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Abstract

Background: The plant microbiome represents one of the key determinants of plant health and productivity by
providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens,
and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the
bacterial microbiome present in different plant microenvironments and especially the relationship between below-ground
and above-ground communities has remained elusive. In this work, we addressed hypotheses regarding microbiome
niche differentiation and structural stability of the bacterial communities within different ecological plant niches.

Methods: We sampled the rhizosphere soil, root, stem, and leaf endosphere of field-grown poplar trees (Populus tremula ×

Populus alba) and applied 16S rRNA amplicon pyrosequencing to unravel the bacterial communities associated with the
different plant habitats.

Results: We found that the structural variability of rhizosphere microbiomes in field-grown poplar trees (P. tremula × P.

alba) is much lower than that of the endosphere microbiomes. Furthermore, our data not only confirm microbiome niche
differentiation reports at the rhizosphere soil–root interface but also clearly show additional fine-tuning and adaptation of
the endosphere microbiome in the stem and leaf compartment. Each plant compartment represents an unique ecological
niche for the bacterial communities. Finally, we identified the core bacterial microbiome associated with the different
ecological niches of Populus.

Conclusions: Understanding the complex host–microbe interactions of Populus could provide the basis for the
exploitation of the eukaryote–prokaryote associations in phytoremediation applications, sustainable crop production
(bio-energy efficiency), and/or the production of secondary metabolites.

Keywords: Populus tremula × Populus alba, Bacterial microbiome, Rhizosphere, Endosphere, Microbiome niche
differentiation, 16S rRNA amplicon pyrosequencing

Background
Inter-organismal associations between eukaryotic and

prokaryotic organisms are one of the most studied re-

search areas in (micro)biology in recent years. The

massive interest in this topic is reflected by numerous

studies ranging from the human microbiome [1, 2]

and host–genotype associations therein [3] and gut

microfauna of insects [4–6] to microbiota associated

with plants [7–17]. In fact, most eukaryotes maintain

close mutualistic relationships with microorganisms that

are, in most cases, linked to their nutrient acquisition

and thereby crucial for their performance and survival

[18, 19]. Furthermore, the associated prokaryotic com-

munities may play important roles in the regulation of

the eukaryote immune system [20–23].

Plant–microbe interactions are of specific interest, not

only to get a better understanding of their role during

plant growth and development but also to allow
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exploitation of their relationships in phytoremediation

applications, sustainable crop production, and the pro-

duction of secondary metabolites [24–26]. The plant

microbiome, often referred to as the host’s second or ex-

tended genome, comprises diverse microbial classes,

including bacteria and archaea, fungi, oomycetes, and

viruses. In its entirety, the plant microbiome represents

one of the key determinants of plant health and product-

ivity by providing a plethora of functional capacities

[27–30]. More specifically, bacterial microbiota may im-

prove nutrient bioavailability and transport from the soil

as well as increase host tolerance to biotic (and abiotic

stresses), promote stress resistance, and influence crop

yield and quality. In return, the host plant delivers habi-

tation and a constant supply of energy and carbon

sources to the microbiota [29, 31]. Virtually all tissues of

a plant host bacterial communities: at the soil–root

interface (rhizosphere/rhizoplane), inside the plants tis-

sues (root, stem, and leaf endosphere), and at the air–

plant interface (phyllosphere environment). To a lesser

extent, we can also distinguish the bacterial colonization

of the anthosphere (flower) [32], the spermosphere

(seeds) [33, 34], and the carposphere (fruit) [35]. All

these microenvironments provide specific biotic and abi-

otic conditions for the residing bacterial communities.

Within plant–bacteria research, most attention has

been dedicated to niche differentiation of bacterial

communities at the rhizosphere soil–root interface

[12, 14–16, 36–38]. For example, Gottel et al. com-

pared the bacterial (and fungal) microbiota of mature

poplar (Populus deltoides) trees using 16S ribosomal

RNA (rRNA) gene pyrosequencing and revealed

highly different root endophytic bacterial communities

as compared to the rhizosphere soil [36]. Bulgarelli et

al. [12] and Lundberg et al. [16] obtained qualitatively

similar results in a study on the bacterial root micro-

biota of Arabidopsis. In contrast to the knowledge

concerning the differentiation of the bacterial microbiome

at the rhizosphere–endosphere barrier, a robust under-

standing of the structural composition of the bacterial

microbiome present in different plant microenvironments

and especially the relationship between below-ground and

above-ground communities in field conditions has

remained elusive. Recently, Coleman-Derr et al., Fonseca-

Garcia et al., and Tardif et al. observed significant plant

compartment effects respectively in the microbiome of

Agave species, cacti, and willow [39–41]. Alternatively,

Ottesen et al. reported significant differentiation of the epi-

phytic microbiome across different plant organs of tomato

plants [42]. Other studies have focused on the leaf and

root microbiomes [43, 44].

Here, we evaluate microbiome niche differentiation of

bacterial communities associated with the rhizosphere

soil and the root, stem, and leaf endosphere of field-

grown wild-type poplar trees (Populus tremula × Popu-

lus alba) using 16S rRNA pyrosequencing. Populus is

widely considered as the model of choice to study the

biology of woody perennials and also provides an ideal

model to explore the large variety of plant–microbe in-

teractions [8, 9, 15, 36, 45–47]. Hybrid poplars are

among the fastest growing trees and provide high eco-

nomic flexibility with end-use applications such as the

production of biofuels, pulp, and paper and other bio-

based products such as chemicals and adhesives [48].

Furthermore, poplar trees can be grown on marginal

land (land not suitable for food production) thereby

evading the food versus fuel debate [49–51]. Sequencing

of the poplar genome along with the availability of large

natural provenances and breeding pedigrees, and the

first successful use of gene editing have also opened bio-

technological possibilities to accelerate breeding and

genetic engineering [52–58]. In the present study, we

focussed on two main questions: (i) How variable are

bacterial communities associated with different field-

grown trees within the same study site? (ii) Do bacterial

communities in the endosphere differentiate among the

plant niches, and how do they relate to the rhizosphere

communities?

Results

Quality metrics of pyrosequencing analysis

Sequencing of the amplicon libraries resulted in a total

of 341,915 raw reads prior to quality checking and

assigning the reads to their respective sample. Average

read length (± standard deviation) of reads before pro-

cessing was 405 bp ± 96. After quality trimming and

assigning reads to the different samples, 204,723 high-

quality reads remained in the dataset with an average

length (± standard deviation) of 207 bp ± 4 (Table 1).

Furthermore, we determined the co-amplification of

non-target 16S rRNA (archaeal, chloroplast, and mito-

chondrial sequences) and the number of singletons iden-

tified within each plant compartment (%), as well as the

number of reads that could not be unambiguously classi-

fied at the phylum level (Table 1). We found a distinct

plant compartment effect in the retrieval of singletons.

Significantly more singletons were obtained from the

rhizosphere soil as compared to all other plant compart-

ments (F (3, 44) = 454.7, P < 0.001) (Table 1). Under our

optimized PCR conditions [9], no mitochondrial 16S

rRNA sequences were co-amplified from any of the

plant compartments. Minute fractions of chloroplast/

plastidal 16S rRNA sequences were co-amplified from

root, stem, and leaf samples (ranging from 0.01 to 0.44%

of the normalized reads). Finally, in the rhizosphere, we

identified a small portion of reads, which were assigned

to the taxonomic domain Archaea (0.03%). In the rhizo-

sphere soil, a large fraction of reads could not be
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unambiguously classified at the phylum level (34.07%).

In the plant compartments, we were able to classify the

majority of reads and only a relatively small proportion

of reads remained unclassified (ranging from 3.59 to

19.05%). Unclassified reads at the phylum level were re-

moved from the dataset for further analysis (Table 1).

Alpha rarefaction curves and alpha diversity

To construct alpha rarefaction curves (Fig. 1) and esti-

mate differences in the alpha diversity (Fig. 2), we

removed singletons (OTUs with only one sequence)

from the dataset since these singletons could be due to

sequencing artefacts. Rarefaction curves were con-

structed for each individual sample showing the number

of observed OTUs, defined at a 97% sequence similarity

cut-off in mothur [59], relative to the number of total

identified bacterial rRNA sequences (Fig. 1). As ex-

pected, endophytic bacterial communities (Fig. 1b–d)

were much less diverse than rhizospheric communities

(Fig. 1a). Furthermore, the endophytic samples exhibited

a higher degree of variation in the shape of their rarefac-

tion curves as compared to the rhizospheric samples.

Rarefaction curves evaluating the OTU richness per

sample generally approached saturation. The majority of

the root endophytic samples saturated around 250–300

OTUs and around 50–150 OTUs for the stem and leaf

samples. The rhizospheric samples only showed satur-

ation at about 1250 OTUs. Statistical differences in

OTU richness were inferred from alpha diversity

measures (Fig. 2). To further assess the sequencing

depth, we calculated Good’s coverage scores in mothur

based on 10,000 iterations (Fig. 1). Good’s coverage

scores were highly comparable for all endosphere com-

partments (root, stem, leaf ) ranging from 94.5 to 98.6%

indicating that the sequencing depth was adequate to re-

liably describe the bacterial microbiome associated with

these plant compartments. Good’s coverage scores of the

rhizosphere soil data were significantly lower (P < 0.05)

(76.7% ± 1.6%) as compared to those of the endosphere

compartments. Rarefaction curves of the rhizosphere soil

were starting to level off, but sequencing at a greater

depth could have revealed more OTUs [see Additional file

1, Boneh and Efron estimator].

Alpha diversity, the microbial diversity within each sam-

ple, was analyzed based on the OTU richness, the inverse

Simpson diversity index, and Pielou’s evenness (Fig. 2). To

control for differences in sampling effort across plant

compartments, we rarefied each sample to 2000 sequences

per sample before calculating the diversity indices. OTU

richness was highly dependent on plant compartment (P

< 0.05) with high richness values for rhizosphere soil

(848.9 ± 7.9) and consistently decreased richness estimates

in the root samples (243.7 ± 9.6) and stem samples (126.7

± 11.9). OTU richness indices of the leaf samples (118.3 ±

17.2) were comparable with those of the stem samples.

For diversity and evenness estimates, we found a clear

separation between the rhizosphere soil samples and

endosphere samples (P < 0.05). Higher diversity and

Table 1 Quality metrics of pyrosequencing analysis

A. Total number of reads and read length before and after quality checking and trimming

Total # of raw reads before QC 341,915

Average read length before QC 405 ± 96

Total # of assigned reads after QC 204,723

Average read length after QC 207 ± 4

B. Assigned reads Rhizosphere soil Root Stem Leaf

Average # of reads 5058 ± 615 5311 ± 643 2761 ± 1174 3034 ± 960

Singletons (%) 26.09 ± 0.01a 5.01 ± 0.55b 2.60 ± 0.35b 2.21 ± 0.65b

Normalization to 2000 reads per sample

C. Non-target rRNA (%) Rhizosphere soil Root Stem Leaf

Chloroplast/plastid 0 0.01 ± 0.01 0.44 ± 0.17 0.03 ± 0.02

Mitochondria 0 0 0 0

Archaea 0.03 ± 0.01 0 0 0

D. Unclassified reads Rhizosphere soil Root Stem Leaf

Reads (%) 34.07 ± 1.10a 4.74 ± 0.32b 19.05 ± 4.32b 3.59 ± 1.03b

A: Quality metrics before and after quality control (QC), the average read length was calculated based on 52 samples across all plant compartments. B: Average number

of assigned reads (± standard deviation) per plant compartment and percentages of singleton reads (± standard deviation). Numbers of singletons were statistically

compared using one-way ANOVA and Tukey’s Honest significant differences post hoc tests. Statistical differences at the 95% confidence interval are indicated with

lowercase letters. C: Comparison of the number of non-target 16S rRNA sequences (%) co-amplified during PCR amplification. and D: Reads that could not be

unambiguously classified at the phylum level (“unclassified”) (%). Each plant compartment is evaluated separately and data represent 15 biologically

independent replicates (± standard deviation) for the rhizosphere soil and root endosphere samples and 11 biologically independent replicates (± standard

deviation) for the stem and leaf endosphere samples
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evenness measures were observed for the rhizosphere

soil samples as compared to the samples of the endosphere

plant compartments. In contrast, all endosphere compart-

ments revealed highly comparable diversity and evenness

estimates. Furthermore, to control for bias in the used

community estimators, alternative estimators were calcu-

lated which resulted in highly similar conclusions (see

Additional file 1).

Beta diversity

We evaluated beta diversity at two phylogenetic levels,

the phylum level and the OTU level (OTUs defined at

a 97% similarity cut-off ). To compare the composition

of identified community members within different

plant compartments and identify main factors driving

community composition, a Bray–Curtis dissimilarity matrix

was calculated on normalized (2000 sequences per sample)

and square-root transformed read abundance data. Overall

similarities in bacterial community structures among sam-

ples were displayed using principal component analysis

(PCA). Furthermore, we also constructed a hierarchical

clustering based on Bray–Curtis dissimilarities (Fig. 3).

PCA analyses revealed strong clustering of bacterial

communities according to the different plant compart-

ments (rhizosphere soil, root, stem, leaf ) at each phylo-

genetic level (Fig. 3a and Additional file 2, left panel). At

the OTU level, PC1 explained 32.5% and PC2 17.9% of

the total variation (Fig. 3a). This pattern was recapitu-

lated by hierarchical clustering of pairwise Bray–Curtis

dissimilarities (Fig. 3b). Hierarchical clustering (at the

Fig. 1 Average Good’s coverage estimates (%) and rarefaction curves of individual poplar trees per plant compartment (a rhizosphere soil, b root,
c stem, d leaf). Good’s coverage estimates represent averages of 15 independent, clonally replicated poplar trees (rhizosphere soil and root
samples) and 11 replicates (stem and leaf samples) (± standard deviation) and were calculated in mothur based on 10,000 iterations. Lowercase
letters represent statistical differences at the 95% confidence interval (P < 0.05). Rarefaction curves were assembled showing the number of OTUs,
defined at the 97% sequence similarity cut-off in mothur, relative to the number of total sequences. The dashed vertical line indicates the number
of sequences subsampled from each sample to calculate alpha diversity estimates (Fig. 2)
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OTU and phylum level) revealed complete clustering ac-

cording to plant compartment for the rhizosphere soil

and root samples (Fig. 3b and Additional file 2, right

panel). The stem and leaf samples were clearly distin-

guished from rhizosphere soil and root samples but did

not cluster completely according to their respective

plant compartment. To statistically support the visual

clustering of the bacterial communities in the above

PCA analyses, different plant compartments were exam-

ined using ANOSIM (an analog of univariate ANOVA)

with the Spearman rank correlation method (Table 2).

All plant compartments rendered bacterial microbiota

significantly dissimilar from each other (P values

listed in Table 2) at the phylum and OTU level (see

Additional file 3).

Top members of the bacterial microbiome within each

plant compartment

Finally, we took a closer look at the individual bacterial

phyla and OTUs, which differentiate the bacterial com-

munities in the plant compartments. At the phylum

level, we evaluated all observed phyla with ANOVA to

test the effects of plant compartment (rhizosphere soil

vs root vs stem vs leaf ) on their relative abundance (%)

(Fig. 4 and Additional file 4). The ANOVA model was

[OTU] ~ compartment and included all four plant com-

partments followed by Tukey’s honest significant differ-

ences post hoc tests. Virtually all identified bacterial

phyla displayed a significant plant compartment effect

with the exception of Armatimonadetes (P = 0.27), Chla-

mydiae (P = 0.33), Fusobacteria (P = 0.11), and Epsilon-

proteobacteria (P = 0.33). In the rhizosphere samples,

we observed a significant enrichment (P < 0.05) of

Actinobacteria (relative abundance = 27.19%) and to a

minor extent Deltaproteobacteria (1.90%), Acidobacteria

(1.81%, not significantly different with the stem sam-

ples), Nitrospira (0.69%), Gemmatimonadetes (0.11%),

and Planctomycetes (0.03%), as compared to the endo-

sphere compartments. Alphaproteobacteria were signifi-

cantly depleted in the rhizosphere soil samples (25.17%)

as compared to the other plant compartments, although

Fig. 2 Alpha diversity estimates of the bacterial communities. a OTU
richness estimates (number of observed OTUs). b Pielou’s evenness
estimates. c Inverse Simpson diversity indices. Box plots display the
first (25%) and third (75%) quartiles, the median and the maximum
and minimum observed values within each data set. Alpha diversity
estimates represent 15 biological replicates for the rhizosphere soil
and root samples and 11 replicates for the stem and leaf samples
and were calculated in mothur with 10,000 iterations. Data
were analyzed by means of one-way ANOVAs and Tukey-Kramer
post hoc comparisons. The overall plant compartment effects
(F(DFn, DFd) and P value) are displayed at the top of each
graph. Significant differences (P < 0.05) across plant compartments are
indicated with lowercase letters
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we still observed a high relative abundance in the rhizo-

sphere soil compartment. Betaproteobacteria were sig-

nificantly (P < 0.05) enriched in the rhizosphere soil

(24.84%) and the root samples (15.56%) whereas Gam-

maproteobacteria were depleted in these compartments

(rhizosphere soil = 9.62%; root = 7.23%) as compared to

the stem and leaf samples. Candidate division TM7 was

significantly enriched (P < 0.05) in the root (14.49%) and

stem samples (10.29%) as compared to the rhizosphere

soil and the leaf samples. Specifically for candidate div-

ision TM7, we observed very high variability in abun-

dance from sample to sample in the root (ranging from

46% to as low as 0.46%) and stem endosphere (ranging

from 29% to as low as 0%). Finally, in the stem samples,

Fig. 3 Plant compartment drives the composition of the bacterial communities at the OTU level. a Principle component analysis (PCA) of
square-root transformed samples based on rarefaction to 2000 reads per sample. OTUs were defined at a 97% sequence similarity cut-off
in mothur. OTUs differentiating the plant compartments are displayed as vectors on the PCA plots. b Hierarchical clustering (group average linkage) of
the samples based on Bray–Curtis dissimilarity. Similarities based on Bray–Curtis (b) were superimposed on the PCA plot. PCA and hierarchical
clusters were based on 15 biological replicates (rhizosphere soil and root samples) and 11 biological replicates (stem and leaf samples) and were
constructed in PRIMER 7 with 10,000 iterations
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we observed a significant enrichment of Deinoccus–

Thermus (3.37%) as compared to the other plant com-

partments. Total relative abundances of all phyla and

significant effects across plant compartments are listed

in Additional file 4.

For the OTUs, we defined the core bacterial micro-

biome as the 10 most abundant OTUs of each of the

plant compartments resulting in 27 OTUs altogether

(Fig. 5 and Additional file 5). The percentages of the

total community covered by the core OTUs ranged from

53% (rhizosphere soil), to 71% (root), to 63% (stem) and

77% (leaf ). ANOVA was used to test the effect of plant

compartment on the normalized sequence counts of

members of the core community. The ANOVA model

was [OTU] ~ compartment and included all four plant

compartments followed by Tukey’s honest significant

differences post hoc tests. We observed significant plant

compartment effects across all identified core bacterial

OTUs with the exception of Solirubrobacterales (P =

0.06) and Phenylobacterium (P = 0.38). In the rhizo-

sphere soil, we observed a significant enrichment (P <

0.05) of Actinomycetales (10.16%), Burkholderiales

(6.60%), Arthrobacter (4.40%), Chitinophagaceae (3.06%),

Bacillales (2.82%), and Microvirga (2.68%) as compared

to the endosphere compartments. In the root samples

Rhizobium (22.80%), Variovorax (5.60%), Novosphingo-

bium (3.76%), and Niastella (2.01%) were significantly

enriched (P < 0.05) as compared to the other plant com-

partments. As described above, candidate division TM7

was significantly enriched in the root and stem samples

as compared to the rhizosphere soil and leaf samples.

Rhizobiales were significantly (P < 0.05) depleted in the

stem (3.38%) and leaf samples (3.23%) whereas Pseudo-

monas (stem = 15.98%; leaf = 26.95%), Methylobacterium

(stem = 6.52%; leaf = 8.28%), and Sphingomonas (stem =

3.19%; leaf = 5.29%) were enriched in these compartments

as compared to the rhizosphere soil and root samples.

Furthermore, in the stem samples, we found a significant

(P < 0.05) enrichment of Deinococcus (3.21%), Alcaligen-

aceae (2.01%), and Corynebacterium (2.00%) as compared

to the other plant compartments. Finally, in the leaf sam-

ples, we observed a significant (P < 0.05) enrichment of

Moraxellaceae (5.93%), Aurantimonas (2.90%), and Sphin-

gomonadales (2.08%). The total relative abundances of all

core OTUs and significant effects across plant compart-

ments are listed in Additional file 5.

To support the ANOVA results at OTU level and fur-

ther ascertain which OTUs are responsible for the ob-

served community differentiation between the plant

compartments, we used species indicator analyses to dis-

cover significant associations between OTUs and plant

Fig. 4 Phylum distribution of the OTUs. Relative sequence abundance of bacterial phyla associated with the rhizosphere soil and the root, stem and
leaf endosphere. Proteobacteria OTU has been replaced by 5 OTUs at the subclass level (alpha, beta, delta, epsilon, gamma). Biological replicates (15
replicates for the rhizosphere soil and root samples and 11 replicates for the stem and leaf samples) are displayed in separate stacked bars. Major
contributing phyla are displayed in different colours and minor contributing phyla are grouped and displayed in grey. Total relative abundances of all
phyla and significant effects across plant compartments are listed in Additional file 4

Table 2 Analysis of similarity (ANOSIM)

Phylogenetic level Phylum OTU

ANOSIM output R P R P

Rhizosphere soil vs root 0.580 0.0001*** 0.945 0.0001***

Rhizosphere soil vs stem 0.780 0.0001*** 0.965 0.0001***

Rhizosphere soil vs leaf 0.819 0.0001*** 0.992 0.0001***

Root vs stem 0.437 0.0001*** 0.804 0.0001***

Root vs leaf 0.370 0.0003** 0.888 0.0001***

Stem vs leaf 0.232 0.01* 0.294 0.002**

Plant compartment effects on the bacterial community structures were

calculated using ANOSIM (analysis of similarities) with the Spearman rank

correlation method in Primer 7 (10,000 permutations). Plant compartments

(rhizosphere soil, root, stem, leaf) were a priori defined groups at two

phylogenetic levels: phylum level and OTU level. Significance levels: *P ≤ 0.01;

**P ≤ 0.001; ***P ≤ 0.0001. R, ANOSIM test statistic. Graphical results of ANOSIM

are displayed in Additional file 3
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compartments. Indicator analyses were performed on full

community matrices and not only core OTUs to uncover

effects possibly missed by the core OTU analysis. Full lists

of indicator OTUs and their corresponding indicator

values can be found in Additional file 6. Species indicator

analysis revealed 94 indicator OTUs in rhizosphere soil, 18

in the root endosphere, 5 in the stem endosphere, and 9 in

the leaf endosphere samples (see Additional file 6). How-

ever, when we used a community matrix excluding OTUs

with an average relative abundance of >1%, we found 6 in-

dicator OTUs in the rhizosphere soil (Arthrobacter, Nitros-

pira, Norcardioides, Hyphomicrobiaceae, Mycobacterium

(P < 0.01) and Microvirga (P < 0.05)), 2 in the root samples

(Novosphingobium and Niastella, P < 0.05), 2 in the stem

samples (Alcaligenaceae and Amnibacterium, P < 0.05),

and 2 in the leaf samples (Sphingomonadales and Auranti-

monas, P < 0.05) (Table 3).

Finally, to provide a complete overview of the OTU

distribution within the plant compartments, we calcu-

lated the proportion of OTUs uniquely identified in each

specific plant compartment as well as the OTUs shared

by the different plant compartments (Additional file 7).

The proportion of OTUs shared by all plant compart-

ments was 16.4%. Approximately 26% of all OTUs were

Fig. 5 Top OTU members of the bacterial microbiome associated with the plant niches. Taxonomic dendrogram showing the core bacterial
microbiome of each plant compartment. Color ranges identify phyla within the tree. Colored bars represent the relative abundance of each OTU in the
plant compartments. Taxonomic dendrogram was generated with one representative sequence of each OTU using Unipro UGENE and displayed with
the use of iTOL (Interactive Tree Of Life). Total relative abundances of all OTUs and significant effects across plant compartments are listed in Additional
file 5
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exclusively found in the rhizosphere samples compared

to the root samples (7.1%), the stem samples (3.2%), and

the leaf samples (5.5%). Around 6% of the total OTUs

were exclusively observed in the endosphere compart-

ments. Finally, we clearly observed a higher overlap in

OTUs from the rhizosphere soil samples and the root

samples (11.7%) as compared to rhizosphere soil and the

stem samples (1.8%) and the rhizosphere soil and leaf

samples (2.8%).

Discussion
Quality of the pyrosequencing analysis

We used an optimized PCR approach to reduce co-

amplification of chloroplast and mitochondrial 16S

rRNA [9]. In many studies, the high homology between

bacterial 16S rRNA genes, chloroplast 16S rRNA genes,

and plant nuclear and mitochondrial 16S rRNA genes

[60, 61] and moreover the high abundance of chloroplast

16S rRNA genes in these environments led to undesired

co-amplification of non-target sequences [12, 15, 16, 36,

44]. Our optimized PCR approach resulted in very low

co-amplification of these sequences and high retrieval of

bacterial 16S rRNA sequences (Table 1). The highest re-

trieval of chloroplast 16S rRNA sequences was observed

in the stem samples, corroborating results from our pri-

mer optimization [9] and reinforcing our view that the

balance between the amount of endophytic bacterial

DNA (bacterial cell density) and chloroplast DNA seems

to play a more important role than the absolute chloro-

plast concentration. Finally, we also considered the

number of singletons (sequences only found once in

the dataset) obtained from each plant compartment

(Table 1). Remarkably, we found high levels of singletons

in rhizosphere soil and a decreasing number of

singletons in other plant compartments. Singletons have

been shown to comprise up to and beyond 60% of taxa

in some surveys [62, 63] and are generally considered as

being problematic since they represent inherently unre-

plicated data [64]. Most singletons arise from DNA se-

quencing errors (insertions, deletions, low-quality reads,

inadequate clustering and formation of chimeric se-

quences) [65–68] creating false sequences and artificially

inflating diversity estimates [69–71]. In our experimental

setup, sequencing error (and potential creation of erro-

neous (singleton) sequences) is expected to be similar

for all plant compartments with possibly a minor impact

of carry-over contaminants in the rhizosphere soil sam-

ples, which could potentially increase PCR error. A con-

founding factor in this respect could be the use of

different DNA extractions kits for the rhizosphere sam-

ples and the endosphere samples. Previously, we focused

on extracting DNA from all the studied plant compart-

ments (rhizosphere soil, root, stem, and leaf samples).

[9], but we were unable to extract high-quality DNA

(and quantity) from all four plant compartments using

the same DNA extraction kit. To ensure high-quality

and quantity DNA from all studied plant compartments

and reduce bias from low DNA retrieval, we opted for a

different DNA extraction kit for the rhizosphere soil

samples and the endosphere samples. Nonetheless, a

certain amount of bias may have been introduced in the

results as a consequence of differences in the lysis

efficiency of different DNA extraction kits [72, 73]. Not-

withstanding these elements, our results indicate that

the high discrepancy in the number of singletons between

the plant compartments could in fact be attributable to

more genuine rare (singleton) OTUs in the rhizosphere

soil (Table 1). Indeed, the rhizosphere soil is renowned for

Table 3 Indicator species analysis

OTU (Genus or higher) Plant compartment Indicator value P Relative abundance (%)

Arthrobacter Rhizosphere soil 0.978 0.0015** 4.403

Nitrospira Rhizosphere soil 0.977 0.0024** 1.040

Nocardioides Rhizosphere soil 0.970 0.0028** 1.117

Hyphomicrobiaceae Rhizosphere soil 0.962 0.0036** 1.521

Mycobacterium Rhizosphere soil 0.911 0.0068** 1.559

Microvirga Rhizosphere soil 0.874 0.0119* 2.684

Novosphingobium Root 0.981 0.0230* 3.761

Niastella Root 0.960 0.0234* 2.013

Alcaligenaceae Stem 0.886 0.0286* 2.205

Amnibacterium Stem 0.830 0.0290* 1.104

Sphingomonadales Leaf 0.937 0.0266* 2.079

Aurantimonas Leaf 0.904 0.0270* 2.900

Associations were calculated with the Dufrene–Legendre indicator species analysis routine (Indval, indicator value) in R. Data table shows results for the analysis

where rare OTUs (<1% relative abundance) were excluded. Significance levels: *P ≤ 0.05; **P ≤ 0.01. P values were corrected for multiple comparisons using the

false discovery rate (FDR) with the Benjamini–Hochberg method. Full results of indicator species analysis are presented in Additional file 6
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its vast microbial diversity [74, 75]. For further analysis,

we chose a conservative approach and treated all single-

tons as potentially erroneous and removed them from the

data sets [68, 76]. However, the involvement of this rare

biosphere in community dynamics and their ecological

roles are largely unknown, but they could contribute to

community stability by enabling fast responses to altering

environmental conditions [77].

(i) How variable are bacterial communities associated with

different field-grown trees?

We observed remarkably dissimilar shapes of the OTU

rarefaction curves when comparing rhizosphere soil and

endosphere samples (Fig. 1). Rhizosphere soil samples

displayed uniform rarefaction curves (Fig. 1a) whereas

the variation in the shape of the rarefaction curves from

the endophytic samples was much higher, especially for

the stem and leaf samples (Fig. 1b–d). High variability of

endophytic OTU richness, as depicted by the rarefaction

curves, could possibly be caused by sporadic and non-

uniform colonization of the roots and aerial plant com-

partments of Populus [36]. Gottel et al. attributed part of

the variation to their inability to sequence the bacterial

endophytic community deeply and uniformly enough be-

cause of the high co-amplification of organellar 16S

rRNA (67,000 chloroplast and 65,000 mitochondrial se-

quences) [36]. However, our data exhibit roughly the

same pattern without the co-amplification of non-target

DNA (Table 1) and with high Good’s coverage estimates

(Fig. 1). Therefore, our data suggest considerable vari-

ation in endophytic colonization as a major reason for

the high variability in the rarefaction curves. Indeed,

rhizosphere/rhizoplane colonization is primarily driven

by (a) the deposition of large amounts of carbon (e.g.,

root exudates, mucilage by the root caps, etc.) by plants

(rhizodeposition) and (b) the relatively simple or inela-

borate chemo-attraction of the bacteria (and other mi-

croorganisms) to the root exudates [78–81]. Although,

since root exudates and mucilage-derived nutrients at-

tract a myriad of organisms to the rhizosphere environ-

ment, plant-associated bacteria have to be highly

competitive to successfully colonize the root zone [82].

In contrast to rhizosphere/rhizoplane colonization,

endophytic competence (i.e., ability to successfully

colonize the host plant) can require specific traits (e.g.,

expression of genes involved in chemotaxis, the forma-

tion of flagella and pilli, the production of cell-wall de-

grading enzymes, etc.) and intricate interplay between

rhizospheric soil-borne bacteria and the host plants in-

nate immune system [12, 20, 25, 30, 82].

Furthermore, we also clearly observed more variation

in the bacterial community structures in the endosphere

as compared to the rhizosphere communities, especially

in stem and leaf samples (Fig. 3 and Additional file 3).

As mentioned previously, a possible confounding factor

in the interpretation of these results is the use of differ-

ent DNA extraction kits for the rhizosphere and endo-

sphere samples. Nonetheless, the within group variation,

as depicted by ANOSIM analysis (Additional file 3), of

rhizosphere soil bacterial assemblages is very low. The

soil biome is one of the richest microbial ecosystems on

Earth with an estimated bacterial diversity of >2000 spe-

cies within 0.5 g of soil [74, 75, 83]. Furthermore, the

root exudation process is heterogeneous in space and

time [84, 85]. Despite these factors, the formation of dis-

tinctive rhizosphere bacterial communities mediated by

rhizodeposition (and chemo-attraction to photoassimi-

lates) seems to be a very consistent and stable process

across different poplar individuals. In contrast, variation

within endophytic communities is much higher (Fig. 3

and Additional file 3). As mentioned previously, endo-

phytic colonization and formation of stable communities

appears to be a more variable process, as suggested by our

results from the alpha rarefaction curves (Fig. 1), from the

PCA analyses (Fig. 3a), the relative abundance of bacterial

phyla (Fig. 4) and the ANOSIM results of the bacterial

community structures (Additional file 3). Crucial factors

underlining this variability are the nature of endophytic

colonization and competence (e.g., bacterial motility, abil-

ity to produce cell-wall degrading enzymes) [25, 82], inter-

play with the host plants innate immune system [20]. and

acute fluctuations in abiotic conditions (temperature, hu-

midity, access to nutrients, etc.) which differ from the

buffered fluctuations in the rhizosphere [31, 86]. However,

in contrast, OTU richness and OTU diversity (Fig. 2) were

markably higher in the rhizosphere soil as compared to

the endosphere samples.

(ii) Do bacterial communities present in the endosphere

differentiate within the plant niches, and how do they

relate to the rhizosphere communities?

To control for differences in sampling effort across plant

compartments, we rarefied each sample to 2000 se-

quences per sample, although rarefying and using linear

models of abundance have been scrutinized recently by

McMurdie and Holmes [87]. Initially, we estimated

alpha diversity focussing on OTU richness, evenness and

diversity. We found that richness estimates were highly

dependent on plant compartment with rhizosphere soil,

root and stem compartments clearly differentiated from

each other by decreasing OTU richness (Fig. 2). These

results are in concordance with the general views of

endophytic colonization. Rhizodeposition and root exud-

ation by the host plant in the root zone fuels chemo-

attraction and colonization of the rhizosphere soil and

rhizoplane, thereby leading to the formation of distinct-

ive, highly rich, and diverse rhizosphere microbiomes

[78–81]. After rhizoplane colonization, adaptation to an
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endophytic lifestyle is dependent on the ability of the

soil-borne bacteria to pass (actively or passively) the

endodermis and pericycle, reach the xylem vessels, and

finally lead to systemic colonization of the plant [25, 82].

Systemic plant colonization by certain bacterial species

is re-enforced by the proportion of OTUs shared by all

the plant compartments (16.4%, Additional file 7). The

rhizosphere soil–root interface acts as a selective barrier,

and endophytic competence/colonization is limited to

specific bacterial species. The great loss of diversity and

evenness (Fig. 2a–c) from rhizosphere soil to endophytic

compartments supports this view and indicates that only

a limited number of bacteria can adapt to an endophytic

lifestyle (loss of diversity) (Fig. 2c) and these bacterial

strains will therefore dominate endophytic assemblages

(loss of evenness) (Fig. 2b).

To compare the bacterial community structures present

in the plant compartments, we clustered all samples using

principal component analysis (PCA) and hierarchical clus-

tering (Bray–Curtis dissimilarities) (Fig. 3). At the phylum

level and OTU level, all samples strongly clustered accord-

ing to plant compartment (P < 0.01) and rendered micro-

biota significantly dissimilar from each other (Fig. 3 and

Table 2) (see Additional file 2). Again to put the results in

a broader context, the caveat of using different DNA ex-

traction kits for the rhizosphere samples and the endo-

sphere samples may have introduced a certain amount of

bias in these results. However, previously, we observed the

same niche differentiation for the cultivable bacteria of

poplar trees in the same field study [8]. Niche differenti-

ation between rhizosphere and root endophyte micro-

biome has also been described for mature poplar trees

growing in natural ecosystems (P. deltoides) [15, 36], for

Arabidopsis thaliana [12, 16] and other plant species [10,

25, 37]. Recently, Bulgarelli et al. [31] proposed a two-step

selection model for root microbiota differentiation from

the rhizosphere where rhizodeposition and host genotype-

dependent fine-tuning converge to select specific

endophytic assemblages. Bulgarelli et al. argue that

substrate-driven selection in the rhizosphere is expected

to persist in the endosphere [31]. Indeed, our data suggest

additional fine-tuning and niche differentiation of micro-

biota in the aerial plant organs (both at the phylum and

OTU level), with the stem and leaf bacterial assemblages

being remarkably dissimilar from the root and rhizosphere

(Fig. 3 and Additional file 2) (Table 2). This in agreement

with the studies of (a) Coleman-Derr et al. [39] and

Fonseca-Garcia et al. [40], who revealed that the compos-

ition of bacterial communities in plants native to semi-

arid and arid ecosystems (Agave species and cacti) were

primarily determined by the plant compartment and (b)

Tardif et al., who reported significant plant compartment

effects in the willow microbiome [41]. Each of the plant

microenvironments or ecological niches (rhizosphere soil,

root, stem, and leaf) provide relevant biotic and abiotic

gradients such as availability of soluble organic com-

pounds [31, 88, 89]. This is further highlighted by the ex-

istence of specific proportions of OTUs, which were

exclusively found in different plant compartments (e.g.,

25.7% unique OTUs in the rhizosphere soil samples (Add-

itional file 7)). The distribution of all identified OTUs

across the different plant compartments (Additional file 7)

also highlights several other aspects: (a) the inability of a

large number of OTUs to colonize the plant (25.7% of all

OTUs), (b) the existence of obligate endophytes which are

only observed in the endosphere compartments (5.9% of

all OTUs) and are strictly dependent on their host plant

for survival [25], (c) the existence of facultative endo-

phytes which may exist inside (endosphere) and outside

the host plant (rhizosphere soil) [25], and (d) although

most endophytic bacteria colonizing the host plant origin-

ate from the rhizosphere soil [82], some may originate

elsewhere (e.g., colonization of the phyllosphere via aero-

sols and subsequently the leaf endosphere [90]) as evi-

denced by the proportion of OTUs uniquely identified in

the leaf samples (5.5%).

Drivers of microbiome niche differentiation

At the phylum level, Actinobacteria and Proteobacteria

(mostly Alpha- and Betaproteobacteria) and to a lesser ex-

tent Bacteroidetes, Firmicutes, and Acidobacteria domi-

nated the rhizobacterial assemblages. The ratio between

Proteobacteria and Acidobacteria in rhizosphere bacterial

communities has previously been shown to be an indica-

tor of soil nutrient-content where Proteobacteria were

linked to nutrient-rich soils and Acidobacteria to nutrient-

poor soils [36, 91, 92]. Similarly to studies in Arabidopsis

[12, 16], rice [14], and poplar [15, 36], the relative abun-

dance of Acidobacteria and Actinobacteria decreased from

the rhizosphere soil to the root microbiota whereas the

relative abundance of Proteobacteria (mostly Alpha) in-

creased in the root endosphere. Across different unrelated

plant host species, the host-associated bacterial microbiota

in the rhizosphere and root endosphere are consistently

enriched with members belonging to the phylum Proteo-

bacteria [12, 14–17, 36, 37, 93–95]. From our results, we

can conclude that also the stem and leaf microbiota are

dominated by Proteobacteria albeit with different OTU

level members, mostly belonging to the Alpha- and Gam-

maproteobacteria (Figs. 4 and 5 and Additional files 4 and

5). The large overlap in key community members of endo-

phytic bacterial assemblages across different plant host

species demonstrates that endophytic competence (effi-

cient colonization) and dealing with niche-specific plant

settings (nutrient availability/variability, oxygen levels,

etc.) is reserved for a minority of bacterial phyla. Enrich-

ment and depletion of specific bacteria within the plant-

associated microbiome are not passive processes but
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rather depend on active selection of microbial consortia

by the plant host and/or opportunistic colonization of the

available ecological niches by certain bacteria [14, 19, 31].

A remarkable phylum, candidate division TM7 (recently

renamed phylum Candidatus Saccharibacteria), which

has only been described from 16S rRNA gene sequence

and genome data [96, 97], showed highly variable

colonization capacities in the root and stem endosphere

(Fig. 4 and Additional files 4 and 5). Phylum Candidatus

Saccharibacteria is a highly ubiquitous phylum found in

soils, sediments, wastewater, animals, and plant micro-

biomes [9, 12, 15, 97]. Furthermore, Shakya et al. also re-

ported high variability in the relative abundance of

phylum Candidatus Saccharibacteria (albeit in the rhizo-

sphere microbiome of poplar) [15] possibly suggesting

high sensitivity of these members to mild variations in abi-

otic and/or biotic stressors, strict nutritional require-

ments, variable responses of the plant’s innate immune

system, strong influence of microbe-microbe interactions,

or possible interactions with the plant host genotype.

Finally, at the OTU level (genus or higher), rhizo-

sphere soil communities were dominated primarily by

Rhizobiales, Actinomycetales, Burkholderiales, Arthro-

bacter, and Variovorax which were characteristically iso-

lated from rhizosphere soil samples [10, 12, 36, 98]. Root

endophytic assemblages were dominated by Rhizobiales,

Rhizobium, and candidate division TM7 (with high vari-

ability). Dominant members of the stem samples are

Pseudomonas, candidate division TM7, Methylobacter-

ium, and Deinococcus. Finally, leaf samples mainly

contained of Pseudomonas, Sphingomonas, and Methylo-

bacterium. All of the above mentioned OTUs, which

have been isolated from a variety of plant samples, may

provide beneficial effects on plant health and growth

[90, 99–102]. Remarkable in the stem (16%) and leaf

endosphere (27%) is the efficient colonization capacity of

Pseudomonas (Fig. 5 and Additional file 5). Niche-specific

adaptation of Pseudomonas putida has previously been

described by Wu et al. [103]. We previously observed the

same enrichment of Pseudomonas in the stem and leaf

samples irrespective of the 16S rRNA primer pair used

[9]. Since aerosol samples were found to harbor abundant

Pseudomonas and Sphingomonas sequences [90], enrich-

ment of these bacteria in the leaf endosphere may occur

via dual origins, colonization of the rhizosphere and/or

leaf stomatal colonization. Furthermore, Sphingomonas

and Methylobacterium, both abundantly present in the

leaf endosphere, were shown to harbor specific adaptation

strategies such as TonB-dependent receptors to survive in

the phyllosphere environment [100, 104, 105].

Conclusions
We proved that the structural variability of rhizosphere

microbiomes in field-grown poplar trees (P. tremula x P.

alba) is much lower than that of the endosphere micro-

biomes. The formation of rhizosphere bacterial commu-

nities appears to be a more stable and controlled process

whereas endophytic colonization of the roots, stems, and

leaves is highly variable. Furthermore, our data not only

confirm microbiome niche differentiation reports at the

rhizosphere soil–root interface but also clearly show add-

itional fine-tuning and adaptation of the endosphere

microbiome in the stem and leaf compartment. Each plant

compartment represents an unique ecological niche for

the bacterial communities. Future studies which include

the analysis of specific host genotype effects (clones, gen-

etically modified genotypes, etc.) could provide more

insight into the plasticity or responsiveness of the bacterial

communities to specific changes in the host plant. Finally,

we identified a core bacterial microbiome associated with

the different ecological niches of Populus. This could pro-

vide the basis for more detailed (isolation) studies of the

identified abundant OTUs and gain further insight into

the complex host–microbe interactions of Populus.

Methods
Field trial and sampling

A poplar field trial located in Ghent, Belgium, was se-

lected to obtain samples for this study. This field trial

was established in April 2009 and contains female poplar

clones (P. tremula × P. alba cv. “717-1B4”). Poplars were

micropropagated in vitro, and ramets were grown in soil

in the greenhouse for 9 months. Thereafter, the stems

were cut 10 cm above soil level, and plants were main-

tained for an additional 10 days in the greenhouse. Finally,

coppiced trees were transferred to the field in May 2009.

The trees were planted in a density of 15,000 trees per

hectare with an inter-plant distance of 0.75 m [54, 106].

Poplar trees were sampled in October 2012. At the time

of sampling, the height of the trees was on average ap-

proximately 3.5–4.5 m. Fifteen individual trees were sam-

pled for the rhizosphere soil and root samples, and 11

trees were sampled for the stem and leaf samples. Col-

lected samples included rhizosphere soil, roots, stems, and

leaves. The root samples were collected at a depth of 5–

10 cm below ground level. The rhizosphere soil was

strictly defined as soil particles adhering to the roots. For

the stem and leaf samples, one complete branch of each

of the 11 poplar individuals was collected. Sampled

branches were directly connected to the central trunk and

had on average a circumference of approximately 4–7 cm

and a height of approximately 80–140 cm To standardize

and maximize reproducibility of the stem samples, several

small stem “cores” with bark (5–7 cores; 1 cm each) were

collected from each branch from the base to the top of

the offshoot to represent the stem compartment. For the

leaf samples, all leaves from the sampled offshoot were

collected to represent the leaf compartment.
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Processing of samples

The samples were processed as described by Beckers et

al. [8]. Briefly, the root samples were depleted from soil

particles by shaking on a platform (20 min, 120 rpm).

The soil particles directly dislodged from roots repre-

sented the “rhizosphere soil” compartment. Subse-

quently “root,” “stem,” and “leaf” compartments were

cleared from epiphytic bacteria by sequential washing

(surface sterilization) with (a) sterile Millipore water

(30 s), (b) 70% (v/v) ethanol (2 min), (c) sodium hypo-

chlorite solution (2.5% active Cl− with 0.1% Tween 80)

(5 min), and (d) 70% (v/v) ethanol (30 s) and finalized by

rinsing the samples five times with sterile Millipore

water. The plant samples were portioned into small frag-

ments using a sterile scalpel and were subsequently mac-

erated in a sterile phosphate saline buffer (PBS; 130 mM

NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4, pH 7.4) using

a Polytron PR1200 mixer (Kinematica A6). Sterilization

and homogenization of the plant samples were per-

formed under aseptic conditions in a laminar airflow. Fi-

nally, quadruplicate aliquots of each sample (1.5 ml) of

the homogenized plant material (root, stem, or leaf )

were stored for all poplar individuals at −80 °C until

DNA was extracted.

DNA extraction

To minimize DNA extraction bias, DNA was extracted

in quadruplicate from the rhizosphere soil, root, stem,

and leaf samples [107, 108]. Approximately 250 mg of

rhizosphere soil was used for each individual DNA ex-

traction. DNA was extracted using the Power Soil DNA

Isolation Kit following the protocol provided by the

manufacturer (MoBio, Carlsbad, CA, USA). For the

plant tissues, aliquots of homogenized plant material

(1.5 ml) were first centrifuged (13,400 rpm, 30 min.) to

collect all cells. Supernatants were discarded and DNA

extractions were performed on pelleted plant material.

DNA was extracted from plant samples using the Invi-

sorb Spin Plant Mini Kit according to the manufacturer’s

protocol (Stratec Biomedical AG, Birkenfeld, Germany).

PCR amplification and 454 pyrosequencing

Quadruplicate DNA samples from all compartments were

individually amplified using a Techne TC-5000 thermocy-

cler (Bibby Scientific Limited, Staffordshire, UK). Based on

previous optimization experiments with 16S rRNA primer

pairs [9], we selected primer 799F (5′-AACMGGATTA-

GATACCCKG-3′), with three mismatches with the poplar

chloroplast 16S rRNA, and primer 1391R (5′-GACGGGC

GGTGWGTRCA-3′). Furthermore, we included negative

controls to evaluate the presence of contaminating

sequences in reagents, which were checked using gel-

electrophoresis (1.5% agarose gel, 90 V, 30 min.). A first

round of PCR amplification was conducted using these

primers without the Roche 454 pyrosequencing adaptors

and sample-specific barcodes. Each 25 μl PCR reaction

contained approximately 10 ng of DNA and was carried

out using the FastStart High Fidelity PCR System (Roche

Applied Science, Mannheim, Germany). Each reaction

contained 2.75 μl FastStart 10× reaction buffer, 1.8 mM

MgCl2, 0.2 mM dNTP mix, 0.4 μM of each primer, and 2

U FastStart HiFi polymerase. Cycling conditions included

initial denaturation at 94 °C for 3 min, followed by 35 cy-

cles of denaturation at 94 °C for 1 min, annealing at 53 °C

for 1 min, and extension at 72 °C during 1 min; a final ex-

tension phase was performed at 72 °C during 10 min. PCR

amplicon pools were cleared from residual primers and

primer dimers by separating the PCR products on a

1.5% agarose gel (90 V, 30 min.), excising the bacter-

ial product (amplicon length = 592 bp) and extracting

the DNA from the gel slices using the QIAQuick gel

extraction kit (Qiagen Benelux N.V., Venlo, The

Netherlands). Mitochondrial by-products (1000 bp)

were eliminated via this gel-purification. Following

the first round of PCR amplification and gel-purifica-

tion of the PCR products, a second round of PCR amplifi-

cation was performed with primer 967F (5′CAACGCGA

AGAACCTTACC-3′)-1391R(5′-GACGGGCGGTGWGT

RCA-3′) to reduce the amplicon length (424 bp) to a

more suitable length for 454 pyrosequencing. The forward

primer (967F) was fused to the Roche 454 pyrosequencing

adaptor A including a sample-specific 10-bp barcode

(multiplex identifiers, MIDs). The reverse primer (1391R)

was fused to adaptor B (Roche Applied Science, Mann-

heim, Germany). PCR cycling conditions were identical as

described above, except for the number of PCR cycles that

was lowered to 25.

Subsequently, quadruplicate PCR amplicon pools from

the corresponding samples were grouped together

resulting in 15 samples (rhizosphere soil and root) and

11 samples (stem and leaf ) per plant compartment (15

biological replicates × 2 plant compartments + 11 bio-

logical replicates × 2 plant compartments = total of 52

samples). PCR amplicon pools were purified to remove

PCR primers and primer dimers using the QIAquick

PCR purification kit (Qiagen Benelux B.V., Venlo, the

Netherlands). Following purification, the quality of the

amplicon pools was evaluated using an Agilent 2100

Bioanalyzer system (Agilent Technologies, Diegem,

Belgium) according to the manufacturer’s protocol. Fi-

nally, purified amplicon libraries were quantified with

the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,

Carlsbad, CA, USA) and a Fluostar Omega plate reader

(BMG Labtech, Ortenberg, Germany) and pooled in

equimolar concentrations. Rhizosphere samples (15) and

root samples (15) were each separately pooled into two

amplicon libraries. Stem and leaf samples were grouped

into an additional library consisting of 22 samples (11
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stem and 11 leaf samples). Each amplicon library (total

of 3) was sequenced on one eighth of a Picotiter Plate on

a Roche Genome Sequencer FLX+ using Titanium chem-

istry (Roche Applied Science, Mannheim, Germany) by

Macrogen (Seoul, Korea).

Sequence processing

Sequencing generated three individual standard flow-

gram format (SFF) files, which were analyzed separately

using the software package mothur (version 1.33.2) fol-

lowing the standard operating protocol outlined in

https://www.mothur.org/wiki/454_SOP [59]. Briefly, the

sequencing error was reduced by denoising (shhh.flows,

Mothur implementation of Amplicon Noise algorithm)

and quality trimming, which removed reads shorter than

200 bases, reads with homopolymers longer than 8

bases, and reads containing ambiguous bases. Unique se-

quences were identified, while archiving the abundance

data of the unique sequences, and aligned using align.-

seqs with the SILVA reference alignment (Release 119)

[109]. Within the unique reads, chimeric sequences were

identified using the Uchime tool [110] followed by their

removal from the dataset. Unique sequences were classi-

fied using the mothur implementation of the Bayesian

classifier where an 80% bootstrap cut-off value was used

for assigning taxonomic classifications. Abundance data

of sequences matching “Chloroplast” and “Mitochon-

dria” were archived and these sequences were removed

from the data sets. Subsequently, pairwise distances were

calculated between all remaining unique sequences and

a distance matrix was created. Average neighbor cluster-

ing was performed and, using a 0.03 OTU definition

(97% sequence similarity cut-off level), a majority con-

sensus taxonomy was obtained for each OTU. To

minimize the impact of sequencing artefacts, we re-

moved singletons from the datasets [64]. Subsequently,

rarefaction curves were assembled, and Good’s coverage

scores were calculated in mothur based on 10,000 itera-

tions. To calculate diversity indices (richness, diversity,

evenness) while controlling for the sampling effort, each

sample was rarefied to 2000 sequences. OTU richness,

corresponding to the number of observed OTUs per sam-

ple (sobs), inverse Simpson diversity indices [111], and

Pielou’s evenness indices [112] were calculated in mothur

based on 10,000 iterations. To exclude bias in the commu-

nity richness, evenness, and diversity estimators, we in-

cluded several alternative estimators (Additional file 1).

Statistical analysis

Statistical analyses were performed in R 2.15.1 (The R

Foundation for Statistical Computing, Vienna, Austria)

[113]. Normal distributions of the data were checked

with the Shapiro–Wilk test and homoscedasticity of

variances was analyzed using either Bartlett’s or the

Fligner–Killeen test. Significant differences in the vari-

ance of parameters were evaluated, depending on the

distribution of the estimated parameters, either with

ANOVA or the Kruskal–Wallis rank sum test. Post hoc

comparisons were conducted by either the Tukey’s honest

significant differences tests or pairwise Wilcoxon rank

sum tests. ANOVA was used to test the effect of the plant

compartment (rhizosphere soil, root, stem, leaf) on the

read abundances. Hierarchical clustering (based on Bray–

Curtis dissimilarities) and principal component analyses

(PCA) were performed in and displayed with PRIMER 7

[114]. To statistically support the visual clustering of the

bacterial communities in the PCA analyses, the different

plant compartments were compared using permutation-

based hypothesis tests: tests of the multivariate null hy-

potheses of no differences among a priori defined groups

were examined using ANOSIM (an analog of univariate

ANOVA) with the Spearman rank correlation method in

PRIMER 7. Indicator species analysis was performed using

the multipat function of the indicspecies package in R

(version 1.7.1) [115]. P values were corrected for multiple

comparisons using the false discovery rate (FDR) with the

Benjamini–Hochberg method. Taxonomic dendrogram

(Fig. 5) was generated with one representative sequence of

each OTU using Unipro UGENE and displayed with the

use of iTOL (Interactive Tree Of Life) [116].

Additional files

Additional file 1: Community estimators. Values represent averages
(±standard deviation) of 15 biological replicates (rhizosphere soil and root
samples) and 11 replicates (stem and leaf samples) after normalization to
2000 sequences. Normal distributions of the data were checked with the
Shapiro–Wilk test and homoscedasticity of variances was analyzed using
either Bartlett’s or the Fligner-Killeens test. Significant differences in the variance
of parameters were evaluated with ANOVA, and post hoc comparisons were
conducted by the Tukey’s honest significant differences tests. Plant
compartment effects show the overall ANOVA results: F(DFn, DFd) and P value.
Significant differences at the 95% confidence interval (P< 0.05) between the
plant compartments are indicated in lowercase letters (P).(XLSX 11 kb)

Additional file 2: Plant compartment drives the composition of the
bacterial communities at phylum level. Left panel: principle component
analysis (PCA) of square-root transformed samples based on rarefaction
to 2000 reads per sample. OTUs were defined at a 97% sequence
similarity cut-off in mothur. OTUs differentiating the plant compartments are
displayed as vectors on the PCA plots. Right panel: hierarchical clustering
(group average linkage) of the samples based on Bray–Curtis dissimilarity.
Dissimilarities based on Bray–Curtis were superimposed on the PCA plot (left
panel). PCA and hierarchical clusters were based on 15 biological replicates
(rhizosphere soil and root samples) and 11 replicates (stem and leaf samples)
and were constructed in PRIMER 7 with 10,000 iterations.(TIFF 5 kb)

Additional file 3: Graphical representation of the ANOSIM (analysis of
similarities) analyses at the phylum (A) and OTU level (B) within each
plant compartment (rhizosphere soil, root, stem, leaf). Box plots show the
variation observed in the taxonomical composition of the different
replicate samples of each plant compartment (leaf, rhizosphere soil, root,
stem). Variation is based on the dissimilarity (using Bray–Curtis
dissimilarities) of the samples (taxonomically) within each plant
compartment as well as the overall dissimilarity between the different
samples in the different plant compartments (noted as “Between”). Box
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plots display the first (25%) and third (75%) quartiles, the median (bold
line), maximum and minimum observed values (without outliers). Outliers
(more or less than 3/2 of the upper/lower quartile) are displayed as open
circles. ANOSIM and resulting box plots were calculated based on 15
biological replicates (rhizosphere soil and root samples) and 11 replicates
(stem and leaf samples) in R with 10,000 iterations. R-statistic and P

values are displayed on top of each individual graph.(TIFF 3 kb)

Additional file 4: Plant compartment effect on the individual bacterial
phyla. Values represent average number of reads (±standard error) and
relative read abundances (%) based on 15 biological replicates
(rhizosphere soil and root samples) and 11 replicates (stem and leaf
samples) after normalization to 2000 sequences. Normal distributions of
the data were checked with the Shapiro–Wilk test and homoscedasticity
of variances was analyzed using either Bartlett’s or the Fligner–Killeens
test. The ANOVA model was [OTU] ~ compartment and included all four
plant compartments followed by Tukey’s honest significant differences
post hoc tests. Plant compartment effects show the overall ANOVA
results: F(DFn, DFd) and P value. Significant differences at the 95%
confidence interval (P < 0.05) between the plant compartments are
indicated in lowercase letters. P values were corrected for multiple
comparisons using the false discovery rate (FDR) with the Benjamini–
Hochberg method.(XLSX 40 kb)

Additional file 5: Top members of the bacterial microbiome of each
plant compartment. Values represent average number of reads
(±standard error) and relative read abundances (%) based on 15
biological replicates (rhizosphere soil and root samples) and 11 replicates
(stem and leaf samples) after normalization to 2000 sequences. Normal
distributions of the data were checked with the Shapiro–Wilk test, and
homoscedasticity of variances was analyzed using either Bartlett’s or the
Fligner–Killeens test. The ANOVA model was [OTU] ~ compartment and
included all four plant compartments followed by Tukey’s honest
significant differences post hoc tests. Plant compartment effects show
the overall ANOVA results: F(DFn, DFd) and P value. Significant differences
at the 95% confidence interval (P < 0.05) between the plant
compartments are indicated in lowercase letters. P values were corrected
for multiple comparisons using the false discovery rate (FDR) with the
Benjamini–Hochberg method. The total amount of reads covered by the
top members of the microbiome (top ten OTUS) in each plant
compartment are indicated at the bottom. Gray colored values represent
the top ten OTUs per plant compartment.(XLSX 42 kb)

Additional file 6: Indicator species analysis. Associations were calculated
with the Dufrene–Legendre indicator species analysis routine (Indval,
indicator value) in R. Significance levels: P ≤ 0.05•; P ≤ 0.01*; P ≤ 0.001**. P
values were corrected for multiple comparisons using the false discovery
rate (FDR) with the Benjamini–Hochberg method.(XLSX 44 kb)

Additional file 7: OTU distribution across the plant compartments. Venn
diagram showing the overlap in operational taxonomic unit (OTU)
composition between the different plant compartments.(TIFF 471 kb)
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