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Structural variant detection in cancer genomes: computational

challenges and perspectives for precision oncology
Ianthe A. E. M. van Belzen 1, Alexander Schönhuth2, Patrick Kemmeren 1 and Jayne Y. Hehir-Kwa 1✉

Cancer is generally characterized by acquired genomic aberrations in a broad spectrum of types and sizes, ranging from single

nucleotide variants to structural variants (SVs). At least 30% of cancers have a known pathogenic SV used in diagnosis or treatment

stratification. However, research into the role of SVs in cancer has been limited due to difficulties in detection. Biological and

computational challenges confound SV detection in cancer samples, including intratumor heterogeneity, polyploidy, and

distinguishing tumor-specific SVs from germline and somatic variants present in healthy cells. Classification of tumor-specific SVs is

challenging due to inconsistencies in detected breakpoints, derived variant types and biological complexity of some rearrangements.

Full-spectrum SV detection with high recall and precision requires integration of multiple algorithms and sequencing technologies to

rescue variants that are difficult to resolve through individual methods. Here, we explore current strategies for integrating SV callsets

and to enable the use of tumor-specific SVs in precision oncology.
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THE IMPORTANCE OF STRUCTURAL VARIANT DETECTION IN
CANCER

Genomic aberrations acquired in cancer genomes encompass a
broad spectrum of types and sizes. These range from single
nucleotide variants (SNVs) to larger structural variants (SVs) that
impact genome organization (Fig. 1, Table 1)1,2. SVs are a major
contributor to genomic variation, they affect more base pairs in
the genome than SNVs3 and can have serious phenotypic
impact4,5. Some SVs are known to drive carcinogenesis and SVs
resulting in gene fusions were the first recurrent mutations
observed in many pediatric cancers6,7. With at least 30% of cancer
genomes affected by a pathogenic SV, detection of SVs is essential
for both diagnosis and treatment stratification6–11. In addition,
discovering new oncogenic SV driver events is beneficial for
understanding cancer etiology. However, research into the role of
SVs in cancer has been limited due to difficulties in their detection
which has partially resulted from co-opting sequencing technol-
ogies designed for SNV detection.
Advances in sequencing technologies have increased the

number of SVs identified per genome from ~2, 1–2, 5k in the
1000 genomes project to more than 27k in recent multi-platform
sequencing efforts3,4,12. Specifically for the cancer genomics
community, recent contributions of the Pan-Cancer Analysis of
Whole Genomes (PCAWG) Consortium have provided an extensive
resource of paired tumor-normal genomes13. The insights
obtained from multi-platform analyses also highlight current SV
blindspots in cancer variant databases like COSMIC. Despite
technological innovations, confident SV detection in cancer
genomes remains challenging due to biological factors including
contamination from healthy tissue, intratumor heterogeneity and
polyploidy. Identification of variants acquired in tumor cells
requires discerning tumor-specific somatic SVs (TSSVs) from
variants in the germline and mosaic variants present in unaffected
cells14. This is often done by differential analysis between paired
tumor-normal samples15. The classification of SVs as tumor-
specific or normal is confounded by inconsistencies in detected

breakpoints and derived variant types, as well as the biological
complexity of some rearrangements.
Confident SV detection and subsequent classification of variants

as either germline, tumor-specific or mosaic variation in healthy
tissue is not only important for diagnostics and cancer etiology
but also for research into cancer predisposition and genetic
interactions. In addition, the genetic context of somatic variants
and interplay with germline variants may influence their
tumorigenic potential16. Here, we focus on the detection of TSSVs
from paired tumor-normal WGS data. First, we explore current
approaches for SV detection and their integration, whilst
accounting for challenges specific to cancer samples. Second,
we address different approaches aimed at distinguishing TSSVs
from normal SVs. Third, we highlight the impact that long-read
sequencing can have on somatic SV detection. Last, we explore
how orthogonal sequencing technologies can be combined to
improve TSSV detection.

DETECTION OF SOMATIC SVS IN SHORT-READ WGS DATA

SVs can be detected using short-read sequencing data based on
patterns in aligned reads (Fig. 1). These reads are sequenced as
paired ends of 150–250 bp long. Changes in read-depth (RD) are
used to derive copy-number variants (CNVs). Discordant read-pairs
(DP) that align with an abnormal distance and/or orientation to
the reference genome are suited for detecting large SVs. Split or
soft-clipped reads (SR) are partially mapped reads and can
indicate breakpoints with base-pair resolution17. Both the align-
ment method and reference genome used, influence the
performance of SV detection algorithms17,18. BWA-MEM is
predominantly used for alignment prior to SV detection, as it
provides secondary alignments to reads mapping to multiple
locations rather than placing the reads randomly19,20. However,
alignment uncertainty is inherent to short-read sequencing data.
In parallel, the reference genome continues to evolve, resulting in
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Fig. 1 Major SV types and their characteristic read-alignment patterns. Alignment of paired-end sequencing reads to a reference genome
is used to infer sites of discontinuity or breakpoints. Structural variants (SVs) are generally defined as larger than 50 base pairs and further
classified in five major SV types: deletions, insertions of non-reference sequence or mobile elements, duplications, inversions and
translocations. Clusters of breakpoints in a genomic region which cannot be classified are considered “complex SVs” and likely result from
either progressive rearrangements or a major genomic disturbance. SVs (red blocks) are characterized by patterns in breakpoints and reads
aligned to flanking reference sequences (blue blocks). The reads directly below the sample DNA strand represent the distance and orientation
at which they are generated during sequencing. If the reads align differently than expected to the reference strand this is indicative of an SV.
Changes in read depth (RD) or coverage indicate mostly larger duplications or deletions and are useful for detecting copy number variants
(CNVs). Discordant pairs (DP) align to the reference at a different relative distance or orientation than expected. DPs are best suited for
detecting large SVs such as inter-chromosomal translocations or inversions. Split reads (SR) span breakpoints and can only be partially aligned.
SR can detect small variants with base-pair resolution, especially those smaller than the size of the read.

Table 1. Glossary of key terms.

Breakpoint The location at which a structural variant differs from the reference genome, and forms a novel junction
between two previously unconnected segments.

Chimeric transcript A transcript consisting of exons from two different genes, resulting from a genomic mutation or
transcriptional process like intergenic splicing or read-through.

Complex rearrangement Structural variant consisting of multiple breakpoints that can not be traced back to a basic type.

Differential analysis of tumor-
normal data

Also known as “somatic analysis”. By using paired sequencing data, the aim is to classify detected variants
as either tumor-specific or also occurring in the matching normal sample.

Discordant read pairs Sequencing reads which have an abnormal insert size when mapped to the reference genome, either
larger or smaller than expected, but also mapping to two different chromosomes.

Haplotyping/phasing variants Determining if detected variants occur on the same homologous chromosome and potentially affect the
same allele.

Long-read sequencing technologies Single molecule sequencing technologies are actively developed by Pacific Biosciences and Oxford
Nanopore Technologies. Reads are ~10 kb+ with a nucleotide accuracy of ~85% depending on the
platform version and base calling algorithm (Table 3).

Polyploid Cells which contain more than two chromosomes of each pair.

Read alignment patterns Alignment of read pairs to a reference genome which behave differently than expected. Specific patterns
can indicate a structural variant is present. Patterns include changes in read-depth, discordantly paired
reads, split reads, soft-clipped reads and one-end mapped reads (Fig. 1).

Short-read sequencing technologies Often used synonymously with sequencing-by-synthesis technology from Illumina. Generates paired-end
reads of 150–250 bp with 99% nucleotide accuracy (Table 3).

Split reads Sequencing reads that span breakpoints and therefore map to two locations (split reads) or can only be
partially mapped to a single location (soft-clipped reads). Since the default aligner BWA-MEM soft-clips also
split reads, they are often used synonymously.

Structural variant (SV) Genomic variant larger than 50 bp in size. Five major SV types are distinguished: deletions, duplications,
inversions, translocations and insertions of non-reference sequence or mobile elements.

Tumor purity The proportion of cancer cells within a tumor sample.

Variant allele frequency The relative abundance of a variant allele versus the unchanged reference allele based on read support.
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improved alignments and fewer false-positive variants in studies
which adopted GRCh38 (hg38) compared to GRCh37 (hg19)8,21–23.

Combinatorial algorithms integrate multiple read-alignment
patterns

The latest generation of SV detection algorithms that combine

multiple read-alignment patterns can detect SVs across a broad
range of types and sizes. At present, many different strategies and
methods exist (Table 2). How these combinatorial algorithms
integrate read-alignment patterns influences their ability to detect

specific variant classes (Fig. 2A)24,25. As a result, no single
algorithm performs best across the full spectrum of SVs, implying
that integration of multiple algorithms is beneficial25. Although
most studies comparing SV algorithms focus on germline SVs,

these findings were recently also confirmed for somatic SV
detection26. The methodology used by DELLY, LUMPY, Manta,
SvABA, and GRIDSS for detecting SVs (Box 1) achieves high

performance in detecting both germline and somatic SVs25,26.

SV-level integration of multiple algorithms improves precision

Since the optimal detection algorithm differs between SV type
and size range, full-spectrum SV detection with high recall and

precision currently requires multiple algorithms25,27. The optimal
method to combine the resulting callsets remains a largely
unanswered question and a variety of tools and in-house pipelines

are currently used4,13,25,28. To compare and combine SV callsets,
variants from the same genomic rearrangement need to be
merged first, this is complicated by diversity in breakpoint
resolution and SV typing (Fig. 2B). The recent review by Ho et al.

addresses different “ensemble” integration approaches currently
in use in germline SV research4. In general, simple integration
strategies use (reciprocal) overlap or breakpoint distance to merge

SVs whilst more complex solutions combine this with read-
evidence integration, local assembly or machine learning29–32.
After overlapping variants are merged, integration of SV callsets

from multiple algorithms can either be performed by taking the
union or intersection (Fig. 2B). Since achieving high precision takes
priority in most cancer research and clinical applications, an
intersection strategy is often preferred but reduces recall. The
precision/recall trade-off can be optimized by carefully selecting
which tools to intersect25 and by taking the union of pairwise
intersections26.

DISTINGUISHING SOMATIC FROM GERMLINE SVS

TSSV detection aims to identify variants that uniquely occur in a
patient’s tumor cells. Typically paired tumor-normal samples are
used to classify SVs as either germline, mosaic-normal or tumor-
specific variants15. Detection of TSSVs is a two-step process that
involves the detection of SVs in both samples, followed by
differential analysis of the callsets (Fig. 2C). Also, cancer genomes
can have highly complex rearrangements. Alternatively, if patient-
derived healthy material is not available, SVs can be filtered
using a panel-of-normals. A sufficiently large panel-of-normals can
provide more statistical power for filtering recurrent germline
variants, but is less effective than a patient-derived normal sample
when filtering rare or private germline variants4. Also, strictly
filtering out regions with germline CNVs excludes potentially
interesting genomic regions from SV analysis, which are suscep-
tible to rearrangements because of their architecture33.

Tools for somatic SV detection in WGS data

Somatic SV detection algorithms differ in their approach to
identify TSSVs from paired tumor-normal samples and as a result
can classify the same event differently26. Despite their differences,

Table 2. SV detection algorithms.

Tool1 Platform Method Reference Used in study

DELLY IL DP, SR 34 8,13,89,93

LUMPY IL DP, SR 35 8,81

Manta IL DP, SR, AS/l 36 89,94

GRIDSS IL DP, SR, AS/l 37,39

SvABA IL, 10× DP, SR, AS/l 38 13,83

Varlociraptor IL Post-processing 31

Lancet IL 40

GROC-SVS 10× 95 81,83

Longranger 10× 96 81,83

Long read tools Platform Method Reference Cited by/remarks

HySA PacBio and IL Assembly and alignment 76 Hybrid assembly of IL and PacBio reads

SVIM ONT, PacBio Alignment 69 67,93,97

Sniffles ONT, PacBio Alignment 55 25,32,56,67,89,93,94,97,98

pbhoney PacBio Alignment 99 25,76

pbsv PacBio Alignment 100 25,97

NanoSV ONT Alignment 98 32,56,93

Picky ONT Alignment 56 32,93

NanoVar ONT, PacBio Alignment 93 Applied to a leukemia sample

cuteSV ONT, PacBio Alignment 97

nanomonsv ONT Alignment 68 Detects tumor-specific SVs

1Inclusion criteria: published tool focussed on tumor-specific SV detection in cancer from tumor-normal paired WGS data, used in key studies addressed in this

review. Long-read alignment based SV detection tools that are commonly used are included regardless of their ability to detect tumor-specific SVs.
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Fig. 2 Data integration to improve tumor-specific SV detection. a Alignment of sequencing data against a reference is used to infer SVs by
detecting aberrant patterns of read-alignment: discordant pairs (DP), split reads (SR), read depth (RD) and (local) assembly (top, see also Fig. 1).
Algorithms that combine multiple read-alignment patterns can resolve more SVs (middle). Likewise, read-level integration of technologies can
aid SV detection, i.e., combining short and long reads (bottom). b Comparison of SV callsets requires merging variants from the same genomic
rearrangement based on e.g., reciprocal overlap or breakpoint distance (top). These merging approaches can yield different outcomes as
shown by how only a small segment of the deletion overlaps between tools and not all breakpoints could be matched. Intersection of callsets
identifies the SVs with support from multiple algorithms or technologies. Alternatively, sensitivity can be increased by taking the union of
callsets or their pairwise intersections (bottom). c Identification of tumor-specific SVs (red) requires tumor-normal differential analysis of reads
or events. A tumor sample (purple) is expected to contain tumor-specific variants (red, bottom stand), as well as germline variants (blue, top
strand). Tumor/normal reads can be distinguished prior to SV inference or afterwards by comparison of the variants or breakpoints as in b. If
multiple SV tools are used, differential analysis can be done after merging tumor and normal callsets (bottom left) or first by using each
algorithm’s somatic filtering feature (bottom right).
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DELLY, LUMPY, SvABA, Manta, and GRIDSS have successfully been
used to report somatic SVs in various studies34–37. DELLY and
LUMPY use ad hoc filtering whereby SVs supported by at least one
read from the normal sample are removed from the tumor SV
callset34,35, which is highly sensitive contamination. In contrast,
Manta uses a probabilistic scoring system for somatic SVs
integrating evidence from tumor and normal reads36. SvABA uses
both the tumor and normal data during assembly before
distinguishing somatic variants38. GRIDSS has yet another
approach and applies extensive rule-based filtering to both single
break-ends and breakpoints37,39.
Specialized somatic SV detection tools such as Lancet and

Varlociraptor account for challenges specific to the identification
of TSSVs (Box 2)31,40. The first challenge in comparing tumor and
normal SV callsets are differences in SV breakpoints and types,
analogous to the issues with overlapping SV callsets of different
algorithms25. Second, somatic SVs are often complex which can
be problematic for algorithms that are not equipped to resolve
these complex SV signatures and instead infer (false-positive)
small indels41. As an alternative to ad-hoc filtering of SV callsets,
Varlociraptor and Lancet, respectively, compare breakpoints and
aberrant reads between tumor-normal samples at an earlier stage
of the analysis (Fig. 2C). Specifically, Varlociraptor compares the
statistical support for an altered reference with simulated variant
versus an unadjusted reference (Box 2)31. Using read-level or
breakpoint-level comparison can account for the subsequent
mutations at germline variant locations, as these mutations may
convolute somatic-germline comparisons. Third, issues inherent
to analyzing tumor samples such as contamination, polyploidy,
and heterogeneity are accounted for by Varlociraptor and
Lancet (Box 2).

CHALLENGES FOR ACCURATE SV DETECTION IN CANCER
GENOMES

The analysis of tumor-normal paired samples is confounded by
challenges inherent to cancer samples, including polyploidy,
heterogeneity and contamination17. First, potential aneuploidy
of tumor cells complicates haplotype reconstruction and phasing
reads12,42. Second, intratumor heterogeneity can result in multiple
subclonal variants which have low allele frequency (AF) and few

supporting reads, making them difficult to detect. Third,
contamination of the tumor sample with healthy material and
vice versa complicates differential analysis between paired
samples due to mislabelled reads. This can result in algorithms
falsely discarding somatic variants with one or more supporting
reads from the control sample. Adjusting the filtering threshold
based on an estimated contamination fraction is a balance
between precision and sensitivity for detecting low-AF variants.
The detection of rare TSSVs is limited by sequencing depth and

AF. In practice, a minimum of 20% AF is required for reliable
variant detection from tumor-normal pairs26,31. Increasing sequen-
cing depth to 75x-90x for tumor samples improves the sensitivity
of detection, especially for variants below 20% AF, whilst
maintaining precision26. In addition, interpretation of TSSV allele
frequencies is not straightforward since they can reflect intratu-
mor heterogeneity and/or multiple alleles within a polyploid
tumor genome. Note that the SV type should be considered
during AF interpretation43. For diploid normal cells, variants are
expected to have an AF of 0%, 50%, 100%, or 33% in case of a
heterozygous duplication. However, mosaic-normal variants can
occur at varying AF and be difficult to distinguish from TSSVs14.
Computational modeling with AF can provide insight into
intratumor heterogeneity and clonal architecture, both of which
are important for therapeutic resistance and relapse44. The
majority of SV tools operate under a diploid genome assumption.
A multitude of tools independently quantify purity and ploidy of
tumor samples however benchmarking studies show little
consensus39,45. These tools can rely solely on CNV deletion events
to model the cell purity and ploidy, and/or incorporate hetero-
zygous known SNPs into their probabilistic models. At present,
only SVclone uses SVs to estimate intra-tumor heterogeneity due
to the complexities of calculating variant AF for SVs43.

Computational challenges of complex variant detection

Genomic instability in cancer genomes results in more break-
points and more complex SVs compared to germline variation46.
Complex SVs are characterized by signatures of many break-
points clustering together and are hypothesized to be caused by
a single catastrophic process followed by repair or progressive
rearrangements47. The presence of breakpoint clusters compli-
cates the inference of the underlying genomic rearrangements
and therefore also the identification of tumor-specific events.
Alternatively, when breakpoint clusters confound confident

Box 1: Integration of read-alignment patterns by combinatorial
algorithms

Integration of read-alignment patterns by SV detection algorithms influence
which SVs can be confidently detected. DELLY, LUMPY, GRIDSS, Manta, and
SvABA are state-of-the-art algorithms and have amongst the best performance
for germline SV detection25. They can detect all the major SV types at base-pair
resolution using SR or assembly and also perform somatic classification.
DELLY uses DP and SR in a stepwise manner to detect ~200 bp–5 kbp SVs34. Since
DELLY analyses SV types separately, it can detect nested SVs and infer complex
events which is useful for somatic SV detection. LUMPY has a probabilistic model
that combines parallel analyses of DP and SR such that both contribute
independently to the detection of breakpoints35. Overlapping breakpoints are
clustered to identify SVs, except for insertions. GRIDSS can detect SVs and indels
regardless of size using a combination of assembly, SR and DP-support37. Break-
end contigs spanning SV breakpoints are assembled from SR, DP, one-end
anchored, gapped, and unmapped reads. Variants are inferred with a
probabilistic model combining evidence from realignment of these break-end
contigs, SR and DP. GRIDSS can rescue un/misaligned reads, detect novel non-
reference sequence insertions, and resolve micro-homology surrounding break-
points. Manta uses a graph-based approach to generate candidate SVs from DP,
SR and gapped reads, followed by local assembly and realignment of contigs to
the genome. SVs are scored by a model that integrates evidence from discordant
reads and the assembly. SvABA performs genome-wide local assembly in 25 kb
windows based on SR, DP, gapped, and unmapped reads38. Variants are inferred
from alignment of contigs to the reference and subsequently scored by
realignment of reads to the contigs.
Despite their differences in approach, for overlapping/shared SVs these tools
agree on breakpoints within ~2 bp based on simulations in optimal detection
conditions26.

Box 2: SV detection algorithms specialized in differential
analysis

Lancet and Varlociraptor address challenges specific to tumor-normal analysis,
e.g., contamination, polyploidy, intratumor heterogeneity (subclonality) and thus
aid in identification of tumor-specific SVs.
Lancet is specialized in the detection of somatic SNVs, insertions (<200 bp) and
deletions (<400 bp) from short-read WGS data using local (micro-)assembly and
re-alignment to the reference40. By using a graph-based approach, Lancet can
resolve haplotypes and use the origin of supporting reads to distinguish TSSVs
from germline variants. Sample contamination can be accounted for by adjusting
the number of allowed supporting normal-reads. Lancet can detect rare variants
(>5% AF) in a virtual tumor whilst preventing false-positives in short-tandem
repeat regions, achieving higher precision than other algorithms but at cost of
sensitivity.
Varlociraptor is a post-processing tool which uses a Bayesian framework to
differentiate between somatic and germline breakpoints by calculating false
discovery rate (FDR) values from unfiltered callsets31. During FDR calculation it
quantifies uncertainties due to ambiguous read alignments, how reads support
SVs (typing uncertainty), gap-placement bias and strand bias30,31. This is done by
simulating the variant into the reference, re-aligning reads and comparing the
statistical support for the adjusted versus unadjusted reference. Challenges
specific to tumor samples are taken into account, as additional uncertainties e.g.,
mosaic-normal variants, contamination, intratumor heterogeneity and aneu-
ploidy. By doing so, it is able to control the FDR of SNVs and small insertions/
deletions (30–250 bp) and achieves better precision/recall on callsets of DELLY,
Manta, and Lancet compared to the filtering of the tools themselves31.
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SV calling, breakpoint-level differential analysis can be used to
identify tumor-specific events. In addition, unsupervised cluster-
ing can discern complex from simple SVs and help to study both
events more accurately41.

Technical limitations of short-read WGS influence SV
detection

The detection of SVs is also influenced by technical limitations of
the sequencing platform; most notably genome coverage bias and
alignment uncertainty. Illumina (IL) is currently the most
commonly used short-read sequencing platform since it’s
relatively affordable, fast and has a high nucleotide accuracy
(>99%)48. However, IL sequencing has inherent biases in genome
coverage with regions that have a high, or low GC content (<10%
and >85% GC) or long homopolymers49. Although PCR-free library
preparation does reduce GC biases it does require a large amount
of input DNA (Table 3)49.
The detection of SVs relies on identifying aberrant read

alignment patterns (Fig. 1). Reads derived from highly homo-
logous regions, such as pseudogenes and segmental duplications,
are often not long enough to uniquely map to the reference
genome50. Yet repeat-rich regions comprise about half of the
human genome and are vulnerable to SVs due to homologous
recombination errors and replication slippage33,51. Depending on
the alignment algorithm, uncertainty usually results in either
random placement of reads or multi-mapping to all possible
locations52. Multi-mapping, for example as done by BWA-MEM,
causes unequal genome coverage altering the signal-to-noise
ratio52. Hence, alignment uncertainty is problematic for accurate
SV detection and should be addressed with a sound statistical
model30,31,52. Current estimates suggest ~55 Mb of GRCh38 are
“dark regions” inaccessible to IL sequencing due to alignment
ambiguity (i.e., repeat-rich regions) or the sequencing chemistry
(i.e., GC content)53. The over 4000 affected gene bodies53 also
include disease-related genes, such as the TERT promoter which
was found to be mutated in 9% of tumors in the PCAWG study but
mutations can be missed due to its high GC content13.

IMPACT OF LONG-READ SEQUENCING

Single-molecule long-read sequencing technologies by Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are
valuable for SV detection54. PacBio and ONT generate reads of ~10
+ kb versus ~250 bp from IL; the longer reads reduce alignment
ambiguity and do not have a GC bias, resulting in improved
coverage of “dark” regions in the genome55. In addition, long
reads allow for haplotype phasing of variants and de novo
assembly of complex rearrangements56. For example, sequencing
lung cancer cell lines with PromethION detected both known
cancer-driver SNVs and revealed large previously unknown
genomic rearrangements, including an 8 Mb amplification of
MYC57. Similarly, direct comparison of a PacBio assembly with IL
sequencing shows ~2.5× more uniquely identified SVs (~48k and
~20k, respectively), in particular more inversions and 50 bp–2 kb
insertions/deletions located in repeat-rich regions12.

Limitations of long-read sequencing

The disadvantages of PacBio and ONT platforms include costs
and sample requirements, which are substantial compared to IL
sequencing and can be problematic for tumor samples (Table 3)55.
In addition, they have a lower nucleotide accuracy of ~85% for
single molecule sequencing and up to 99% using consensus
sequencing of the same DNA molecule58–61. Continuous improve-
ments in algorithms for base calling and error correction have
increased the accuracy of these platforms58,59. Since low nucleo-
tide accuracy can impede read-alignment, error correction
potentially improves SV detection by increasing the fraction of

aligned reads62. However, error-correction strategies come with
trade-offs for SV detection. Long reads can be aligned to each

other as a self-correction strategy when sufficient coverage (~50×)
is available55. However, haplotyping information is lost as a result
of using the consensus of reads with mixed molecular origin. This
makes the consensus sequence unsuitable for variant phasing or

for studying intra-tumor heterogeneity or polyploidy. Alterna-
tively, short reads can be used for error correction by aligning
them to the long reads, but this approach only improves accuracy

of genomic regions accessible to IL sequencing55,61.

Long-read data requires specialized algorithms

Long-read SV detection algorithms are either based on de novo

assembly or read-alignment to a reference genome. Assembly-
based strategies have a higher sensitivity for detecting non-
template insertions and homozygous SVs. During assembly,
contigs are compared to the reference genome and can provide

more evidence than individual reads32,55. However, variant calling
using alignment requires less coverage than assembly (~20×
versus ~50×) and statistical significance when identifying SVs is
achieved relatively easily due to the low alignment uncertainty of

long reads32,50,55. Compared to assembly methods, alignment-
based approaches are more suited to identify heterozygous SVs
and more robust to amplifications in highly homologous regions

such as low-complexity regions12,55. Within clinical applications,
often insufficient resources are available to perform long-read
sequencing of tumor-normal pairs to depths required for de novo
assembly (Table 3). Therefore, we focus on using alignment-based

strategies (Table 2).
Alignment of long reads differs from short reads due to the

increase in base pairs to align and different errors profiles55.
Although BWA-MEM offers support for long reads, it often infers
many small gaps during alignment and misses large indels63,64.
Specialized long-read alignment algorithms have been developed

to overcome these issues. In contrast to short-read data, there is
no best practise for which aligner should be used when
performing SV detection63–66. Preliminary comparisons suggest

that NGMLR and minimap2 perform well and both algorithms are
designed to handle the higher error rates and adjust for the 1 bp
indels in long-reads12.

Alignment-based SV detection algorithms for long-read data

Currently, many tools are actively developed to detect SVs from
alignment of ONT and PacBio data (Table 2). However, studies
comparing long-read SV detection tools have been scarce and

predominantly show the limitations of available truth sets by
identifying many novel variants12,67. At present only nanomonsv
reports somatic SVs from long-read data68. The commonly used

tools SVIM and Sniffles have shown good precision and sensitivity
in multiple performance assessments63,67,69. They were among the
first to process both ONT and PacBio data despite their different
error profiles and have been followed by additional tools like

NanoVar and CuteSV (Table 2). Similar to short-read SV detection
tools, long-read tools combine multiple read-alignment patterns
to detect SVs. They infer patterns similar to split reads and
discordant pairs using intra-alignment and inter-alignment

signatures, despite long reads not being paired-end. Similar to
short-read tools, using a consensus callset created by intersecting
multiple long-read SV detection algorithms can increase preci-

sion32,67. Alternatively, machine learning approaches can attain
greater improvements in precision and sensitivity than ad hoc
intersection, given a truth set is available for training32.
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MULTI-PLATFORM DATA INTEGRATION TO IMPROVE
DETECTION OF SOMATIC SVS IN CANCER

Limitations in both short-read and long-read WGS can potentially
be overcome by using a multi-platform approach and as such
improve the identification of TSSVs. Integration can improve both
precision and sensitivity by combining read-alignment patterns
(Fig. 2A) and integrating SV callsets from multiple algorithms or
technologies (Fig. 2B).

Gene fusion detection by combined analysis of RNA and WGS

Integration of genomic and transcriptomic data can further
improve variant detection and provide insight into the phenotypic
effect of SVs; specifically resolving gene fusions, splice variants
and linking SVs to altered gene expression70. RNA sequencing of
tumor samples offers unique advantages such as tissue specificity
and time specificity, but obtaining high-quality RNA can be
problematic. In addition, sufficient expression is necessary to
detect events, which may impede detection of low AF variants.
RNA-seq is especially suitable for detecting gene fusion events

through their chimeric transcripts. Gene fusions have high clinical
relevance since they are often cancer drivers and otherwise occur
rarely in the general population6,70. Specialized gene fusion
algorithms predict gene fusions from chimeric transcripts by
using read-alignment patterns such as SR crossing exonic
junctions and DP mapping to both gene partners71. However,
these algorithms can suffer from a high false positive rate which
requires extensive filtering72. Chimeric transcripts can occur
without genomic rearrangement, for example through intergenic
splicing (trans-splicing and cis-splicing) or transcriptional slippage
on short homologous sequences73. Since these chimeric tran-
scripts are also present in healthy cells, this advocates for tissue
matched RNA-seq of paired tumor-normal samples to allow the
identification of tumor-specific events.
Combining RNA-seq with WGS data could resolve specificity

issues and improve gene fusion detection. By itself, WGS can
detect gene fusions, but not the occurrence of functional
transcripts. Although sometimes used for validation purposes74,
there are no established algorithms which integrate WGS and
RNA-seq such that they both contribute to detection. The
advantages of combining WGS, RNA-seq and exome sequencing
has been demonstrated for detecting SVs in heterogeneous
pediatric cancers75. Similarly, joint analysis of RNA-seq and short-
read WGS in the PCAWG study identified the underlying SV for
82% of gene fusions. The remaining fusions were either the result
of RNA-only alterations such as transcriptional read-through or
underdetection of SVs5.

Integration of short-read and long-read WGS

Short-read and long-read data can complement each platform’s
strengths and overcome individual limitations12. Combining SV
callsets after detection can increase sensitivity and requiring
orthogonal support for variants across platforms can increase their
confidence. However, the union or intersection of callsets is still
affected by platform-specific technical biases. Read-level integra-
tion can overcome some of these issues as illustrated by error
correction approaches which use IL reads to improve the accuracy
of PacBio/ONT reads55. Likewise, hybrid assembly of short and
long reads benefits from their respective high accuracy and
scaffolding properties. Localized hybrid assembly tailored to SV
detection as implemented by HySA shows that problematic SVs
can be detected that have too little support in either PacBio or
IL76. However, HySA cannot infer somatic SVs and some variants
were missed due to few supporting aberrant IL reads and PacBio
alignment issues. Hybrid assembly can also reduce coverage
requirements for de novo assembly77.

As an alternative to long-read technologies, linked-read
sequencing from 10× Genomics (10×) performs well for haplotype
construction and variant phasing12. A read-barcode is added
during library preparation to trace the molecule of origin at costs
similar to IL sequencing78 (Table 3). In addition, 10× can report
variants in repeat-rich regions not accessible by standard short-
read IL sequencing79,80. Integration of short-read WGS and 10×
enabled chromosome-scale haplotyping and phasing of detected
variants of the polyploid cancer cell line HepG281,82. Variant
phasing can help to gain biological insights, as shown for
associated regulatory and coding mutations in treatment-
resistant prostate cancer83 and identification of SVs as potential
cancer drivers by altering cis-regulation of genes84.

Discovery of large, complex variants by chromatin assays

Combining sequencing data with technologies that provide
insight into genomic organization can elucidatie large complex
rearrangements. Technologies such as Bionano Genomics (BNG)
and Hi–C have shown limitations of SV detection using sequen-
cing. The combination of short-read WGS, BNG, and Hi–C on a
cancer cell line showed most of the large (>1 Mb) intra-
chromosomal and inter-chromosomal SV events were uniquely
detected by a single technology with only ~20–35% validated by
multiple platforms8. Each platform has its own scope of variant
detection. Short-read WGS detected the largest number of
variants across a broad range, whilst BNG and Hi–C lack base-
pair resolution but can detect >1 kb deletions in repeat rich
regions unlike short-read WGS8. BNG has promising diagnostic
applications as it can confidently detect large variants with low
input requirements (Table 3). Also, BNG had full concordance with
standard diagnostic assays in pediatric ALL and identified
additional variants85.

Incorporating pre-existing technologies in ongoing studies

Continuous technological improvements provide exciting new
data and SV discoveries, but this does not make existing datasets
obsolete. The phenotypic effect of CNVs is often better under-
stood than for SVs and established technologies have had more
opportunity to collect samples, including rare cancer types.
Currently many samples are available in repositories that profile
genomic imbalances either via SNV array or exome sequencing
technologies13,86. Challenges in integrating these datasets result
from differences between technologies, such as breakpoint
resolution and platform-specific biases, and systematic solutions
are rare87. The widely varying detection resolution of different
technologies invalidates callset intersection strategies, as smaller
events are below the detection limits for lower resolution arrays,
and exome sequencing is limited to events involving multiple
exons. The absence of an event in a callset should not be
considered proof that the event does not exist. Gene-centric
approaches based on unions seem the most applicable. Although
integration of pre-existing datasets assayed with different
technologies with recently acquired datasets provides a complex
computational challenge and is often ignored, it is likely to be an
ongoing issue as technologies and platforms continue to evolve.

Challenges in using sequencing for precision oncology

In clinical practice, next-generation sequencing (NGS) is increas-
ingly used to replace targeted assays subject to budgetary and
sample requirements. NGS can simultaneously detect different
variant types and discover new biomarkers, and is more cost-
effective than a series of single-gene assays. Although turn-around
times are often longer, sensitivity and precision are maintained88

provided sufficient sequencing depth is achieved26,31. As a result,
NGS makes pan-cancer biomarker testing feasible, leading to the
approval of drugs based on molecular alterations shared by
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different cancer types like the use of TRK inhibitors for all solid
tumors with a NTRK fusion88. However, the distribution of NGS
data over multiple repositories and lack of data harmonization
complicates clinical decision-making and prevents precision
medicine from reaching its full potential.
Variant interpretation is a major challenge in precision oncology

often done by expert panels such as interdisciplinary molecular
tumor boards88. Despite its challenges, integration of multi-omics
data is increasingly being used to improve variant interpretation
and increase the number of identified drivers or actionable
targets5,88,89. However, standards on variant interpretation and
prioritization are still emerging90. As a result, there is low
concordance between the recommendations of different mole-
cular tumor boards when given identical case studies, especially
for complex genomic alterations90.
Recent initiatives have attempted to resolve this need for

standardization in variant assessment and clinical decision
through the Molecular Tumor Board Portal91 and Somatic Working
Group of the Clinical Genome92. Both harmonize different variant
repositories, curated knowledge bases and computational predic-
tions to acquire insights into variant-gene-drug-disease relation-
ships with the focus on clinical use Although extremely valuable,
these efforts focus only on SNVs and to a limited extent gene
fusions. Similar initiatives for SVs and complex genomic alterations
are currently lacking. Largely due to tumor-specific SVs not yet
commonly being used as molecular targets or biomarkers to guide
patient-specific treatment. We anticipate that improved con-
fidence of TSSV detection will enable the subsequent research
necessary for the use of the full spectrum of variants in precision
oncology.

CONCLUSION

The field of SV detection is continuously improving through
advancements in sequencing technologies and tools. These
advancements will contribute to discoveries into the role of SVs
in cancer, as well as the incorporation of SVs in precision oncology
programs. Nevertheless, SV detection and interpretation in tumor
samples is complicated by unique biological and technical
challenges, i.e., contamination, intra-tumor heterogeneity and
aneuploidy. These challenges are addressed by algorithms
specialized in identifying TSSVs from tumor-normal paired
sequencing data, which requires both SV detection and distin-
guishing tumor-specific variants.
Based on studies of normal genomic variation, a multi-platform

approach is necessary to detect the full spectrum of variants and
reduce false positives. Truth sets and procedures developed for SV
detection from short-read data show that combining multiple
tools improves precision and recall. Despite this, short-read
sequencing has inherent limitations such as GC coverage bias
and mapping ambiguities leading to inaccessible genomic
regions. Long-read sequencing technologies can resolve large,
complex SVs and improve coverage, but have lower per-
nucleotide accuracy, higher costs and sample requirements. SV
detection tools for long-read data have yet to mature with
performance assessments and truth sets lacking.
Integration of long-read and short-read data is likely required

for complete characterization of tumor genomes. However,
adopting sequencing technologies in clinical laboratories requires
a clear added value compared to the standardized assays, as well
as being fast and affordable. Considering IL and 10× provide high
accuracy WGS at low sample requirements, they are most feasible
for tumor-normal sequencing in a clinical setting. Supplementary
low-coverage sequencing with ONT can cover regions inaccessible
to short-read WGS and aid in variant phasing. Alternatively, RNA
sequencing has proven to be highly beneficial in a clinical setting
for the detection of gene fusion events.

In conclusion, improving detection of TSSVs by integrating data
derived from multiple platforms and detection tools enables the
use of TSSVs in precision oncology and research into their role in
cancer. With accurate TSSV datasets becoming more available,
previously unchartered territories of variant types can be explored
to potentially discover novel SV cancer driver events.
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