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Structural Vibration Control Using
Extension and Shear Active-Passive
Piezoelectric Networks Including
Sensitivity to Electrical Uncertainties
Active-Passive Piezoelectric Networks (APPN) integrate active voltage sources with passive
resistance-inductance shunt circuits to a piezoelectric patch. This technique allows to
simultaneously passively dissipate vibratory energy through the shunt circuit and actively
control the structural vibrations. This work presents an analysis of active-passive damping
performance of beams with extension and shear APPN. A coupled finite element model with
mechanical and electrical degrees of freedom is developed and used to design passive and
active control parameters. Then, stochastic modeling and analyses of two cantilever beam
configurations, with extension and shear APPN, are performed to evaluate the effect of
uncertainties in circuit components on passive and active-passive vibration control. Results
show that active-passive shunt circuits can be very interesting since they may combine
an adequate passive control performance with an increase of active control authority
when a control voltage is applied to the circuit. For the extension configuration, vibration
amplitude reductions of up to 22 dB and 28 dB are obtained for passive and active-passive
cases, respectively. Considering relative dispersions of 10% for the resistance and
inductance values, the passive and active-passive amplitude reductions are found to be in
the ranges 16-24 dB and 27-28 dB, respectively. For the shear configuration, increases
in the active control authority of up to 29 dB due to a properly tuned resonant circuit are
observed. When subjected to uncertainties in the resistance and inductance values, with
10% relative dispersions, the control authority increase is in the range of 6-29 dB.
Keywords: piezoelectric materials, active-passive piezoelectric networks, vibration control,
stochastic modeling, uncertainty analysis

Introduction

Due to their strong electromechanical coupling, piezoelectric

materials have been widely used as sensors and actuators for structural

vibration control. They can be used either as actuators connected

to an appropriate control law to provide active vibration control or

as sensors connected to shunt circuits to provide passive damping.

In the last decade, research was redirected to combined active and

passive vibration control techniques. One of these techniques, so-

called Active-Passive Piezoelectric Networks (APPN), integrates an

active voltage source with a passive resistance-inductance shunt

circuit to a piezoelectric sensor/actuator (Tsai and Wang, 1999). In

this case, the piezoelectric material serves two purposes. First, the

vibration strain energy of the structure can be transferred to the shunt

circuit, through the difference of electric potential induced in the

piezoelectric material electrodes, and then passively dissipated in the

electric components of the shunt circuit (Forward, 1979; Hagood and

von Flotow, 1991, Viana and Steffen, 2006). On the other hand,

the piezoelectric material may also serve as an actuator for which

a control voltage can be applied to actively control the structural

vibrations. This active mechanism combined to a velocity feedback,

for instance, may then induce an additional active damping in the

structure.

There are still some unresolved issues concerning this active-

passive damping mechanism, such as for which conditions

simultaneous active-passive damping outperforms separate active and

passive mechanisms, that is, whether the control voltage should be

part of the shunt circuit or not (Thornburgh and Chattopadhyay,

2003). It has been shown that combined active-passive vibration

control allows better performance with smaller cost than separate

active and passive control, provided the simultaneous action is
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optimized (Tsai and Wang, 1999). On the other hand, like for purely

passive shunted piezoelectric damping, most of the studies concerning

APPN focus on the optimization of the electric circuit architecture

and components. It is well-known, however, that the performance of

both active and passive damping mechanisms is highly dependent on

the effective electromechanical coupling provided by the piezoelectric

actuators/sensors. Nevertheless, few studies focus on the optimization

of this coupling for given structure and piezoelectric material. In

particular, it has been shown that piezoelectric actuators using their

thickness-shear mode can be more effective than surface-mounted

extension piezoelectric actuators for both active (Trindade, Benjeddou

and Ohayon, 1999; Raja, Prathap and Sinha, 2002; Baillargeon and

Vel, 2005; Trindade and Benjeddou, 2006) and passive (Benjeddou

and Ranger-Vieillard, 2004; Benjeddou, 2007; Trindade and Maio,

2008) vibration damping. One of the reasons for that is the thickness-

shear electromechanical coupling coefficient k15 that is normally

twice the value of the extension one, k31, which may lead to a

higher effective electromechanical coupling coefficient (Trindade and

Benjeddou, 2009). The thickness-shear mode, originally proposed

by Sun and Zhang (1995), can be obtained using longitudinally-

poled piezoelectric patches that couple through-thickness electric

fields/displacements and shear strains/stresses. On the other hand,

although it is well-known that the performance of shunt circuits

is quite sensible to the tuning of circuit parameters, little has

been published about the complexities in tuning the electric circuit

parameters and the effect of the parametric variations on the overall

performance of the system (Viana and Steffen, 2006; Andreaus and

Porfiri, 2007).

This work presents the modeling of sandwich structures

with APPN using extension and thickness-shear piezoelectric

sensors/actuators. The model is based on a stress-voltage

electromechanical model for the piezoelectric materials fully coupled

with the APPN active-passive circuit. To this end, the APPN
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circuit equations are also included in the variational formulation.

Hence, conservation of charge and full electromechanical coupling

are guaranteed. The formulation results in a coupled finite element

model with mechanical (displacements) and electrical (electrodes

charges) degrees of freedom. An analysis of the resulting coupled

equations of motion is performed to identify the damping mechanisms

provided by an active-passive piezoelectric network. Then, stochastic

modeling and analysis of two cantilever beam configurations, with

extension and shear piezoceramics, are performed to account for

uncertainties in circuit components. This work includes an original

modeling and analysis of APPN using shear response mode of

piezoelectric materials and also an original sensitivity analysis of

passive and active-passive shunted piezoelectric damping using a

stochastic model.

Nomenclature

A = cross-sections or electrodes area

b = perturbation input distribution vector

C = damping matrix

c = output distribution vector

c̄Dk
11 = effective elastic stiffness constant of surface layer k

c̄Dc
33 = effective elastic stiffness constant of core layer

D = vector of electric displacements dof

D3 = transverse electric displacement

E3 = transverse electric field

F = vector of generalized mechanical forces

f = amplitude of perturbation input

Gc = control authority of pair patch and shunt circuit

Gh = FRF for beams with active-passive shunt circuits

Gp = FRF for beams with passive shunt circuits

g = vector of control gains

H = electric enthalpy

h̄k
31 = effective piezoelectric constant of surface layer k

hc
15 = effective piezoelectric constant of core layer

h = thickness

I = second moment of cross-section area

K = stiffness matrix

K̄ = modified stiffness matrix

ke = effective stiffness coefficient of pair patch-circuit

kp = effective piezoelectric stiffness of vibration mode of interest

L = length of the beam

Lc j = inductance of circuit j

M = mass matrix

mq = effective inertia coefficient of pair patch-circuit

pX = probability density function of random variable X

qc = vector of electric charges generated at piezo-patches

Rc j = resistance of circuit j

u = vector of nodal mechanical displacements

u = axial displacement

T = kinetic energy

Vc j = voltage source applied to circuit j

W = work done by dissipative forces

w = transverse displacement

y = mechanical response output

Greek Symbols

αn = modal displacement of vibration mode of interest

β̄εk
33 = effective dielectric constant of surface layer k

βεc
11 = effective dielectric constant of core layer

βi = cross-section rotation angle

δ = virtual variation operator

δX = relative dispersion of random variable X

ε1 = normal strain

ε5 = shear strain

φn = vibration mode of interest

ω = resonance frequency

ρi = mass density of layer i

σ1 = normal stress

σ5 = shear stress

σX = standard deviation of random variable X

Subscripts

c = relative to electric shunt circuits

e = relative to dielectric contributions or electric circuit

i = relative to layer i

j = relative to circuit j

L = relative to shunt circuit inductance

m = relative to mechanical contributions

me = relative to piezoelectric contributions

n = relative to vibration mode n

p = relative to piezoelectric patch p

q = relative to electric displacement dofs

R = relative to shunt circuit resistance

Superscripts

c = relative to core layer or shear strain

D = for constant electric displacement

ε = for constant strain

f = relative to bending strain

k = relative to surface layer k

m = relative to membrane strain

OC = relative to open-circuited shunt circuit

R = relative to resistive shunt circuit

RL = relative to resonant shunt circuit

SC = relative to short-circuited shunt circuit

V = relative to voltage source only

Finite Element Model of a Piezoelectric Sandwich Beam

Consider a sandwich beam made of piezoelectric layers and

modeled using a classical sandwich theory. Surface layers are made

of transversely poled piezoelectric materials, whereas the core layer

is made of longitudinally poled piezoelectric materials. Electrodes

fully cover the top and bottom skins of all layers so that only

through-thickness electric field and displacement are considered.

For simplicity, all layers are assumed to be made of orthotropic

piezoelectric materials, perfectly bonded and in plane stress state.

Bernoulli-Euler theory is retained for the sandwich beam surface

layers, while the core is assumed to behave as a Timoshenko beam.

The length, width and thickness of the beam are denoted by L, b and

h, respectively.
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Displacements and strains

The axial and transverse displacement fields of faces and core

may be written in the following general form:

ūi(x,y,z) = ui(x)+(z− zi)βi(x) , i = t,c,b,

v̄i(x,y,z) = 0,

w̄i(x,y,z) = w(x),

(1)

where ui is the mid-plane axial displacement of the layer i (i= t for the

top layer, i = c for the core layer and i = b for the bottom layer). βi is

the cross-section rotation angle and from Bernoulli-Euler assumptions

βt = βb =−w′, where w′ states for ∂w/∂x. zi states for the position

of the layer i mid-plane in the global transversal z direction. Using the

displacement continuity conditions between layers, the displacement

fields may be written in terms of only three main variables, ut , ub and

w, so that uc and βc are written as

uc =
ut +ub

2
+

hd

4
w′ and βc =

ut −ub

hc
+

hm

hc
w′, (2)

with hm and hd being the mean and difference of the surface layers

thicknesses, ht and hb:

hm =
ht +hb

2
and hd = ht −hb. (3)

The usual strain-displacement relations for each layer yield the

following axial and shear strains for the layer i:

ε1i =
∂ ūi

∂x
= εm

i +(z− zi)ε
f
i and ε5i =

∂ ūi

∂ z
+

∂ w̄i

∂x
= εc

i , (4)

while the remaining strainsε2i, ε3i, ε4i andε6i vanish. The membrane,

bending and shear generalized strains, εm
i , ε

f
i and εc

i , can be written

as

εm
k = u′k, ε

f
k
=−w′′, εc

k = 0, for surface layers (k = t,b), (5)

εm
c =

u′t +u′b
2

+
hd

4
w′′, ε f

c =
u′t −u′b

hc
+

hm

hc
w′′,

εc
c =

ut −ub

hc
+

(
hm

hc
+1

)
w′.

(6)

Alternatively, these expressions can be written in terms of

the mean and relative axial displacements, instead of the axial

displacements of the top and bottom layers, as done in previous works

(Benjeddou, Trindade and Ohayon, 1999; Trindade, Benjeddou and

Ohayon, 2001).

Piezoelectric constitutive equations

Linear orthotropic piezoelectric materials with material symmetry

axes parallel to the beam ones are considered here. The constitutive

equations for these materials can be obtained starting from the general

expression for the electric enthalpy of a piezoelectric layer

H(ε,D) =
1

2
εtcDε−εthtD+

1

2
DtβεD, (7)

such that

σ = ∂H/∂ε = cDε−htD,

E = ∂H/∂D =−hε+βεD,
(8)

where cD
i j , hl j and βε

l (i, j = 1, ...,6; l = 1,2,3) denote the elastic

(for constant electric displacement), piezoelectric and dielectric (for

constant strain) constants of the piezoelectric material, respectively.

For both extension and shear mode piezoelectric layers, only

transverse electric field and displacements are considered (D1 =D2 =
0) since the layers have electrodes on top and bottom skins. However,

faces and core layers are treated separately, since they have different

poling directions. An additional assumption of plane stress state

(σ3 = 0) allows to write the following reduced constitutive equations

for the faces and the core:

{
σ1k

E3k

}
=

[
c̄Dk

11 −h̄k
31

−h̄k
31 β̄εk

33

]{
ε1k

D3k

}
, (9)

and





σ1c

σ5c

E3c



=




c̄Dc
33 0 0

0 cDc
55 −hc

15

0 −hc
15 βεc

11







ε1c

ε5c

D3c



 , (10)

where,

c̄Dk
11 = cDk

11 − cDk
13

2

cDk
33

, h̄k
31 = hk

31 −hk
33

cDk
13

cDk
33

, β̄εk
33 =βεk

33 +
hk

33
2

cDk
33

, (11)

c̄Dc
33 = cDc

33 − cDc
13

2

cDc
11

. (12)

Finite element discretization

Lagrange linear shape functions are assumed for the axial

displacements, ut and ub, and electric displacements in each layer,

D3t , D3c and D3b. For the transverse deflection w, Hermite cubic

shape functions are assumed. These assumptions lead to a two node

finite element with four mechanical dof and three electrical dof per

node. The elementary mechanical degrees of freedom (dof) column

vector un is defined as

un = [u
(1)
t u

(1)
b

w(1) w′(1) u
(2)
t u

(2)
b

w(2) w′(2)]t. (13)

The axial and transverse displacements of the face layers can be

written in terms of the elementary dofs as

uk = Nxkun, w = Nzun, k = t,b, (14)

where

Nxt =
[
N1 0 0 0 N2 0 0 0

]
,

Nxb =
[
0 N1 0 0 0 N2 0 0

]
,

Nz =
[
0 0 N3 N4 0 0 N5 N6

]
,

(15)

and
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N1 = 1− x

L
, N2 =

x

L
, N3 = 1− 3x2

L2
+

2x3

L3
, N4 = x

(
1− x

L

)2
,

N5 =
x2

L2

(
3− 2x

L

)
, N6 =

x2

L

( x

L
−1

)
.

(16)

The axial displacement of the core layer uc and the cross-section

rotations βi can then be written, using βt = βb =−w′ and (2), as

uc = Nxcun, βi = Nriun, i = t,c,b, (17)

where

Nxc =
Nxt +Nxb

2
+

hd

4
N′

z, Nrc =
Nxt −Nxb

hc
+

hm

hc
N′

z,

Nrt = N′
xt , Nrb = N′

xb.

(18)

According to expressions (5) and (6) for the generalized strains,

εm
i , ε

f
i , and εc

i , they can be written in terms of the elementary dofs as

εm
i = Bmiun, ε

f
i = B f iun, ε

c
c = Bccun. (19)

The membrane, bending and shear strain operators Bmi, B f i and

Bcc are defined as

Bmi = N′
xi, B f i = N′

ri, Bcc = Nrc +N′
z. (20)

The elementary electric dofs column vector Dn is defined as

Dn =
[
D
(1)
3t D

(1)
3c D

(1)
3b

D
(2)
3t D

(2)
3t D

(2)
3b

]t
. (21)

Then, the electric displacement in the piezoelectric layers can be

written in terms of the elementary dofs

D3i = NDiDn, i = t,c,b, (22)

where

NDt =
[
N1 0 0 N2 0 0

]
,

NDc =
[
0 N1 0 0 N2 0

]
,

NDb =
[
0 0 N1 0 0 N2

]
.

(23)

Variational formulation

The equation of motions can be written using the Hamilton’s

principle extended to piezoelectric media

δΠb =
∫

t

[

∑
i

(δTi −δHi)+δWm

]
dt = 0, (24)

where δTi, δHi and δWm are the virtual variations of kinetic energy Ti

and electric enthalpy Hi of layer i and the total virtual work done by

mechanical forces on the structure.

The virtual variation of kinetic energy for layer i of the sandwich

beam can be written using the displacements fields defined in (1) and

supposing that all layers are symmetric with respect to their neutral

lines, z = zi, such that integration over the cross-section areas leads to

∫

t
δTidt =−

∫

t

∫ L

0

[
ρiAi (δuiüi +δwẅ)+ρiIiδβiβ̈i

]
dx dt, (25)

where ρi is the mass density and Ai and Ii are the area and second

moment of area of the cross-section of layer i, respectively, and the

dot stands for time derivation.

Using the finite element discretization of generalized

displacements (14) and (17),

∫

t
δTidt =−

∫

t
δut

nMiün dt, (26)

where Mi is mass matrix of the layer i defined as

Mi =
∫ L

0

[
ρiAi(N

t
xiNxi +Nt

ziNzi)+ρiIiN
t
riNri

]
dx. (27)

The virtual variation of the electric enthalpy Hi for each layer will

be composed of mechanical δHmi, electromechanical (piezoelectric)

δHmei, and dielectric δHei contributions. In what follows, these are

detailed for the faces i = t,b and core i = c layer.

For the core layer, both normal and shear strains contribute to the

virtual variation of electric enthalpy, while for the faces only normal

strains are relevant. Then, using (4) and supposing symmetric layers,

the integration over the cross-section reduces δHmi to

δHmk =
∫ L

0

(
δεm

k c̄Dk
11 Akε

m
k +δε

f
k

c̄Dk
11 Ikε

f
k

)
dx, k = t,b,

δHmc =
∫ L

0

(
δεm

c c̄Dc
33 Acε

m
c +δε

f
c c̄Dc

33 Icε
f
c +δεc

ckccDc
55 Acε

c
c

)
dx,

(28)

where kc is a shear correction factor for the Timoshenko core layer.

Also supposing symmetric layers and integrating in the cross-

section, the piezoelectric contributions to the virtual variation of

electric enthalpy can be written as

δHmek =−
∫ L

0

(
δεm

k h̄k
31AkD3k +δD3kh̄k

31Akε
m
k

)
dx,

δHmec =−
∫ L

0
(δεc

chc
15AcD3c +δD3chc

15Acε
c
c)dx.

(29)

Notice that the piezoelectric effect couples the transversal electric

displacement D3i with membrane and bending strains εm
k and ε

f
k

, for

the faces, and with shear strain εc
c, for the core.

The dielectric contribution to the virtual variation of electric

enthalpy can be written as

δHek =
∫ L

0
δD3kβ̄

εk
33AkD3kdx, δHec =

∫ L

0
δD3cβ

εc
11AcD3cdx.

(30)

The mechanical, piezoelectric and dielectric contributions to the

virtual variation of electric enthalpy can be written in a discrete
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form substituting the discretized generalized strains (19) and electric

displacements (22) in equations (28), (29) and (30), such that

δHmi = δut
nKmiun, δHmei =−δut

nKmeiDn −δDt
nKt

meiun,

δHei = δDt
nKeiDn,

(31)

where Kmi are the elastic stiffness matrices of the layer i written as

Kmk =
∫ L

0

(
Bt

mk c̄Dk
11 AkBmk +Bt

f k c̄Dk
11 IkB f k

)
dx,

Kmc =
∫ L

0

(
Bt

mcc̄Dc
33 AcBmc +Bt

f cc̄Dc
33 IcB f c +Bt

cckccDc
55 AcBcc

)
dx,

(32)

Kmei states for the electromechanical (piezoelectric) stiffness matrices

Kmek =
∫ L

0

(
Bt

mkh̄k
31AkNDk

)
dx,

Kmec =
∫ L

0

(
Bt

cch15AcNDc

)
dx,

(33)

and Kei are the dielectric stiffness matrices

Kek =
∫ L

0

(
Nt

Dkβ̄
εk
33AkNDk

)
dx,

Kec =
∫ L

0

(
Nt

Dcβ
εc
11AcNDc

)
dx.

(34)

The virtual work done by external mechanical forces can be

written in terms of a vector of generalized mechanical forces F such

that

δWm = δut
nF. (35)

Replacing the discretized virtual work expressions in the

Hamilton’s principle (24) and assembling for all finite elements in

the structure, the global equations of motion can be expressed as

[
M 0

0 0

]{
ü

D̈

}
+

[
Km −Kme

−Kt
me Ke

]{
u

D

}
=

{
F

0

}
, (36)

where u and D are the global mechanical and electric dofs and

the mass and stiffness matrices and mechanical force vector were

assembled for all layers and all finite elements.

Connecting Piezoelectric Patches to Electrodes and

Electric Circuits

To account for the electrodes fully covering the piezoelectric

patches top and bottom skins, the electric displacements of selected

nodes and layers are set to be equal. This dof assignment can be

represented by the following expression:

D = LpDp , Dp =
[
Dp1 Dp2 · · · Dpn

]t
(37)

where Lp is a binary matrix and Dp is a vector of the electric

displacement for one piezoelectric patch (constant throughout the

electrode surface). Substituting (37) into the variational form of (36),

the equations of motion are reduced to

[
M 0

0 0

]{
ü

D̈p

}
+

[
Km −K̄me

−K̄t
me K̄e

]{
u

Dp

}
=

{
F

0

}
, (38)

where

K̄me = KmeLp , K̄e = Lt
pKeLp. (39)

In addition, it is supposed that each piezoelectric actuator/sensor

can be connected to an electric circuit composed of an inductance Lc j ,

a resistance Rc j and a voltage source Vc j in series, with j = 1, ...,n
where n is the number of electric circuits. The equations of motion

for the circuits can be written using the Hamilton’s principle also as

δΠc =
∫

t

n

∑
j=1

(δTc j +δWr j +δWe j) dt = 0 (40)

where δTc j, δWr j and δWe j are, respectively, the virtual variation of

the kinetic energy due to the inductances Lc j and the virtual work

done by the resistances Rc j and voltage sources Vc j connected in

series for the j-th electric circuit. These are written as

∫

t
δTc j dt =−

∫

t
δqt

c jLc j q̈c j dt, δWr j =−δqt
c jRc jq̇c j,

δWe j = δqt
c jVc j, j = 1, . . . ,n.

(41)

To account for the connection between piezoelectric patches and

electric circuits, it is supposed that electric charges entering a given

electric circuit are equal to electric charges of a given piezoelectric

patch. Since, due to equipotentiality condition in the electrodes, the

electric displacement is constant throughout the electrode surface,

the electric charges for a given piezoelectric patch is obtained by

multiplying the electric displacement by the electrode area. Thus, a

diagonal matrix Ap with elements that are the electrodes areas of each

piezoelectric patch is defined. Then, the vector of electric charges

generated at the piezoelectric patches and, thus, entering the n electric

circuits can be written as

qc = ApDp (42)

Including the virtual works of (41) in the variational form of the

equations of motion (38) leads to

δut
(
Mü+Kmu− K̄meDp −F

)
+δDt

p

(
−K̄t

meu+ K̄eDp

)

+δqt
c (−Lcq̈c −Rcq̇c +Vc) = 0. (43)

Accounting for the relation between circuits’ electric charges and

patches’ electric displacements (42), the structure-patches-circuits

coupled equations of motion can then be written as

[
M 0

0 Mq

]{
ü

D̈p

}
+

[
C 0

0 Cq

]{
u̇

Ḋp

}

+

[
Km −K̄me

−K̄t
me K̄e

]{
u

Dp

}
=

{
F

Fq

}
, (44)

where Mq = At
pLcAp, Cq = At

pRcAp, Fq = At
pVc and a structural

damping matrix C can be added a posteriori.
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Passive and Active Vibration Control Design

From (44), it is possible to observe that the shunt circuit can

affect the structural response either passively through coupling of

the dynamics of circuit and structure, via the piezoelectric patches,

or actively through the application of an electric voltage in the

circuit which excites the structure, also via the piezoelectric patches.

These effects can be better observed in a frequency response function

(FRF) of the structure when subjected to a mechanical or electrical

excitation.

For a purely mechanical excitation, such that Vc = 0 and F =
b f̃ ejωt , the amplitude of a displacement output y = cu can be written

such that ỹ = Gp(ω) f̃ , where the FRF Gp(ω) is

Gp(ω) = c
{
−ω2M+ jωC+Km

− K̄me(−ω2Mq + jωCq + K̄e)
−1K̄t

me

}−1
b, (45)

from which it is possible to notice that the resistance and inductance

have the effect of changing the dynamic stiffness of the structure. Two

particular cases of interest can be derived: i) open-circuit when Cq →
∞ and ii) short-circuit when Mq = Cq = 0, in which cases

GOC
p (ω) = c

{
−ω2M+ jωC+Km

}−1
b,

GSC
p (ω) = c

{
−ω2M+ jωC+Km − K̄meK̄−1

e K̄t
me

}−1
b.

(46)

As expected, no structural modification is observed in the open-

circuit case while, for the short-circuit case, the stiffness of the

piezoelectric patches is reduced.

For a purely electric excitation using a single pair patch-circuit,

such that F = 0 and Vc = Ṽcejωt , the FRF between the output y and

the applied voltage Vc is such that ỹ = Gc(ω)Ṽc, where

Gc(ω) = c
{
−ω2M+ jωC+Km

− K̄me(−ω2Mq + jωCq + K̄e)
−1K̄t

me

}−1

× K̄me(−ω2Mq + jωCq + K̄e)
−1At

p (47)

In this case, the resistance and inductance of the electric circuit

have two effects. The first is a modification on the dynamic stiffness

of the structure as in the previous case. The second is a modification

of amplitude of the equivalent force input induced in the structure

by the applied voltage, which for a properly adjusted circuit can lead

to a desirable amplification of the control authority of the pair patch-

circuit. The particular case of a simple voltage actuator can be derived

by making Mq = Cq = 0, for which

GV
c (ω)= c

{
−ω2M+ jωC+Km − K̄meK̄−1

e K̄t
me

}−1
K̄meK̄−1

e At
p

(48)

Passive vibration control using electromechanical vibration

absorbers

Starting from the equations of motion (44) for the case of a

single passive electric shunt circuit (RL) connected to a piezoelectric

patch embedded in the structure, it is desired to apply the theory

of dynamic vibration absorbers for a particular vibration mode of

interest. Therefore, the structural response is approximated by the

contribution of a single vibration mode of interest such that

u(t) =φnαn(t), (49)

where φn and αn are the vibration mode of interest and its

corresponding modal displacement. Thus, neglecting the structural

damping, the equations of motion for the resulting two degree of

freedom system can be written as

α̈n +ω2
nαn − kpDp = bn f ,

mqD̈p + cqḊp + keDp − kpαn = 0,
(50)

where φt
nMφn = 1, φt

nKmφn =ω2
n, kp =φt

nK̄me and bn =φt
nb.

Assuming a mechanical excitation through input f , the structural

response measured by a displacement output y = cnαn, where cn =
cφn, can be written such that its amplitude is ỹ = Gp(ω) f̃ , where the

amplitude of the FRF Gp(ω) is

|Gp(ω)|= cnbn

[
(−ω2mq + ke)

2 +(ωcq)
2
]1/2

×
{
[ω4mq −ω2(ke +mqωn

2)+ keωn
2 − kp

2]2

+[(−ω2 +ωn
2)ωcq]

2
}−1/2

. (51)

For limited values of cq, |Gp(ω)| has an anti-resonance at a frequency

equal to the resonance frequency of the electrical circuit, defined

as ωe = (ke/mq)
1/2, which can be designed to match the structural

resonance of interest ωn. This leads to an expression for mq, and thus

for the inductance Lc, in terms of ωn, such that

Lc =
ke

ω2
nA2

p

, (52)

where Ap is the surface area of the electrode covering the piezoelectric

patch connected to the circuit. From the theory of dynamic vibration

absorbers, it is known that the anti-resonance is accompanied by two

resonances which may have their amplitudes controlled by the electric

circuit damping cq. One strategy to design the damping parameter is

to minimize the difference between the resonances and anti-resonance

amplitudes. This can be done by first using limcq→0 |Gp(ω)|2 =

limcq→∞ |Gp(ω)|2 to find the frequencies for which the amplitude is

independent of damping parameter which are

ω2
1,2 =

1

2

[
ω2

e +ω2
n ±

√
(ω2

e −ω2
n)

2 +2ω2
e(k

2
p/ke)

]
. (53)

Equalizing the vibration amplitudes at one of these invariant

frequencies ω1 and at the anti-resonance frequency ωn leads to an

expression for the resistance Rc in terms of the equivalent coupling

stiffness kp, electrical stiffness ke, surface area of the electrode Ap

and structural resonance frequency of interest ωn,

Rc =
kp

√
2ke

ω2
nA2

p

. (54)
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Active vibration control using piezoelectric actuators and state

feedback

A state feedback LQR (Linear Quadratic Regulator) optimal

control is considered. For that, it is necessary to rewrite the equations

of motion (44) in state space form, such that a vector of state variables

z is defined, containing the modal displacements and velocities of a

series of vibration modes of interest and the electric displacements of

the piezoelectric patches and their time-derivatives. This leads to

ż = Âz+ B̂Vc + B̂ f f , y = Ĉyz, (55)

where

z =




α

Dp

α̇

Ḋp


 , Â =




0 0 I 0

0 0 0 I

−Ω 2 Kp −Λ 0

M−1
q Kt

p −Ω 2
e 0 −Λe


 ,

B̂ =




0

0

0

M−1
q At

p


 , B̂ f =




0

0

bφ
0


 , Ĉy =

[
cφ 0 0 0

]
.

(56)

The modal displacements are such that u =Φα and, for mass

normalized vibration modes, Ω 2 =ΦtKmΦ and Λ =ΦtCΦ. Ω

is a diagonal matrix which elements are the undamped natural

frequencies of the structure with piezoelectric patches in open-circuit.

Ω 2
e = M−1

q K̄e and Λe = M−1
q Cq are both diagonal matrices which

elements stand, respectively, for the squared natural frequencies of the

electric circuits and the ratio between the resistances and inductances

(M−1
q Cq = L−1

c Rc). The electromechanical coupling stiffness matrix

projected in the undamped modal basis is defined as Kp =ΦtK̄me.

Input b and output c distribution vectors are also defined, with modal

projections bφ =Φtb and cφ = cΦ, and f is a vector of the amplitudes

of each mechanical force applied to the structure.

A linear state feedback for the applied voltages Vc is assumed

such that Vc = −gz = −gdmα− gdeDp − gvmα̇− gveḊp, where g is

a vector of control gains for each state variable. Therefore, the state

space equation (55) becomes

ż = (Â− B̂g)z+ B̂ f f , y = Ĉyz. (57)

For a single-input mechanical excitation f , the closed-loop or

controlled amplitude of a single displacement output y can be written

such that ỹ = Gh(ω) f̃ , where the FRF Gh(ω) is

Gh(ω) = Ĉy(jωI− Â+ B̂g)−1B̂ f , (58)

which can also be derived from the second order equations of motion

projected into the undamped modal basis leading to

Gh(ω) = cφ
{
−ω2I+ jω(Λ+KpD−1

cc At
pgvm)

+ [Ω 2 +KpD−1
cc (At

pgdm −Kt
p)]

}−1
bφ, (59)

where the closed-loop dynamic stiffness of the electric circuit Dcc is

Dcc =−ω2Mq + jω(Cq +At
pgve)+(K̄e +At

pgde). (60)

In this work, the control gain g is calculated using the standard

optimal LQR control theory applied to a single-input/single-output

case, that is, with only one active-passive patch-circuit pair for the

control to minimize the vibration amplitude at one specific location of

the structure, such that the following objective function is minimized:

J =
1

2

∫ ∞

0

(
ẏ2 + rV 2

c

)
dt, (61)

where ẏ is the velocity at one location of interest and Vc is the control

voltage applied to the active-passive shunt circuit. The weighting

factor r is automatically adjusted to guarantee a maximum control

voltage of 200 V in all cases following an iterative routine proposed

in (Trindade, Benjeddou and Ohayon, 1999).

Results and Discussion

In this section, the FRFs of two cantilever beam configurations,

with extension and shear piezoceramics as shown in Figure 1, are

analyzed in order to evaluate the APPN performance in terms of

passive damping, control authority and active-passive damping. The

extension and shear piezoceramics are made of PZT-5H material

whose properties are: c̄D
11 = 97.767 GPa, c̄D

33 = 119.71 GPa, cD
55 =

42.217 GPa, ρ= 7500 kg m−3, piezoelectric coupling constants h̄31 =
−1.3520 109 N C−1 and h15 = 1.1288 109 N C−1, and dielectric

constants β̄ε
33 = 57.830 106 m F−1 and βε

11 = 66.267 106 m F−1.

For the Aluminium beam, material properties are: Young’s modulus

70.3 GPa and density 2710 kg m−3 and, for the foam, Young’s

modulus 35.3 MPa, shear modulus 12.7 MPa and density 32 kg m−3.

A viscous damping of 0.5% and a shear correction factor kc = 0.83

were considered.
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(a)

25
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Foam

10
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source
Voltage

Shunt circuit Control input

Output

External input

(b)

Figure 1. Representation of cantilever beams with piezoceramic patches:
(a) in extension and (b) in shear.

First, the beam with extension piezoelectric patch is analyzed.

The resistance and inductance were tuned to the first resonance

frequency, using the methodology presented in the previous section.

Notice, however, that the values obtained using (52) and (54), Rc =
34117 Ω and Lc = 406 H, are just a first approximation to the optimal

values and had to be fine-tuned manually to Rc = 31541 Ω and

Lc = 390 H. The purely passive action is obtained by eliminating

the voltage source and the purely active action is obtained by making

Rc = Lc = 0. For the general case, the inductance and resistance not

only modify the dynamic stiffness of the structure, leading to damping

and/or absorption, but also affects the active control authority of the

actuator.

The purely passive performance of resistive and resonant shunt

circuits can be evaluated using the frequency response of the beam tip
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Figure 2. FRF of the beam with extension piezoceramic patch connected to
a passive shunt circuit: GOC

p (dotted), GSC
p (dashed), GR

p (dash-dot) and GRL
p

(solid).
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Figure 3. FRF, zoomed at the first resonance, of the beam with extension
piezoceramic patch connected to a passive shunt circuit: GOC

p (dotted), GSC
p

(dashed), GR
p (dash-dot) and GRL

p (solid).

velocity when the beam is subject to a transverse force at the same

point (Figure 2). The reference is considered to be unitary. It is

possible to observe that both shunt circuits affect significantly only

the first resonance, as expected. Figure 3 presents the same response,

zoomed at the first resonance, from which one can conclude that

both shunt circuits may yield a vibration amplitude reduction but the

resonant circuit leads to a much better performance (approximately

22 dB vibration amplitude reduction). The resistive circuit leads to a

variation in the resonance frequency, between short-circuit and open-

circuit ones, and also induces an equivalent damping factor. For the

resonant circuit, tuning of its resistance allows to reduce amplitude

at the structure’s resonance frequency (i.e. the anti-resonance of

the coupled system) at the cost of increasing the amplitude at the

two resonance frequencies of the coupled system. Figure 4 shows

the effect of increasing and decreasing the resistance of the optimal

resonant circuit by 20%.

Figure 5 shows the active control authority of the piezoelectric

material, acting as an actuator through the shunt circuit, measured as

the beam tip velocity response when subject to a voltage applied to the

circuit. As expected, the resistive shunt circuit diminishes the active

control authority for all frequencies, since part of the input electric
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Figure 4. FRF of the beam with extension piezoceramic patch connected to
a resonant circuit subject to variations in the resistance value: open-circuit
GOC

p (dotted), optimal RL GRL
p (solid), RL with 20% reduction on resistance

value GRL−
p (dashed) and RL with 20% increase on resistance value GRL+

p

(dash-dot).
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Figure 5. Control authority of the extension piezoceramic patch: without
shunt GV

c (dotted), resistive shunt GR
c (fine dot), RL shunt with 20%

reduction on resistance value GRL−
c (dashed), RL shunt with 20% increase

on resistance value GRL+
c (dash-dot) and optimal RL shunt GRL

c (solid).
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Figure 6. FRF of the beam with extension piezoceramic patch connected
to passive and active-passive shunt circuits: open-circuit GOC

p (dotted),

passive R shunt GR
p (fine dot), active-passive R shunt GR

h (dashed), passive

RL shunt GRL
p (dash-dot) and active-passive RL shunt GRL

h (solid).
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Figure 7. FRF of the beam with shear piezoceramic patch connected to a
passive shunt circuit: GOC

p (dotted), GSC
p (dashed), GR

p (dash-dot) and GRL
p

(solid).
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Figure 8. FRF, zoomed at the first resonance, of the beam with shear
piezoceramic patch connected to a passive shunt circuit: GOC

p (dotted), GSC
p

(dashed), GR
p (dash-dot) and GRL

p (solid).

energy is being dissipated through the resistance. On the other hand,

the resonant shunt circuit allows an increase of the active control

authority around the first resonance at the cost of reducing it for the

remaining frequency range.

Then, the LQR state feedback control strategy voltage presented

previously was considered to evaluate the control voltage to be

applied to the circuit and actively reduce the vibration amplitude

of the beam. Figure 6 shows the beam tip mobility, zoomed

at the first resonance, for uncontrolled beam (open-circuit, Rc →
∞), passive controlled beam with resistive (Rc = 144 kΩ, Lc =
0, Vc = 0) and resonant (Rc = 31541 Ω, Lc = 390 H, Vc = 0)

shunt circuits, and active-passive controlled beam with resistive (Rc =
144 kΩ, Lc = 0, Vc < 200 V ) and resonant (Rc = 31541 Ω, Lc =
390 H, Vc < 200 V ) shunt circuits. The active-passive control

yields better performance than its passive counterpart with amplitude

reductions of approximately 14 dB (resistive) and 28 dB (resonant).

Therefore, despite the small reduction on active control authority at

the resonance frequency, active-passive control always outperforms

the corresponding passive one.

Then, a similar analysis was performed for the sandwich beam

with embedded shear piezoelectric patch. In this case, the resistance
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Figure 9. FRF of the beam with shear piezoceramic patch connected to a
resonant circuit subject to variations in the resistance value: open-circuit
GOC

p (dotted), optimal RL GRL
p (solid), RL with 20% reduction on resistance

value GRL−
p (dashed) and RL with 20% increase on resistance value GRL+

p

(dash-dot).
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Figure 10. Control authority of the shear piezoceramic patch: without shunt
GV

c (dotted), resistive shunt GR
c (fine dot), RL shunt with 20% reduction on

resistance value GRL−
c (dashed), RL shunt with 20% increase on resistance

value GRL+
c (dash-dot) and optimal RL shunt GRL

c (solid).
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Figure 11. FRF of the beam with shear piezoceramic patch connected
to passive and active-passive shunt circuits: open-circuit GOC

p (dotted),

passive R shunt GR
p (fine dot), active-passive R shunt GR

h (dashed), passive

RL shunt GRL
p (dash-dot) and active-passive RL shunt GRL

h (solid).
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and inductance values obtained from (52) and (54) are Rc = 835.9 Ω

and Lc = 121.7 H and were fine-tuned manually to Rc = 835.8 Ω

and Lc = 121.5 H. The purely passive performance of resistive and

resonant shunt circuits are presented in Figures 7 and 8. It is possible

to observe that the vibration reduction performance is much smaller

than in the previous case for both shunt circuits. This is due to

the fact the sandwich design considered does not induce significant

shear strains in the piezoelectric patch when the beam vibrates on the

first mode. For the resonant circuit, the amplitude at structure’s first

resonance can be further reduced by decreasing the resistance of the

circuit as can be seen in Figure 9, which shows the effect of increasing

and decreasing the resistance of the optimal resonant circuit by 20%.

Figure 10 shows the active control authority of the shear

piezoelectric patch, acting as an actuator through the shunt circuit,

measured as the beam tip velocity response when subject to a voltage

applied to the circuit. Here, the resistive shunt circuit also leads

to a reduction on the active control authority for all frequencies.

On the other hand, the resonant shunt circuit yields a very large

increase on the active control authority around the first resonance.

This fact indicates that, although the passive performance of the

shear configuration is not very good, it might be an adequate choice

for active or active-passive control since its control authority can

be significantly enhanced by the circuit tuning. Indeed, as shown

in Figure 11, when applying a similar LQR control strategy to the

sandwich beam with shear actuator, the vibration amplitude is greatly

reduced as compared to the corresponding passive case. As for the

previous case, Figure 11 compares the frequency response of the

beam when uncontrolled (open-circuit, Rc → ∞), passive controlled

with resistive (Rc = 593 kΩ, Lc = 0, Vc = 0) and resonant (Rc =
835.8 Ω, Lc = 121.5 H, Vc = 0) shunt circuits, and active-passive

controlled with resistive (Rc = 593 kΩ, Lc = 0, Vc < 200 V ) and

resonant (Rc = 835.8 Ω, Lc = 121.5 H, Vc < 200 V ) shunt circuits.

The shear active-passive resonant control leads to an amplitude

reduction of approximately 10 dB.

Stochastic Modeling for Uncertainties Analysis

This section presents an approach for analyzing random

uncertainties for the resistance R and inductance L elements of the

electric shunt circuits. An appropriate probabilistic model for each

random variable, R̂ and L̂, is constructed accounting for the available

information only, which is the following: (1) the support of the

probability density function is ]0,+∞[; (2) the mean values are such

that E[R] = R and E[L] = L; and (3) zero is a repulsive value for

the positive-valued random variables which is accounted for by the

condition E[ln(R)] = cR with |cR| < +∞ and E[ln(L)] = cL with

|cL| < +∞. Therefore, the Maximum Entropy Principle yields the

following Gamma probability density functions for R and L (Soize,

2001; Cataldo et al., 2009; Ritto et al., 2010)

pR(R)= I]0,+∞[(R)
1

R

(
1

δ2
R

)δ−2
R 1

Γ(δ−2
R )

(
R

R

)δ−2
R −1

exp

(
− R

δ2
RR

)

(62)

and

pL(L) = I]0,+∞[(L)
1

L

(
1

δ2
L

)δ−2
L 1

Γ(δ−2
L )

(
L

L

)δ−2
L −1

exp

(
− L

δ2
LL

)

(63)

in which δR = σR/R and δL = σL/L are the relative dispersions of

R̂ and L̂ and σR and σL are their standard deviations. The Gamma

function is defined as Γ(α)=
∫ ∞

0 tα−1e−tdt. These probability density

functions are shown in Figure 12 together with the histograms of

random sets for R and L generated with MATLAB function gamrnd,

considering 10000 realizations. The vectors of random realizations

for R̂ and L̂ where then combined into pairs of RL parameters,

which were then applied to the evaluation of realizations of the FRF

Gp(θ j,ω), Gc(θ j,ω) and Gh(θ j,ω) using equations (45), (47) and

(58), respectively. To improve the analysis of the sensitiveness of

the responses to the circuit parameters, three values were considered

for the relative dispersions δR and δL: 5%, 10% and 20%. The

mean-square convergence analysis with respect to the independent

realizations of random variable Ĝp(ω), denoted by Gp(θ j,ω) was

carried out considering the function

conv(ns) =
1

ns

ns

∑
j=1

∫
‖Gp(θ j,ω)−GN

p (ω)‖2 dω, (64)

where ns is the number of simulations, or the number of RL

pairs considered, and GN
p (ω) is the response calculated using

the corresponding mean model. Figure 13 shows the mean-

square convergence analysis for extension and shear configurations

considering δR = δL = 0.10. It is possible to observe that for both

cases 3000 simulations are enough to assure convergence. Despite

that, the statistical analyses presented in the following sections

consider all 10000 simulations performed.
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Figure 12. Probability density function for resistance (R/Rop) and
inductance (L/Lop) values.
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Figure 13. Mean square convergence of Monte Carlo simulation.

The statistical analyses of the FRF amplitudes were performed

using their 10000 realizations at each frequency to calculate the

corresponding mean values and 95% confidence intervals. The

95% confidence intervals were evaluated using the 2.5% and 97.5%

percentiles of the realizations of FRF amplitudes at each frequency.

Figure 14 summarizes the simulation procedure.
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Figure 14. Schematic procedure for the computation of FRFs mean and
confidence intervals.
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Figure 15. FRF of the beam with extension piezoceramic patch connected
to a passive shunt circuit: GOC

p (dash-dot), GN
p (solid), Gp (dashed) and GCI

p

(filled) for δR = δL = 0.10.

30 40 50 60 70 80 90 100
−90

−80

−70

−60

−50

−40

−30

M
o
b
ili

ty
 (

m
/s

/V
, 
d
B

)

Frequency (Hz)

Figure 16. Control authority of the extension piezoceramic patch with and
without shunt circuit: GV

c (dash-dot), GN
c (solid), Gc (dashed) and GCI

c (filled)
for δR = δL = 0.10.

Figure 15 shows the FRFs for the extension configuration with

OC (GOC
p ) and RL shunted (GN

p ) piezoceramics, where, for last case,

the nominal values of R = 31541 Ω and L = 390 H were used. It

also shows the mean value (Gp) and 95% confidence intervals (GCI
p )

of random variable Ĝp(ω) for δR = δL = 0.10. Notice that the RL

shunt circuit does not affect the FRF but near the first resonance (for

which the shunt circuit was designed). In the FRF zoomed near the

first resonance (Figure 15), one may notice that the nominal model
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Figure 17. FRF of the beam with extension piezoceramic patch connected
to an active-passive shunt circuit: GOC

h (dash-dot), GN
h (solid), Gh (dashed)

and GCI
h (filled) for δR = δL = 0.10.
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Figure 18. FRF of the beam with shear piezoceramic patch connected to a
passive shunt circuit: GOC

p (dash-dot), GN
p (solid), Gp (dashed) and GCI

p (filled)
for δR = δL = 0.10.
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Figure 19. Control authority of the shear piezoceramic patch with and
without shunt circuit: GV

c (dash-dot), GN
c (solid), Gc (dashed) and GCI

c (filled)
for δR = δL = 0.10.

indicates a reduction in the vibration amplitude of 22 dB (considering

the difference between peak responses for OC and RL), while when

considering the circuit components uncertainties this reduction is
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Figure 20. FRF of the beam with shear piezoceramic patch connected to an
active-passive shunt circuit: GOC

h (dash-dot), GN
h (solid), Gh (dashed) and GCI

h

(filled) for δR = δL = 0.10.
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Figure 21. FRF of the beam with extension piezoceramic patch connected
to a passive shunt circuit: GOC

p (dash-dot), GN
p (solid), Gp (dashed) and GCI

p

(filled) for: (a) δR = δL = 0.05 and (b) δR = δL = 0.20.

found to be in the range 16-24 dB. It can be also noticed that the

difference between the mean and nominal FRFs is almost negligible.

Then, an analysis of the control authority FRFs for the extension

configuration with purely active (GV
c ) and RL shunted (GN

c ) was

performed, including its mean (Gc) and 95% confidence intervals

(GCI
c ) for δR = δL = 0.10. Figure 16 shows that despite the circuit
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Figure 22. Control authority of the extension piezoceramic patch with and
without shunt circuit: GV

c (dash-dot), GN
c (solid), Gc (dashed) and GCI

c (filled)
for: (a) δR = δL = 0.05 and (b) δR = δL = 0.20.

components uncertainties, the control authority is indeed increased

near the first resonance at the cost of being significantly reduced for

higher frequencies. The active-passive vibration control performance

can be observed in Figure 17, which shows the FRFs for the

uncontrolled (GOC
p ) and controlled structure (GN

h ), including its mean

(Gh) and confidence intervals (GCI
h ) for δR = δL = 0.10. Comparison

with Figure 15 shows that the LQR control combined with the

resonant shunt circuit allows to reduce further the vibration amplitude.

Indeed, the nominal model indicates a reduction of 27.5 dB, while the

confidence intervals indicate a reduction between 27 dB and 28 dB.

It is also worthwhile to notice that the active control also shrinks the

confidence intervals, compared to the passive case.

Similar analyses were done for the shear configuration. Hence,

Figure 18 shows the FRFs with OC (GOC
p ) and RL shunted (GN

p )

piezoceramics. For the present shear case, the nominal values of

R = 835.8 Ω and L = 121.5 H were used. Figure 18 also shows the

mean value (Gp) and 95% confidence intervals (GCI
p ) for δR = δL =

0.10. In this case, a much smaller vibration amplitude reduction is

observed, since the shear configuration is less appropriate to control

the first vibration mode. The nominal model indicates a reduction

of 3 dB and based on the 95% confidence intervals one could

observe a reduction between 0 dB and 3.3 dB. Notice that, for this

configuration, the anti-resonance observed in the nominal model is

outside the confidence intervals. This is due to the fact that only

the nearly perfect combination of optimal resistance and inductance

values may lead to such performance. The shear configuration leads
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Figure 23. FRF of the beam with extension piezoceramic patch connected
to an active-passive shunt circuit: GOC

h (dash-dot), GN
h (solid), Gh (dashed)

and GCI
h (filled) for: (a) δR = δL = 0.05 and (b) δR = δL = 0.20.

to a significant control authority amplification near the first resonance

and, differently from the extension configuration, it occurs also at

the resonance (Figure 19). This amplification leads to an increase

of 29 dB at the resonance, according to the nominal model, and

in the range {6-29} dB, according to the 95% confidence intervals.

From Figure 20, the vibration amplitude reduction induced by the

active-passive control is 10 dB, according to the nominal model, and

between 3 dB and 11 dB, according to the 95% confidence intervals.

It is also worthwhile to analyse the effect of the relative

dispersions of resistance and inductance values on the confidence

intervals of the responses of passive and active-passive controlled

structures and the control authority of the shunted piezoelectric

actuators. Therefore, two additional values for relative dispersions

δR and δL were considered: 0.05 and 0.20. It is expected that

higher relative dispersions would lead to wider confidence intervals

and vice-versa. Figures 21, 22 and 23 show, respectively, the

frequency responses Gp, Gc and Gh of the structure with the extension

piezoceramics for the two additional relative dispersions. It can

be observed in Figure 21, as expected, that the confidence interval

is widened (shrunk) compared to the previous case (Figure 15) for

larger (smaller) relative dispersions. The range of vibration amplitude

reduction (considering the difference between peak responses)

becomes 19-24 dB, for 5% relative dispersion, and 11-25 dB, for 20%

relative dispersion. The same behaviour was observed for the control

authority (Figure 22) and active-passive case (Figure 23). The range
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Figure 24. FRF of the beam with shear piezoceramic patch connected to a
passive shunt circuit: GOC

p (dash-dot), GN
p (solid), Gp (dashed) and GCI

p (filled)
for: (a) δR = δL = 0.05 and (b) δR = δL = 0.20.

of vibration amplitude reduction when using the active-passive shunt

circuit remains 27-28 dB, for 5% relative dispersion, and is widened

to 24-29 dB, for 20% relative dispersion.

Similar behaviour was also observed in an analysis performed for

the shear actuated sandwich beam. The range of vibration amplitude

reduction for the beam with shear piezoceramic patch connected to

a passive resonant shunt circuit was 0-2.7 dB and 0-3.6 dB for 5%

and 20% relative dispersions, respectively (Figure 24). In terms of

control authority, as shown in Figure 25, increasing the resistance

and inductance relative dispersions yields decreasing lower limit for

the confidence intervals, 16 dB and 0 dB for 5% and 20% relative

dispersions, respectively, while the upper limit remains unchanged

(29 dB). The confidence intervals for the active-passive performance,

in terms of vibration amplitude reduction, of the shear actuated

piezoceramics are also widened when increasing the corresponding

resistance and inductance relative dispersions and vice-versa. The

range of vibration amplitude reduction for the active-passive shunted

shear piezoceramics is 5-11 dB, for 5% relative dispersion, and 2-

11 dB, for 20% relative dispersion.

Concluding Remarks

This work presented an analysis of active-passive damping

performance of beams with extension and shear active-passive

piezoelectric networks (APPN). For that, a coupled finite element
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Figure 25. Control authority of the shear piezoceramic patch with and
without shunt circuit: GV

c (dash-dot), GN
c (solid), Gc (dashed) and GCI

c (filled)
for: (a) δR = δL = 0.05 and (b) δR = δL = 0.20.

model with mechanical and electrical degrees of freedom was

developed and used to design passive and active control parameters.

Then, a stochastic modeling and analysis of two cantilever beam

configurations, with extension and shear APPN, was performed to

evaluate the effect of uncertainties in circuit components on passive

and active-passive vibration control. Results have shown that active-

passive shunt circuits can be very interesting since they may combine

an adequate passive control performance with an increase of the active

control authority when a control voltage is applied to the circuit.

For the extension configuration, vibration amplitude reductions of

up to 22 dB and 28 dB were obtained for the purely passive and

active-passive cases, respectively. Considering relative dispersions of

10% for the resistance and inductance values, the passive and active-

passive amplitude reductions were found to be in the ranges 16-24 dB

and 27-28 dB, respectively. For the shear configuration, increases in

the active control authority of up to 29 dB due to a properly tuned

resonant circuit were observed. When subjected to uncertainties in

the resistance and inductance values, with 10% relative dispersions,

the control authority increase was found to be in the range of 6-29 dB.
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