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Abstract The combination of the high-order unstructured Spectral Difference (SD) spatial

discretization scheme with Sub-Grid Scale (SGS) modeling for Wall-Modeled Large-Eddy

Simulation (WMLES) is investigated. Particular focus is given to the use of wall-function

approaches and to the relevant optimal coupling with the numerical scheme and the SGS

model, a similarity mixed type model featuring newly designed discrete filters with spec-

ified cutoff length scale. To take full advantage of the discontinuous Finite Element (FE)

structure which characterizes the SD scheme, wall-modeling is accomplished within the

first wall element by using the information from the farthest solution points from the wall.

Compared to the customary used first off-wall node, this point provides more accurate

information to the wall-function, thus improving the quality of the solution. Two different

wall-models are tested, a classical three-layers wall-function based on the equilibrium

assumption and a more general formulation to account for the pressure gradient in more

complex configurations. Moreover, the mixed scale-similarity SGS model is used in the

entire computational domain without any particular adjustment inside the wall-modeled

region. Numerical tests on the classical test case of the turbulent channel flow at different

Reynolds numbers and on the channel with periodic constrictions at Reh = 10,595 give

evidence that the results are extremely sensitive to the choice of the solution points used

to provide the informations to the law-of-the-wall. In particular, it is shown that signifi-

cant improvements in the results can be attained by solving the wall-function away from

the wall, rather than at the first off-wall solution point as customary done. The combination

of the selected wall-modeling strategies and the similarity mixed formulation proves to be

remarkably accurate, even in the presence of boundary layer separation, thus opening the

path to further exploit the high-order SD platform, as well as a broad range of other similar

methodologies, for WMLES. Extensions of the methodology are envisaged to include more
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sophisticated wall-modeling approaches incorporating turbulent sensors to switch to no-slip

conditions in laminar regions.

Keywords High-order schemes · Unstructured meshes · Large-Eddy simulation ·
Similarity mixed models · Wall-modeling

1 Introduction

In a large number of LES applications the underlying numerical platform consists of highly

dissipative and at most second-order schemes. The inherent numerical dissipation intro-

duced by such numerical schemes can limit their ability to represent the spectrum resolved

in LES. Although the increasing availability in computational power can, in some cases,

allow some flexibility in reducing numerical error and dissipation by increasing grid res-

olution, there are still many flow problems (e.g., vortex dominated flows) for which the

use of low-order methods would be too expensive, unsuitable or even impractical [60]. For

such flows, high-order methods represent a more viable option. Undoubtably, the contin-

uous improvements toward the development of robust and reliable high-order schemes for

DNS and LES, and the relevant capabilities in representing the flow and the underlying

physics with increasing levels of detail, have made it possible to tackle hitherto intractable

problems in fundamental research. Therefore, the combination of high-order numerical

schemes with advanced SGS modeling techniques seems a very attractive option to make

LES a valuable and reliable tool for high-fidelity computations for fundamental flow physics

and industrial applications. Unfortunately, many available high-order numerical schemes

are designed to be used on cartesian or very smooth structured curvilinear meshes and

are inadequate to simulate turbulent flows over complex geometries. In the current work,

the optimal coupling between a high-order solver for unstructured hexahedral meshes, an

explicit filtering LES method and Reynolds-Averaged Navier-Stokes (RANS) type wall-

function approaches is investigated. The resulting tool allows to perform highly accurate

turbulent flow computations over realistic geometries.

High-order numerical schemes for solving the compressible Navier-Stokes equations

on unstructured grids have been widely studied during the last decade. By far the most

mature and widely used of these schemes are based on the Discontinuous Galerkin (DG)

method [16, 23]. Recently, however, several alternative high-order methods have been pro-

posed, including SD type schemes [19, 20, 27, 32, 34, 54], which potentially offer increased

efficiency compared with DG methods. A recent study addressed the implementation of

the WALE Similarity Mixed (WSM) model [35] into the SD spatial discretization for 3D

unstructured hexahedral grids [36]. As a result, two distinct classes of discrete filtering oper-

ator satisfying selected criteria in terms of cutoff and locality were developed and tested on

the turbulent channel flow at different Reynolds number using both Cartesian and unstruc-

tured meshes. This numerical platform for high-order explicit LES represents the base of

the present work, which is aimed at extending the code capabilities to allow wall-modeled

LES. It is worthwhile stressing that the assessment and the comparison of different SGS

modeling formulations are outside the scope of the present study, whose main subject is the

development and validation of an optimal strategy to incorporate wall-modeling into the SD

scheme.

In fact, although the combination of the high-order SD method with a suitable implemen-

tation of a scale similarity SGS model has proven to be an extremely promising tool, the
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Reynolds number scaling of the necessary number of Degrees of Freedom (DoF) for wall-

resolved LES (WRLES) still limits significantly the applicability of LES to wall bounded

turbulent flows of practical engineering interest [9, 10]. Aside from considerations about

the number of DoF, when explicit time integration is performed, the scales involved in the

boundary layer and the relevant grid resolution can constrain the time-step via the CFL lim-

itation such as to make it practically impossible to get reasonably converged results and/or

statistics within an acceptable time. For LES to become a viable option in a broad range of

applications, reliable and accurate wall-modeling approaches are needed.

An interesting approach in the direction of making LES more engineering-friendly

involves the simultaneous use of RANS and LES (cf. Refs. [44, 45] for a review of typical

approaches). The idea is to use LES to solve the unsteady features of interest while leaving

to RANS the burden of solving prohibitively small features which might not be of direct

interest, such as boundary layers. The most simple approach is to couple the LES solution

with wall-functions based on the equilibrium-stress hypothesis. A comparison of different

combinations of wall-functions and SGS modeling strategies can be found in Ref. [55]. One

limit in the applicability of these rather simple techniques is the availability of sufficiently

general wall-functions, in particular when the equilibrium-stress hypothesis does not hold

true. To overcome such limitations, more sophisticated wall-functions have been developed

to reproduce non-equilibrium turbulent boundary layers subject to favorable or adverse

pressure gradients [7, 12] or to account for compressibility effects [3]. Other more gen-

eral approaches involve, for instance, the solution of the (1D Reynolds-averaged) turbulent

boundary-layer equations in the inner layer using information (viz. boundary conditions)

from the LES in the outer layer [2, 4, 8, 25, 59].

Even if finding an appropriate way to blend the RANS model in the inner layer and the

LES model in the outer layer remains an extremely delicate point, recent studies [24, 29,

42] have suggested that, despite the simplicity of wall-modeling procedures and zonal tech-

niques, extremely accurate results can be still obtained by properly addressing the numerical

implementation of the model, rather than the model itself. Inspired by this observation and

leveraging on the particularly convenient structure of the SD scheme which, thanks to the

FE discretization of the solution, represents an ideal numerical platform to develop wall-

modeling approaches based on wall-functions or embedded RANS layers, the main subject

of the present study is the development of an optimal strategy to couple the SGS model with

the law-of-the-wall.

In particular, recognizing that wall elements can be easily designed to model the inner

layer with the required accuracy without major implementation difficulties (for instance,

in terms of code parallelism), two different RANS type wall-functions are directly coupled

with the WSM model. Numerical tests on the classical channel flow, as well as, on a channel

with periodic constrictions involving flow separation and reattachment, show that, despite

the simplicity of the proposed approach, a suitable choice for the way the SGS model and the

wall-function are interlinked can lead to significant improvements in the results. The method

can be generalized to include more advanced wall-modeling formulations, and extended

in a straightforward way to a broad range of discontinuous FE type schemes, including

DG methods and the whole class of recently developed energy stable Flux Reconstruction

schemes [22, 56, 57, 61].



Flow Turbulence Combust

2 Mathematical Formulation

2.1 The numerical scheme

The Navier-Stokes equations are solved using the high-order SD method for unstructured

spatial discretization. The formulation of the equations on hexahedral grids is similar to the

formulation by Sun et al. [54], which will be summarized below for completeness. After

introducing the bar filter operator and the density-weighted Favre filter operator tilde, the

unsteady compressible Navier-Stokes equations in conservative form are written as

∂U

∂t
+ ∂F

k

∂xk

= 0, (1)

where U =
(
ρ ρu1 ρu2 ρu3 ρe

)T
is the vector of conservative variables, and F

k =
FI

k − D
k

accounts for the inviscid and viscous flux vectors

FI
k =

⎛
⎜⎜⎜⎜⎝

ρuk

ρu1ũk + δ1k̟

ρu2ũk + δ2k̟

ρu3ũk + δ3k̟

(ρe + ̟)̃uk

⎞
⎟⎟⎟⎟⎠

, D
k =

⎛
⎜⎜⎜⎜⎜⎝

0

2µÃ1k + τd
1k

2µÃ2k + τd
2k

2µÃ3k + τd
3k

2µũj Ãkj + µcp

Pr
∂ϑ̃
∂xk

+ qk

⎞
⎟⎟⎟⎟⎟⎠

. (2)

In the above equations, ρ is the fluid’s density, uk is the velocity vector, e is the total energy

(internal + kinetic), µ is the dynamic viscosity, Aij is the deviator of the deformation tensor,

cp is the specific heat capacity at constant pressure and Pr is the Prandtl number. Fur-

thermore, ̟ and ϑ̃ are the filtered macro-pressure and macro-temperature [31, 35], these

quantities being related by the usual equation of state

̟ = ρRϑ̃, and ρe =
̟

γ − 1
+

1

2
ρuk ũk, (3)

where R represents the gas constant and γ = cp/cv is the ratio between specific heat capaci-

ties at constant pressure and volume. The unclosed SGS terms in the momentum and energy

equations are indicated in Eq. (2) as τij and qk , respectively (note that the superscript ‘d’

refers to the deviatoric part of the relevant tensor).

To achieve an efficient implementation, all elements in the physical domain are trans-

formed to a standard cubic element described by local coordinates ξ = (ξ1, ξ2, ξ3), with

ξ ∈ [0 : 1]3. The governing equations in the physical domain are then transferred into the

computational domain, and they take the form

∂U

∂t
+ ∂F

k

∂ξk

= 0, (4)

where

U = | det(J)|U , F
k = | det(J)|

∂ξk

∂xj

F
j
, (5)

and det(J) represents the determinant of the Jacobian matrix Jij = ∂xi/∂ξj .

Within each standard element, two sets of points are defined, namely the solution points

and the flux points, as schematically illustrated in Fig. 1 for a one-dimensional element. In

order to construct a degree (N − 1) polynomial for each coordinate direction, solution at N

points are required. These N points in 1D are chosen to be the Gauss-Legendre quadrature

points, whereas the flux points are selected to be the Gauss-Legendre quadrature points of
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Fig. 1 Schematic representation of the one dimensional distribution of solution and flux points within the

SD element for N = 4

order N − 1 plus the two end points 0 and 1. This particular combination of solution and

flux points, in fact, can be proved to be linearly stable for all orders of accuracy and optimal

in reducing aliasing errors and providing good conditioning for the non-linear case [21, 22].

Using the N solution points and the N + 1 flux points, polynomials of degree N − 1 and N,

respectively, can be built using Lagrange bases defined as

hi(ξ ) =
N∏

s=1,s �=i

(
ξ − ξs

ξi − ξs

)
, and li+1/2(ξ ) =

N∏

s=0,s �=i

(
ξ − ξs+1/2

ξi+1/2 − ξs+1/2

)
. (6)

The reconstructed solution for the conserved variables in the standard element is then

obtained as the tensor product of the three one-dimensional polynomials,

U (ξ) =
N∑

k=1

N∑

j=1

N∑

i=1

U i,j,k

|Ji,j,k|
hi(ξ1)hj (ξ2)hk(ξ3), (7)

where i, j and k are the indices of the solution points within each standard element. A similar

reconstruction is adopted for the resolved fluxes F
k
.

The reconstructed fluxes are only element-wise continuous, but discontinuous across

cell interfaces. For the inviscid flux, a Riemann solver is employed to compute a common

flux at cell interfaces to ensure conservation and stability. In the current implementation,

the Roe solver with entropy fix [15, 47] is used. The left and right states here represent

the solution on both sides of the shared edge flux point. The viscous flux is a function of

both the conserved variables and their gradients, therefore, the solution gradients have to be

calculated at the flux points. The average approach described by Sun et al. [54] is used to

compute the viscous fluxes at the elements’ interfaces.

2.2 LES modeling approach

To close the SGS terms in Eq. (2), the WSM model proposed by Lodato et al. [35] is here

adopted. This model, in particular provides all the advantages of similarity formulations [13,

17, 33, 50] while ensuring correct near-wall scaling without the expense of dynamic pro-

cedures and stabilization averaging steps. The SGS stress tensor and heat flux are modeled

as

τd
ij = 2ρνsgsÃij − ρ

(̂̃ui ũj − ̂̃ui
̂̃uj

)d
, (8)

qk = γ ρκsgs
∂ẽI

∂xk

− γ ρ
(̂̃eI ũk − ̂̃eI

̂̃uk

)
, (9)

where ẽI is the resolved internal energy and the hat operator represents filtering at cutoff

length α
g, where 
g is a measure of the actual grid resolution (see Eq. (11) below), and

α ≥ 1 [33]. In the present study, newly developed constrained discrete filters for FE type



Flow Turbulence Combust

schemes are adopted [36]. In particular, discrete filters by Gauss quadrature integration are

here used with cutoff length 1.5
g (cf. Section 2.4). The SGS kinematic viscosity, νsgs, and

thermal diffusivity, κsgs, are computed as [41]

νsgs = C2
w
2

g

(
s̃d
ij s̃

d
ij

)3/2

(
Ãij Ãij

)5/2 +
(
s̃d
ij s̃

d
ij

)5/4
, and κsgs =

νsgs

Prsgs
, (10)

where Cw = 0.5, and s̃d
ij is the traceless symmetric part of the square of the resolved veloc-

ity gradient tensor g̃ij = ∂ũi/∂xj . The sub-grid scale Prandtl number, Prsgs, is assumed

constant and equal to 0.5 [13, 53], and 
g is computed from its counterpart in computational

space, namely 
 = 1/N , as [43]


(ξ) ∼
[

| det(J(ξ))|
N3

]1/3

= 
| det(J(ξ ))|1/3. (11)

2.3 Wall-modeling approach

Assuming that the streamwise and wall-normal directions are x1 and x2, respectively, a

generic wall-function can be written as

ũ∗
1 = fLW(x∗

2 ), (12)

where ũ∗
1 and x∗

2 represent the normalized (filtered) velocity and the distance from the wall,

respectively. Note that the normalization parameters are both a function of the wall shear

stress τw . Eq. (12) shall be solved inside each wall element in order to obtain the wall

shear stress to be imposed as a boundary condition at the wall. A schematic representation

of the proposed wall-modeling strategy is depicted in Fig. 2. In particular, the wall shear

stress is evaluated using information (e.g. wall distance and velocity magnitude in the plane

tangential to the wall) from the farthest solution points from the wall (hereafter referred to

Fig. 2 Schematic representation of the wall-modeling strategy within a wall element (N = 4). Blue dots

represent actual solution points in logarithmic scale; colored arrows represent the flow of information from

the wall-farthest point to the wall-function and down to the wall
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as sampling point). This particular point is used because the relevant information is more

accurate than the other more under resolved points closer to the wall [24, 29]. Note that,

as it will become evident looking at the results presented in Section 3.1.2, these points

serve mostly as a support for the solution within the wall modeled region. The absence of

direct coupling between the viscous flux at the wall and the solution (and its gradients)

in the vicinity of the wall-closest point cannot ensure that a physically relevant flow be

established through these points, which shall hence be disregarded when analyzing results.

Tests conducted using the more commonly used first off-wall solution (or grid) point fully

confirm that sampling too close to the wall can lead to a significant deterioration of the

solution accuracy (cf. Section 3).

This is a crucial step in the procedure. In fact, even if using Reynolds-averaged infor-

mation (e.g., from a law-of-the-wall, as in the present case, or the local integration of

1D turbulent boundary-layer equations) on an instantaneous unsteady flow from LES can

be questionable from the theoretical point of view, the overall effect can be considered

analogous to the application of relaxed boundary conditions: the instantaneous solution is

characterized by the chaotic pattern of the resolved large-scale structures, but its long time

average tends to be consistent with what is imposed as a boundary condition (e.g. the aver-

age wall shear stress). The outcome of the approach is clearly strongly influenced by the

accuracy of this (relaxed) boundary condition, which in turn, is determined by the quality

of the information at the sampling points and the accuracy of the wall-function.

Regarding the LES model used within the outer layer, this is applied unchanged through-

out the wall-modeled region, the only exception being that the viscous flux at the wall is

completely overridden by the one computed using the wall-function.

Two different wall-functions have been tested in the present work, namely, the classi-

cal three-layers wall-function by Breuer and Rodi [6] for zero pressure gradient turbulent

boundary layers, and the more sophisticated wall-function proposed by Duprat et al. [12]

for non-equilibrium turbulent boundary layers subject to favorable or adverse pressure

gradients. These approaches are detailed in the two sections that follow.

2.3.1 Equilibrium wall-function approach

In the case of equilibrium boundary layers, Eq. (12) can be conveniently written as a three-

layers wall-function [6] (hereafter referred to as BR) in the form

ũ+
1 =

⎧
⎪⎨
⎪⎩

x+
2 if x+

2 ≤ 5,

A ln
(
x+

2

)
+ B if 5 < x+

2 ≤ 30,

κ−1 ln
(
Ex+

2

)
if x+

2 > 30,

(13)

with κ = 0.42 the von Kármán constant, E = 9.8, A = [κ−1 ln(30E) − 5]/ ln(6) and

B = 5 − A ln(5). In this particular case, the ‘+’ superscript is used to denote the classical

scaling using the friction velocity uτ =
√

|τw|/ρw and the viscous length ℓτ = ν/uτ ,

respectively (note that the subscript w is hereafter adopted to indicate quantities evaluated

at the wall).

Except where explicitly set forth differently, to avoid the iterative inversion of the log-

law (x+
2 is itself a function of the unknown τw), the normalized wall distance x+

2 is first

computed using the shear stress from the previous time-step, as suggested by Wang and

Moin [59]. Once the right-hand-side of Eq. (13) is computed, the wall shear stress is



Flow Turbulence Combust

obtained from the definition of ũ+
1 and the instantaneous value of the velocity. The simpli-

fying assumption is made that the instantaneous wall shear stress is in phase and aligned

with the velocity at the sampling location.

With regards to the energy equation, a two-layers wall-function is used to compute the

wall heat flux qw [51]:

qwuτ

γ τw

=
{

(ẽI − ew)(̃u+
1 Pr)−1 if x+

2 ≤ 11.8,

(ẽI − ew)[(̃u+
1 + C)Prt]−1 if x+

2 > 11.8,
(14)

where ẽI is the internal energy at the sampling point, ew = cvϑw accounts for the imposed

wall temperature, Prt = 0.9 is the turbulent Prandtl number, and C = 11.8 × (Pr/Prt − 1)

from the matching condition at x+
2 = 11.8.

2.3.2 Non-equilibrium wall-function approach

To overcome the limitations brought by the equilibrium assumption, Duprat et al. [12] have

recently proposed a formulation that accounts for the effects of both the streamwise pressure

gradients and the Reynolds stresses. Hence the relevant wall-function (hereafter referred

to as DBMCB) is applicable in a wide range of flow conditions, including those involving

boundary layer separation. In order to keep the effect of the pressure gradient, in particular,

a near-wall scaling is adopted that is related to the streamwise pressure gradient through the

pressure gradient velocity up = |(ν/ρ)(∂̟/∂x1)|1/3 [52]:

ũ∗
1 = ũ1

uτp

, x∗
2 =

x2uτp

ν
, with uτp =

√
u2

τ + u2
p. (15)

Hence, by defining the additional parameter α = u2
τ /u2

τp, and the turbulent viscosity

νt

ν
= κx∗

2

[
α + (1 − α)

3
2 x∗

2

]β
[

1 − exp

( −x∗
2

1 + Aα3

)]2

, (16)

with κ = 0.42 the von Kármán constant, A = 17 and β = 0.78, the wall-function is

obtained from the normalized velocity gradient

∂ũ∗
1

∂x∗
2

=
s̟ (1 − α)

3
2 x∗

2 + sτα

1 + νt/ν
, (17)

with s̟ = sign(∂̟/∂x1) and sτ = sign(τw). The integral of Eq. (17) between zero and

the value of x∗
2 measured at the sampling location gives the normalized velocity at the

same location, thus providing a functional relation as in Eq. (12). The numerical integration,

in particular, is performed by Gauss quadrature. Numerical tests indicate that the Gauss

integration over 10 quadrature points provides sufficient accuracy for the wall-function to be

valid up to about x∗
2 = 200, whereas 20 quadrature points are enough to reach x∗

2 ≃ 1, 000.

Regarding the solution of the wall shear stress, the Ridders’ iterative algorithm [46] is

chosen, which provides fast convergence and robustness. It is worth noting that, after sev-

eral different attempts, the most reliable solution procedure was found to be the solution

of the product ũ∗
1x

∗
2 = ũ1x2/ν as a function of x∗

2 , given the known values of the product,

which establishes whether the pressure gradient is favorable or adverse, and upx2/ν, which

provides the minimum admissible value for the sought solution x∗
2 (this follows immedi-

ately because, by the definition, uτp has to be greater than up). Note that the approximate

procedure without iterative solution [59] triggered numerical instabilities, especially in the

case of adverse pressure gradient. The tabulation technique proposed by Maheu et al. [38]
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was not attempted, but remains a possible future strategy to improve the performances of

the algorithm.

Finally, the heat flux at the wall, in this case, is computed following an analogous

procedure as the one described by Maheu et al. [38] as

qw =
µcp

Pr

∂ϑ

∂x2

∣∣∣∣
w

=
γ µx∗

2

Prϑ∗x2
(ẽI − ew), (18)

where x∗
2 is known from the solution of the velocity wall-function and the normalized

temperature is obtained by Gauss integration of the normalized temperature gradient

∂ϑ∗

∂x∗
2

=
1

1 + (Pr/Prt)(νt/ν)
, (19)

with Prt = 0.85 + 2ν/(νtPr) [26].

2.4 Discrete filters by Gauss quadrature integration

To obtain the filtered solution as required by the adopted LES modeling strategy, dis-

crete filters are built using the Gauss quadrature approach described by Lodato et al. [36]

(CD1 filters therein). For completeness, the relevant mathematical formulation is briefly

summarized in the present section.

The use of Gauss-Legendre quadrature points allows to build a discrete filter by (approx-

imate) analytical integration of the selected filter kernel. In particular, assuming that the

convolution integral can be approximately restricted within the SD element, the 1D filtering

operator can be defined as

φ(η) =
∫ +∞

−∞
φ(ξ)G
(η − ξ)dξ ≃

N∑

i=1

wG
i φiG
(η − ξi), (20)

where G
 is the convolution kernel associated with the low-pass filter at cutoff length


, and wG
i are the Gaussian quadrature weights associated with the N solution points ξi .

Choosing the Gaussian filter [49], the discrete filter weights are immediately obtained as

ws
i = KwG

i exp
[
−Ŵ(βs

i /αs)
2
]
, (21)

where Ŵ is generally taken to be equal to 6, βs
i = (ξi − ξs)/
, K is a normalization coef-

ficient and αs
 is the desired cutoff length scale. Since the Gauss quadrature weights are

strictly positive, the resulting filter weights are all positive as well, thus making this filter

particularly well behaved for numerical simulations. The parameter αs , in particular, is iter-

atively determined beforehand for each of the N solution points, such that the estimate of

the actual cutoff length of the filter based on the second order moment of the filter kernel

[37, 58] is as close as possible to the selected value of α0 = 1.5:

α2
0

12
=

N∑

i=1

ws
i (αs)(β

s
i − ξm)2, (s = 1, . . . , N), (22)

with ξm =
∑N

i=1 ws
i (αs)β

s
i (the dependance of the filter weights to the parameter αs has

been explicitly indicated for clarity). Finally, the normalization coefficient is computed such

that the preservation of a constant property is satisfied, viz.
∑N

i=1 ws
i = 1. The real part of

the kernels of CD1 filters for SD elements of order 5, the same order of the computations

presented in Section 3, is plotted in Fig. 3.
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Fig. 3 Real part of the transfer function Ĝ(k
/π) of CD1 filters for the SD discretization of order 5

( , analytical Gaussian filter)

3 Results

In the present section, results are presented from WMLES of the classical turbulent channel

flow at different Reynolds numbers, and the more complex flow through a channel with

periodic constrictions. It is worthwhile recalling that the purpose of the present study is not

to assess the overall accuracy of the wall-models by themselves but rather to show that there

exists an optimal way to integrate wall-functions and LES modeling into high-order FE type

discretizations. As it will be shown in more detail in the sections that follow, both the wall-

modeling strategies described in Sections 2.3.1 and 2.3.2 give accurate predictions as long

as the proposed optimal approach is used.

3.1 Turbulent channel flow

Channel flow computations were performed at three different Reynolds numbers, namely,

Reτ = 590, 2,000 and 4,000 (based on the friction velocity uτ and channel half-width

δ), and Mach number 0.3, and compared against the classical DNS datasets [18, 40] or

reference WRLES [28, 36]. Notice that, due the extremely small density variation at Ma =
0.3 (∼1.4 % increase from centerline to the wall), standard wall scalings are used to plot

the results [14].

Grid dimensions, resolution in wall units (indicated with superscript ‘+’) and total num-

ber of DoF are summarized in Table 1, where the last four rows refer to the wall-modeled

computations. These have been performed using both the BR and DBMCB wall-functions

described in Sections 2.3.1 and 2.3.2, respectively. Fourth- and fifth-order accurate compu-

tations have been carried out (i.e., N = 4 and 5, respectively). For reference, results from a

WRLES of the Reτ = 590 test case are also included. Note that the resolution of the com-

putation is estimated in Table 1 as the actual element size divided by the number of solution

points used within the element; in a Finite Volume (FV) context, this would be equivalent

to assuming that each element is filled with N3 identical control volumes.

All the computations have been performed with periodic boundary conditions in the

streamwise (i.e. along x1) and spanwise (i.e. along x3) directions. Isothermal walls have
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Table 1 Grid size and resolution for channel flow computations

Reτ Label L1 × L3 n1 × n2 × n3 N DoF 
+
1 
+

2 
+
3

590 CH1wr 4πδ × πδ 24 × 15 × 15 5 6.8 × 105 62 2.3–32 25

590† CH2wr 2πδ × πδ 16 × 15 × 8 5 2.4 × 105 46 2.3–32 46

590∗ CH3wm 2πδ × πδ 16 × 8 × 8 5 1.3 × 105 46 20–38 46

590∗ CH4wm 2πδ × πδ 16 × 8 × 8 4 6.6 × 104 58 24–47 58

2,000∗ CH5wm 2πδ × πδ 32 × 16 × 16 5 1.0 × 106 79 18–82 79

4,000∗ CH6wm 2πδ × 2
3
πδ 16 × 16 × 16 4 2.6 × 105 393 76–163 131

(
† wall-resolved computation with the same streamwise and spanwise resolution as in the wall-modeled

counterpart; ∗ wall-modeled computations
)

been adopted on the top and bottom planes and modeled using Eqs. (14, 18 and 19) in

the case of wall-modeled computations. In order to drive the flow, source terms s2 and

s5 have been added to the x1-momentum and energy equations, respectively [30, 36]. The

momentum source term has been designed such as to equilibrate, at each time-step, the

instantaneous resultant shear at the wall Fw, plus a relaxation term toward the expected

mass flow rate ṁ0 to accelerate convergence:

s2 =
Fw

V
−

α


t
(ṁ − ṁ0), with ṁ =

1

2δ

∫ δ

−δ

〈ρu1〉dx2, (23)

where V = L1L2L3 is the volume of the computational domain, the relaxation coefficient

α = 0.3 and 〈 · 〉 represents averaging in the streamwise and spanwise directions. The rel-

evant work was accounted for in the energy equation as the product of s2 and the bulk

velocity [30], i.e.,

s5 = ubs2, with ub = ṁ

[
1

2δ

∫ δ

−δ

〈ρ〉dx2

]−1

. (24)

The computations were initialized with a uniform streamwise 4th-order velocity profile and

a perturbed vertical velocity component [1, 48]. The flow was then left evolve, undergo

transition to turbulence and reach the statistically steady state. After the flow field was fully

developed and established, a number of statistical samples were collected in time; further

ensemble averaging in the streamwise and spanwise directions was also performed. Note

that, in all the results reported below, the simulation’s own prediction of uτ is used for

normalization purposes.

3.1.1 Wall-resolved channel flow

Two reference WRLES have been performed at the lower Reynolds number using standard

no-slip conditions at the wall. The former has been performed on a mesh (referred to as

CH1wr) identical to the one used in Ref. [36], whereas for the latter (CH2wr), streamwise

and spanwise grid resolutions have been set identical to those used in the WMLES. Both

grids share the same vertical resolution, which is significantly higher than that adopted close

to the wall for wall-modeled computations (cf. Table 1). Overall, the CH1wr and CH2wr

meshes have between two and ten times as many DoF as the wall-modeled counterparts,
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CH3wm and CH4wm. Moreover, they also share a considerably more stringent CFL limi-

tation on the explicit time integration scheme due to the clustering of solution points close

to the wall. Notice that, the grid CH1wr conforms to typical resolution requirements for

WRLES [62], i.e., 
+
1 < 80, 
+

3 < 30 and at least three points for 
+
2 < 10. On the

contrary, although streamwise resolution is somewhat improved, the CH2wr mesh is con-

siderably coarser in the spanwise direction (about 50 % coarser than recommended), and

hence violates those guidelines.

The relevant statistics from LES on grids CH1wr and CH2wr are shown in Figs. 4 and 5,

respectively, were the profiles of average streamwise velocity and root mean square (RMS)

of velocity fluctuations are plotted, together with the time history of the friction coefficient,

cf (t) = 2τw(t)/(ρu2
b), normalized by the exact expected mean value (5.63×10−3 at Reτ =

587.19 of the DNS computation). The results from the finer mesh CH1wr are in excellent

agreement with the DNS data. The measured error in the skin-friction coefficient is less

than 4 %. The results computed on grid CH2wr, on the other hand, are not as good. The

skin-friction coefficient is underestimated of about 14 %, which translates into the shift

observed in the velocity profile within the logarithmic region. Velocity fluctuations are also

over predicted close to the wall, as typically observed in the case of insufficient near-wall

resolution [39].

(a) (b)

(c) (d)

Fig. 4 WRLES on CH1wr grid with WSM model: a mean streamwise velocity; b and c RMS of velocity

fluctuations represented with inner and outer scalings, respectively; and d normalized friction coefficient.

DNS data [40] are represented with solid lines. Vertical dotted line in (d) marks the beginning of time

averaging
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(a) (b)

(c) (d)

Fig. 5 WRLES on CH2wr grid with WSM model: a mean streamwise velocity; b and c RMS of velocity

fluctuations represented with inner and outer scalings, respectively; and d normalized friction coefficient.

DNS data [40] are represented with solid lines. Vertical dotted line in (d) marks the beginning of time

averaging

These reference results confirm once more that typical resolution requirements for wall-

resolved LES are extremely hard to “relax”, and will become useful, in the discussion that

follows, to assess the overall profit in using the proposed wall-modeling technique.

3.1.2 Wall-modeled channel flow

First- and second-order statistical moments obtained from wall-modeled channel flow com-

putations with the BR (cf. Section 2.3.1) and the DBMCB (cf. Section 2.3.2) wall-functions

are plotted in Figs. 6, 7, 8 and 9. For the Reτ = 590 and 2,000, the results are compared

to the available DNS data [18, 40], whereas for the Reτ = 4,000, the comparison is done

against the results from a WRLES [28]. The extent of first wall element, having a width

of about 100 wall units for Reτ = 590 and 2,000 and 300 wall units for Reτ = 4,000, is

indicated in the plots by vertical dash-dotted lines.

Despite the simple strategy used to couple the LES region with the wall-modeled zone,

the results are extremely good and encourage the use of similar zonal approaches with high-

order SD methods together with a suitable SGS model, such as the WSM model adopted

here. Above the modeled region, average profiles are extremely well captured. For the

Reτ = 2,000 case, in particular, the wake region above x+
2 ∼ 500 is perfectly reproduced
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(a) (b)

Fig. 6 Mean velocity profile (a) and RMS of velocity fluctuations (b) from WMLES on grid CH3wm

(Reτ = 590): open symbols, WSM model and BR wall-function (ilw = 5); lines, DNS data [40]. The vertical

lines mark the limit between wall-modeled and LES resolved regions
(
◦, U+

1 or u+
1,rms; �, u+

2,rms; △, u+
3,rms

)

(cf. Fig. 8a). On the other hand, the coarser mesh used at Reτ = 4,000 did not allow the wake

region to fully develop (see Fig. 9a and c). The suppression of the wake is also observed in

the WMLES results reported by Chung and Pullin [11], where the Reτ = 2,000 channel is

(a) (b)

(d)(c)

Fig. 7 Mean velocity profiles (a, c) and RMS of velocity fluctuations (b, d) from WMLES on grid CH4wm

(Reτ = 590): open symbols, WSM model and BR (top) and DBMCB (bottom) wall-functions (ilw = 4);

lines, DNS data [40]. The vertical lines mark the limit between wall-modeled and LES resolved regions(
◦, U+

1 or u+
1,rms; �, u+

2,rms; △, u+
3,rms

)
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(a) (b)

Fig. 8 Mean velocity profile (a) and RMS of velocity fluctuations (b) from WMLES on grid CH5wm

(Reτ = 2,000): open symbols, WSM model and BR wall-function (ilw = 5); lines, DNS data [18]. The

vertical lines mark the limit between wall-modeled and LES resolved regions
(
◦, U+

1
or u+

1,rms
; �, u+

2,rms
;

△, u+
3,rms

)

computed on a mesh with 
+
1,3 = 333 (similar to CH6wm resolution), but not in the results

by Pantano et al. [42], where the same Reynolds number was computed on a mesh with


+
1,3 = 87 (similar to CH5wm resolution). Although these studies, and the present one, are

characterized by different numerics and modeling approaches, the above observation seems

to suggest that the mentioned wake suppression phenomenon might be due to insufficient

streamwise and spanwise grid resolutions, rather than to the wall-modeling strategy.

Resolved Reynolds stresses fall generally below the DNS curves, which is expected for

such relatively under-resolved grids, especially for the higher Reynolds numbers, where the

SGS turbulent kinetic energy (not included in the results) represents a significant portion

of the total energy. Note that the turbulent intensities for the Reτ = 4,000 test cases are

plotted against the wall-resolved LES rather than the DNS counterparts. This explains why,

in spite of the CH6wm grid being the extremely coarse, the overall degree of agreement

within the outer layer seems generally better than that observed for the lower Reynolds num-

ber cases. For the more accurate fifth-order computations CH3wm and CH5wm the curves

show the remarkable ability to correctly reproduce trends and peaks of velocity fluctuations

even within the modeled region (i.e. x+
2 < 100), especially in the streamwise and vertical

directions. As expected for a classical equilibrium flow such as the turbulent channel flow,

the use of either BR or DBMCB wall modeling approaches produced negligible differences

with relative errors in the friction velocity of 1.3 % (BR) vs 1.5 % (DBMCB) and 2.8 %

(BR) vs 1.7 % (DBMCB) for grids CH4wm and CH6wm, respectively (see Figs. 7 and 9

and Table 2).

The relative errors measured on the friction velocity are listed in Table 2 for different

grids, Reynolds numbers, wall-functions and the relevant sampling locations (referred to as

the ilw index therein). For the higher Reynolds numbers (i.e., grids CH5wm and CH6wm),

the results obtained from computations performed without any wall-function are also given

to better justify the inadequacy of the relevant meshes in providing accurate WRLES results.

All the computations in which the wall-farthest sampling point was used to provide infor-

mation to the wall-function reproduced a fairly accurate friction velocity, with errors that

are generally smaller that 3 %. On the other hand, sampling at the first off-wall solution
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point (i.e., ilw = 1) resulted in uτ being under predicted by as much as about 40 %. Higher

errors were obtained at Reτ = 2,000 and 4,000 when using no-slip boundary conditions

without any wall model. As anticipated, the flow field at the first solution point—located

in the buffer layer or around the end of the viscous sublayer (cf. Figs. 7, 8 and 9)—is

clearly too under-resolved to provide sufficiently accurate informations to the wall-function,

and definitely too far from the wall for the no-slip condition to be enforced with the right

shear stress. It is worthwhile mentioning that two computations with the BR wall-function

enforced at ilw = 1 became unstable when using the approximate solution approach [59].

For these computations, an iterative solution approach [46] was necessary.

As a result of the wrong friction velocity, the relevant normalized profiles (not shown)

were significantly over predicted. Notice that, even though a better estimate for uτ could

be obtained by post-processing the computed mean profile through a wall-function at a

higher sampling location, the relevant shear-stress would not correspond to the one applied

as boundary condition during the simulation, and consequently the relevant rescaled profile

would be inconsistent and characterized by the wrong slope within the logarithmic region.

To better show the negative effects of selecting the non-optimal first off-wall solution

point, the profiles of velocity, this time normalized by the bulk velocity ub, are plotted

in Fig. 10 for the higher Reynolds numbers, where more significant errors in the friction

(a) (b)

(c) (d)

Fig. 9 Mean velocity profiles (a, b) and RMS of velocity fluctuations (b, d) from WMLES on grid CH6wm

(Reτ = 4,000): open symbols, WSM model and BR (top) and DBMCB (bottom) wall-functions (ilw = 4);

dotted lines, three-layers wall-function [6]; dashed lines, WRLES [28]. The vertical lines mark the limit

between wall-modeled and LES resolved regions
(
◦, U+

1
or u+

1,rms
; �, u+

2,rms
; △, u+

3,rms

)
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velocity were recorded for ilw = 1. For the Reτ = 4,000 test cases, the BR wall-function

normalized by its integral is plotted for reference, i.e.,

fBR(Reτy)/IBR, (25)

with fBR(Reτ y) from Eq. (13) and

IBR =
[

Reτ

2
y2

]yvs

0

+
[
Ay ln(Reτy) + (B − A)y

]ybf

yvs

+ 1

κ

[
y ln(Reτ Ey) − y

]1

ybf

, (26)

where y = x2/δ, yvs = 5/Reτ and ybf = 30/Reτ (other relevant constants are given in

Section 2.3.1). Embedded plots with logarithmic scale are also shown to visually enhance

the differences in the computed profiles within the LES resolved region. As it can be seen

in the figures, the insufficient shear produced by the wall-functions when the first off-wall

solution point is used causes an excessive acceleration of the flow in the vicinity of the

interface of the first (modeled) element. This results in the normalized mean velocity being

over predicted. As a consequence of this excess velocity and the enforcement of the nominal

mass-flow rate (cf. Eq. (23)), the profiles become somewhat “flatter” and characterized by a

noticeable deficit in the centerline velocity. Apart from the already mentioned suppression

of the wake region at Reτ = 4,000, the profiles obtained by solving the wall-function away

from the wall—i.e., 5th and 4th solution points for Reτ = 2,000 and 4,000, respectively—

show excellent agreement with the DNS data and the reference log-law.

In order to check for the presence of unexpected numerical artifacts due to the coupling

between the wall-modeled layer and the LES above it, the contours of the resolved velocity

over horizontal planes located near the upmost interface of the wall element are depicted

in Fig. 11. For the Reτ = 590 case, the same plane extracted from the wall-resolved LES

Table 2 Wall-modeled turbulent channel flow simulations: error in the computed friction velocity (by

convention, ilw = 1 corresponds to the wall-closest solution point)

Grid Reτ0 Wall-Function ilw Reτ Err. %

CH3wm 590 BR 5 602.37 2.0

BR 1 531.39 −9.9a

DBMCB 1 513.22 −13.0

CH4wm 590 BR 4 597.84 1.3

DBMCB 4 599.04 1.5

DBMCB 1 465.35 −21.1

CH5wm 2,000 BR 5 2,026.54 1.3

BR 1 1,677.74 −16.1a

none − 1,653.97 −17.3

CH6wm 4,000 BR 4 4,114.44 2.8

BR 1 2,610.16 −34.7

DBMCB 4 4,071.28 1.7

DBMCB 1 2,477.28 −38.0

none − 2,367.43 −40.8

(a iterative solution of the wall-function was necessary)
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(a) (b)

(c)

Fig. 10 Streamwise mean profile normalized by the bulk velocity, 〈u1〉/ub: open symbols, WSM model and

wall-functions at wall-farthest sampling point; solid symbols, WSM model and wall-functions at wall-closest

sampling point (ilw = 1); solid lines, DNS data [18]; dotted lines, three-layers wall-function [6]. The vertical

lines mark the limit between wall-modeled and LES resolved regions

(CH1wr) is also shown for reference. The visual inspection of these contours does not reveal

the presence of any unphysical numerical artifact between the wall-modeled layer and the

LES resolved region above it. The reference wall-resolved LES (Fig. 11a) appears smoother

thanks to its higher streamwise and spanwise resolutions but, overall, the size and the shape

of the turbulent structures are similar to those observed in the wall-modeled counterpart.

Note that the contours for the CH6wm test in Fig. 11d are taken well within the logarithmic

region (x+
2 = 300), hence the (somewhat misleading) lack of fine structures compared to the

Reτ = 2,000 case. Recalling that the LES model is not modified within the wall-modeled

element (cf. Section 2.3), the absence of unphysical artifacts does not come with surprise.

In fact, no change is made in the numerics and the model at the sampling point, whose LES

solution is merely used to predict—through the wall-function—the wall shear stress that the

flow has to equilibrate in a statistical sense.

3.1.3 Channel with periodic constrictions

Both wall-functions described in Section 2.3 have been tested using the same geometry

adopted in other similar studies [7, 12, 55], i.e., a channel with periodic constrictions at

Reh = 10,595 (based on the bulk velocity ub and the hill height h). A reference wall-

resolved LES has been performed on a grid (referred to as PC0wr) with 72,128 elements

(9.0 × 106 DoF at N = 5). The relevant resolution can be considered as being somewhere
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(d)

(c)

(b)

(a)

Fig. 11 Contours of velocity magnitude at x+
2 = 100 (a, b, c) and x+

2 = 300 (d). Half domain length is

represented in (a)

between the reference grid in Ref. [7] and grid 3 in Ref. [55]. Wall-modeled computa-

tions have been performed on a coarser mesh (PC1wm) with 5,760 elements (3.7 × 105

DoF at N = 4), which roughly corresponds to grid B of Ref. [12] (although this last was
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characterized by a better resolution at the top wall). The two meshes are depicted in Fig. 12

and the relevant details are summarized in Table 3. Notice that the resolution of the bot-

tom and top walls is evaluated in standard wall units measuring from the reference LES

the maximum friction velocity over the hill crest and the average friction velocity over the

top wall, respectively. Again, grid resolution is estimated as the element size divided by

N without accounting for the actual non-uniform distribution of Gauss-Legendre quadra-

ture points (cf. Fig. 1). The actual distance between the first solution point and the wall

can be obtained by multiplying 
+
2 from Table 3 by 0.28 for the grid PC1wm, and by

0.23 for the grid PC0wr. Also note that quadratic boundary elements are used on both grids

for the bottom wall to allow a more accurate prediction of the boundary layer separation

point [54].

A first check is done on the profiles of the skin-friction coefficient, computed from the

average shear stress as cf = 2〈τw〉/(ρu2
b), which are plotted in Fig. 13, where thick solid

lines is used for the reference LES on the fine mesh.

At the bottom wall (Fig. 13a), as expected, the shear stress obtained with the no-slip

boundary condition (i.e., without any wall-model) is generally underestimated in absolute

(a)

(b)

Fig. 12 Side view of the computational grids used for the channel with periodic constrictions: a coarse mesh

for wall-modeled computations and b fine mesh for reference wall-resolved LES. Blue lines indicate the

actual elements, whereas grey lines represent FV equivalent control volumes (cf. discussion about resolution

in Section 3.1)
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Table 3 Grid size and dimensions for computations of channel with periodic constrictions

Label PC0wr PC1wm

n1 × n2 × n3 49 × 32 × 46 30 × 8 × 24

N 5 4

DoF 9.0 × 106 3.7 × 105

top wall 
1/h 0.020–0.040 0.075


2/h 0.014–0.020 0.078–0.120


+
1 13–26 48


+
2

9–13 50–77


+
3 13 31

bottom wall 
1/h 0.014–0.060 0.055–0.098


2/h 0.008 0.050


+
1

17–73 67–119


+
2 10 61


+
3 24 58


3/h 0.020 0.048

(L1 × L2 × L3 = 9h × 3.035h × 4.5h, where h is the hill height and L2 is the maximum distance from the

top and bottom walls measured in the middle of the domain)

value. When the wall-functions are used, although negligible differences among the dif-

ferent computations are observed between the reattachment point (x1/h = 4.74 for the

reference LES) and the second separation point around x1/h = 7.2, the measured skin-

friction coefficient is generally improved. As expected for such a non-equilibrium boundary

layer with strong pressure gradient effects, the DBMCB wall-function performs better than

the BR. In particular, the best results are obtained when the sampling location is set at

ilw = 4, whereas the same wall-modeling approaches applied at the wall-closest solution

point deteriorate the solution. Overall, considering how coarse is the mesh used, the level

(a) (b)

Fig. 13 Profiles of skin-friction coefficient cf = 2〈τw〉/(ρu2
b): thick solid line, reference LES on grid

PC0wr; solid line, DBMCB wall-model with ilw = 4; dashed line, BR wall-model with ilw = 4; dash-dot-

dotted line, DBMCB wall-model with ilw = 1; dash-dotted line, BR wall-model with ilw = 1; dotted line,

no-slip boundary condition
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Table 4 Normalized separation and reattachment point locations and recirculation length

Grid Wall-Function ilw (x1/h)sep (x1/h)reat (x1/h)reat − (x1/h)sep

PC0wr none − 0.26 4.74 4.48

none − 0.14 4.32 4.18

DBMCB 4 0.21 4.20 3.99

PC1wm DBMCB 1 0.04 4.11 4.07

BR 4 0.24 4.51 4.27

BR 1 0.04 4.34 4.30

of agreement is very satisfactory. The location of the separation and reattachment points

measured form the different computations is reported in Table 4. The computations per-

formed with ilw = 4 give a more accurate separation location compared to those where ilw
is set to one or without wall-model, which determine an early separation. Similar trends in

favour of setting ilw = 4 are observed for the reattachment location. Surprisingly, the BR

wall-function gives a slightly better prediction of separation and reattachment.

At the top wall (cf. Fig. 13b), the shear stresses obtained without the wall-model or with

the wall-model at the first off-wall sampling location appear significantly underestimated

(in absolute value), whereas sampling away from the wall leads to the prediction of a more

accurate skin-friction coefficient. This behavior is consistent with previous results from the

plain channel flow computations.

For this type of flow, in general, the size and the shape of the recirculation region

downstream of the hill are extremely sensitive parameters in assessing wall-modeling

approaches [12]. More details about the topology of the recirculation region are given in

Fig. 14, where the streamlines of the mean flow are shown for the reference WRLES on the

fine mesh, and Figs. 15 and 16, where results are shown for the computations performed on

the coarse meshe. Note that the shaded area in Figs. 15 and 16 corresponds to the reference

WRLES on the fine mesh and serves as a reference to identify the expected length of the

recirculation region.

Fig. 14 Mean flow streamlines within the recirculation region for the reference LES on grid PC0wr. The

shaded area represents the region of negative streamwise velocity and identifies the length of the recirculation



Flow Turbulence Combust

(b)

(a)

Fig. 15 Mean flow streamlines within the recirculation region: a DBMCB wall-model at wall-farthest sam-

pling point; b DBMCB wall-model at wall-closest sampling point. The shaded area represents the region of

negative streamwise velocity from the reference LES on grid PC0wr

Overall, although, as mentioned above, the wall-functions applied at the wall-farthest

solution point produce a slightly more accurate separation and reattachment points, the

shape of the recirculation region do not appear to be as sensitive to the particular wall treat-

ment as it was reported by Duprat et al. [12] for an identical configuration (cf. Figs. 13

and 16 therein). Also notice how similar the present results on the coarse mesh PC1wm

are to those computed on the finer grid A in Ref. [12], whereas the computations on grid

B therein—more similar to grid PC1wm as far as resolution is concerned—show a sig-

nificantly shorter recirculation region. This is most probably due to grid B therein being

somewhat coarser at the bottom wall and, possibly, partly explained by the differences in

the numerical approach and SGS modeling.

In Fig. 17 the profiles of mean streamwise velocity at different locations along the chan-

nel are plotted. The different computations give results which are very close to each other

and which follow the reference solution reasonably well. Despite the mesh being very

coarse, even the computation carried out without any wall-model, somewhat unexpectedly,

provides acceptable results. Regardless of the sampling location, the use of the BR wall-

function determines some relatively marginal change compared to the computation done

with no-slip conditions, whereas the DBMCB wall-function determine a more significant
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(a)

(b)

(c)

Fig. 16 Mean flow streamlines within the recirculation region: a BR wall-model at wall-farthest sampling

point; b BR wall-model at wall-closest sampling point; c no-slip condition. The shaded area represents the

region of negative streamwise velocity from the reference LES on grid PC0wr

improvement and, demonstrates good performances for this type of flow, especially when

applied away from the wall setting ilw = 4. This further support the adoption of such

strategy in conjunction with a suitable wall-modeling formulation.
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(a) (b)

(c) (d)

Fig. 17 Profiles of mean streamwise velocity 〈u1〉/ub: thick solid line, reference LES on grid PC0wr; solid

line, DBMCB wall-model with ilw = 4; dashed line, BR wall-model with ilw = 4; dash-dot-dotted line,

DBMCB wall-model with ilw = 1; dash-dotted line, BR wall-model with ilw = 1; dotted line, no-slip

boundary condition. The vertical lines mark the limit between wall-modeled and LES resolved regions

4 Concluding Remarks

An optimal strategy has been developed to couple the high-order SD method for unstruc-

tured grids, RANS type wall-functions for equilibrium and non-equilibrium turbulent

boundary layers and a scale-similarity mixed model featuring dedicated discrete filters of

arbitrary order. The discontinuous finite element type discretization is recognized as being

an extremely well suited platform for such a hybrid RANS-LES zonal approach. Accord-

ingly, the first element at the wall is solved such as to entirely model the viscous sub-layer

and the buffer layer above, by having care to feed information to the law-of-the-wall from

the better resolved solution point therein. Despite the extremely simple approach used,

numerical tests on the turbulent channel flow at Reτ = 590, 2,000 and 4,000, as well as

on the more complex channel with periodic constrictions at Reh = 10,595, have proven

that the proposed implementation is effective to perform accurate and reliable WMLES.

For the turbulent channel flow, in particular, average velocity and turbulent intensities are

extremely well captured and the measured errors in the friction velocity generally fall below

3 %, whereas applying the wall-function at the first off-wall solution point according to

standard practices deteriorates significantly the results, with errors in uτ of about 10–40 %.

Moreover, the reduction in the error brought by the proposed strategy for SGS/wall-model
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coupling comes essentially at no cost. The results extracted from the more challenging test

case of a channel with periodic constrictions, where the boundary layer undergoes separa-

tion and reattachment, essentially confirm the benefits of the proposed strategy. Although

the mean velocity profiles do not show marked differences when different approaches are

used, the shape and the length of the recirculation region appear in this case better predicted

when a suitable wall-function is used and applied deeper within the boundary layer.

These encouraging results, which complement ongoing efforts to develop consistent

implementations of advanced LES modeling strategies in the high-order SD scheme, open

the path to further exploit this numerical platform, as well as a broad range of other similar

methodologies, for hybrid RANS-LES computations of complex geometries of engineering

interest. Future work will be devoted to the development of more general wall-modeling

strategies to perform high-fidelity LES of real systems. In particular, two extremely interest-

ing possible additions appear to be the inclusion of a local turbulence sensor for transitional

boundary layers [5] and the development of an improved approach which adapts dynami-

cally the sampling location depending on the local resolution and the turbulence level (e.g.,

by varying ilw from zero—meaning that no wall-model is used—to N according to the above

mentioned turbulence sensor).
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