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Abstract

Background: The molecular circuitry of living organisms performs remarkably robust regulatory tasks, despite the
often intrinsic variability of its components. A large body of research has in fact highlighted that robustness is
often a structural property of biological systems. However, there are few systematic methods to mathematically
model and describe structural robustness. With a few exceptions, numerical studies are often the preferred
approach to this type of investigation.

Results: In this paper, we propose a framework to analyze robust stability of equilibria in biological networks. We
employ Lyapunov and invariant sets theory, focusing on the structure of ordinary differential equation models.
Without resorting to extensive numerical simulations, often necessary to explore the behavior of a model in its
parameter space, we provide rigorous proofs of robust stability of known bio-molecular networks. Our results are in
line with existing literature.

Conclusions: The impact of our results is twofold: on the one hand, we highlight that classical and simple control
theory methods are extremely useful to characterize the behavior of biological networks analytically. On the other

hand, we are able to demonstrate that some biological networks are robust thanks to their structure and some
qualitative properties of the interactions, regardless of the specific values of their parameters.

Background

The complex biochemistry of living organisms very
often outperforms electrical and mechanical devices in
terms of adaptability and robustness. Mapping such
intricate reaction networks to high level design princi-
ples is the goal of systems biology, and it requires an
immense collaborative effort among different disciplines,
such as physics, mathematics and engineering [1].

The most classical example of robust molecular circui-
try is probably given by bacterial chemotaxis [2,3]. The
action of the flagellar motor of E. coli cells is driven by
a cascade of signaling proteins, whose active or inactive
state is determined by the presence of nutrient in the
environment. Both analysis on a simplified ordinary dif-
ferential equation (ODE) model [2] and experiments [3]
showed how the flagellar motion of E. coli presents a
robustly stable steady state: steps in the nutrient con-
centration only temporarily alter the motor equilibrium.
Cells are therefore sensitive to nutrient gradients, but
always return to their stable motion mode (such
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property is also referred to as adaptability). Such stable
steady state is only a function of the concentrations of
the signaling cascade protein components and a few
binding rates, and is therefore independent of external
inputs. Further analysis also demonstrated how integral
feedback is present in the chemotaxis network, and
guarantees robustness (perfect adaptation) of the equili-
brium [4].

In this work, we are going to ask a simple question: are
there biological systems that present structurally stable
equilibria, and preserve this property robustly with
respect to their specific parameters? This question has
been considered before in the literature. For instance,
through extensive numerical analysis on three-node net-
works, the authors of [5] have shown that adaptability of
these systems can be investigated solely based on their
structure, regardless of the chosen reaction parameters.
In [6], through numerical exploration of the Jacobian
eigenvalues for two, three and four node networks, the
authors isolated a series of interconnections which are
stable, robustly with respect to the specific parameters.
Such structures also turned out to be the most frequent
topologies in existing biological networks databases.
Numerical simulation has arguably been the most
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popular tool to investigate robustness of biological net-
works [7-12]. Analytical approaches to the study of
robustness have been proposed in specific contexts. A
series of recent papers [13,14] focused on input/output
robustness of ODE models for phosphorylation cascades.
In particular, the theory of chemical reaction networks is
used in [14] as a powerful tool to demonstrate the prop-
erty of absolute concentration robustness. Indeed, the so-
called deficiency theorems [15] are to date some of the
most general results to establish robust stability of a che-
mical reaction network. Monotonicity is also a structural
property that is useful to demonstrate robust dynamic
behaviors of a class of biological models [16,17]. Robust-
ness has also been investigated in the context of com-
partmental models, which are often encountered in
biology and chemistry [18].

In this work, we provide a simple and general theore-
tical tool kit for the analysis bio-molecular systems.
Such tools are suitable for the investigation of robust
stability by means of Lyapunov and set-invariance meth-
ods. Provided that certain standard properties are veri-
fied, we demonstrate how a number of well known
biological networks are asymptotically stable, robustly
with respect to the model parameters. In some cases, we
are also able to provide robust bounds on the system
performance. Our approach does not require numerical
simulation efforts. The contribution of the paper can be
summarized as follows.

» The framework we suggest is easy and intuitive for
biologists to formulate qualitative models without
the need of exact mathematical expressions and
parameters. We will propose analytical methods that
only rely on qualitative interactions between network
components.

o The properties that can be derived from such
modeling are, consequently, structurally robust
because they are not inferred from mathematical for-
mulas arbitrarily chosen to fit data.

» We suggest techniques based on set-invariance and
Lyapunov theory, in particular piecewise-linear func-
tions, to show that such models are amenable for
robust investigation by engineers and mathemati-
cians. Such techniques are believed to be quite effec-
tive and promising in dealing with biological
robustness [19], [20].

« We consider several models from the literature,
reporting the original equations, and rephrasing
them in our setup as case studies.

+ We show how robust certifications can be given to
important properties (some of which have been
established based on specific models).
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Methods

Robustness

We will consider biological dynamical systems which are
successfully modeled with ODEs and can be written as:

x=f(xu), x(0)=xo, (1)

where x is the system state, # models external inputs,
and both are vectors of appropriate dimensions. Such
class of models is appropriate for biological systems
where stochasticity and anisotropy can be neglected. We
define robustness as follows:

Definition 1 Let Cbe a class of systems and Pbe a
property pertaining such a class. Given a family
F C Cwe say that P is robustly verified by &, in short
robust, if it is satisfied by each element of 7.

Countless examples can be brought about families &
and candidate properties. In this work, we will focus on
the property of stability, which is an important feature
for the equilibria of biological networks [1,6,17]. If we
take into account a linear or linearized dynamical sys-
tem, we can immediately provide an example that clari-
fies our definition of robustness [21]. Let C be the class
of linear differential systems and & the family of second
order systems described by

X1 (t) _|—a b X1 (t)
[Xz(f)] B [—C —d} [XZ(I)]

with positive and constant coefficients a, b, ¢, d.
Assume P = asymptotic stability. Then we can say that P
is robust. The situation is different if we admit that a(),
b(t), c(t), d(¢) can vary with time, yielding a system
which is possibly unstable.

If one is interested in the global system behavior, Lya-
punov functions are a powerful tool providing sufficient
conditions for stability. Given an equilibrium point X,
any convex function V(x — x) > 0 for x # x and zero at
the origin is a candidate Lyapunov function. If flx, u) is
continuous, and V (-) is smooth, then V () is a Lyapu-
nov function if:

V(x—X) = VV(x — X)f(x, 1) < «(x —X),

where 7 is fixed and « (-) is a negative definite func-
tion (i.e. k¥ () < 0 on all its domain, except for s (0) =
0).

Non-smooth Lyapunov functions

The concept of Lyapunov derivative can be generalized
when the function V (-) is non-smooth. For instance,
consider the convex function:

V(x—Xx)=maxVij(x—Xx), i=1, ..., N,
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where each V,(-) is smooth and convex, and assume
that V (-) is positive definite. The set of active functions
is never empty and is defined as: A = {i: Vj(x — X) = V}.
If we define the generalized Lyapunov derivative as:

D*V(x — %) = max VV;(x — X)f (x),

then the condition for stability becomes:

D*V(x—X) <«(x—X), «(-)negative definite.

Positively invariant sets

We are interested in cases where the trajectories of sys-
tem (1) remain trapped in bounded sets at all times,
therefore behaving consistently with respect to some
desired criterion.

We say that a subset S of the state space is positively
invariant if x(0) € S implies that also x(t) € S for all ¢ >
0. The following theorem (which relies on the concept
of Lyapunov function) provides a general necessary and
sufficient condition for a set to be invariant.

Theorem 1 (Nagumo, 1943) Assume that system (1)
(for a fixed constant input ui) admits a unique solution.
Consider the set:

S=xeR": six)<o,i=1,...,1},

where s; are smooth functions, and ©; are given con-
stants. Assume that Vs; #0, Vx € 3S. The set of active
constraints is 1(x) = {i: si(x) = o3}, and is non-empty
only on the boundary of S. Then the set Sis positively
invariant if and only if

Vsi(x)f (x,4) <0, Vx € 3S, and i € Z(x).

For instance, if our constraining functions are linear, s"x
< 0, the Nagumo conditions are sTf(x, 1) < 0. We refer
the reader to [22] for further details on positively invariant
sets; more recent works on this topic are [23] and [24].

Structural robustness investigation for biological
networks

Let us begin with a simple biological example. Consider
a protein x;, which represses the production of an RNA
species x. In turn, x, can be the target of another RNA
species u, (and form an inactive complex to be
degraded) or it can be translated into protein x3. A stan-
dard dynamical model [25] of this process is:

X1 =uy — buxy,

. 1
X2 = doi(x1) — baoxy — boy, X212, doi(x1) = 2 (2)

1 +x]

X3 = a32Xy — b33x3.
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RNA species x, determines the production rate of pro-
tein x3 by indexing the corresponding reaction rate as
as,. Following the standard notation in control theory,
we assume that the production rate of protein x; is dri-
ven by some external signal or input #;, and that RNA u,
also acts as an external input on RNA x,. We assume
that all the system parameters are positive and bounded
scalars. Terms a;; are first order production rates: species
i is produced at a rate which is linear in species j; by,
denote in this case first order degradation rates. The
term do;(x;) is a well known Hill function term [26]. The
stability properties of this small network can be immedi-
ately assessed: x; will converge to its equilibrium
D_CI = ul/bu. Similarly, 3—(?2 = d21 (J_C] )/(bzz + b2u; UQ),
X3 = a3Xy/bss. Regardless of the specific parameter
values, and therefore robustly, the system is stable. The
equilibrium X; could grow unbounded with #;, however
X is always bounded.

We remark that the knowledge of functions a;x, b;,x
and d(-) is not necessary at all: the previous conclusions
can be easily derived by the qualitative information that
dy; is strictly decreasing and asymptotically converging
to 0, while by1x1, booxs, bay,XoUn, azsx, and biyzxs are
increasing.

It is appropriate at this point to outline a series of
general assumptions that will be useful in the following
analysis.

We will consider a class of biological network models
consisting of # first order differential equations

7)) =Y filxix) — Y gl xn)+

jeA; heB; (3)
+ Z Cis(%s) + Z di(x1),
SEC{ ZEDi

where x;, i = 1,..., n are the dynamic variables. For
the sake of notation simplicity, we are not denoting
external inputs with a different symbol. Inputs can be
easily included as dynamic variables X, = wy(xy, t)
which are not affected by other states and have the
desired dynamics. The sets A;, B;, C;, D; denote the
subsets of variables affecting x;. The different terms
in equation (3) are associated with a specific biologi-
cal and physical meaning. The terms fj(- , -) are asso-
ciated with production rates of reagents, typically,
these functions are assumed polynomial in their argu-
ments; similarly, terms g;; (-, -) model degradation or
conversion rates and are also likely to be polynomial
in practical cases. Finally, terms c(-) and d(-) are asso-
ciated with monotonic nonlinear terms, often given
by Michaelis-Menten or Hill functions [26]. We
assume that system (3) satisfies the following
assumptions:
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A1 (Smoothness) Functions fj; (-, -), gn (-, *), ¢;5 () and
d; (-) are unknown nonnegative continuously differenti-
able functions.

A2 f; (x;, 0) = 0 and gy (x;, 0) = 0, Vx.

A3 Functions f;; (x;, x;) and g (x;, x5), are strictly
increasing in x; and x;, respectively.

afij (xi, x7) =0
ij

agin (xi, xn) -0

,  Vx
Xy,

’

A4 (Saturation) Functions c,(x,) and d;(x;) are nonne-
gative and, respectively, non-decreasing and non-increas-
ing. Moreover c;(e0) > 0 and d;(0) > 0.

A5 Functions gy (- , -) are null at the lower saturation
levels : gi;,(0, x) = 0, Vxy,.

In view of the nonnegativity assumptions and
Assumption 5, the general model (4) is a nonlinear posi-
tive system, according to the next proposition, and its
investigation will be restricted to the positive orthant.

Proposition 1 The nonnegative orthant x; 2 0 is posi-
tively invariant for system (4).

Given the above assumptions, we can write equation (3)
in an equivalent form. First of all, in view of A1-A3, we
can write: fii(x;, %)) = a(x;, x)xj, gin(xi x1) = b(x;, x3,)%, with

8in(xi, xn)

,and  bij(x;, x,) = %

aij(xi, %) = fii9)
Xj
The above expression is always valid due to the
smoothness assumption Al (see [18], Section 2.1).
Additionally, assumption A5 requires that (0, x;,) =
0, Vxy, for i = h. Once we adopt this notation, we can
rewrite model (3) as follows:

xi(t) = Z aij(xi, X;)x — Z bin (xi, x5 )+

jeA; heB; (4)
+> cilx)+ Y da(x),i=1,2, ..., n.
seC; leD;

To simplify the notation, we have considered func-
tions depending on two variables at most. However, we
can straightforwardly extend assumptions A1-A5 to
multivariate functional terms in equation (3). In turn,
the model structure (4) can be easily generalized to
include terms as a(x;, X, Xx...), b(xi %), Xpoen.), (%45 Xy
Kgenn)s AXiy Xjy Kpen).

If we restrict our attention to the general class of
models (4), under assumptions A1-A5, we can proceed
to successfully analyzing the robust stability properties
of several biological network examples.

The structural analysis of system (4) can be greatly
facilitated whenever it is legitimate to assume that func-
tions a, b, ¢ d have certain properties. For the reader’s
convenience, a list of possible properties is given below.
Given a general function f{x):
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P1 f(x) = const 2 0 is nonnegative-constant.

P2 fix) = const > 0 is positive-constant.

P3 f (x) is sigmoidal: it is non-decreasing, f0) = f (0) =
0, if 0 <flee) <oo and its derivative has a unique maxi-
mum point, f'(x) < f'(x)for some X > 0.

P4 f (x) is complementary sigmoidal: it is non-increas-
ing, 0 <f(0), f(0) = 0, flec) = 0 and its derivative has a
unique minimum point. In simple words, fis a CSM
function iff A0) - fix) is a sigmoidal function.

P5 f (x) is constant-sigmoidal, the sum of a sigmoid
and a positive constant.

P6 f (x) is constant-complementary-sigmoidal, the sum
of a complementary sigmoid and a constant.

P7 f (x) is increasing-asymptotically-constant: f(x) > 0,
0 <f () <oo and its derivative is decreasing.

P8 f (x) is decreasing-asymptotically-null: f(x) < 0, f
(e0) = 0 and its derivative is increasing.

P9 f (x) is decreasing-exactly-null: f(x) < 0, for x < x
and f (x) = 0 for x > Xfor some x > 0.

P10 f (x) is increasing-asymptotically-unbounded: f(x)
>0, f (o) = + oo,

As an example, the terms d(-) and ¢(-) are associated
with Hill functions, which are sigmoidal and comple-
mentary sigmoidal functions. A graphical sketch of their
profile is in Figure 1C and 1D.

Network graphs

Building a dynamical model for a biological system is
often a long and challenging process. For instance, to
reveal dynamic interactions among a pool of genes of
interest, biologists may need to selectively knockout
genes, set up micro RNA assays, or integrate fluorescent
reporters in the genome. The data derived from such
experiments are often noisy and uncertain, which
implies that also the estimated model parameters will be
uncertain. However, qualitative trends can be reliably
assessed in the dynamic or steady state correlation of
biological quantities.

Graphical representations of such qualitative trends
are often used by biologists, to provide intuition regard-
ing the network main features. We believe that, indeed,
such graphs may be useful even to immediately con-
struct models analogous to (3). We propose a specific
method to construct such graphs: the biochemical spe-
cies of the network will be associated to the nodes in
the graph, the qualitative relationships between the spe-
cies will be instead associated with different types of
arcs: in particular, the terms of a, b, ¢ and d will be
represented as arcs having different end-arrows, as
shown in Figure 1A. These graphs can be immediately
constructed, by knowing the correlation trends among
the species of the network, and aid the construction of a
dynamical model. For simple networks, this type of
graph may provide intuition regarding their behavior
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Figure 1 Graphical representation of biological networks. A. The arcs associated with the functions g, b, ¢ and d. We will use dashed arcs,
connecting to arcs of the type a and b to highlight that the associated function is nonlinearly dependent on a species of the network: in the
example above, as; = as;(x,). B. The graph associated with equations (2); external inputs are represented as orange nodes. C. Examples of
sigmoidal functions. D. Examples of complementary sigmoidal functions. In our general model (4), functions d() and c(-) are naturally associated

and may facilitate their structural robustness analysis.
For instance, the graph associated to equations (2) is
shown in Figure 1B. Throughout the paper, we will con-
sider similar case studies and use their graph representa-
tion as a visual support for the analysis.

Remark 1 In this work, properties such as positivity,
monotonicity, boundedness and other functional charac-
teristics are labeled as “qualitative and structural prop-
erties”[27]. Through such properties, we can draw
conclusions on the dynamic behaviors of the considered
systems without requiring specific knowledge of para-
meters and without numerical simulations. However, it
is clear that our approach requires more information
than other methods, such as boolean networks and other
graph-based frameworks.

Investigation method

The main objective of this work is to show that, at least
for reasonably simple networks, structural robust stabi-
lity can be investigated with simple analytical methods,
without the need for extensive numerical analysis. We

will suggest a two stage approach:

+ Preliminary screening: establish essential informa-
tion on the network structure, recognizing which
properties (such as P1-P10) pertain to each link.

« Analytical investigation: infer robustness properties
based on dynamical systems tools such as Lyapunov
theory, set invariance and linearization.

Results and Discussion

In this section we will analyze five biological networks
as case studies. Three of such examples, the L-arabinose,
the sRNA and the Lac Operon networks, model the
interaction and control of expression of a set of genes.
The cAMP and the MAPK pathways are instead signal-
ing networks, namely they represent sets of chemical
species interacting for transmission and processing of
upstream input signals. These networks are all well-
known in the literature, and have been characterized
mainly through experimental and numerical methods,
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although the MAPK pathway, for instance, has been
thoroughly analyzed using the theory of monotone sys-
tems [17].

We will provide rigorous proofs that these networks
are either mono or multi-stable in a robust manner.
Such demonstrations rely on Lyapunov functions and
invariant sets theory, according to our proposed metho-
dology. In some cases, we are also able to provide
bounds on their speed of convergence.

The L-arabinose network

The arabinose network is analyzed in [28] as an example
of feedforward loop. Two genes araBAD and araFGH
are regulated by two transcription factors, AraC and
CRP. AraC is a repressor, but turns into an activator
when bound to the sugar L-arabinose. CRP is an activa-
tor when bound to the inducer cyclic AMP (cAMP),
which is produced when cells are starving upon glucose
(not produced during growth on glucose). CRP also
binds to the araC promoter and enhances transcription
of AraC, which has a significant basal rate of expression
(i.e. it is produced by the cell also in absence of inducer
CRP). A very simple model for this network can be
derived by defining the state variables x; and x,, respec-
tively the concentrations of the transcription factor
AraC and of the output protein araBAD. The concentra-
tion of the transcription factor CRP is considered an
external input u:

xl = pl + ﬂlf(u’ Kuxl) - alxlr
X = ,32f(u, Ku,) 'f(xlr Ky x,) — 2o,

where o, o, are the degradation and dilution rates of
x1, x5 respectively. The basal production rate of x;
(AraC) is p;. The activation pathways are modeled by
Hill functions f (u, K) = u' /(K" + u'"), where H is the
Hill coefficient and Kj; are the activation thresholds. The
model can be recast into the general structure (4),
which includes model (5) as special case::

(5)

x1 =1+ cru(u) — buxy, ©)

%2 = cour(u x1) — baoxa,
where u is nonnegative-constant, ¢y, by, and by, are
positive-constant, while ¢y, (1) and ¢y, (1) are sigmoidal
with respect to u, the latter increasing with respect to x;.
The graph representation of this network is in Figure 3A.
For this elementary network the analysis is straightfor-
ward. Variable x; is not affected by x,. Since cy,(u) is
bounded, x; is also bounded and converges to an equili-
brium point X; (u) which is monotonically increasing in
u. In turn, x, is also positive and bounded for any value
of u and stably converges to a unique equilibrium point
X2, which is a monotonically increasing function of u
(partially activated by X;(u)). The positive term c;
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prevents x(¢) and x,(¢) from staying at zero. It is worth
remarking that the hierarchical structure of this network
greatly facilitates the analysis; equilibria can in fact be
iteratively found and their stability properties
characterized.

The sRNA pathway

Small regulatory RNAs (sRNA) play a fundamental role
in the stress response of many bacteria and eukaryotes.
In short, when the organism is subject to a stimulus
that threatens the cell survival, certain sSRNA species are
transcribed and can down-regulate the expression of
several other genes. For example, when E. coli cells are
lacking a source of iron, the sSRNA RyhB (normally
repressed by the ferric uptake regulator Fur) is
expressed and rapidly induces the degradation of at least
other 18 RNA species encoding for non-essential pro-
teins which use up Fe molecules. This allows essential
iron-dependent pathways to use the low amount of
available iron. Quantitative studies of the sSRNA path-
ways have been carried out in [29-31]. Let us define x;
as the RNA concentration of the species which is tar-
geted by the sRNA and x, as the concentration of
sRNA. The model often proposed in the literature is:

X1 = a1 — frxr — kxixa, @)
Xy = a3 — Paxy — kxyxy,
where o, a5 are the transcription rates of x; and x,
respectively, 1, B, are their degradation rates (turnover),
and k is the binding rate of the species x; and x,. The
formation of the inactive complex x; - x, corresponds to
a depletion of both free molecules of x; and x,. If o
<@, the pathway successfully suppresses the expression
of the non-essential gene encoded by x;. This model
can be embedded in the general family:

X1 = ¢ —bnxy — bia(x1,%2)x2,
. 8)
X3 = ¢ — baxy — by (x1,%2)x1,

by setting b1, = kx; and b,; = kx, (note that b1,(0) =
b31(0) as required). From our list of properties: ¢y, ¢,
by, and by, are positive-constant; byo(x1, x5) and by (xq,
x,) are increasing-asymptotically-unbounded in both
variables; and bq5(x;, x2)xy = byp(x1, xo)x; at all times.
This network can be represented with the graph in
Figure 2A.

The sRNA system is positive, because the nonnegativ-
ity Assumptions 1 and 4 are satisfied. The preliminary
screening of this network tells us that each variable pro-
duce an inhibition control on the other, which increases
with the variable itself. In other words x; is “less toler-
ant” to an increase of x; if the latter is present in a large
amount. This means that the sum x; + x, is strongly
kept under control. Also the mismatch between the two
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The following proposition shows that the sRNA
pathway is a typical system in which robustness is
structurally assured. We report the full demonstration
of this proposition, because its steps and the techni-
ques used are a model for the subsequent proofs in
this paper.

Proposition 2 The variables of system (8) are
bounded for any initial condition x,(0), x,(0) > 0. The
system admits a unique asymptotically stable equili-
brium point X = (%,,%,) and the convergence is expo-
nential:

[+t ~ %], < e x(0) ~ %], ©)

for some B > 0 and any x,(0) > 0, x,(0) > 0. Moreover,
no oscillations are possible around the equilibrium, in
the sense that the condition x1(t) = X10r x,(t) = Xp0ccurs
at most once.

Proof To prove boundedness of the variables we need
to show the existence of an invariant set

S={x1>0,%x>0:x +x <«}.

Proposition 1 guarantees that the positivity constraints
are respected. Then we just need to show that the con-
straint x; + x5 < k cannot be violated for sufficiently
large k > 0. The derivative of function s (x, x3) = x; +
Xy is

$(x1,%2) = %1 + %2
=1 —bnxr — bia(x1,x2)x2 + €2 — bagwa — b (%1, %2)%1
<c1 —buxi +c —boxy
< ¢y + ¢ —min{by, by} (%1 +x2)

=C1 +C — min{hn, hzz}S(xl,xZ).

Define x = (¢ + ¢y)/min {b11, byy} then for s(x;, x5) >k
the derivative becomes negative so s(x;, x,) cannot
exceed ~ (See Theorem 1).

Boundedness of the solution inside a compact set
assures the existence of an equilibrium point. Let
(X1, x2) be any point in which the following equilibrium
conditions holds:

€1 — buXy —bia(¥1,X%2)x2 = 0,

_ - (10)
€2 — baoXs — by (X1, %)% = 0.

The behavior of the candidate Lyapunov function:

Vi(x1,x2) = |x1 — X1| + [x2 — X2
= max{:i:(xl — J_Cl) + (Xz — .7_(?2)},

will be examined in the different sectors represented
in Figure 2B. Let us start by considering the sector
defined by x; > x; and x, > X, (APB in Figure 2B) for
which V(x1,x3) = (x1 —X1) + (x2 — X2). In such a sector
the Lyapunov derivative is:
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D'V(x, %) =[1 1] H

=c1 +0 — buxr — bapxa—

— b2 (o1, x2)x1 — bo1 (x1, x2)%2
—bn(x1 —x1) —baa(x2 — %2)—
— [b12(x1, %2)x1 — b1a (%1, X2)X1]
— [b21 (x1, x2)%2 — ba1 (X1, %2)X2]
< —bu(x1 —x1) — ba(x2 — X2),

where we have subtracted the null terms (10)
and where we have exploited the fact that by5(xq, x5)x;
= byi(x1, x2)x, is increasing in both variables.
The inequality (CpD in Figure 2B)
D+V(x1,x2) < bu (x1 — 3_(?1) + b22(x2 — J_Cz) <0 can be
similarly proved to hold in the sector x; <Xx; and
Xy < X

Consider the sector defined by x; > X; and x, <X
(DPA in Figure 2B) for which V(x1,x2) = x; — X1 in such
a sector the Lyapunov derivative is:

DV(x,x) =11 —1] []
=c1 — ¢y — buxy +baoxo—

—b1y (xl ;X2 )xl +bn (x2, X2 )xz

= 0 by assumption

= —bll(xl —D_Cl) + bzz(Xz —3_62) < 0.

Note that in the last step we have added and sub-
tracted the null terms (10). In the opposite sector (BPC
in Figure 2B) x; < X; and x, > Xx;, we can prove that
D+V(XI,X2) = +b11 (x1 — J_Cl) — bzz(Xz — J_Cz) < 0. We just
proved that

D*V(x1,x2) < —[bulxr — X1] + baalx2 — X2|]
—Bllx1 — X1| + [x2 — X2]
—ﬁV(xhxz),

with 8 = min{by;, by,}. This implies (9) and the
uniqueness of the equilibrium point.

We finally need to show that there are no oscillations.
To this aim we notice that the sectors DPA, x; > X; and
X2 < Xp, and its opposite

CPB, x; < X7 and x; > Xy, are both positive invariant
sets.

We can apply Nagumo’s theorem: consider the half-
line PA originating in P, where x, = X, and x; > X.
Therefore we have that (again by adding the null term
in (10)):

IA

IA

Xy =y — baaXy — by (x1, X2)x1—
— ¢y — baoXy — by (X1, X2)%1

= —[by1 (%1, X2)x1 — b (X1, X2)X1] < 0.
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Similarly, on half-line PD where x; = X; and x; < X»,
by considering (10) we derive

X1 = =b12 (%1, %2)x2 + b12(X1,X2)X, = 0

hence the claimed invariance of sector DPA. The
proof of the invariance of sector CPB is identical.

Remark 2 Note that the constructed Lyapunov function
||x — X||1does not depend on the system parameters. This
fact can be used to prove that if the transcription rates ¢,
(t) and c,(t) are time-varying, but bounded, we have con-
vergence to a neighborhood whose amplitude, obviously,
depends on the bounds of c1(t) and cy(t). It is realistic to
assume that the transcription rates vary over time: for
instance, if the environmental conditions change, the cell
may need to down or up-regulate entire groups of tran-
scripts and therefore increase or decrease c,(t).

The following corollary evidences the positive influence
of ¢,, which is positive over x, and negative over x;.

Corollary 1 Assume that x,(0), x5(0) is at the steady
state corresponding to ¢and ¢,. Consider the new input
c1 = Ci(keeping ¢y = ¢)). Then the system converges to a
new equilibrium with X1 < x1(0)and X, > x,(0). There is
no undershoot, respectively, overshoot.

Proof The steady state values x; and X, are respec-
tively monotonically decreasing and increasing functions
of ¢,. Indeed, consider the steady-state condition

c1 = bixy + bia(x1, %2)x2,

€2 = baxy + by (%1, x2)x1,
and regard it as a differentiable map (x1, x;) — (¢, ¢2).
By the uniqueness proved in Proposition 2 the map is

invertible. The Jacobian of the inverse map is the inverse
of the Jacobian

bi + d(biax2)  B(b1axa) 77
Jl = ! ox dx
3(b21x15 b 3(&213{?1)
oy +
axl 8x2
b d(baix1) 9(b12x2)
1 2+ -
= axZ 8X2
det(J) d(ba1x1) 3(b12x2)
- bl +
axl axl
where det(J) = b1by + by 9(b12x2) +by d(barx1) -0

8x1 aJQ
(keep in mind that by(xy, x2)x; = b1(xy, x2)x5). The
sign of the entries in the second column are negative
and positive respectively, therefore, the steady-state
values Xx; and X, are decreasing and increasing functions
of ¢,.

The absence of overshoot and undershoot is an
immediate consequence of the invariance of the sector
x1 > X1 and x, < X, previously proved.
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Obviously, decreasing ¢, increases x; and decreases x5
and the same holds if we commute 1 and 2. It is worth
noting that the same conclusions regarding the lack of
multistability and oscillations for the SRNA pathway
may be reached by qualitative analysis of the system’s
nullclines.

The cAMP dependent pathway

The cyclic adenosine monophosphate (cAMP) pathway
can activate enzymes and regulate gene expression
based on sensing of extracellular signals. Such signals
are sensed by the G protein-coupled receptors on the
cell membrane. When a receptor is activated by its
extracellular ligand, a series of conformational changes
are induced in the receptor and in the attached intracel-
lular G protein complex; the latter activates adenylyl
cyclase, which catalyzes the conversion of ATP in
cAMP. In yeast, cCAMP causes the activation of the pro-
tein kinase A (PKA), which in turn regulates the cell
growth, metabolism and stress response. Stochastic
models are usually proposed for numerical analysis of
the cAMP pathway. However, the cAMP pathway com-
ponents in yeast are present in high numbers and a
deterministic modeling approach is adopted in [31]. In
such paper, the pathway is decomposed in several mod-
ules, here we consider the simplified cAMP Model A,
which focuses on the parts of the pathway best charac-
terized in the literature:

. tot
%1 = k(X" — x1)u — krxq,
. tot
Xy = kF(xz - xz)xs — krx2, 11)
i a3 + kaxy Vinaxp, X2X3 Vinaxp, X3
3 = - -
1+ k[JCz KMP| + X3 KMP7 + X3 ’

where x; is the concentration of active G protein, x, is
the concentration of active PKA protein, x3 is the con-
centration of cAMP and u is the concentration of glu-
cose input to the network. The parameters Viap, and
Vimaxp, model the “feedback” effect introduced by two
phosphodiesterases (Pdelp and Pde2p) on the cAMP
concentration. The numerical analysis in [31] typically
shows that the cAMP concentration (x3) responds with
a large overshoot to steps in the glucose (u, input) con-
centration. We will analytically explore the dynamic
behavior of x3, showing that under certain assumptions,
a bounded overshoot is a robust characteristic in the
system. The parameters kr and ki are forward and
reverse reaction rates for the formation of active x; and
x5. Mass conservation allows to express the active pro-
tein amounts as a function of the total number of mole-
cules, x;;ot - x::nactive
equation x3 are derived by Michaelis-Menten enzymatic
steps. We can re-write the above equations according to

+x;. The nonlinear expressions in
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the general model (4):

x1 = aw(x)u — buxy,

X2 = ax3(x2)x3 — baoxy, (12)

X3 = d3 (xz) +4ds1 (xz)xl — b3 (x3)x2 — b33 (x3)x3,

where u is the external signal and where b,3 = 0 for x,
= 0 and b3, = 0 for x3 = 0. A qualitative graphical repre-
sentation of this network is in Figure 3B.

Our preliminary analysis allows us to assume: aj,,, d3:
decreasing-exactly-null with threshold values x%"* and
x5 dso, azy: decreasing-asymptotically-null, bs, and g3
= b33(x3)x3: increasing-asymptotically-constant; by, by
are positive-constant.

It is immediate to notice that for constant u, x;
robustly converges asymptotically to its equilibrium
value such that

_ bnx;
dlu(xl)

=71 (x1).

The solution X7 = £(u) of the previous equation is
uniquely defined for each u since the function ¢ (x;) on
the right is strictly increasing and grows to infinity, pre-
cisely limxquantéfl(xl) = +00. Biologically, this means
that external glucose signals are mapped to internal
active G-protein concentration with a bijection, before
saturating.

Also we have to note that the model is consistent with
mass conservation: since a;,(x;) and a,3(x,) are zero
above the thresholds " and x%", we have that x; < 0
and X, < 0 for x; > x{" and x, > x%", respectively; there-
fore we assume x; (t) < 1Y%, x2(t) < 5", for all £ > 0.

Proposition 3 There exists an equilibrium for system
(12) if and only if

tot toty =, : tot
d3o(x3") +as (33" )1 < x}l_r)xgo[b32(x3)x2

+bsz(x3)x3], (13)

where X1 = §(u)as previously defined . All the equili-
brium values X1 = £(u), Xoand Xsare increasing functions
of u. If condition (13) is satisfied , the equilibrium is
unique and locally stable.

The previous proposition assures only local stability,
but this result can be extended to global stability. To
this aim, we will assume that x; is at its equilibrium
value x;. Furthermore, under a suitable condition a per-
formance bound on the transient values of x5(f) can be
given.

Proposition 4 Assume that x, has reached its steady
state X1. Then, the unique equilibrium point is globally
attractive for any initial condition x5(0), x3(0) > 0. More-
over, assume that

Iy = x!l—rggo bs3(x3)x3 > d32(0) + as1(0)&, (14)
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then we can give the following bound for the transient

of x3(t)
X3 (t) < max{x3(0), d32(0) +ds3; (O)E}

The proof can be found in Section S{II of the Addi-
tional File 1.

Remark 3 The condition (14) has the following inter-
pretation. It basically states that the inhibiting term b3
(x3)x3 at “full force” (x3 suitably large) dominates the
activating term dz;(x2) + asy(xy)E when x, is small. Note
that, indeed, the feedback terms modulated by the two
phosphodiesterases act in a complementary manner, in
order to maintain a bounded concentration of cAMP in
the cell.

Remark 4 The system, even if initialized with small
values x5(0) and x3(0), may exhibit a spike of cAMP x3
which is bounded by (15), if condition (14) is satisfied. If
x3(0) is small, then the bound is ds,(0) + as,(0)¢ (u): the
amplitude of the spike is, in general, an increasing func-
tion of the glucose concentration u. If condition (14) fails,
then (see Figure S2 in the Additional File) the spike of x3
(t) can be arbitrarily large; thus condition (14) can be
seen as a threshold.

(15)

The Lac operon

This genetic network was originally studied by Monod
and Jacob [33]. The natural nutrient for E. coli bacterial
cells is glucose, which is metabolized by enzymes nor-
mally produced by the bacteria. When glucose is absent,
but the allolactose inducer is present in their environ-
ment, E. coli activates a set of genes that will regulate
the lactose intake and breakdown. In particular, the cells
start producing a permease protein, which binds to the
cell membrane and increases the inflow of lactose; and
cells also start producing the f-galactosidase protein,
which converts lactose in allolactose.

In this paper we will consider the deterministic model
proposed in [34]. This simple model does not capture
the stochasticity of this genetic circuit, but it does
explain the bimodal behavior of the system. Such beha-
vior is observable experimentally: within the same popu-
lation, the operon can be either induced or uninduced.
Our analysis shows that for low or high intracellular
inducer concentrations, the system is monostable and
respectively reaches an uninduced or induced equili-
brium; however, at intermediate inducer concentrations
the system becomes multi-stable.

The state variables of the ODE model we will study
are the concentration of nonfunctional permease protein
x1; the concentration of functional permease protein x.;
the concentration of inducer (allolactose) inside the cell
x3, and the concentration of -galactosidase x4, a quan-
tity that can be experimentally measured. The
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concentration of inducer external to the cell is here
denoted as an input function .

x1 = fi(x3) — 81x1,

X2 = Prx1 — Saxa,

%3 = [f2(u) — f3(x3)]x2 + Bou — 833,
X4 = yfi(x3) — Saxy,

(16)

where f31, By, d1, 5, d3 and y are constants and f; are func-
tions that are experimentally measurable. In particular, at
low inducer concentrations, f; ~ k; + kox3 + k3x§, where
ks are constant; at high x3 concentrations f; saturates. The
functions f; and f; are assumed to depend hyperbolically on
their arguments. According to the proposed setup, the pre-
vious equations can rewritten as follows:

X = Cls(xs) —buxy,
Xy = anx, — baxa,
X3 = asa(u)xa — bz (x3)x2 + c3uu — b33x3,

X4 = C43 (x3) — bagxy,

(17)

where c¢y3(x3) =f1(x3)» by = 01, ax = Bl, byy = 0o, azy
(u) =fz(bl) =, bay(x3) =f3(x3), C3y = ﬁzf b3z = 03, cazlx3) =
Y filx3) and byy = d4. This corresponds to the network in
Figure 3C.

From our preliminary analysis step: c;3 is constant-sig-
moidal, azy(u) and bzy(x3) are increasing-asymptotically-
constant, and the remaining functions a,;, by1, byy and
bss are positive-constant.

We can start to study this network without any speci-
fic knowledge of the parameters in equations (17). First
of all, as evident in Figure 3C, note that the [3-galactosi-
dase concentration x, does not affect any other chemical
species: therefore, the fourth equation can be considered
separately. As long as the inducer concentration of x;
within the cell reaches an equilibrium X3, x4, converges
to X4 = ¢43(X3)/bas. Therefore, we can restrict our atten-
tion to the first three equations; this is consistent with
the model proposed in [35,36]. From now on we will
consider this reduced model (see Section S-III of the
Additional File), neglecting the linear term c3,u as in
[35,36]. We will not introduce delays in our model, as
done in [37]. Our preliminary screening also shows that
the evolution of this system is necessarily bounded.
Indeed x; receives a bounded signal from x3 and the
degradation term -b;;x; keeps x; bounded. In turn, x;
remains bounded. The inducer concentration x; receives
a bounded signal form u and x,; therefore x3 stays
bounded as well, being both a3,(x) and b3;(x3) bounded.

The following proposition evidences that fundamental
results can be established starting from our general fra-
mework. These results are consistent with the findings
in [36], whose analysis relies on assuming Hill-type
functions in the model.
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Proposition 5 For any functional terms in Equations
17, satisfying the general assumptions formulated above,
the system admits a unique equilibrium for large u > 0
or small u > 0.

For some chioces of such functional terms, the system
may have multiple positive equilibria x*, %, x© ,... ¢ IR
(typically three) for intermediate values of u. If multiple
equilibria exist, then they are ordered in the sense that
¥t < &% < xC ... where the inequality has to be considered
componentwise. If the equilibria are all distinct, then
they are alternatively stable and unstable. In the case of
three equilibria, x*, %, x° they are stable, unstable and
stable, respectively. Finally, given any equilibrium point,
the positive and negative cones x < x* and x > x* are
positively invariant.

The proof is given in Section S-III of the Additional
File. The cone-invariance property implies that the state
variables cannot exhibit oscillations around their equili-
bria. For instance, if x* is the first (hence stable) equili-
brium, given any initial condition upper bounded by x*
(x(0) x*) in the domain of attraction, the convergence to
x* has no overshoot (and if x(0) > x* there is no
undershoot).

Remark 5 It is interesting to notice that, due to the
competition between terms das, and bs,, the considered
Lac Operon model is not a monotone system according
to the definition in [16], where a different model was
considered.

MAPK signaling pathway
Mitogen-activated protein (MAP) kinases are proteins
that respond to the binding of growth factors to cell
surface receptors. The pathway consists of three
enzymes, MAP kinase, MAP kinase kinase (MAP2K)
and MAP kinase kinase kinase (MAP3K) that are acti-
vated in series. By activation or phosphorylation, we
mean the addition of a phosphate group to the target
protein. Extracellular signals can activate MAP3K, which
in turn phosphorylates MAP2K at two different sites; in
the last round, MAP2K phosphorylates MAPK at two
different sites. The MAP kinase signaling cascade can
transduce a variety of growth factor signals, and has
been evolutionary conserved from yeast to mammals.
Several experimental studies have highlighted the pre-
sence of feedback loops in this pathway, which result in
different dynamic properties. This work will focus on a
specific positive-feedback topology, where doubly-phos-
phorylated MAPK has an activation effect on MAP3K.
Such positive feedback has been extensively studied in
the literature, since the biochemical analysis of Huang
and Ferrell [37,38] on the MAPK cascade found in
Xenopus oocytes. In this type of cells, Mos (MAP3K)
can activate MEK (MAP2K) through phosphorylation of
two residues (converting unphosphorylated MEK to
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monophosphorylated MEK-P and then bisphosphory-
lated MEK-PP). Active MEK then phosphorylates p42
(MAPK) at two residues. Active p42 can then promote
Mos synthesis, completing the closed positive-feedback
loop.

The presence of such positive feedback in the MAPK
cascade has been linked to a bistable behavior: the
switch between two stable equilibria in Xenopus oocytes
denotes the transition between the immature and
mature state. A standard ODE model for the cascade is
proposed in [17], where the authors demonstrate bi-sta-
bility of the system by applying the general theory of
monotone systems. We adopt such model, which is
reported below:

. sz
X = f(x)u+Vy — ly +x'
o Veya Vi
= Ke+y, Ks+yi'
. Ve . Vsys Vaxya  Vepya
2= Ks+y1 Ks+ys Ka+ys Ke+yo'
= e Yon (18)
Ky+y, Ks+y3
3 = Vieza  Vizysn ,
K10 + 2y K7 + 21
i = Vaysz Vozz  Vgysza  Viezs ’
K7 + 21 K9 + Z3 Kg + 2 K]O + 23
2 = Veyszy  Vozs ’
Kg + Z) Kg + 23

where x is concentration of Mos (MAP3K), y; is the
concentration of unphosphorylated MEK (MAP2K), y, is
the concentration of phosphorilated MEK-P, y3 is the
concentration of MEK-PP, z;, z, and z3 are respectively
the concentrations of unphosphorylated, phosphorylated
and doubly-phosphorylated p42 (MAPK). Finally, u is
the input to the system.

While bi-stability may occur due to other phenomena,
such as multisite phosphorylation [39], rather than due
to feedback loops, a large body of literature focuses on
bi-stability induced by the positive-feedback in the
Huang-Ferrel model in Xenopus [40,41] reported above.
In [37] the feedback f (1) was characterized, through in
vitro studies, as an activating Hill-function with high
cooperativity. In [17] instead, f () was assumed to be a
first order linear term in the concentration of active
MAP3K, x;. In Proposition 6, we will explore the effects
of different qualitative functional assumptions on the
feedback loop dynamics f (x). We will highlight that the
system loses its well-known bi-stability not only in the
absence of feedback, but also when the feedback
becomes unbounded. An unbounded positive feedback
would be caused, for instance, by an autocatalytic
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process of MAP3K activation, mediated by active
MAPK. We choose to rewrite the above model as fol-
lows:

X1

ar7(xy)pxz + 1o — b (x1)x1,
23 (x3) —by (xz)xl,
X3 = az (xz)xl + 634(x4) — by (x3)x1 — b33 (x3)x3r

X4 = ag1(x3)xX1 — baa(x4)x4,

2

(19)

X5 = Cs6(%6) — bsa(x5)x4,
Xe = 6164(x5 )x4 + C67 (x7) — bea (xg)x4 — b (xs)xm
%7 = azs4(x6)xq — b7 (x7)x7.

The term px-, introduces the positive feedback loop
and represents a key parameter for the analysis to fol-
low. A preliminary screening of the system immediately
highlights the following properties. Function by;(x1)x1,
functions ¢y3(x3), ba1(x2), as1(x3) and bas(xs)xs, functions
c56(x6), bsa(xs), aza(xe) and b;,(x7)x, are increasing-
asymptotically-constant. Moreover, das;(x;) = by1(x2), ¢34
(%4) = baa(Xa)%a, b31(x3) = aa1(x3), bas(x3)xs = ca3(x3) and
aca(xs5) = bsa(xs), ce7(X7) = b77(07)%7, bea(x6) = aza(xe),
bee(x6)xes = C56(xg). We assume cjg to be a positive-
constant.

The graph in Figure 3D can be partitioned considering
three aggregates of variables, precisely {x}, £y34 = (%,
x3, 24) and X 567 = {x5, X6, x7}. Signal x; is the only input
for X534, signal x4 is the only input for Xs6;. Then x5 is
fed back to the first subsystems by arc a;7. Without the
positive feedback loop, we will demonstrate that the sys-
tem is a pure stable cascade. Note also that 2,34 and
Y567 can be reduced since X, +x3+x4 =0 and
Xs + X6 + X7 = 0 and therefore the following sums are
constant

.X'z(t) +X3(t) +X4(t) =k,
x5 (t) + x6(t) +x7(¢t) = h,

with k = x5(0) + x3(0) + x4(0) and % = x5(0) + x¢(0) +
x7(0). Since x; > 0, all the variables but x; are bounded.
The system can be studied by removing variables x3 = k
- %y - Xg and xg = k1 - x5 - x7. We must assume that
c1olimy, - 0ob11 (%1)x1 otherwise no equilibrium is possi-
ble. The following result is proved in Section S-IV of
the Additional File.

Proposition 6 For yu = 0 the system admits a unique
globally asymptotically stable equilibrium.

For pu > 0, the system may have multiple equilibria, for
specific choices of the involved functions a, b, c.

For y > 0 suitably large and a,,(x,) lower bounded by
a positive number, then the system has no equilibria.

For u > 0 suitably bounded and a,,(x,) increasing, or
non-decreasing, and bounded, if multiple simple® equili-
bria exist, then such equilibria are alternatively stable

(20)
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and unstable. In the special case of three equilibria, then
the system is bistable.

For u > 0 suitably bounded and a,,(x1) increasing
asymptotically unbounded, then the number of equilibria
is necessarily even (typically O or 2). Moreover, if we
assume that there exists u* > 0 such that the system
admits two distinct equilibria for any 0 <y < p*, then
one is stable, while the other is unstable.

The proof of this last proposition also shows that mul-
tiple equilibria x”?, x®,.. have a partial order:
< <xC., ¥ < <ixl. X <i8 <ix$... while
X, and ¥s have the reverse order X3 > %5 > x5 ...
a>xE>x5. .

Remark 6 The simplest case of constant a,, has been
fully developed in (171 and [16], and it turns out that
the system may exhibit bi-stability for suitable values of
the feedback strength y. Here we show that, for constant
ay;, bi-stability is actually a robust property. Our results
are consistent with the fact that the MAPK cascade is a
monotone system and some of them could be demon-
strated with the same tools used in [16,17]. With respect
to such literature, our contribution is that of inferring
properties such as number of equilibria and mono or bi-
stability starting from qualitative assumptions on the
dynamics of the model, without invoking monotonicity.

Remark 7 Finally, it is necessary to remark that our
results on the MAPK pathway robust behaviors hold true
given the model (19) and its structure. Other work in the
literature shows that feedback loops are not required to
achieve a bistable behavior in the MAPK cascade [38],
when the dual phosphorylation and de-phosphorylation
cycles are non-processive (i.e. sites can be phosphory-
lated/de-phosphorylation independently) and distributed
(i.e. the enzyme responsible for phosphorylation/de-phos-
phorylation is competitively used in the two steps).

and

Conclusions

A property is structurally robust if it is satisfied by a
class of systems of a given structure, regardless the
choice of specific expressions adopted and of the para-
meter values in the model. We have considered five
relevant biological examples and proposed to capture
their dynamics with parameter-free, qualitative models.
We have shown that specific robust properties of such
models can be assessed by means of solid theoretical
tools based on Lyapunov methods, set-invariance the-
ory and matrix theory. Robustness is often tested
through simulations, at the price of exhaustive cam-
paigns of numerical trials and, more importantly, with
no theoretical guarantee of robustness. We are far
from claiming that numerical simulation is useless. It
it important, for instance, to falsify “robustness conjec-
tures” by finding suitable numerical counterexamples.
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Furthermore, for very complex systems in which analy-
tic tools can fail, simulation appears be the last resort.
Indeed a limit of the considered theoretical investiga-
tion is that its systematic application to more complex
cases is challenging. However, the set of techniques we
employed can be successfully used to study a large
class of simple systems, and are in general suitable for
the analytical investigation of structural robustness of
biological networks, complementary to simulations and
experiments.

Notes
'The concentration mismatch is more “softly” con-
trolled, since the derivative of the difference
Xy — X1 = €1 — €2 + baoxy — byyxy is not influenced by the
nonlinear term byo(xq, X2)%5 = Doy (%1, X2)%x;.

?Le. the nullclines have no common tangent lines.

3Cf. the erratum: http://www.math.rutgers.edu/~son-
tag/FTPDIR/angeli-ferrell-sontag-pnas04-errata. txt and
[42].

Additional material

Additional file 1: One additional file includes the proofs for
Propositions 3, 4, 5 and 6 in the main paper.

Acknowledgements

The authors acknowledge financial support by the National Science
Foundation (NSF) grant CCF-0832824 (The Molecular Programming Project).
We are grateful to R. M. Murray, for helpful advise and discussions, and to
the Reviewers for their constructive comments.

Author details

'Dipartimento di Matematica ed Informatica, Universita degli Studi di Udine,
Via delle Scienze 206, 33100 Udine, ltaly. “Division of Engineering and
Applied Science, California Institute of Technology, 1200 E. California Blvd.
Pasadena, CA 91125, USA.

Authors’ contributions
FB and EF performed research and wrote the paper.

Received: 10 November 2010 Accepted: 17 May 2011
Published: 17 May 2011

References

1. Kitano H: Systems biology: A brief overview. Science 2002,
295(5560):1662-1664.

2. Barkai N, Leibler S: Robustness in simple biochemical networks. Nature
1997, 387(6636):913-917.

3. Alon U, Surette MG, Barkai N, Leibler S: Robustness in bacterial
chemotaxis. Nature 1999, 397(6715):168-171.

4. Yi TM, Huang Y, Simon M|, Doyle J: Robust perfect adaptation in bacterial
chemotaxis through integral feedback control. Proceedings Of The
National Academy Of Sciences Of The United States Of America 2000,
97(9):4649-4653.

5. Ma W, Trusina A, El-Samad H, Lim WA, Tang C: Defining Network
Topologies that Can Achieve Biochemical Adaptation. Cell 2009,
138(4):760-773.

6. Prill RJ, Iglesias PA, Levchenko A: Dynamic Properties of Network Motifs
Contribute to Biological Network Organization. PLoS Biology 2005, 3(11):
e343.


http://www.biomedcentral.com/content/supplementary/1752-0509-5-74-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/11872829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9202124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9923680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9923680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10781070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10781070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19703401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19703401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16187794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16187794?dopt=Abstract

Blanchini and Franco BMC Systems Biology 2011, 5:74
http://www.biomedcentral.com/1752-0509/5/74

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Kwon YK, Cho KH: Quantitative analysis of robustness and fragility in
biological networks based on feedback dynamics. Bioinformatics 2008,
24(7):987-994.

Gomez-Gardenes J, Y M, Floria LM: On the robustness of complex
heterogeneous gene expression networks. Biophysical Chemistry 2005,
115:225-229.

Gorban A, Radulescu O: Dynamical robustness of biological networks
with hierarchical distribution of time scales. /ET Systems Biology 2007,
1(4):238-246.

Kartal O, Ebenhoh O: Ground State Robustness as an Evolutionary Design
Principle in Signaling Networks. PLoS ONE 2009, 4(12):e8001..

Aldana M, Cluzel P: A natural class of robust networks. Proceedings of the
National Academy of Sciences of the United States of America 2003,
100(15):8710-8714.

Tian T: Robustness of mathematical models for biological systems.
ANZIAM J 2004, 45:C565-C577.

Shinar G, Milo R, Rodriguez Martinez M, Alon U: Input-output robustness
in simple bacterial signaling systems. Proceedings of the National Academy
of Sciences 2007, 104:19931-199935.

Shinar G, Feinberg M: Structural Sources of Robustness in Biochemical
Reaction Networks. Science 2010, 327(5971):1389-1391.

Feinberg M: Chemical reaction network structure and the stability of
complex isothermal reactors - I. The deficiency zero and deficiency one
theorems. Chemical Engineering Science 1987, 42:2229-2268.

Sontag E: Monotone and near-monotone biochemical networks. Systems
and Synthetic Biology 2007, 1:59-87.

Angeli D, Ferrell JE, Sontag ED: Detection of multistability, bifurcations,
and hysteresis in a large class of biological positive-feedback systems.
Proceedings of the National Academy of Sciences of the United States of
America 2004, 101(7):1822-1827.

Jacquez J, Simon C: Qualitative Theory of Compartmental Systems. SIAM
Rev 1993, 35:43-79.

Abate A, Tiwari A, Sastry S: Box Invariance for biologically-inspired
dynamical systems. 46th IEEE Conference on Decision and Control, New
Orleans, LA 2007, 5162-5167.

El-Samad H, Prajna S, Papachristodoulou A, Doyle J, Khammash M:
Advanced Methods and Algorithms for Biological Networks Analysis.
Proceedings of the IEEE 2006, 94(4):832-853.

Radde N, Bar N, Banaji M: Graphical methods for analysing feedback in
biological networks - A survey. Int J Syst Sci 2010, 41:35-46.

Rouche N, Habets P, Laloy M: In Stability theory by Liapunov's direct method.
Volume 22. New York: Springer-Verlag; 1977, [Applied Mathematical
Sciences, xii+396 pp. ISBN 0-387-90258-9].

Blanchini F: Set invariance in control - a survey. Automatica 1999,
35(11):1747-1767.

Blanchini F, Miani S: In Set-theoretic methods in control. Volume 22. Boston:
Birkhduser; 2008, [Systems & Control: Foundations & Applications].

De Jong H: Modeling and simulation of genetic regulatory systems: a
literature review. Journal of Computational Biology 2002, 9:67-103.

Alon U: An Introduction to Systems Biology: Design Principles of Biological
Circuits Chapman & Hall/CRC; 2006.

Nikolov S, Yankulova E, Wolkenhauer O, Petrov V: Principal difference
between stability and structural stability (robustness) as used in systems
biology. Nonlinear Dynamics Psychol Life Sci 2007, 11(4):413-433.

Mangan S, Zaslaver A, Alon U: The coherent feedforward loop serves as a
sign-sensitive delay element in transcription networks. Journal of
Molecular Biology 2003, 334:197-204.

Levine E, Zhang Z, Kuhiman T, Hwa T: Quantitative Characteristics of Gene
Regulation by Small RNA. PLoS Biology 2007, 5(9):e229..

Mitarai N, J B, SK S'S, Z C, E M, Sneppen K: Dynamic features of gene
expression control by small regulatory RNAs. Proceedings of the National
Academy of Sciences of the United States of America 2009,
106(26):10655-10659.

Mehta P, Goyal S, Wingreen NS: A quantitative comparison of sSRNA-based
and protein-based gene regulation. Mol Syst Biol 2008, 4.

Williamson T, Schwartz JM, Kell DB, Stateva L: Deterministic mathematical
models of the cAMP pathway in Saccharomyces cerevisiae. BVMC Systems
Biology 2009, 3.

Jacob F, Perrin D, Sanchéz C, Monod : L'opéeron: groupe de génes a
expression coordonnée par un opérateur. J C R Acad Sci 1960,
250:1727-1729.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Page 14 of 14

Vilar JMG, Guet C, Leibler S: Modeling network dynamics: the lac operon,
a case study. Journal of Cell Biology 2003, 161(3):471-476.

Yildirim N, Mackey M: Feedback Regulation in the Lactose Operon: A
Mathematical Modeling Study and Comparison with Experimental Data.
Biophysical Journal 2003, 84(5):2841-2851.

Yildirim N, Santillan M, Horike D, Mackey M: Dynamics and bistability in a
reduced model of the lac operon. Chaos 2004, 14(2):279-292.

Huang CYF, Ferrell JJ: Ultrasensitivity in the mitogen-activated protein
kinase cascade. Proceedings Of The National Academy Of Sciences Of The
United States Of America 1996, 93:10078-10083.

Ferrell J, James E, Machleder EM: The Biochemical Basis of an All-or-None
Cell Fate Switch in Xenopus Oocytes. Science 1998, 280(5365):895-898.
Markevich NI, Hoek JB, Kholodenko BN: Signaling switches and bistability
arising from muiltisite phosphorylation in protein kinase cascades. J Cell
Biol 2004, 164(3):353-359.

Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY: Bistability and
Oscillations in the Huang-Ferrell Model of MAPK Signaling. PLoS Comput
Biol 2007, 3(9):e184..

Ferrell JE, Pomerening JR, Kim SY, Trunnell NB, Xiong W, Huang CYF,
Machleder EM: Simple, realistic models of complex biological processes:
Positive feedback and bistability in a cell fate switch and a cell cycle
oscillator. FEBS letters 2009, 583(24):3999-4005.

Russo C, Giuraniuc C, Blossey R, Bodart JF: On the equilibria of the MAPK
cascade: Cooperativity, modularity and bistability. Physica A: Statistical
Mechanics and its Applications 2009, 388(24):5070-5080.

doi:10.1186/1752-0509-5-74
Cite this article as: Blanchini and Franco: Structurally robust biological
networks. BMC Systems Biology 2011 5:74.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/18285369?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18285369?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15752609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15752609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12853565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20223989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20223989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19003437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17697564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17697564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17697564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14607112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14607112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17713988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17713988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19541626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19541626?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12743100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12743100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12719218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12719218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15189056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15189056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8816754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8816754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9572732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9572732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19878681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19878681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19878681?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Robustness
	Non-smooth Lyapunov functions
	Positively invariant sets
	Structural robustness investigation for biological networks
	Network graphs
	Investigation method

	Results and Discussion
	The L-arabinose network
	The sRNA pathway
	The cAMP dependent pathway
	The Lac operon
	MAPK signaling pathway

	Conclusions
	Notes
	Acknowledgements
	Author details
	Authors' contributions
	References

