exciting frequency ~o is not equal to any natural frequency of the structure. Then 
the derivative of the frequency response can be obtained as 

0 U  (K_co2M)_x(0K ~020M~u (70) 
0xk \0xk 0xk / " 

Using Eq. (70) and U = ( K -  ( ~ 2 M ) - 1 F ,  we can obtain the sensitivity of the object function f l ,  
which is defined in Eq. (17), as 

0f~ - s i g n { f l } u T ( 0 K  °~ 20M/U"  (71) 
OXk \ OXk ~Xk / 

Because the design variable x k belongs to the k-th element only, using Eq. (11), the above equation 
can be greatly simplified as 

U T(Okk ~o2 Omk/Uk. (72) 
0 / ' = - s i g n {  f l } 0 x  k k \ ~ x  k OXk/ 

where, Uk stands for the component of U which corresponds to the k-th finite-element -Qk only, 
and Okk/QXk and Omk/OXk are calculated by 

Okk BTODkBkd~Q' Omk-- S OPkNTNk dg'2" (73) 

Note that Eq. (72) only needs to be calculated at the element level. For example, if we use 
4-node quadrilateral elements, just 72 multiplications are needed for each derivative calculation 
with respect to an individual design variable. Therefore, the derivative calculation using the 
method proposed here is very simple and highly efficient, especially compared with the use of a 
finite-difference method. 

It should also be noted that the derivatives obtained using Eq. (72) are dependent on the given 
exciting frequency e). Especially, in Eq. (72), the component of the frequency response, U k, is an 
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implicit function of co, and it is obtained by solving the state equation Eq. (16). Thus, for a different 
value Of co, the Eq. (16) has to be completely reevaluated. Therefore, it becomes very inefficient if 
we need to calculate the derivatives which are related to many frequency points or a frequency 
domain, e.g., in the case of objective function f2, because solving Eq. (16) is the most expensive 
procedure in the problem. Therefore, it is necessary to introduce the Modal Frequency Response 
(MFR) sensitivity analysis method (Ma and Hagiwara 1992) for the problem. 

5.2 Derivatives via the M F R  method 

Using a standard mode-superposition technique (mode-displacement method), the frequency 
response U can be expressed as 

U = 2., c~iqi, q i -  (74) 
i = 1 092 -- 092 

where co 2 and q~i stand for the /-the eigenvalue and eigenvector of the structure, respectively. 
Eq. (74) can be also written as a matrix form: 

U = ~ Q  (75) 

where @ = [~1, ~b2,-.-, qS,] and Q = col {qi}. Then the derivatives of the MFR in terms of modal 
coordinates can be obtained as following. 

~U 
- ~ S Q .  (76)  

C3Xk 

Here, S = (Sij) is called sensitivity matrix, and 

- 1  r/t?kk 8m,'~,~ - 1  
S,,-co2---~o 2 4~ik( C3Xk--CO 2 t?Xk ],:.jk=COZ_CO2(kk*j--CO2m*ij), ( i , j= 1,2,...,n) (77) 

where qSik stands for the component ofqS~ with respect to the k-th finite-element of the structure, and 

T t~kk T t~mk 

k* = (aik ~kXk ~Pjk, m* . . . .  , kij kij ¢ik ~ (fijk, (i,j = 1, 2, n) (78) 

are independent from the exciting frequency co. 
Therefore, the derivatives of the objective functions defined in this paper can be obtained as" 

- sign {fl}QrS1Q and t?f2 - ~b sign {f1}QrS1Qdco (79, 80) 
~X k ~X k tOa 

where, 

k:g _ 2 :t: S¢j= - (  kij co mkij)' ( i , j= 1,2,.. ,n). (81) 

As mentioned previously, k* = (kk*j) and m~ - (mklj) are independent of the exciting frequency co, 

therefore, just one calculation of k~ and m~' is required for the sensitivity analysis within the 
frequency domain [-COa, cob]" Thus, the calculations will be much cheapter than the use of DFR 
method, when the sensitivities need to be calculated at many frequency points. 

It should be noted that the mode-superposition technique used here is just a standard mode- 
displacement method. As discussed by e.g., Ma and Hagiwara (1991b), the mode-displacement 
method may lose accuracy when the mode number used in Eq. (74) is small, especially when the 
modes whose frequencies are lower than the exciting frequency need to be ignored (as it is 
sometimes necessary to solve the problem with respect to a higher exciting frequency). In this case, 
an improved mode-superposition technique presented by Ma and Higiwara (1991b) needs to be 
introduced to improve accuracy. 
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It is noted that the sensitivity analysis methods mentioned in this section and last section can 
be extended for the case where the damping term is also considered. Some similar techniques as 

that presented in the Refs. (Ma and Hagiwara 1991a, b; 1992) can be used for this purpose. 

6 Examples 

In order to show the optimum design for the frequency response optimization problem described 
in above, we shall demonstrate three examples in plane stress elasticity. The first example is to 

find the optimal topology and shape from a given design domain, the second is for the optimal 
reinforcement design of an existing structure while the third is to minimize the frequency response 

within a given frequency domain. The objective function f~ and the DFR sensitivity analysis 

method were used in the first two examples while the objective function and the MFR sensitivity 
analysis method were used in the third example. 

Example 1, Optimal topology and shape problem. In the optimal topology and shape problem, 
only a design domain, boundary condition and exciting loads are given. As shown in Fig. 3, the 

design domain is specified as a rectangle, 8.0 cm in horizontal length and 5.0 cm in vertical height 

with two fixed support boundaries at A and B of the left end. A shear-like, period exciting load 
with the frequency 60 Hz is assumed to act on the center part C of the right end surface. This 

problem may be described as a shape optimization problem of a short cantilever beam subject to 
the transverse vibrating load at the free end. First, a finite-element model of the design domain is 

made by 640 (20 x 32) finite-elements with 693 nodes. Thus, we have 1386 D.O.Fs. for the structural 
domain and 1920 design variables for the optimization process in this problem. 

Fig. 3. Design domain  of the opt imiza t ion  p rob lem 
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Fig. 4a -h .  Gene ra t i on  his tory of the opt imal  structure.  (k: i tera t ion number) ,  a k = 1, b k = 3, e k = 7, d k = 12, e k = 18, f k  = 25, 

g k = 3 3 ,  h k =  150 



170 Computational  Mechanics 13 (1993) 

The optimization process is started from a given initial value of the design variable, i.e., 

x ° = 0.20 (i = 1, 2, . . . ,  N). The initial density of each element is 36~, i.e., the initial structure fills 
36~ (14.4/40.0) of the volume of whole design domain. A volume constraint keeps this material 

volume at 36~o. Therefore, the optimization process becomes a matter of just moving material 
from one part of the design domain to the another part, without addition or reduction of the 
material. 

Figure 4 gives the history of the optimal structure generation, which is calculated by the method 
presented in this paper. In this example, the initial value of the object function is 161.9 and final 

one become 113.8. As shown in Fig. 4, the material is dramatically moved during the optimization 
process and finally converges to an optimal structure. 

To investigate the changes in the natural frequencies of the structure, a frequency analysis is 

performed in each iteration step. Figure 5 shows the variation history of the first and second natural 

frequencies. The frequencies of the initial structure were 25.8 Hz and 75.7 Hz and the final ones 
become 100.1 Hz and 100.2 Hz. It is shown that when the structure is close to the optimal one, the 

first two natural frequencies are going to come together, until finally the optimal structure has 

repeated frequencies. This phenomenon is also found in other optimal design problems (e.g., Choi 
and Haug 1981). 

Figure 6 shows the convergence history of the constraint function. As shown in Fig. 6, even 

though the initial value is started from zero, the constraint function has a minus value -0.36 (2.5~ 
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5 Iteration number 6 Iteration number 

Figs. 5 and 6. 5 Variations in the first and second natural frequencies. 6 Convergence history of the constraint function 
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of the given volume) at the first step. This is caused by the larger changes in the design variables, 

so that the approximate constraint function has a larger error from the primary one. But, after 

k = 30, the constraint function becomes greater than -0 .002  (0.14~o of the given volume), and 

converges to zero as the iteration number k is increased. 
Figure 7 shows the variation history of the shift parameter #. It is shown that # is almost 

monotonically reduced to zero as the iteration number is increased except at k < 5. It should be 

noted that just one or two iterations are required in each step to calculate the Lagrange multiplier 

2* using Eq. (64). This is also true for the all of the other trial examples provided that the iteration 

process is started from a properly (not specially) chosen initial value. Therefore, the calculation 

method of the Lagrange multiplier proposed in this paper is simple and also efficient. 

A comparison of the results obtained either with or without shift parameter g is given in 

Fig. 8. Figure 8 shows the convergence history of the objective function with respect to the first 30 

iterations. There, the vertical coordinate is In f l .  As mentioned previously, if # = 0, the method 

presented in this paper is reduced to the previous OC method. Figure 8 shows that a large 

oscillation occurs in the objective function when the previous OC method is used. Figure 9 shows 

that the optimization process did not converge to a physically sound structure. As shown in 

Fig. 8, if the modified OC method is used, the convergence of the objective function is smooth and 

0 

5 

10 

. traditional OC 

" O C  

o ,' ~ ~ 
Iteration number 

Figs. 9 and 10. 9 Final  s t ruc ture  us ing the t radi t ional  OC.  10 C o m p a r i s o n  of the modif ied O C  and  the t radi t ional  O C  (Static 

case, co = 0.0 Hz) 
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Fig. 11 a - f i  Op t i ma l  topologies  and  shapes  with respect to different excit ing frequencies; a co = 0 Hz ( f l  = 99.0); b co = 15 Hz 

( f l  = 100.6); c co = 30 Hz ( f l  = 104.5); d co = 45 Hz ( f l  = 113.6); e co = 60 Hz ( f l  = 122.7); f co = 75 Hz ( f l  = 137.6) 



172 C o m p u t a t i o n a l  Mechanics  13 (1993) 

monotonically decreasing except for the first four iterations. A big vibration of the objective 
function occurs in the first four iteration steps. This is caused by the resonant response while the 
first natural frequency of the structure crosses the exciting frequency 60 Hz. 

Figure 10 shows that even for the static problem, using the shift parameter (in this case # has 

a minus value) could accelerate convergence. Some results show that a large positive/~ values 
may slow down the convergence even though it can make the optimization process stable. 

Therefore, an investigation about how to actively control the shift parameter/~ may required. 
For obtaining more detailed topology and shape of the optimal structure, the design domain 

is decomposed by a refined mesh, 40 x 64 finite-elements. Each finite-element used in the previously 

analysis is divided into four elements. The initial value of the design variables is also changed to 

x ° = 0.18 (i = 1, 2, . . . ,  N) for the purpose of examining the influence of the initial condition. But, 
the other conditions are kept to be the same. Figure 11 shows the results of the optimum topology 
and shape optimization for the exciting frequencies 0 Hz, 15 Hz, 30 Hz, 45 Hz, 60 Hz and 75 Hz, 

respectively. As shown in Fig. 11, in all of these cases, the optimization method proposed here 

converges well. The results show that the optimal topologies and shapes are very different when 
the exciting frequency is changed while refinement of finite element model does not alter the 

optimum layout significantly. It implies that the optimal topology and shape obtained in the static 
optimization is not optimal in the dynamic case. Comparison of Fig. 4(h) and Fig. 1 l(e) shows 

that the result obtained in this example is not much mesh dependent nor initial condition 
dependent. But, this feature may not be always true, especially when the structure is not statically 

determinate or the initial condition has a larger change. This kind of problems should be discussed 
in future. 

Example 2. Optimal reinforcement problem. In the optimal reinforcement problem, a core of the 
structure is specified at beginning as shown in Fig. 12. Here the core-structure is not changed in 

the optimization process. The material is only added to reinforce the core-structure within the 

design domain. 

Figure 13 shows the result of the optimum reinforcement with respect to the exciting frequ- 
encies 20 Hz, 50 Hz, 60 Hz and 70 Hz. As shown there, the optimization method does converge, 

Design  domain  
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12 
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13 

Figs. 12 and 13. 12 Des ign  d o m a i n  of  the 

opt imal  reinforcement problem. 13a-d  Results 

of  opt imal  reinforcements;  a co = 20 Hz, b co = 

50 Hz, c co = 60 Hz, d co = 70 Hz  
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Figs. 14 and 15. 14 Optimal structure subjected to the given frequency domain. 15 Reduction of the objective function 

and the optimal reinforcement layouts are very different when the exciting frequency is changed. 
This implies that we have to make different reinforcements for the problems with different exciting 
frequencies. 

Example 3. Frequency domain problem. The last example is to show the result about minimizing 
the integral of the mean-compliance over a given frequency domain. The design problem is same 
as the problem which is discussed in Example 1 except we consider an integration here. Here, the 
fine mesh, (40 x 64) finite element model, is used in this problem. The integral domain is considered 
0Hz to 50Hz, and ten Gauss points are used for the Gaussian Quadrature Eq. (19). For the 
frequency response analysis and sensitivity analysis, the modal superposition technique, Eq. (74), 
and MFR sensitivity analysis method, Eq. (80), are utilized, where' the first eight modes are 
employed for this example. Also, for the optimization process, the start points are x ° = 0.18 
( i=  1,2,...,N). 

Figure 14 gives the optimal structure obtained using the method presented in this paper. Figure 
15 shows the mean-compliance of the initial design domain and the optimal structure within 
the frequency domain (0, 50 Hz). It is seen that a great reduction of the mean-compliance can be 
obtained by using the method presented in this paper. 

7 C o n c l u s i o n  

A topology and shape optimization method using the conception of OMD is developed for the 
frequency response problem of a vibrating structure. It is shown that the use of this method makes 
it possible to obtain the optimal structure, which is not only optimal in size and shape but also 
in topology. To solve the optimization problem defined in this paper, a modified OC algorithm 
is developed using the convex approximation approach and the dual method. It is shown that this 
algorithm is very efficient and well convergent for the problem. 
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