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Abstract

Recent research into structural variants (SVs) has established their importance to medicine and molecular biology,

elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale

chromosome evolution—giving rise to the differences within populations and among species. Nevertheless,

characterizing SVs and determining the optimal approach for a given experimental design remains a computational

and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges.

Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large,

complex variations and present computational methods for each approach.
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Introduction
Structural variants (SVs) are large genomic alterations,

where large is typically (and somewhat arbitrarily) de-

fined as encompassing at least 50 bp. These genomic

variants are typically classified as deletions, duplications,

insertions, inversions, and translocations describing

different combinations of DNA gains, losses, or rear-

rangements [1–3]. Copy number variations (CNVs) are a

particular subtype of SVs mainly represented by dele-

tions and duplications (reviewed in Carvalho and Lupski

[4]). SVs are typically described as single events, al-

though more complex scenarios involving combinations

of SV types exist [5, 6]. Chromothripsis, which is a large

and complex combination of rearrangements reported in

cancer [7], is an example. While the average genomic

variation between two humans is 0.1% in terms of single

nucleotide variants (SNVs), when taking SVs into ac-

count, this increases to 1.5% [8]. In particular, telomeric

regions are affected by a higher rate of SVs [9].

SVs can have a pronounced phenotypic impact—dis-

rupting gene function and regulation or modifying gene

dosage. Multiple studies have highlighted their role in

functional changes across populations [1, 10, 11] and

species [12]. Their importance in medicine and molecu-

lar biology has been highlighted by multiple recent stud-

ies. For instance, in neurological diseases, SVs have been

often discussed based on ATTCC repeat extensions in

Parkinson [13] or CAG expansions in Huntington

disease [14]. Furthermore, a retrotransposon insertion in

an intron of the TAF1 gene has been associated with

early stages of linked dystonia-parkinsonism disease [15].

In cancer, different types of SVs have been highlighted

as causing various types of dysfunction: (i) deletions or

rearrangements truncating genes [16]; (ii) amplification

of genes leading to overexpression, for example, due to

homologous recombination (HR) that leads to an inacti-

vation of BRCA1 and BRCA2 [17, 18]; (iii) gene fusions,

such as Her2-positive SKBR3 breast cancer that com-

bines multiple genes across chromosomes [19]; and (iv)

alteration of the location of gene regulatory elements,

causing changes in the gene expression [4, 20]. In Men-

delian studies, multiple diseases have been associated

with deletions or duplications of genic regions. For

example, three complex SVs affecting ARID1B (Coffin-

Siris syndrome), HNRNPU (hypotonia), and CDKL5
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(early infantile epileptic encephalopathy is a severe intel-

lectual disability and Rett-like features) have been reported

[21]. Another more recent study showed the complexity

of these CNVs and an increase in mutation rates for

Potocki-Lupski and Smith-Magenis syndrome [22].

SVs are also playing an essential role in plants includ-

ing having a direct phenotypic impact [23]. For example,

SVs play important roles in tolerance for multiple plants:

(i) in maize, a tandem triplication over the AMTE1

genes is reported to be associated with aluminum resist-

ance [24]; (ii) an amplification of Bot1 plays an import-

ant role in boron toxicity in barley [25]; and (iii) for

weeds, a tolerance against the herbicide glyphosate based

on amplification of EPSPS has been reported in response

to extensive use of glyphosate [26]. Other SVs have a

positive impact on fruit yield and quality. For example, a

transposon insertion near Ruby, a MYB transcriptional

activator, leads to the increase of anthocyanin concen-

tration in blood orange compared to pumelo and

mandarin [27]. In tomatoes, a transposon insertion in

JOINTLESS2 (J2) results in undesirable branching of

flower-bearing shoots (inflorescences) in genetic back-

grounds that also carry a cryptic variant for the close

homolog enhancer of J2. This combination results in ex-

cessive flower production. However, an additional tan-

dem duplication in fresh-market breeding lines across

this region leads to a threshold of correctly spliced prod-

uct and thus to a healthy phenotype with higher fruit

yield [28].

Despite all these evidences of the importance of SVs,

they have been largely understudied, compared to SNVs,

because they are much more difficult to identify. In

principle, taken individually, each type of SV induces a

distinctive pattern in mapping reads that can be used to

infer the underlying mutation. For example, a deletion

forms a lack of a sequence and thus a gap in the align-

ment of the sample relative to a reference (Fig. 1). How-

ever, in practice, it is much more complicated. First,

sequencing and mapping errors blur the patterns. In-

deed, in contrast to SNVs and smaller insertions and de-

letions, SVs can cover a large portion of a read or even

be larger than the read length—which complicates map-

ping [5]. Second, the patterns induced by the different

SV types can be very similar. For example, it is often

hard to distinguish tandem duplications from novel in-

sertions for genomic alignments (Fig. 1). Finally, multiple

SVs can overlap or be nested, giving rise to much more

complex mapping patterns than when considered indi-

vidually [5, 20]. Such complex patterns may preclude

mapping altogether, forcing researchers to assemble each

genomic sample de novo—a difficult and more costly

task with conventional sequencing.

However, great strides have recently been made, thanks

to technological and methodological developments. The

advent of long-read sequencing technology, in particular,

Pacific Biosciences (PacBio) and Oxford Nanopore tech-

nologies (ONT), makes it possible to produce reads of

several thousand base pairs, even reaching up to 2 Mbp

for Oxford Nanopore [29]. Furthermore, as we shall re-

view in more detail below, technologies such as linked

reads (e.g., 10x Genomics), optical mapping, and Strand-

Seq have also been developed to improve the quality of as-

semblies and/or SV calling. Long reads help to increase

the detection of SVs as they considerably ease de novo

genome assembly and mapping. Nevertheless, the

increased length and the higher error rate of emerging

long-read technologies can pose new methodological chal-

lenges. Complementary to long reads, another noteworthy

development has been the repurposing of transcriptomics

(RNA-Seq) to detect SVs—in particular, rearrangements.

Indeed, by identifying apparent RNA fusions, which are

thus inherently transcribed, it is possible to focus on SVs

with potential functional implications. Lastly, recent

progress in benchmarking is greatly improving our under-

standing of the strengths and weaknesses of each ap-

proach. Current efforts such as Genome in the Bottle [30]

and the FDA-led initiative SEQC2 (https://www.access-

data.fda.gov/scripts/fdatrack/view/track_project.cfm?pro-

gram=nctr&id=NCTR-DBB-PM-SEQC2-Phase-II) aim at

better characterizing false positives and false negatives in

SV calling.

In this review, we give an overview of methods to detect

SVs utilizing DNA and RNA-Seq from both short and

long reads (Fig. 2). We provide a snapshot of the main

methods currently available for detecting SVs (Table 1),

with practical guidance as to which approach is suitable

for which type of study. We conclude the review with a

discussion of open challenges and future directions.

De novo assembly-based approach
De novo genome assembly has traditionally been used to

generate reference genomes. Multiple strategies have

been proposed, utilizing long and short reads or lever-

aging both. We refer the interested reader to the review

of Nagarajan and Pop [72], which provides a critical

overview of de novo assembly methods.

To detect SVs, such de novo-assembled sequences

can be aligned to a reference or other assembly

(Fig. 1), and the alterations between the two can be

systematically identified: the comparison of each pos-

ition in one genome to its corresponding position in

the other genome should allow the identification of

all forms of variations [3, 73]. Discontinuities that

arise from certain types of SVs during a whole-

genome alignment result in different patterns (Fig. 1).

However, although conceptually simple, genome align-

ment is computationally far from trivial [74].
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Multiple methods have been proposed to identify SVs

based on a genomic alignment. These can be distin-

guished by whether they construct an assembly graph or

operate directly on the already assembled sequences.

Methods that construct the assembly graph are typically

slower, but can provide more insights, as they are lever-

aging the read information directly. Cortex is one of

these methods that use short-read sequencing data and

can simultaneously assemble several genomes. Cortex

uses a colored de Bruijn graph (see Table 2 for defin-

ition) to simultaneously infer SVs and complex combi-

nations of SNVs, indels, and rearrangements [31]. SGVar

[32] is a more recent string graph-based (see Table 2 for

definition) de novo assembly pipeline based on the SGA

assembler [75] that also uses short-read sequencing data.

SGVar uses a stringent read preprocessing based on the

read length and read quality. It requires a perfect match

to merge reads or sequences, which improves the assem-

bly quality. Using both simulated and real data (chromo-

some six of the human genome), SGVar has been shown

to outperform other methods, such as Cortex, for inser-

tion and deletion identification [32].

The other group of methods operate based on previ-

ously assembled contigs or scaffolds and are thus

Fig. 1 Comparison between de novo assembly, short-read and long-read mapping approaches to identify structural variants. For de novo

assembly approaches, the relative positions of the segments in the dot plot indicate the type and size of the SV. For short-read-based mapping

approaches, paired-end (red) and split reads (purple) are typically used to decipher the type size and location. In addition, the coverage can be

used to improve the detection of deletions and duplications. Long-read-based mapping approaches typically leverage the alignment patterns of

long reads (green) to detect the different types of SVs
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independent of the sequencing technology (see Table 2

for definition). Basically, they rely on alignments between

an assembly and a reference assembly, computed with

aligners such as BlasR [76], MUMmmer [77], or Mini-

map2 [35]. Assemblytics [34] is a web application that re-

lies on MUMmer and identifies insertions and deletions

up to 10 kbp. It distinguishes between contractions and ex-

pansions of repetitive elements in contrast to insertions and

deletions in a unique sequence. This can be an important

distinction since it already annotates the type of event to

provide further insight. Another method paftools.js [35]

uses Minimap2 alignments, which are typically many fold

faster than MUMmmer-based approaches. Similar to

Assemblytics, it calls insertions and deletions but only runs

on the command line. SMARTie-SV was recently intro-

duced to detect insertions, deletions, and inversions, using

BlasR. It has been applied to study SVs across great apes

(gorillas, chimpanzees, orangutans) and humans [12].

Theoretically, all forms of structural variants can be

identified given a fully contiguous and complete de novo

assembly. The main strength of de novo assembly-based

approaches compared to other approaches lies in detect-

ing larger insertions (3+ kbp) [34, 32]. One major

challenge is the lack of haplotype representation. Thus,

heterozygous SVs are often missed simply by the fact

that a standard de novo assembly only represents one

haplotype. Nevertheless, there are de novo assembly

methods to account for this such as trio-sga [78],

Falcon-Unzip [79], or Trio-Canu [80] that often require

additional coverage and/or parental information. They

can provide diploid information of the genome and thus

enable a better representation of heterozygous SVs.

However, some challenges remain even for a haplotype

representation, such as the de novo assembly quality and

improving the genomic alignments by taking a larger

genomic context sequence into account. Therefore, the

de novo assembly-based approach is often used for a

small number of challenging samples or for studying or-

ganisms that do not have a genome of reference.

Short-read alignment approach
Short paired-end sequencing data dominates most of the

publicly available datasets. Typically, these paired-end

reads are mapping in the opposite orientation and within

a certain distance of each other (e.g., 500 bp). In the

presence of SVs, these pairs are abnormally oriented and

or spaced (Fig. 1). In addition, split reads can be used to

improve the breakpoint resolution (Fig. 1). SV calling

using paired-end reads is currently the standard ap-

proach and has been applied to single samples up to

large cohorts (e.g., 1000 genomes).

In this section, we first focus on DNA-Seq-based

methods then on RNA-Seq-based ones.

Short-read DNA-Seq mapping

Over the past decade, more than 100 short read-based

mappers have been introduced, yet read mapping is still

not entirely solved—for example, when it comes to reli-

ably aligning reads to highly polymorphic regions [81].

Once the reads are mapped, their insertion size, orienta-

tion, and alignment length can be used to identify SVs

candidates. Figure 1 gives a detailed overview of the

Fig. 2 Qualitative overview of structural variant calling methodology using short reads and long reads and their associated costs. a, A qualitative

comparison of the different SV methodologies ranging across technologies (whole genome and RNA-Seq using short and long reads) to different

approaches (mapping vs. assembly) with respect to their costs and recall. b, The ratio of improvement in the number of SVs detected from using

long reads across four human and two non-human studies. Overall, each study shows a clear improvement of using the longer reads.

Additional file 1: Table S1 shows the details of each study
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Table 1 Overview of multiple methods representative for the different SV methodologies currently used. Input types indicate the

required data at start being either: De novo assembly (a), Oxford Nanopore (o), PacBio (p), 10X Genomics (x), Hi-C (h), Strand-Seq (t),

Optical mapping (c) or Short reads (s)

Category Name Input types
(a, c, h, o, p,
s, tx)

Description Link Paper

De novo
assembly

Cortex s Insertions, deletions, combinations of SNVs—
inversions and deletions—rearrangements

http://cortexassembler.
sourceforge.net/

[31]

SGVar s Large insertions and deletions, complex SV [32]

HySA p, s Small (11 to 50 bp) to large (> 50 bp) insertions
and deletions, complex SV

https://bitbucket.org/
xianfan/hybridassemblysv/
overview

[33]

Assemblytics a Insertions and deletions (1 bp to 10 kb), repeat
expansions/contractions

https://github.com/
MariaNattestad/
Assemblytics

[34]

Paftools a Insertions, deletions https://github.com/lh3/
minimap2/tree/master/
misc

[35]

Smartie-sv a Insertions, deletions, inversions https://github.com/zeeev/
smartie-sv

[12]

BreaKmer s Insertions, deletions, translocations, inversions,
duplications

https://github.com/ccgd-
profile/BreaKmer

[36]

novoBreak s Deletions, duplications, inversions, translocations https://sourceforge.net/
projects/novobreak/

[37]

Short-read
mapping

BreakDancer s Deletions, insertions, inversions, intra-chromosomal
and inter-chromosomal translocations

https://github.com/
genome/breakdancer

[38]

BreakSeq Insertions, deletions, translocations, inversions,
duplications

http://sv.gersteinlab.org/
breakseq/

[39]

CREST s Insertions, deletions, translocations, inversions,
duplications

https://www.
stjuderesearch.org/site/lab/
zhang

[40]

DELLY s Deletions, inversions, duplications, inter-
chromosomal translocations

https://github.com/
dellytools/delly

[41]

EricScript s Gene fusion https://sourceforge.net/
projects/ericscript/

[42]

FusionCatcher s Gene fusion https://github.com/
ndaniel/fusioncatcher

[43]

GRIDSS s Insertions, deletions, translocations, inversions,
duplications

https://github.com/
PapenfussLab/gridss

[44]

Gustaf s Deletions, inversions, duplications, translocation http://www.seqan.de/
apps/gustaf/

[45]

IDP-fusion p, s Gene fusion https://www.healthcare.
uiowa.edu/labs/au/IDP-
fusion/

[46]

JAFFA p, s Gene fusion https://github.com/
Oshlack/JAFFA/wiki

[47]

LUMPY s Deletions, duplications, inversions, translocations https://github.com/arq5x/
lumpy-sv

[48]

Manta s Insertions, deletions, translocations, inversions,
duplications

https://github.com/
Illumina/manta

[49]

Meerkat s Insertions, deletions, translocations, inversions,
duplications

http://compbio.med.
harvard.edu/Meerkat/

[50]

Pindel s Insertions, deletions, translocations, inversions,
duplications

https://github.com/
genome/pindel

[51]

STAR-Fusion s Gene fusion https://github.com/STAR-
Fusion/STAR-Fusion/wiki

[52]

SQUID s Gene fusion https://github.com/ [53]
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Table 1 Overview of multiple methods representative for the different SV methodologies currently used. Input types indicate the

required data at start being either: De novo assembly (a), Oxford Nanopore (o), PacBio (p), 10X Genomics (x), Hi-C (h), Strand-Seq (t),

Optical mapping (c) or Short reads (s) (Continued)

Category Name Input types
(a, c, h, o, p,
s, tx)

Description Link Paper

Kingsford-Group/squid

TARDIS s Discovery of tandem and interspersed segmental
duplications

https://github.com/
BilkentCompGen/tardis

[54]

TIGRA s Insertions, deletions https://bitbucket.org/
xianfan/tigra

[55]

Tophat-
Fusion

s Gene fusion http://ccb.jhu.edu/
software/tophat/fusion_
index.shtml

[56]

Ulysses s Insertions, deletions, translocations, inversions,
duplications

https://github.com/gillet/
ulysses

[57]

SvABA s Insertion, deletions, somatic rearrangments https://github.com/walaj/
svaba

[58]

Long-read
mapping

NanoSV o Local SV (LSV): duplications, deletions, inversions;
insertions (transposons, intra-chromosomal
(> 1 Mb away) and inter-chromosomal insertions)

https://github.com/
mroosmalen/nanosv

[59]

PBHoney p Insertions, deletions, duplications, inversions,
translocations

https://sourceforge.net/
projects/pb-jelly/

[60]

PBSV p Insertions (20 bp to 5 kb), deletions (20 bp to 100 kb),
inversions (200 bp to 5 kb), intra-chromosomal
(> 100 kb away) and inter-chromosomal translocations,
complex SV

https://github.com/
PacificBiosciences/pbsv

SMRT-SV p Insertions, deletions, duplications, inversions,
translocations

https://github.com/EichlerLab/
pacbio_variant_caller

[61]

Sniffles o, p Insertions, deletions, translocations, inversions,
duplications, complex SV (nested SV)

https://github.com/
fritzsedlazeck/Sniffles

[62]

Multimethods SV
caller

FusorSV s Combining LUMPY, DELLY, and GenomeSTRiP https://github.com/
TheJacksonLaboratory/SVE

[63]

MetaSV s Combining BreakSeq, Breakdancer, Pindel,
CNVnator

http://bioinform.github.io/
metasv/

[64]

Parliament2 s Combining LUMPY, DELLY, Manta, BreakSeq,
CNVnator

https://github.com/
dnanexus/parliament2

[65]

SURVIVOR a, o, p, s Can combine/compare any SVs VCF https://github.com/
fritzsedlazeck/SURVIVOR

[10]

Hi-C technology Hic_
breakfinder

h Detects SVs based on optical mapping, Hi-C,
short reads

https://github.com/
dixonlab/hic_breakfinder

[66]

HiCnv h Pipeline to identify CNVs from Hi-C data https://github.com/ay-lab/
HiCnv

[67]

HiCtrans h Identify potential translocations using change-
point statistics

https://github.com/ay-lab/
HiCtrans

[67]

Optical mapping c Commercial tools; visualization and analysis of
Bionano data

https://bionanogenomics.
com/support-page/
bionano-access-software/

Strand-Seq
technology

Strandseq-
InvertR

t R package to locate putative inversions https://sourceforge.net/
projects/strandseq-invertr/

[68]

10x Genomics Gemtools x Downstream and in-depth analysis of SVs from
linked-read data

https://github.com/
sgreer77/gemtools

[69]

GROC-SVs x Identify large-scale SVs based on barcode
information

https://github.com/
grocsvs/grocsvs

[70]

LongRanger x Align reads, call and phase SNPs, indels,
identify SVs

https://support.1
0xgenomics.com/genome-
exome/software/

[16]
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patterns of abnormally mapped paired reads and how

they relate to SVs types. For example, a deletion in a se-

quenced sample leads to a larger insert size (the distance

of the pairs). In addition, the coverage in the allele is half

(heterozygous) or zero (homozygous) compared to the

surrounding regions. For duplications, the coverage is

increased, and for rearrangements, the pairs are abnor-

mally spaced or oriented while the coverage is not

affected. This signal is often filtered by coverage, mapp-

ability, or other measurements, such as an increase in

substitutions.

The methods for detecting SVs from short reads vary

in the type of information they exploit. Early methods

relied exclusively on the distance and orientation of

paired-end reads (Fig. 1). For example, BreakDancer [38]

classifies each read into normal or SV depending on the

mapping distance and orientation between the read and

its mate. Regions with an excess of reads fitting into an

SV category are then identified and assigned a confi-

dence score. This can lead to missed variations, e.g.,

smaller deletions, for which the length is within the vari-

ability of the paired-end distribution. To increase the

resolution, split reads can also be used. DELLY [41] inte-

grates the analysis of split reads into its search of abnor-

mal distances and orientations among pairs of reads.

Although this increases the accuracy of breakpoint

prediction and enables the detection of smaller deletions

(20+ bp), the larger events remain hard to distinguish

from mapping artifacts. To overcome this, some

methods have integrated coverage information as a third

kind of input signal. For example, LUMPY [48] does a

joint analysis of the read depth, paired-end read discord-

ance, and split-reads. Another tool that leverages all

three types of information is Manta [49], which includes

a highly parallel strategy that can be used on an individ-

ual sample or on a small set of samples including

Table 2 Glossary. Here, positive (P) or negative (N) describes the SV detection (or SV calling), and true (T) or false (F) describes if the

calling was correct. Thus, SVs are true positive (TP) if they are called or false negatives (FN) if they are not called but present in the

sample. Conversely, SVs that are not in the sample are true negatives (TN) if they are not called or false positives (FP) if they are

called

Word Definition

Accuracy Proportion of correctly identified events (T) to the overall events: (TP + TN)/(TP + TN + FP + FN).

Breakpoints Positions on the genome denoting the start and end of SVs relative to the reference genome.

Contigs Contiguous sequence stretches assembled from reads.

De Bruijn graph Directed graph consisting of nodes with exactly n incoming and n outgoing edges. In genome assemblies, a de
Bruijn graph is built where the nodes are k-mers (sequences of length k) and the edges correspond to the overlap
on k − 1 bases between nodes.

String graph-based assembly Similar method to De Bruijn graph-based assembly, but in this case, the overlaps between all read pairs (instead of
k-mers) are computed to construct a string graph based on the overlaps.

Insert size The distance between the two paired-end reads.

Overhang Portion of a mapped read that cannot be aligned and thus could indicate a structural variation.

Phasing The identification of two or more heterozygous variations are co-occurring on the same or different DNA molecule.

Precision (or positive predictive
value)

Proportion of predictions (FP + TP) that are correct (TP).

Recall (or sensitivity or true-
positive rate)

Proportion of the total positives (FN + TP) that were correctly identified (TP).

Scaffold Connected contiguous sequence stretches, with unresolved sequence stretches in between.

Split reads Reads containing parts that map in different loci on the reference genome. They are found by splitting the read in
sub-segments, align individually each sub-segment, and then grouping sub-fragments from one read.

Tandem sequence A specific type of repetitive region that was repeated directly adjacent to each other.

Table 1 Overview of multiple methods representative for the different SV methodologies currently used. Input types indicate the

required data at start being either: De novo assembly (a), Oxford Nanopore (o), PacBio (p), 10X Genomics (x), Hi-C (h), Strand-Seq (t),

Optical mapping (c) or Short reads (s) (Continued)

Category Name Input types
(a, c, h, o, p,
s, tx)

Description Link Paper

downloads/latest

NAIBR x Identifies novel adjacencies created by
SVs events

https://github.com/raphael-group/
NAIBR

[71]
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tumor-normal pairs. This is achieved by parallelly build-

ing graphs across regions of the genome and testing for

a specific variant hypothesis. The nodes of such graphs

are regions that may contain one or more breakpoints,

and the edges represent the evidence (i.e., reads) of

breakpoints between the regions (see Table 2 for defin-

ition). The evidence accumulated around every pair of

genomic regions is then evaluated for specific SVs hy-

potheses. GRIDSS [44], on the other hand, retains only

the reads that provide evidence for SVs and then assem-

bles them via a positional de Bruijn graph. The align-

ment of the subset of reads enhances the accurate

identification of SVs, thus achieving an increased recall.

Regarding precision (the proportion of inferred SVs that

are correct), GRIDSS’s authors show similar perform-

ance to LUMPY, with an estimated precision rate of 90%

(evaluated from 1000 previously validated deletions)

[44]. In the same study, BreakDancer, Pindel, DELLY,

and Manta exhibited lower precision rates, ranging from

70 to 85%. However, GRIDSS has the disadvantage of

reporting any type of SV event as a simple breakpoint

(i.e., BND), and this makes the interpretation of the

underlying SV type difficult. More recently, to detect

more complex events such as a tandem duplication

where the second copy is inverted, methods such as

TARDIS have been proposed [54].

The aforementioned methods specialize in the detec-

tion of specific types of variants, but none of them is

able to reliably identify all SV types and size regimes [5,

10, 82, 83]. Meta-methods seek to fill in this gap by

combining calls from different tools and selecting the

variants identified by multiple methods. Ideally, meta-

methods can combine the strengths of multiple methods

while overcoming their individual weaknesses. In prac-

tice, this works up to a certain point, but these methods

can also serve to adjust the precision-recall trade-off

more flexibly. MetaSV [64], Parliament2 [65], and SUR-

VIVOR [10] have been reported to yield higher recall

than a single caller, at the cost of moderately reduced

precision. Using different parameters, SURVIVOR can

also be used to increase precision, at the cost of a mod-

erately reduced recall [10, 19]. Furthermore, SURVIVOR

can also incorporate the information from short and

long reads to further improve precision and recall.

Overall, short-read-based methods are well estab-

lished and widely used. Nevertheless, the recall is often

reported to be between 10 [61] and 70% [1, 5, 10] and

the false-positive rates are very high (up to 89%) [60,

73, 84, 85] depending on the size and type of SVs.

While rearrangements or certain larger (500+ bp) dele-

tions are robustly identified, mid to larger size inser-

tions remain a major challenge. These insertions are

often disturbing the accurate alignment of reads and

thus can lead to misinterpretations [5]. These cases

might be resolved by using a localized assembly ap-

proach, for example using SvABA [58]. In addition,

these methods are often blind to certain regions (e.g.,

low complexity, highly repetitive, highly mutated) of

the genome. To sum up, while we can control the pre-

cision of these short-read-based methods, the recall can

only reach a certain point and certain complex types of

SVs will remain hidden [1, 5, 19, 82]. Thus, we may be

reaching the limits of DNA mapping approaches based

on short reads. Indeed, the emergence of meta-methods

may well be indicative of diminishing returns in a ma-

turing field.

RNA-Seq mapping

In contrast to the genome approaches, RNA-Seq-based

approaches focus only on expressed regions. Here, the

challenges are different, and thus, specialized methods

have been proposed. In general, RNA-Seq methods aim

to identify gene fusions, which are connections between

parts or full lengths of two or more genes. Using RNA-

Seq, we can detect if the variant observed is expressed

and measure the amount of expression in comparison

with other genes.

Multiple methods have been developed to detect gene

fusions. These methods work based on mapping of short

RNA-Seq paired-end reads to the reference genome and

or transcriptome. Subsequently, the abnormal spaced

paired and split reads (see Table 2 for definition) be-

tween different genes are identified, summarized, and

filtered. Recent benchmarks highlighted the impact of

the read quality and length to detect gene fusions but

disagreed about their recommendation [46, 86–88].

For gene fusion detection, the methods mainly differ

in how strictly they use existing gene annotations. Reli-

ance on gene and exon annotations can increase preci-

sion by disregarding or correcting mapping errors. For

instance, methods such as FusionCatcher [43] and Eric-

Script [42] inherently focus on the annotated parts of

the genome. FusionCatcher is designed to identify som-

atic fusion genes, by aligning reads to a transcriptome

using Bowtie [89] guided by Ensembl annotation. It

removes the reads that align to rRNA and tRNA or trim

them if they have a low base quality to improve the

prediction of gene fusions. EricScript follows a novel

approach mapping first the paired-end reads and per-

forming a localized assembly across fusion candidates to

obtain better exon junction candidates. The reads are

then mapped back to the fusion catalog, and annotation

candidates are subsequently scored and filtered.

On the other hand, methods that do not strictly rely

on the annotation of a genome can have a higher sensi-

tivity. Indeed, annotations are typically incomplete, even

for well-characterized organisms such as humans [90],

let alone for non-model organisms. A loose reliance on
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annotations is further relevant when dealing with cancer

samples [19], which can contain complex non-canonical

gene fusion patterns. One of the earliest fusion detection

methods was TopHat-Fusion [56], which used a special-

ized version of TopHat [91]. Of note, TopHat is out-

dated, and its authors recommend to use HISAT2 [92]

instead. STAR-Fusion [52] is leveraging the speed and

accuracy of the STAR RNA-Seq aligner [93] by selecting

parameters optimized for gene fusion detection (e.g.,

allowing chimeric alignments, setting a low minimum

overhang for a chimeric junction) (see Table 2 for defin-

ition). STAR-Fusion uses single or paired-end reads

mapped to a reference and annotation index. SQUID

[53] constructs a graph based on the regions with dis-

cordant reads. The graph represents candidates of gene

fusions and the reference where the individual neighbor-

ing regions (nodes) are connected. The connections are

subsequently weighted by the number of supportive

reads. Linear programming is then used to traverse the

graph and report gene fusions.

The last group of RNA-Seq fusion detection methods

has been conceived to also take advantage of long

reads—in particular, those obtained from the PacBio Iso-

form Sequence protocol. IDP-fusion [46] and Jaffa [47]

are gene fusion identification tools that consolidate

long-read with short-read RNA sequencing data. IDP-

fusion requires both long and short reads while it is op-

tional for Jaffa. The long reads are used primarily to

identify fusion candidates. Subsequently, short reads are

used to improve the breakpoint accuracy and precision.

Overall, RNA-Seq-based SV detection has the advan-

tage of determining if an allele is expressed or not. Al-

though this is no guarantee that this variant has an

impact on the phenotype (the protein might not be

translated or stable), RNA-Seq helps with prioritizing

fusions that affect gene structure. However, there are

multiple disadvantages. First, the underlying SV type can

be uncertain for the gene fusion. This might complicate

the interpretation, as well as the validation. Second, the

coverage levels vary with the expression of the gene.

Thus, lower expressed genes and their variations are

likely to be missed. Third, SVs that impact promoter re-

gions, introns, or non-transcribed regions are not detect-

able. This is especially the case for some of the methods

penalizing read mapping outside of annotated regions.

And fourth, previous benchmarks have shown that gene

fusion studies often suffer from high false-positive rates,

for example, due to chimeric regions [94].

Long-read mapping-based approach
Long reads are advantageous for SV calling because they

can span repetitive or other problematic regions. Thus,

these longer reads (5+ kbp) have the potential to im-

prove the mapping and also to capture larger SVs better

compared to short reads alone [5, 60, 76, 82, 83]. Both

PacBio and Oxford Nanopore methods can generate

reads of thousands of base pairs but present two major

disadvantages. First, the costs for sequencing are higher

to obtain the same coverage compared to short-read se-

quencing. Second, the high sequencing error rate (~ 8–

20%) [95] has to be considered for both alignment and

SV calling steps. Thus, specialized methods to align long

reads such as BLASR [76], Minimap2 [35], and NGMLR

[5] were recently developed. The identification of SVs is

still at an early stage with only a few methods available.

With long reads, the SV detection methods are often

tailored to the underlying technology—mainly PacBio or

Oxford Nanopore. One exception is Sniffles [5], which

employs a parameter estimation in the beginning and

thus adjusts itself to the underlying error model. Sniffles

operates on a per read base, also capable of reporting

very low-frequency SVs in the sample. This is particu-

larly useful in cancer or in mosaic variation. Further-

more, Sniffles allows the detection of more complex or

adjacent SVs such as inversions flanked by deletions or

inverted tandem duplications. It implements a statistical

framework to reduce the number of false-positive calls.

For PacBio, three main specialized methods have been

proposed. PBHoney [60] uses coverage and split read in-

formation relying on BLASR alignments. PacBio struc-

tural variant calling and analysis tools (PBSV) is a

method developed by PacBio to detect SVs within the

range of 20+ bp (https://github.com/PacificBiosciences/

pbsv). Reads supporting a putative SV are used to gener-

ate a consensus, which is then re-aligned to the reference

genome. SMRT-SV [61] includes de novo assembly and a

specialized genotyping module. Reads are first aligned to

the reference and, subsequently, a local assembly is per-

formed for each multiple kbp window across the entire

genome. The resulting assemblies are then aligned back to

the reference, and structural variants (insertion, deletions,

and inversions) are identified.

For Oxford Nanopore, NanoSV was one of the first

methods developed [59]. NanoSV preferentially uses as in-

put an alignment from LAST [96], which uses adaptive seed

rather than fixed-length seed for speed optimization [96].

Of note, NanoSV reports only breakpoints (BND) which

again makes the interpretation of the SVs type difficult.

Overall, long-read mapping-based methods for SV

calling often show a better performance than short-read

ones (Fig. 2). Indeed, longer continuous reads can be

aligned more accurately, even after accounting for the

higher sequencing error rate. Furthermore, the enhanced

length enables a full capture of most of the alleles for

SVs—in contrast to short reads where multiple pieces of

information have to be put together to infer single SVs.

However, there are still some performance deficiencies

for larger (5+ kbp) insertions compared to de novo

Mahmoud et al. Genome Biology          (2019) 20:246 Page 9 of 14

https://github.com/PacificBiosciences/pbsv)
https://github.com/PacificBiosciences/pbsv)


assemblies. This is because, as with short reads, the allele

is getting longer than the read itself. Current efforts per-

form a localized assembly to improve, but do not fully

solve, this issue when looking at very large insertions or

inversions that are flanked with large low-complexity re-

peats (e.g., 5 kbp). Nevertheless, multiple papers have re-

ported a significant improvement in precision and recall

for SV calling using long reads compared to short-read

mapping approaches [2, 5, 19, 82, 97–99].

Alternative approaches for the identification of
structural variants
While this review focuses on SV calling methods util-

izing short and long reads, there are other technolo-

gies that have recently improved our ability to call

SVs. In this section, we provide a brief overview of

these technologies and the associated software pack-

ages and refer the interested reader to other reviews

for more details [95, 100–102].

Linked reads produced by 10x Genomics enable to

pair reads over distances of up to 150 kb, and multiple

methods have been developed to detect SVs from the

linked reads. The challenge here is to identify an SV

based on sparse coverage of the molecule with paired-

end Illumina reads. These methods typically have a

specific target SV size resolution because the barcode

identifying the paired-end reads per molecule is not

unique and the distance between the individual paired-

end reads is undefined. Prominent methods for this

technology include LongRanger [16] (50+ bp for dele-

tions, 30+ kbp for rearrangements), GROC-SVs [70]

(min 10 kbp) utilizing a localized assembly, and NAIBR

(1+ kbp) [71], which uses a probabilistic model that

combines multiple signals in barcoded reads.

Another technology relying on short-read sequencing is

Hi-C, which is used to identify regions that are in close

proximity in 3D space, which provides longer-range infor-

mation than standard short read. An alteration of these

pairs is likely caused by an SV allele at the location. Several

methods have been devised to directly detect SVs based on

Hi-C data. While some methods, such as Hic_breakfinder

(1+ Mbp), can potentially identify all types of SVs [66],

others, such as HiCnv (> 1 Mbp) and HiCtrans [67], only

aim to detect CNVs and translocations, respectively.

Strand-Seq is a new sequencing method that preserves

strand directionalities. Thus, when the reads are aligned to

the reference genome, the individual homologs for each

chromosome can be distinguished [101]. This helps in iden-

tifying inversions, for example, using Strandseq-InvertR [68]

(min ~ 1 kbp), and can also be applied at a single-cell level.

Optical mapping, e.g., provided by BioNano, uses a differ-

ent approach based on restriction enzyme maps which

labels 7-bp markers. Optical mapping is a highly cost-

efficient method to detect SVs but is often limited in terms

of breakpoint accuracy and in terms of distinguishing SVs

that are close to one another. Furthermore, BioNano can-

not provide the sequence of an allele (e.g., insertions). SV

calling from BioNano data can be performed using the ven-

dor’s software, called BioNano Access (https://bionanoge-

nomics.com/support-page/bionano-access/).

Discussion
SVs are increasingly being recognized as an important

class of variants, which need to be considered in evolu-

tionary, population, and clinical genomics. In this review,

we delved into different available algorithms to call SVs,

highlighting their advantages and disadvantages. It tran-

spires that SV calling methods based on short-read

mapping offer a cost-efficient way to search for most

known SV alleles (genotyping) [103], but they struggle to

detect novel SVs, especially insertions [5, 82, 83]. On the

other hand, SV calling approaches from de novo

assembly require a contiguous, haplotype-resolved and

complete representation of the sample, something which

can only be achieved through costly high-coverage se-

quencing. This makes them currently impractical when

dealing with multiple samples (e.g., > 20)—which, for in-

stance, is needed for population-scale studies. However,

they are necessary to reliably detect and resolve complex

SVs alleles. As for the long-read-based SV mapping

approaches, they are at the “bleeding edge”. Long-read

sequencing is currently more expensive and less wide-

spread than short-read sequencing. However, this is cur-

rently changing with continuous reductions from both

Oxford Nanopore and PacBio cost per base. It is already

apparent that SV calling from long-read mapping can be

more effective than from short-read mapping ap-

proaches. In addition, mapping approaches are often less

expensive than de novo assemblies. For applications re-

quiring the elucidation of very long or very complex

SVs, it is still possible to perform a localized long-read

de novo assembly. Phasing SVs can further improve the

overall quality by identifying which SVs violate the dip-

loid genome assumption. Clearly, this needs to be

adopted, given copy number alterations or genomes with

higher ploidy. Due to the complexity, only few studies

were able to do this so far with a success of 78.7%, even

though parental genomic data was used [59].

Regardless of the sequencing technology and SV call-

ing algorithm, a challenge that remains is the compari-

son and interpretation of SVs. For example, a tandem

duplication will result in having the second paired read

or part of the read mapped before the first (Fig. 1). Inter-

spersed duplications induce very different mapped read

patterns, which can easily be confounded with an inver-

sion or deletion (if the duplication is on the same

chromosome) or with a translocation (duplication on a

different chromosome). This is caused by molecules that
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have recombined between different regions, an event

which can occur in cancer. In such cases, the reads of

these regions will map back to their original locations

along the genomes, forming larger gaps in their align-

ments. These gaps are then misinterpreted sometimes as

different SV types flanking the duplicated regions, de-

pending on their distance to each other (Fig. 1). As for

insertions, while a novel sequence will indeed be identi-

fied as an insertion, a sequence that is similar to a region

in the genome (e.g., 80% identity or more) can be called

depending on the location of the region as a transloca-

tion, inversion, or deletion event. Lastly, when compar-

ing de novo assembly-based calls and mapping-based

calls, duplications and insertions can be hard to distin-

guish: while a genomic alignment may indicate a novel

sequence between two genomes, mapping-based ap-

proaches might highlight the same event as a tandem

duplication if the inserted sequence shares similarity to

the neighboring region. As these examples illustrate,

comparing different SV call sets and reconciling them

can add a whole new layer of difficulty to the problem.

For methods to progress, benchmarking is critical.

Currently, the performance of each method remains

hard to assess, because precision and recall are typically

estimated on different datasets, each presenting different

challenges, often using inconsistent operational defini-

tions (e.g., a minimum length of 20 vs. 50 bp to be con-

sidered a SV). Furthermore, most benchmarks to date

are limited to simulated datasets: this is advantageous in

that the truth is known with certainty, but it is often

unclear how such results generalize to real datasets. To

establish gold standards and facilitate the comparison of

different methods, several efforts are underway, such as

Genome in a Bottle (led by the US National Institute of

Standards and Technology) and SEQC2 (lead by the US

Food and Drug Administration). Both seek to obtain a

better gold standard and understanding of the under-

lying bias. This is achieved by sequencing trios very

deeply with multiple technologies (Genome in a Bottle)

or sequencing a sample multiple times by different la-

boratories and different sequencing machines (SEQC2).

The results of these studies will further highlight the

advantages of certain approaches over others.

Ultimately, for SVs to be routinely considered in

evolutionary and medical studies, standard methods

and reference databases will be required. An im-

proved differentiation between germline and somatic

SVs would be desirable, similar to that of SNVs, to

improve the categorization of SVs. Currently, only

few methods exist that offer an initial assessment

(e.g., Manta [49]). Databases of allele frequencies such

as gnomAD [104] are available for SNVs, but we

completely lack them for SVs. The annotation of SVs

is often more difficult because their length needs to

be taken into account, and the underlying sequence

itself needs to have a reliable allele frequency assess-

ment. Furthermore, although SVs can be reported

using the standard Variant Call Format (VCF), there

are inconsistencies in the way different methods re-

port SVs. Some methods fail to report sufficient in-

formation to determine the exact type of SV or

report valuable extra information in an ad hoc for-

mat. Standardization would greatly facilitate SV call-

ing across multiple samples. One possible solution

would be to extend the format in a similar way as

with the Genomic VCF format (gVCF) for SNVs. In

that format, for SNVs and smaller insertion and dele-

tions, the reference information is also included to

enable subsequent genotyping of variants that might

not have been called in the initial assessment. Such

an approach greatly speeds up the assessment and

often increases the accuracy.

Likewise, before SV calling becomes routine in clinical

settings, several challenges will need to be overcome. Be-

sides the challenges in detection and correct genotyping,

we are lacking an assessment and annotation of SVs.

One of the best indicators if a variant is a candidate for

pathogenicity is if this variant occurs at a low frequency

(e.g. < 0.5%) in the population. While it is possible to as-

sess the frequency of SNVs using reference datasets such

as gnomAD/ExAC [104], this is much more difficult for

SVs [103]. Indeed, while there is only a small number of

possible SNVs at each site (typically one or two alleles,

but only up to four given the nature of DNA), the num-

ber of possible SVs affecting each site is much larger,

due to their size and type differences. This also compli-

cates our ability to compare SVs with each other. Finally,

because of the need for certification and quality assur-

ance in a clinical setting, the aforementioned lack of for-

mat standardization and metadata information is even

more acute in clinical applications than in research.

In conclusion, the current state of SV calling is akin to

that of SNV calling about 10 years ago: its value is unques-

tionable, but the technology and methods are still evolving

very rapidly, and the lack of standard protocols, bench-

marks, and reference databases means that SV calls re-

quire careful interpretation. Considering the intense

competition among long-read sequencing providers and

the need for SV characterization for clinical applications—

in particular for cancer diagnostic and treatment—it will

not be long before SV analysis becomes routine.
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