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Abstract—Structural transformations of incoming 

informational signal by a single nonlinear oscillatory 

neuron or an artificial nonlinear neural network are 

investigated. The neurons are modeled as threshold 

devices so that the artificial nonlinear neural network 

under consideration are systems of nonlinear van der Pol 

type oscillatory neurons. The neurons are coupled by 

synaptic weight coefficients to endow the systems with 

the configuration topology of a chain or a ring. It is 

shown that the morphology of the outgoing signal – with 

respect to the shape, amplitude and time dependence of 

the instantaneous frequency of the signal – at the output 

of such a neural network has a higher degree of 

stochasticity than the morphology of the signal at the 

output of a single neuron. We conclude that the process 

of coding by a single neuron or an entire chain-like or 

circular neural network may be considered in terms of 

frequency modulations, which are known in Physics as a 

way to transmit information. We conjecture that 

frequency modulations constitute one of the ways of 

coding of information by the neurons in these types of 

neural networks. 

 

Index Terms—Nonlinear neuron, artificial nonlinear 

neural network, coding of information. 

 

I.  INTRODUCTION 

Construction and implementation of mathematical 

models that yield a high degree of protection of 

information are among present challenges of 

cryptography. Models that feature significant changes of 

the structure of the incoming informational signal are of 

special interest. In this paper, we study transformations of 

an incoming signal by a single oscillatory neuron as well 

as by a system of nonlinear oscillatory neurons coupled 

by synaptic weight coefficients. These coefficients are 

chosen to endow the artificial nonlinear neural network  

with the topology of a chain or a ring. The interaction 

between the neurons is assumed to be of “dipole – 

dipole” type. We show that the proposed models change 
the structure (shape, amplitude, frequency and phase) of 

an incoming informational signal in a significant way. 

The structure of the article consists of 5 sections: 

 

 The first section (introduction) indicates the need 

to build and implement mathematical models 

based on neural networks with nonlinear 

oscillatory neurons for cryptographic systems. 

 The second section presents an analysis of 

scientific papers related to the transformation of 

the structure of input signals by a single neuron or 

neural network. 

 The third section describes the purpose and 

method of studying the processes of morphology 

transformation of the input signal using a chain or 

ring network of nonlinear oscillatory neurons. 

 In the fourth section, a mathematical model of the 

chain and ring network of nonlinear oscillatory 

neurons is constructed. 

 The fifth section presents the solution of the 

mathematical model of the chain and ring network 
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of nonlinear oscillatory neurons and a computer 

experiment to transform the morphology of the 

input signals by a single neuron and a system of 

neurons. The results of studies of the criteria for 

the occurrence of resonance effects in a nonlinear 

oscillatory neuron are also presented. It is shown 

that resonance effects in a nonlinear oscillatory 

neuron occur under the condition that the 

frequency of the external non-stationary signal 

coincides with the intrinsic dynamics of the neuron. 

The coding of information on the basis of 

frequency modulation using a nonlinear oscillatory 

neuron is proposed. Decoding using the inverse 

operator, which acts on the vector of the output 

signal, is proposed. 

 

II.  RELATED WORKS 

At the initial stages of processing of sensory data, 

wavelet analysis is an effective instrument in the 

determination of the informative component in the neural 

signals that are being registered. Usually this 

determination is performed by analysis of the structure of 

the point-wise processes, that is, analysis of the time-

frequency dynamics of neural responses [1 – 8], in which 

the information is carried by the times at which impulses 

(spikes) are generated rather than the shape of these 

responses [9]. The mechanisms by which the spikes are 

generated are only partially understood [10], while the 

ways in which nonlinear oscillatory neurons transform 

the structure of an incoming information signal have not 

been investigated, to the best of our knowledge. 

In [2 – 5, 8] the transformation of signals by a sensory 

neuron (threshold device) is analyzed; the analysis does 

not take into account the dynamics of the neuron itself. It 

has been shown, by means of classical models of 

threshold systems such as “integrate-and-fire” [2 – 4] and 

“threshold crossing” [5, 8], that different characteristics 

of complex dynamics at the input of a sensory neuron are 

preserved in the structure of certain pointwise processes 

[4 – 8], [11 – 14].  

Numerical modeling of the dynamics of a neuron 

subject to a stationary external signal, without 

consideration of the threshold effect of the neuron, was 

performed in [15]. In contrast, in this paper we consider a 

model with nonstationary external signals, which are 

transformed by an artificial nonlinear neural network 

modeled by a system of nonlinear oscillatory neurons of 

van der Pole type. In this system, the neural connections 

are represented by synaptic weight coefficients that take 

into account the threshold effect of the neuron. 

Using the technique of double wavelet analysis, the 

authors of [16, 17] investigate time-frequency dynamics 

of the sensory neuron (threshold device), while taking 

into account both its own dynamics as well as the 

dynamics generated by the action of a non-stationary 

external signal. The sensory neuron is modeled in [16,17] 

as a threshold device that transforms an incoming signal 

into a sequence of output impulses. This sequence of 

impulses was described by a sequence of Dirac delta-

functions, each function corresponding to the moment of 

generation of an impulse (spike). These model impulses 

have the same form and amplitude, thus the information 

about the external action of the dynamic signal is 

expressed only by the time intervals between the 

moments of the generations of the impulses. 

The study of structural transformation of incoming 

signal by a nonlinear oscillatory neuron that has its own 

dynamics, as well as by an artificial nonlinear neural 

network that consists of such neurons, contributes to 

understanding of neural networks of human brain. Indeed, 

biological neurons of the brain generate waves of various 

frequencies [18 – 20], which are transmitted as incoming 

signals to other neurons. It is therefore important to 

understand the response mechanisms of the latter neurons, 

that is, hoe the outgoing signals are generated. The 

proposed study can also be applied to development of 

coding algorithms that feature high degree of protection 

of information as well as to recognition of multispectral 

images. 

 

III.  SETTING OBJECTIVES 

In this paper we investigate, by means of an analytical-

numerical method, the processes of transformation of the 

structure of the incoming signal by a single oscillatory 

neuron, taking into account its threshold effect, as well as 

an artificial nonlinear neural network represented by a 

system of neurons that are van der Pol type oscillators 

coupled by synaptic weight coefficients. The weight 

coefficients are chosen to endow the neural networks 

with the configurational topology of either a chain or a 

ring. 

 

IV.  MATHEMATICAL MODEL 

We consider decoupled as well as coupled systems of 

nonlinear oscillatory neurons. 

In the case of a system of N  decoupled neurons, the 

k th  sensory nonlinear oscillatory neuron  k
X t  is of 

van der Pol type – a threshold device – such that its own 

dynamics is described by the parameters 00,
k k

   (the 

own frequency of the k th  neuron) as well as 
k

p  (the 

amplitude parameter of the k th  neuron), see Fig. 1. 

The system reads 

 
2 2 2

0 0[ ( ; )] ( )
k k k k k ck k k k k

X X p N N X X V t           (1) 

 

where 
2 2 0

0 0 2
( ; ) tanh( )k ck

k k ck k

k

N N
p N N p




  with 
0 ,

k ck
N N  

and 2

k
  being the number of the incoming impulses, the 

threshold number of impulses of the k th  neuron and 

the dispersion, respectively, 1( )V t is the external 

incoming informational signal, while for each 

2,3,...,k N
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   1k k
V t X t                             (2) 

 

is the incoming non-stationary signal on the k th  

oscillatory neuron. Note that  k
V t  equals  1k

X t , the 

latter being the result of transformation of the external 

signal  1V t  by 1k   previous neurons. 

 

 

Fig.1. Schematic representation of the process of transformation of an 

incoming signal  k
V t  by a sensory nonlinear oscillatory neuron 

(threshold device). The moments of time at which impulses are 

generated at the output of the threshold device  k
X t  correspond to the 

moments of time at which the threshold level is crossed. 

 

Fig.2. Schematic representation of an artificial nonlinear neural network 

with the topology of a chain and one-sided connections manifested by 

weight coefficients
, 1k k

  , where 1,2,..., .k N  

Note that 
1 0

N
  . 

 

 

Fig.3. Schematic representation of an artificial nonlinear neural network 

with the topology of a chain and (a) one-sided connections manifested 

by weight coefficients 
, 1k k

   and 
1N

  or (b) two-sided connections 

manifested by weight coefficients 
, 1,k k

   
1, ,

k k
   

1N
  and 

1N
 , where 

1,2,..., .k N  

In the case of a coupled system of N nonlinear 

oscillatory neurons, we assume that the neurons are 

related among themselves by synaptic weight coefficients 

,
jk

  with the topology of a chain (Fig. 2) or a ring (Fig. 

3). This artificial nonlinear neural network is described 

by a system of nonlinear differential equations 

 
2

2 2

0 0

1 1

( ; ) ( )
N N

k k k jk j k k ck k k k jk j k

j j

X X X p N N X X X V t   
 

              
     

   

(3) 

 

 

 

where the "dot" denotes differentiation with respect to the 

time-variable , 1,2,...,t k N  and all the other functions 

and parameters of the system are defined as above. We 

assume that 0
jj

  . The desired topology of the artificial 

nonlinear neural network is achieved by an appropriate 

choice of the weight coefficients. For example, if 0
jk

   

for all ,j k  such that 1,j k   where 
, 1 1,N N N

    the 

k th  equation of system (3) involves only the 

dependent variables 
k

X  and 
1,k

X   where 
1N

X   is 

identified with 
1X , so that the neural network has the 

topology of a ring, see Fig. 3(a). If, in addition, 
1 0

N
  , 

the ring is broken, and the network has the topology of a 

chain, see Fig. 2. In the case where 0
jk

   for all ,j k  

that satisfy  1, 1 ,j k k    the system has the topology 

of a ring, with two-sided links between consecutive 

neurons, see Fig. 3(b). 

In both cases, the nonlinear oscillatory neurons 
k

X  in 

systems (1) and (3) can generate impulses even if the 

external non-stationary signal is absent   1 0V t  , 

provided that the number of the impulses 
0k

N  present in 

the sensory neuron exceeds the threshold value 
ck

N , that 

is, 
0k ck

N N . Indeed, in this case,  2

0 , 0
k k ck

p N N   [18]. 

Therefore, each nonlinear neuron 
k

X  can be considered 

as a threshold device that transforms the incoming non-

stationary signal  k
V t  (which arrives at the k th  

neuron) into a sequence of impulses at the output (see Fig. 

1). This effect is due to the overlay of the dynamics of the 

incoming non-stationary signal with the own dynamics of 

the neuron. Due to the latter dynamics, the structure of 

the signal at the output of the k th  nonlinear neuron is 

significantly changed in comparison with the incoming 

signal  k
V t .The complex dynamics of the 

transformation of the incoming non-stationary signal is 

discussed in [18]. 

Possible applications of neural network technologies 

include detection of multispectral images, detection and 

recognition of computer attacks, compression of input 

images [21 – 23]. 

In the next section, a three-neuron system that models 

an artificial nonlinear neural network with ring-like 

topology is studied. The Krylov-Bogolyubov-

Mytropolsky method of subsequent approximations 

utilized for numerical solution of this system is 

summarized. Several incoming informational signals are 

considered: a single rectangular impulse, a superposition 

of several rectangular impulses, a superposition of 

products of periodic signals times a Gaussian functions. 

Plots of the output informational signal and of the 

frequency modulation of the incoming signal due to its 

modification by the appropriate artificial nonlinear neural 

network are provided.  
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V.  ENCODING VIA AN ARTIFICIAL NONLINEAR NEURAL 

NETWORK WITH ONE OR THREE VAN DER POL TYPE 

OSCILLATORY NEURONS 

In this section we consider a coupled system of 3 

oscillatory neurons described by system (3) with 3N   

with chain-like topology (see Fig. 2), which reads 

 
2 2 2

1 1 1 1 01 1 1 01 1 1

2 2 2

2 2 2 2 02 2 2 02 2 1

2 2 2

3 3 3 3 03 3 3 03 3 2

[ ( ; )] ( )

[ ( ; )] ( )

[ ( ; )] ( )

c

c

c

X X p N N X X V t

X X p N N X X X t

X X p N N X X X t

 
 
 

   
   
   

      (4) 

 

where 

 

1 1 21 2

2 2 12 1 32 3

3 3 23 2

X X X

X X X X

X X X


 



 
  

 
                    (5) 

 

We solve system (4) by Krylov-Bogolyubov-

Mytropolsky [24] method of iterative approximations. 

Below we summarize the method for the case of the 

decoupled system (1), for the sake of clarity. The 

application of the method to system (4) is done by an 

analogous procedure. 

In system (1), we set 

 
( ) ( ) ( )( ) ( )sin ( )n n n

k k k
X t a t t                       (6) 

 
( ) ( )

0( ) ( )n n

k k k
t t t                             (7) 

 

where 1,2,...n   is the iteration number and ( ) ( )n

k
a t , 

( ) ( )n

k
t  are functions of the time variable t chosen so that 

(6) satisfies the k th  equation in system (1). We require 

that ( )
k

a t  is a "slow-changing" function, that is, 

 
( )

( )

( )
lim 1

( )

n

k k k

nt
k k

a p t

a p t




                         (8) 

 

Because substitution of (6) into the k th  equation of 

system (1) results with one 

differential equation for two unknown functions ( ) ( )n

k
a t  

and ( ) ( )n

k
t , we impose an additional condition 

 
( ) ( ) ( )

0 ( )cos ( )n n n

k k k k
X a t t                     (9) 

 

which is equivalent to 

 
( ) ( ) ( ) ( ) ( ) ( )( )sin ( ) ( ) ( )cos ( ) cos ( ) 0.n n n n n n

k k k k k k
a t t a t t t a t        

(10) 

 

Upon substitution of (5) into the k th  equation of 

system (1), taking into account condition (10), applying 

an iterative procedure idea, we obtain the following 

iterative process for determining ( ) ( )n

k
a t  and ( ) ( )n

k
t : 

 

 
( )

2
( 1) ( 1) 2 (n 1) 2 2 (n 1) (n 1)

0

1
sin cos cos

n

n nk

k k k k k k k k

k

da
a a p V

dt
   


          

 

 
( )

2
( 1) 2 (n 1) 2 (n 1) (n 1) (n 1)

0 ( 1)

0

1
sin sin cos sin

n

nk

k k k k k k k k kn

k k

d
a p V

dt a


     


    


      

 

(11) 

 

where 1,2,...n   and  2 2

0 ,
k k k ck

p p N N  as in (1). 

Let us discuss the choice of the initial approximations 
(0) ( )
k

a t  and (0) ( )
k

t  in the iterative process (11). Take an 

average of the right-hand side of system (11) with respect 

to the interval  0,2  using the rule from [17]: 

 

2
( ) ( )

0

1
( )

2

n n

k k
d


 


                     (12) 

 

For the initial (zeroth) approximation, the expressions 

for the functions (0) ( )
k

a t  and (0) ( )
k

t  are found from the 

following decoupled system of equations: 

 

 2
(0)(0) 2

(0)

8 2

kk k

k k

ada p
a

dt


 
   
 
 

               (13) 

 
(0)

0 .k

k

d

dt


                           (14) 

 

The following two particular solutions of the last 

system (14) are chosen as the initial approximations in 

the iterative process (10): 

 

2

(0) 2
( )

1 k k

k

k
p t

p
a t

e





                      (15) 

 
(0)

0( )
k k

t t                            (16) 

 

where the function (0) ( )
k

a t  satisfies the criterion (8) of 

slow changing function. To find expressions for (1) ( )
k

a t  

and (1) ( )
k

t  in the first approximation  1n  , 

expressions (15), (16) are inserted into system (11). Upon 

integration, the approximations (1) ( )
k

a t  and (1) ( )
k

t  are 

obtained. And so on. The iteration process terminates if 

the following conditions are satisfied: 

 
(n) (n 1)

(n)

( ) ( )
,

( )

k k

k

a t a t

a t





(n) (n 1)

(n)

( ) ( )

( )

k k

k

t t

t

 





      (17) 

 

for all 1,2,...,k N and for all t from the interval on 

which the solution of system (1) is sought, where   is 

the desired accuracy (in the subsequent examples, 
510  ). 
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System (4) of three nonlinear differential equations is 

solved by a similar procedure using the Krylov-

Bogolyubov-Mytropolsky method [24] and the method of 

subsequent approximations. More precisely, at the initial 

step system (4) is solved without taking into account the 

synaptic weight coefficients 
jk

 . The solutions of this 

special case of system (4) are then set to be the initial 

approximation of the solution of (the most general form 

of) system (4). In the subsequent iterations, the solutions 

of the preceding approximation are inserted into the 

summands that contain the weight synaptic coefficients of 

system (4). Once conditions (17) are satisfied, the 

iteration process is terminated and  ( )n

k
X t  given by (6) 

is accepted as an approximate solution of system (4). 

As an example, we choose the external non-stationary 

signal  1V t  o be the sum of L  simple non-stationary 

signals, each centered at the point t t  and 

characterized by the system of parameters M , see (21). 

More precisely, 

 
1

*

1 1 1 01

0

( ) ( )
L

V t v t t 




                  (18) 

 

where the functions 
1v  are the incoming simple signals. 

Each among the latter functions may be chosen to be, for 

example, a product of a Gaussian curve and an oscillatory 

function: 

 
2

1 2

( )1
( ) exp cos( ( ) )

42

t t
v t t t t 

 
 

     
 

         (19) 

 

The non stationary signal  1V t  given by (18) and (19) 

is described by the system of parameters 

 

 *

0 01M                                 (20) 

 

 1, , , , ,M t    1 ,L                 (21) 

 

where each 
1  is the weight coefficient representing the 

connection of the simple signal 
1v  with the neuron 

 1 ;X t  
01  is the weight coefficient of the signal shift; 

  is the external frequency of the oscillations that bear 

the information in the incoming signal, in Hz; t  is the 

center of localization of the signal with respect to time, in 

seconds;   is the length of the characteristic time 

interval of the signal localization, in seconds;   is the 

initial phase, in radians. 

Formula (18) describes the superposition of the 

incoming signals (19) that arrive with the weight 

coefficients 1  at the input of the first neuron (incoming 

operator), with the the shift signal *

01 . The input sum 

operator   
1in

f  transforms the incoming signals weighed 

by the coefficients 
1  and feeds them into 

the activation operator  
1a

f , see Fig. 4. In the case of 

decoupled system (1), for the k th  sensory nonlinear 

oscillatory neuron, the activation operator has the 

following form: 

 

   
2

2 2 2

0 02
;

a k k k k ck kk

d d
f X p N N

dtdt
            (22) 

 

where 1,2,..., .k N  

 

 

Fig.4. The structure of artificial nonlinear oscillator neuron 

(сoding scheme). 

The output signal of the k th  nonlinear oscillatory 

neuron, see Fig. 4, is the output signal of the output 

operator  out k
f , for which the input is the output 

of the activation operator  a k
f . The output operator 

 out k
f  is necessary for the representation of the state of 

the neuron by values within a desired range. In 

the majority of literature this last operator is not 

emphasized and the output signal of the neuron is 

assumed to be the output of the activation operator  a k
f . 

However, for the purpose of analysis and synthesis of 

artificial neural networks that have different activation 

functions with different domains and ranges, it 

is necessary to take the output operator  out k
f  into 

account. Therefore, the nonlinear operator of 

transformation of the vector of incoming signals into the 

vector of the output signal can be written in the following 

form: 

 

         1 1 1 1
( ) ,

out a in
X t f f f                (23) 

 

            1 ,
k out a in kk k k

X t f f f X t  2,3,...,k N   (24) 

 

where  01 1,...,
L

    and  01 1,...,
L

   . 

By choosing different values of the parameters M , 

see (21), one can construct a theoretical model that 

adequately represents real physical (or biological) 

processes, which occur as the external non-stationary 
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signal interacts with the own dynamics of the physical 

(biological) nonlinear neuron. 

 

 

Fig.5. The morphology of the external non-stationary signal 
1( )V t  that 

is a superposition of five simple signals. The signal 
1( )V t  is given by 

(18), (19) with 4,L   the weight coefficients 
01 1 4   , *

01 0  , 

the centers of localization of the simple signals 1t   , the lengths of 

time-intervals of localization 0,5s   and the frequencies 
8

,
5

   

and the initial phases 0,   1,2,3,4.  

 

Fig.6. Time dependence of the instantaneous frequency  1 t  of the 

bearing informational signal 
1( )V t  plotted in Fig. 5;    (1)

1

1

d t
t

dt


   is 

given by the second equation of system (11). 

Fig. 5 shows the graph of the external non-stationary 

signal 1( )V t  with 4L  . This signal is a superposition of 

five simple non-stationary signals 
01 1    and 

1 , 

1,2,3,4  given by (19), each arriving at the first 

sensory oscillatory neuron with the same weight 

coefficient 
1 4   of connection with the first neuron 

and with the same length of the time-interval of 

localization given by 0,5 .s   The peak of the Gaussian 

curve in each signal 
1  is chosen to be at 1.t    The 

frequencies   of each simple non stationary signal 

 1 t t   increase linearly with respect to the index  

so that 
4

.
5

   This graph, together with the frequency 

modulation graph in Fig. 6, shows the moments of time at 

which local frequencies arise and represents the 

transitional stages of the transformation of the frequency 

spectrum of the signal. The instantaneous frequency 

 1 t  of the informational signal 
1( )V t  is given by 

   (1)

1

1

d t
t

dt


  ; it is given by the second equation of 

system (11). 

The comparison of the morphology of the 

informational signal in Fig. 5 at the input of the first 

nonlinear oscillatory neuron with the morphology at the 

output of the same neuron, see Fig. 7, shows that the 

structure of the incoming signal 
1( )V t  is changed 

significantly due to the interaction of the internal 

dynamics of the neuron with the external signal 
1( )V t . 

 

 

Fig.7. The morphology of the signal at the output of the first nonlinear 

oscillatory neuron 
1( )X t , the input signal being 

1( )V t  plotted in Fig. 5; 

1( )X t  is the solution of system (1) with 1N   and the parameters 

1 0,4,p   
1 0,1   and 

01 2.   

 

Fig.8. The bearing incoming information signal 
1( )V t  in the form of a 

superposition of rectangular impulses, each of the width 4s; the period 

6 .T s  The signal 
1( )V t  is given by (25) with 6,L   

1 1   for all 

0,1,...,15;  2
a

t   and 4
b

t  ; it arrives at the first nonlinear 

oscillatory neuron. 

The graphs of the external non-stationary signal 1( )V t  

in the form of a superposition of rectangular impulses and 

a single rectangular impulse are presented in Fig. 8, 9. 

Recall that the signal 1( )V t  arrives at the input of the first 

nonlinear oscillatory neuron. The signal plotted in Fig. 8 

is given by 



 Structural Transformations of Incoming Signal by a Single Nonlinear Oscillatory Neuron or by an 7 

Artificial Nonlinear Neural Network 

Copyright © 2019 MECS                                                               I.J. Intelligent Systems and Applications, 2019, 8, 1-10 

      
1

*

1 1 1 01

0

( ) 1 1 ( )
L

a b a b
V t t t t t t t v t t   





               

(25) 

 

where   is the Heaviside step function defined by 

  0t   if 0t   and   1t   if  0t  . 

 

 

Fig.9. Bearing incoming information signal in the form of a single 

rectangle, with the impulse width of 2s. The signal 
1( )V t  is given by (25) 

with 1L  , 
11 1  , 2;

a b
t t   it arrives at the first nonlinear 

oscillatory neuron. 

 

Fig.10. Frequency modulation 
1

ˆ ( )t  of the signal 
1( )V t  plotted  

in Fig. 9. 

 

Fig.11. Morphology of the signal 1( )X t  at the output of the first 

oscillatory neuron, if the input signal 1( )V t  is the rectangular impulse 

plotted in Fig. 9. The signal 1( )X t  is the solution of system (1) with 

1N  and the parameters 1 0,4,p   1 0,1   and 01 2.   

Fig. 10 provides the graph of the frequency modulation 

of the external signal 
1( )V t  plotted in Fig. 9. This graph 

shows the moments at which local frequencies arise as 

well as the transitional stages of the transformation of the 

frequency spectrum of the signal. 

Fig. 12 shows the morphology of the signal at the 

output of a single nonlinear oscillatory neuron modeled 

by equation (1) with 
1 0,4,p   

1 0,1   and the 

frequency 
01 0,2  , where the external signal 

 1 11 1( )V t t t   and the parameters 

 1 3,4 ,12,3,0M  , see (18), (20). This morphology 

depends on the way the external signal interacts with the 

own dynamics of the nonlinear oscillatory neuron. 

 

 

Fig.12. Morphology of the signal 
1( )X t  at the output of the first 

oscillatory neuron, if the input signal  1 11 1( )V t t t   and the 

parameters  1 3,4 ,12,3,0M  , see (19), (21). The signal 
1( )X t  is the 

solution of system (1) with 1N   and the parameters 
1 0,4,p   

1 0,1   and 
01 0,2 .   

 

Fig.13. Morphology of the signal 
1( )X t  at the output of the first 

oscillatory neuron, if the input signal  1 11 1( )V t t t   and the 

parameters  1 3,4 ,12,3,0M  , see (19), (21). The signal 
1( )X t  is the 

solution of system (1) with 1N   and the parameters 1 0,4,p   

1 0,1   and 
01 4 .   

Suppose now that the frequency of the single nonlinear 

oscillatory neuron from the last example is modified to 

01 4 ,   which coincides with the frequency 
1 4   

of the external signal  1 11 1( )V t t t  , see the list of 

parameters in Fig. 12 and (19), (21). Under this parameter 



8 Structural Transformations of Incoming Signal by a Single Nonlinear Oscillatory Neuron or by an  

Artificial Nonlinear Neural Network 

Copyright © 2019 MECS                                                               I.J. Intelligent Systems and Applications, 2019, 8, 1-10 

regime, see Fig. 13, we observe a sharp amplitude rise of 

the output signal 
1( )X t  compared to the output signal in 

Fig. 12. Thus, a resonance effect takes place if the own 

frequency of the single neuron coincides with the 

frequency of the external signal. 

 

 

Fig.14. Morphology of the signal 
3( )X t  at the output of the neural 

network with ring topology and two-sided connections in Fig. 3(b) 

modeled by system (3) with 3N   that consists of three nonlinear 

oscillatory neurons. The input is the harmonic signal 
1 0 cosV V t , 

0 1V  , 3   and the parameter values are 
01 02 03 2     , 

1 0,4p  , 
2 0,3p  , 

3 0,2p  , 
1 0,1  , 

2 0,2  , 
3 0,4  , 

21 13 0,5   , 
12 23 32 0,4     . 

 

Fig.15. Frequency modulation of the output informational signal 
3( )X t  

plotted in Fig. 14, in semi-logarithmic scale. 

Next, we consider the case where a harmonic signal 

arrives at the input of a three-neuron van der Pol type 

artificial nonlinear neural network with the morphology 

of a chain with two-sided connections (as in Fig. 2, but 

with two-sided connections). Wavelet analysis [25 – 27] 

of the morphology of this signal, see Fig. 14, shows that 

the structure of the output signal in this nonlinear network 

has a higher degree of stochasticity – with respect to the 

form, amplitude and the time-dependence of the 

instantaneous frequency of the bearing informational 

signal (Fig. 15) – compared to the signal at the output of a 

single neuron. This is related to the following feature of 

the three-neuron chain-like nonlinear-neuron network 

considered here: The structure (form, amplitude and 

frequency modulation) of the informational signal 3 ( )X t  

at the output of the ring is influenced not only by the 

synaptic connections between the nonlinear oscillatory 

neurons, but also by the interaction between the own, 

internal dynamics of each neuron with the dynamics of 

the signal that arrives at that neuron. 

To recover (decode) the incoming signal 
1( )V t  from 

the output signal 
3 ( )X t , one may plug in 

3 ( )X t  in the 

third equation of system (3) with 3N   to find 

3 2( ) ( )V t X t , then plug in 
2 ( )X t  into the second 

equation of the same system to find 
2 1( ) ( )V t X t  and, 

finally, plug in 
1( )X t into the first equation of the same 

system to obtain the bearing informational signal 
1( )V t . 

Of course, in order to decode the output signal 
3 ( )X t , 

one must know the parameters of system (3). 

The results presented here suggest the following 

conjecture: the process of coding of the information by a 

single neuron or a nonlinear neural network can be 

considered in terms of the frequency modulation. Indeed, 

frequency modulation is known as one of the ways to 

transmit information. Therefore, it is expected that 

frequency modulation is one of the ways that neurons 

encode information. 

 

VI.  CONCLUSIONS 

Based on the frequency modulation approach, a 

nonlinear model of coding of information is presented. 

The model encodes incoming informational signals via a 

network of nonlinear oscillatory neurons with the 

topology of a chain or a ring. The neurons in the network 

are connected by synaptic links. The decoding of the 

signals at the output of the linear chain and circular chain 

networks is performed using a simple process of 

substitution of the output signal into a system of ODEs 

(note that it is not necessary to solve the system to decode 

the signal, only to substitute it into the equations of the 

system successively). The chain-like and the ring-like 

networks of nonlinear oscillatory neurons connected via 

synaptic links are described by nonlinear systems of 

ordinary differential equations, with quadratic 

nonlinearity of the unknown functions near the first 

derivative.  

A method of solution of such systems of ODEs is 

proposed, based on the method of Krylov-Bogolyubov-

Mytropolsky and the method of subsequent 

approximations. It is observed that in both kinds of 

networks the nonlinear oscillatory neurons play the role 

of frequency modulators. That is, the neurons modulate 

the instantaneous frequency of the incoming non-

stationary signal that arrives at their input.  

It is shown that the structure of the signal at the output 

of the linear network (of nonlinear neurons) has a higher 

degree of stochasticity – with respect to the form, 

amplitude and the time dependence of the instantaneous 

frequency – compared to the morphology of the signal at 

the output of a single neuron.  

Existence of resonance effects in chain-like networks is 

demonstrated, under the condition that the frequency of 

the incoming nonstationary signal equals the frequency of 

the own, internal dynamics of the neuron. 
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