
 Open access  Journal Article  DOI:10.1103/PHYSREVE.91.012826

Structurally robust control of complex networks. — Source link 

Jose C. Nacher, Tatsuya Akutsu

Institutions: Toho University, Kyoto University

Published on: 30 Jan 2015 - Physical Review E (American Physical Society)

Topics: Robust control, Complex network, Control theory, Network topology and Probabilistic logic

Related papers:

 Controllability of complex networks

 Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control

 Controllability in protein interaction networks

 Structural controllability of unidirectional bipartite networks

 Control Principles of Complex Networks

Share this paper:    

View more about this paper here: https://typeset.io/papers/structurally-robust-control-of-complex-networks-
2vi6mpwnrp

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVE.91.012826
https://typeset.io/papers/structurally-robust-control-of-complex-networks-2vi6mpwnrp
https://typeset.io/authors/jose-c-nacher-1g9yxzs3ik
https://typeset.io/authors/tatsuya-akutsu-20jhk6sdg5
https://typeset.io/institutions/toho-university-1kic295t
https://typeset.io/institutions/kyoto-university-2e8jm0c6
https://typeset.io/journals/physical-review-e-9qlkqn9m
https://typeset.io/topics/robust-control-1585eras
https://typeset.io/topics/complex-network-3eng6nhx
https://typeset.io/topics/control-theory-3tznv960
https://typeset.io/topics/network-topology-3w57cbb3
https://typeset.io/topics/probabilistic-logic-r1sp2jpw
https://typeset.io/papers/controllability-of-complex-networks-33u8hg029p
https://typeset.io/papers/dominating-scale-free-networks-with-variable-scaling-5d0io0v5k7
https://typeset.io/papers/controllability-in-protein-interaction-networks-1girdnwpr8
https://typeset.io/papers/structural-controllability-of-unidirectional-bipartite-3qknidj4rq
https://typeset.io/papers/control-principles-of-complex-networks-3y53usz1ap
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/structurally-robust-control-of-complex-networks-2vi6mpwnrp
https://twitter.com/intent/tweet?text=Structurally%20robust%20control%20of%20complex%20networks.&url=https://typeset.io/papers/structurally-robust-control-of-complex-networks-2vi6mpwnrp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/structurally-robust-control-of-complex-networks-2vi6mpwnrp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/structurally-robust-control-of-complex-networks-2vi6mpwnrp
https://typeset.io/papers/structurally-robust-control-of-complex-networks-2vi6mpwnrp


RIGHT:
URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:Structurally robust control ofcomplex networks

Nacher, Jose C.; Akutsu, Tatsuya

Nacher, Jose C. ...[et al]. Structurally robust control of complexnetworks. Physical Review E 2015, 91(1): 012826.

2015-01-30

http://hdl.handle.net/2433/196055
©2015 American Physical Society



PHYSICAL REVIEW E 91, 012826 (2015)

Structurally robust control of complex networks

Jose C. Nacher*,†

Department of Information Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan

Tatsuya Akutsu*,‡

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan

(Received 3 May 2014; revised manuscript received 16 July 2014; published 30 January 2015)

Robust control theory has been successfully applied to numerous real-world problems using a small set of

devices called controllers. However, the real systems represented by networks contain unreliable components

and modern robust control engineering has not addressed the problem of structural changes on complex networks

including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks

and provide a concrete example using an algorithmic framework that is widely applied in engineering. The

developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that

robust control can be achieved in scale-free networks with exactly the same order of controllers required in

a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also

addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis

elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a

role.

DOI: 10.1103/PhysRevE.91.012826 PACS number(s): 89.75.Hc, 89.70.Eg, 89.75.Da, 89.75.Fb

I. INTRODUCTION

Real networks contain unreliable components; in critical

infrastructures and technological networks some links may

become nonoperational due to disasters or accidents, and

in natural networks this might occur due to pathologies.

Although the robustness and resilience of networks have

been extensively investigated over the past decade [1–4],

controllability methods for complex networks that can ro-

bustly manage structural changes have not been developed

sufficiently. The existing research is limited to recent studies

of network controllability under node attack and cascading

failures using maximum matching [5–7], the discussion of

quantitative measures of network robustness to investigate the

effect of edge removal on the number of controllable nodes

without a comprehensive theoretical analysis [8] and studies

on multiagent systems under simultaneous failure of links

and agents [9]. Recently, a relation between controllability

robustness and core percolation [10] was investigated as an

extension of the results shown in Ref. [5]. Note that the

problem of how the number of driver nodes change as function

of removal fraction of edges [6–8] and our question of how

to design complex networks with structurally robust control

feature drastically differ. While the former are heavily relying

on percolation and cascading failure techniques well studied

over the past decade, our work studies the minimum number

of driver nodes to control the entire network against arbitrary

single or multiple edge failures.

Robust control theory emerged in the late 1970s and is based

on linear, time-invariant transfer functions. The controller

is designed to change the system’s model dynamics until it

reaches a certain degree of uncertainty or disturbance. Thus,

*Corresponding authors.
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the system is designed to be robust or stable against the

presence of bounded modeling errors. To address disturbances,

techniques such as single-input, single-output (SISO) feed-

back and H-infinity loop shaping were developed to avoid

dynamic trajectories that deviate when disturbances enter the

system [11,12]. Modern robust control engineering has been

successfully applied to numerous real-world problems, such as

stability in aircrafts and satellites and the efficiency of power,

manufacturing, and chemical plants. By using a fault-tolerant

control design a system can be robust enough to continue op-

erating as intended even a small system failure occurs. Indeed,

robust control for consensus and synchronization of networks

have been investigated in a number of papers using a variety of

techniques, including complex interconnected neural networks

with delay [13]. The problem of fault-tolerant control aims

to achieve a certain control objective in the presence of

single or multiple edge or node failures. For example, this

is a key technological and well-studied problem in networks

where agents communicate over wireless connections (e.g.,

fault-tolerant control of wireless networks) [14,15].

Here we introduce the concept of structurally robust control

of complex networks from a different perspective. To provide

a concrete example, we adopt the minimum dominating set

(MDS) model because it has been widely applied to the control

of engineering systems, such as mobile ad hoc networks

(MANET), transportation routing, computer communication

networks [16–21], design of swapped networks for construct-

ing large parallel and distributed systems [22], as well as

the investigation of social influence propagation [23–25].

Recently, the relationship between structural controllability

and MDS has been established and the size of MDS in a

certain type of scale-free networks has been theoretically

analyzed [26–28]. Molnár et al. further studied the size of MDS

by exhaustively comparing several types of artificial scale-free

networks using a greedy algorithm [29]. Interestingly, Wuchty

demonstrated the applicability of the MDS approach to the

controllability of protein interaction networks and showed
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FIG. 1. (Color online) The MDS model and the robust domina-

tion configuration. (a) The network is structurally controllable by

selecting a minimum dominating set (MDS) because each dominated

node has its own control signal. A maximum matching approach needs

three driver nodes v1, v2, and v4, assuming a matching link from v1

to v3. In contrast, the MDS only requires one node, v1. The labels u1
1,

u2
1, and u3

1 indicate control. (b) Example of a dominating set (DS) in

a graph G. A set of nodes S (filled) in a graph G is a dominating set if

every node in G is either an element of S or adjacent to an element of

S. (c) The graph G allows for an MDS with cover C = 1 composed

of only three nodes. (d) Example of a robust minimum dominating set

(RMDS) (i.e., an MDS with cover C = 2). In an RMDS, each node

in G is either an element of S or adjacent to at least two elements of

S. (e) Each edge (ti , tj ) has a failure probability of Pti ,tj highlighted

in the figure. In a probabilistic minimum dominating set (PMDS), the

approach shown here, each node must be covered by multiple nodes

in the MDS so the probability that at least one edge is active is at

least θ = 0.7. For instance, t4 must cover itself because the link (t2,t4)

is unreliable with a failure probability of 0.8, which is higher than

θ = 0.7.

that the MDS of proteins were enriched with essential cancer-

related and virus-targeted genes [30]. Moreover, very recently

strategies on vulnerability of dominating sets against random

and targeted attacks have also been reported [31].

A set of nodes S in a graph G is a dominating set (DS) if

every node in G is either an element of S or adjacent to an

element of S. Then the MDS approach states that a network

is made structurally controllable by selecting an MDS (driver

set) because each dominated node has its own control signal

[26–28] [see Fig. 1(a)]. Whereas each element is controlled by

at least one node in G (C = 1) (or is covered by itself) in an

MDS, the novel robust MDS (RMDS) approach states that each

node must be covered by itself or at least two nodes in G (C =
2) [see Figs. 1(c) and 1(d)]. The analytical results and computer

simulations demonstrate that a robust configuration (C = 2,

D = 2) and nonrobust configuration (C = 1, D = 1) of a

scale-free network with minimum degree D require the same

order of driver nodes. The robust configuration guarantees that

the system remains controllable even under arbitrary single or

multiple link failure. This finding has remarkable implications

for designing technical and natural systems that can still

operate in the presence of unavailable or damaged links

because the implementation of such a robust system in a large

network does not change the order of the required controllers

in a conventional system without robustness capability. As a

by-product of this research, our results also demonstrate that

the minimum degree D in a network plays an important role

in network controllability and significantly affects the size of

the MDS. In particular, for γ < 2, the order of the size of

an MDS changes if the minimum degree changes, unveiling

another tool to reduce the number of driver nodes. These

theoretical findings are confirmed by computer simulations

and an analysis of real-world undirected, directed, and bipartite

networks. In addition, the MDS approach is extended to

address probabilistic network domination when we consider

the probability of link transmission failure. The derived

mathematical tools allow us to identify optimal controllability

configurations in real biological systems by mapping the

synaptic unrealiability distribution experimentally observed

in rat brains [32] to the most well-known and recently updated

neural network model for Caenorhabditis elegans [33].

The connections between the proposed study and develop-

ments on graph theory such as eternal domination are worth

mentioning. The robust dominating set can be mathematically

seen as a k-dominating set. Further extensions on k-dominating

sets led to the concept of the Roman k-dominating set and

eternal security [34–36]. An eternal dominating or eternally

secure set can be defined as a dominating set that allows

an eternal defense. The first version of these concepts was

mathematically introduced by Burger et al. [37,38]. For this

definition, we have to understand the nodes as regions, the

edges as adjacent regions, and a dominating set S as military

bases of protecting armies located in some selected regions.

Then, when a node v that does not belong to the current

dominating set S is attacked, the army at a node of S adjacent

to v can be deployed to v to defend the region from the attack.

This process generates a dominating set with the same feature

of eternal defense. However, the relations with robust control

of complex networks were not investigated in these works.

The concept of structural controllability was first introduced

by Lin [39] for single-input systems and it was quickly

extended to multi-input systems [40–43]. The maximum

matching (MM) algorithm identifies the minimum number of

nodes to control the entire network by providing a mapping

between structural controllability and network structure [5].

However, there are several striking differences with MDS

approach: (1) By using the MM approach, the fraction of driver

nodes tends to be minimized in random networks. The MDS

does not necessarily give a minimum number of driver nodes

in the sense of MM approach. However, MDS gives fewer

driver nodes in many cases, including scale-free networks in

which hubs are present [1,44]. For example, consider the star

graph (all nodes but one node are leaves) with n leaves. The

MM approach then needs n-1 driver nodes, whereas the MDS

approach needs only one driver node. (2) The MM approach is

based on linear systems, whereas the MDS approach does not

even need structural controllability: It is enough to assume that

a node is controllable if it is directly connected to a driver node.

This represents one of the unique features of the MDS model

because it suggests that it can be applied to a certain kind

of nonlinear and/or discrete model. However, these striking

advantages have a price. (1) The set of driver nodes in MDS

is O(n) in scale-free networks with γ > 2. (2) Each edge has
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to be controlled independently. However, even in the case of

O(n), a relatively small number of drivers is required in most

cases. Above all, the proposed concept of structurally robust

control is an algorithmic-independent framework. Therefore,

engineering applications of structurally robust control may

flexibly give preference to one algorithm over another.

II. THEORETICAL RESULTS FOR ROBUST DOMINATION

A. Analysis for the case γ < 2 with minimum degree D

and MDS with cover C = 1

In the following, we present analytically derived predic-

tions for the minimum number of drivers using the MDS

controllability approach by considering specific cases for the

degree exponent γ and the minimum degree D. Then the robust

control is also analyzed by considering the number of drivers C

required to cover each node. We first assume that the minimum

degree of an undirected graph G(V,E) with n nodes and a

degree distribution that follows a power law P (k) = αk−γ is

D. We then use a standard mean-field approach that assumes

a continuum approximation for the degree k, so it becomes a

continuous real variable [1,44].

We also note that there are some discussions on degree

cutoff [45] because our analysis assumes that there exist

high-degree nodes. However, we do not introduce such a

degree cutoff because we are performing a kind of mean-field

analysis. It is to be noted that scale-free networks are a kind of

random networks and thus we can have a node with even degree

n − 1 with very small probability if P (n − 1) > 0 [1]. In the

mean-field analysis, such rare cases are taken into account.

However, discussions of degree cutoff are based on average

case analysis, and there is no consensus for a cut-off value.

Therefore, we do not introduce degree cutoff in our analysis.

The results of computer simulation support that our analysis is

appropriate. Note also that each node with degree more than

1 must be covered by C nodes (not by C edges) in our integer

linear programming (ILP) formulation and thus the effect of

multiple edges is eliminated in computer simulation. As it

has been shown in the field of complex network science, the

analysis and classification of networks in terms of their degree

distribution is a key feature to understand the complex behavior

of complex systems. In particular, the scale-free topology

fundamentally changes the system’s behavior, with broad

implications from spreading processes on networks (like,

for example, the spread of infectious diseases) to cascading

failures [1,5,44]. It is therefore appropriate to examine the

controllability problem in networks governed by power-law

degree distributions.

First we assume that the minimum degree D is 2 in an

undirected graph G(V,E), where V is a set of n nodes and E

is a set of edges connecting nodes in V . From the following

equation:

αn

∫ n

2

k−γ dk =
αn

γ − 1

(

1

2γ−1
−

1

nγ−1

)

≈
αn

γ − 1

1

2γ−1
= n

we have α = 2γ−1(γ − 1).

Let DS be the set of nodes with degree between nβ and n.

Then, the number of nodes in DS (denoted by NDS) is

NDS ≈ αn

∫ n

nβ

k−γ dk = −2γ−1n[k1−γ ]n
nβ

= −2γ−1n(n1−γ − nβ(1−γ )) ≈ 2γ−1n1+β(1−γ ).

Let EG be the number of edges in G(V,E). Then EG is

given by

EG ≈
αn

2

∫ n

2

kk−γ dk ≈
αn

2(2 − γ )
n2−γ ,

where the factor 2 in αn
2

comes from the fact that each edge is

counted by two nodes. The number of edges that are connected

to at least one node in DS (i.e., the number of edges covered

by DS) is lower bounded by

EDS =
αn

2

∫ n

nβ

kk−γ dk =
αn

2(2 − γ )
[n2−γ − nβ(2−γ )].

It should be noted that EDS gives a lower bound and the number

of edges covered by DS may be much larger because this

estimate considers the case where both end points of these

edges are in DS.

The probability that an arbitrary edge is not covered by DS

is upper bounded by

EG − EDS

EG

≈
nβ(2−γ )

n2−γ
= n(β−1)(2−γ ).

Then the probability that a node with degree k does not have

any edge connected to DS is upper bounded by

nk(β−1)(2−γ ),

which is also upper bounded by n2(β−1)(2−γ ) because the

minimum degree is assumed to be 2. Therefore, the number of

nodes (denoted by NG−DS) not covered by DS is

NG−DS � O(nn2(β−1)(2−γ )) = O(n1+2(β−1)(2−γ )).

Since we can have a dominating set if we merge these nodes

with DS, the number of nodes in an MDS is upper bounded by

NDS + NG−DS. To minimize the order of NDS + NG−DS. we

let

1 + β(1 − γ ) = 1 + 2(β − 1)(2 − γ ),

which results in

β =
2(2 − γ )

3 − γ
.

By using this β, an upper bound of the size of an MDS is

estimated as

O
[

n
1− 2(γ−1)(2−γ )

3−γ

]

.

We can see that this order is smaller than that of our previous

result on D = 1 [27]

O[n1−(γ−1)(2−γ )].

In particular, the above takes the minimum order O(n0.75)

when γ ∗ = 1.5 for D = 1, whereas the new bound for D = 2

takes the minimum order O(n0.657) when γ ∗ = 3 −
√

2 [see

Figs. 2(a) and 2(b)]. This difference comes from the fact that

a node v is regarded as not covered by DS if one specific edge
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FIG. 2. (Color online) The theoretical predictions for the MDS

order. Theoretical analysis illustrates that the MDS size scales

according to nδ [see Eq. (3)] in scale-free networks of size n. The

scaling exponent δ as a function of the degree exponent γ for the (a)

C = 1, D = 2 and (b) C = 1, D = 1 configurations. (c) The degree

exponent that minimises the MDS as a function of the minimum

degree D. (d) The dependence of the δ exponent on the degree

exponent γ calculated for several D values.

connected to v is not covered by DS in an existing analysis [27],

whereas a node v is regarded as not covered by DS if no edge

connected to v is not covered by DS in this analysis.

We can extend the above result for the case where the

minimum degree is D by replacing

NG−DS � O[nn2(β−1)(2−γ )] = O[n1+2(β−1)(2−γ )],

with

NG−DS � O[nnD(β−1)(2−γ )] = O[n1+D(β−1)(2−γ )].

Then we have

1 + β(1 − γ ) = 1 + D(β − 1)(2 − γ ), (1)

β =
D(2 − γ )

D(2 − γ ) + (γ − 1)
. (2)

By using this β, an upper bound of the size of MDS is estimated

as

O
[

n
1− D(2−γ )(γ−1)

D(2−γ )+γ−1

]

. (3)

This order of the MDS size that scales as nδ takes the minimum

value when

γ ∗ =
(2D − 1) −

√
D

D − 1
.

It is to be noted that although α depends on D, it does not affect

the order of the MDS size. The scaling exponent δ for the order

of the MDS size is shown as a function of the degree exponent

γ in Fig. 2(d). This is our first main result and demonstrates

that for scale-free networks with γ < 2, the order of the MDS

size changes (the exponent δ changes in functional form of

nδ) when the minimum degree increases. The dependence of

the degree exponent γ ∗ that minimizes the MDS size on the

minimum degree D is also shown in Fig. 2(c). The results

demonstrate that a higher minimum degree makes it easier to

control scale-free networks with γ < 2 [Fig. 2(d)].

B. Analysis on robust domination with minimum degree D

and a generic C cover

1. Analysis for the case of γ < 2

Next we show the results for the robust domination (RMDS)

[Fig. 1(d)]. For an undirected graph G(V,E) and a positive

integer C, RDS ⊆ V is called a C-robust dominating set

if each node v ∈ V satisfies the following: either v ∈ RDS

or v is connected to C or more nodes in RDS. Here, we

provide an upper bound of the size of the minimum C-robust

dominating set. Note that an RDS is a special case of a

generalized dominating set [46,47], which has been studied

in the context of the computational complexity. However, it

has not been investigated from the perspective of complex

networks. We consider the case of C-robust domination in

which the minimum degree of G(V,E) is D, where C and D

are constants such that D � C.

As in Sec. II A, let DS be the set of nodes with degree

between nβ and n. Then the probability that a node is not

covered by C or more nodes in DS is bounded by

O

(

D
∑

k=D−C+1

(

D

k

)

n(β−1)(2−γ )k

)

,

where we do not include the factor of [1 − O(n(β−1)(2−γ )]D−k

because we consider an upper bound. This number is further

bounded by

O[DDD−C+1n(β−1)(2−γ )(D−C+1)]

for sufficiently large n. Therefore, the number of nodes not

covered by DS is

O[nn(β−1)(2−γ )E] = O[n1+E(β−1)(2−γ )],

where we let E = D − C + 1. It is to be noted that a constant

factor is ignored here because we use O notation.

As before, by balancing the size of DS and the number of

noncovered nodes, we have

1 + β(1 − γ ) = 1 + E(β − 1)(2 − γ ), (4)

β =
E(2 − γ )

E(2 − γ ) + (γ − 1)
. (5)

By using this β, an upper bound of the size of RMDS is

estimated as

O
[

n
1− E(2−γ )(γ−1)

E(2−γ )+γ−1

]

. (6)

This is our second and most important finding. This result

suggests that the case of an RMDS with minimum cover C

and minimum degree D corresponds to the case of an MDS

with the minimum degree D − C + 1. For example, the case

of an RMDS with C = D = 2 [i.e., the case where each node

(with a degree of at least 2) must be covered twice, and the

minimum degree D is 2] corresponds to the case of an MDS

with D = 1.

In all theoretical analyses in Secs. II A and IIB, we assume

that multiedges (i.e., multiple edges between the same pair
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of nodes) are allowed because it is known that there does

not exist a network strictly following a power-law distribution

with γ < 2 if multiedges are not allowed [48]. However, even

if multiedges between the same pairs are replaced by single

edges after generating a power-law network with multiedges,

the results should hold if the cover parameter C is 1 because

MDS is only concerned with existence of an edge from each

node not in MDS to a node in MDS. If C > 1, we need to

consider the possibility that some of C edges are connected to

a node v are multiedges because such v may not be dominated

by C nodes. We will show that such a factor can be ignored

in many cases if we discuss the order of the size of MDS.

Of course, the resulting network does not strictly follow a

power-law distribution if multiedges are replaced by single

edges. However, because any network with γ < 2 cannot

strictly follow a power-law distribution, our assumption seems

reasonable.

Here we note that Eqs. (4) and (5) are identical to Eqs. (1)

and (2) if we replace E by D. It suggests that the case of

RMDS with the minimum cover C and the minimum degree

D corresponds to the case of MDS with the minimum degree

D − C + 1. For example, the case of RMDS with C = D = 2

corresponds to the case of MDS with D = 1.

In the above, we implicitly assumed that all C edges are

connected to different nodes in DS. However, we need to

consider the possibility that some of C edges are connected

to the same node in DS because we allow multiedges in

theoretical analyses. Suppose that C (or more) edges from

v are connected to DS. Since the number of edges connected

to a node of degree k in DS is O(k), there exist O(nk−γ ) nodes

of degree k in DS, and there exist O(n3−γ ) edges connected to

DS, the probability that C edges contain at least one common

end point in DS is

O

(

C2

∫ n

k=1
k2(nk−γ )dk

(n3−γ ]2

)

= O

(

C2 1

n2−γ

)

.

Since there exist O(n) nodes covered by DS, the number of

nodes not covered by C different nodes would be

O(C2nγ−1).

If the exponent γ − 1 is smaller than that in Eq. (6), this factor

does not affect the order of Eq. (6). For γ < 1.5, it is true for

E � 10. However, if γ � 1.7, it is true only for E = 1 (i.e.,

C = D). Therefore, we need to be careful if we consider the

case of D > C and γ � 1.7.

2. Analysis for the case of γ > 2

a. Analysis of lower bound. First we consider a lower

bound. Let D be the minimum degree. From αn
∫ n

D
k−γ dk =

n, we have α = (γ − 1)Dγ−1.

For S ⊆ V , Ŵ(S) denotes the set of edges between S and

V − S [i.e., Ŵ(S) = {{u,v}|u ∈ S and v ∈ V − S}]. Here we

assume without loss of generality that |S| < n/2 because we

are interested only in cases where |S| is small compared with

n. The following property is trivial:

if |Ŵ(S)| < n/2, S cannot dominate V . (7)

Let S be the set of nodes whose degree is greater than or

equal to K . We estimate the size of Ŵ(S) as follows:

|Ŵ(S)| < αn

∫ n

K

kk−γ dk ≈ n(γ − 1)Dγ−1

∫ n

K

k−γ+1dk

= nDγ−1

(

γ − 1

γ − 2

)(

1

Kγ−2
−

1

nγ−2

)

< nDγ−1

(

γ − 1

γ − 2

)

1

Kγ−2
.

If S is a dominating set, the last term should be no less than

n/2. Therefore, the following inequality should be satisfied:

nDγ−1

(

γ − 1

γ − 2

)

1

Kγ−2
> n/2. (8)

By solving this inequality, we have

K <

[

Dγ−1

(

γ − 1

γ − 2

)(

n

n/2

)]1/(γ−2)

=
[

2Dγ−1

(

γ − 1

γ − 2

)]1/(γ−2)

.

Then the size of S is estimated as

|S| ≈ αn

∫ n

K

k−γ dk ≈ n

(

1

Kγ−1
−

1

nγ−1

)

≈ n
1

Kγ−1

>

[

2Dγ−1

(

γ − 1

γ − 2

)]− γ−1

γ−2

n.

We extend the above analysis to C domination (i.e., each

node must be covered by C or more edges). In this case,

Ineq. (7) should be replaced by

if |Ŵ(S)| < nC/2, S cannot C-dominate V .

Then, Ineq. (8) is also replaced by

nDγ−1

(

γ − 1

γ − 2

)

1

Kγ−2
> (nC)/2.

Finally, we have

|S| >

[(

Dγ−1 2

C

)(

γ − 1

γ − 2

)]− γ−1

γ−2

n

=
(

C

2Dγ−1

)
γ−1

γ−2
[(

γ − 1

γ − 2

)]− γ−1

γ−2

n. (9)

For example, consider the case of C = 2 and γ = 3 for fixed

D. In this case, 2-domination requires 22 = 4 times larger

MDS.

b. Analysis of upper bound. Next we consider an upper

bound. As in the above, we have α = (γ − 1)Dγ−1. Let DS be

the set of nodes with degree between B and n. Then, the size

of DS, NDS, is estimated as

NDS ≈ αn

∫ n

B

k−γ dk = −nDγ−1[k1−γ ]nB

= −nDγ−1(n1−γ − B1−γ ) ≈ n
Dγ−1

Bγ−1
.

As in Sec. II B 2, let EG and EDS be the number of

edges in G(V,E) and the number of edges connected to DS,
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respectively. In addition, let D denote the minimum degree.

Then we have

EG ≈ αn

∫ n

D

kk−γ dk ≈
γ − 1

γ − 2
n
Dγ−1

Dγ−2
,

EDS ≈ αn

∫ n

B

kk−γ dk ≈
γ − 1

γ − 2
n
Dγ−1

Bγ−2
.

The probability that an arbitrary edge is covered by DS is

EDS

EG

≈
(

D

B

)γ−2

.

Thus, a lower bound of the probability that an arbitrary node

is not covered by C or more edges is estimated as

1 −
D

∑

k=C

(

D

k

) [(

D

B

)γ−2]k[

1 −
(

D

B

)γ−2]D−k

=
C−1
∑

k=0

(

D

k

) [(

D

B

)γ−2]k[

1 −
(

D

B

)γ−2]D−k

.

Since it is very difficult to consider a general pair (C,D), we

consider the case of C = D. Then this probability is simplified

into

1 −
(

D

B

)C(γ−2)

.

Therefore, an upper bound f (B) of the size of MDS is

estimated as

f (B) = n

[(

D

B

)γ−1

+ 1 −
(

D

B

)C(γ−2)]

.

It is to be noted that this number does not give a meaningful

bound for many (C,γ ). For example, if C = 1 and γ = 3,

f (B) = n holds.

By solving f ′(B) = 0, we see that f (B) takes the minimum

value

n

{

1+
[

C(γ − 2)

γ − 1

]
γ−1

C(2−γ )+(γ−1)

−
[

C(γ − 2)

γ − 1

]
C(γ−2)

C(2−γ )+(γ−1)
}

(10)

at B = D
[

γ−1

C(γ−2)

]1/(C(2−γ )+(γ−1))

. It is interesting to note that

this minimum value does not depend on the minimum degree

D. If C = D = 1 (i.e., original MDS), this minimum value is

simplified into

n

[

1 +
(

γ − 2

γ − 1

)γ−1

−
(

γ − 2

γ − 1

)γ−2]

.

It is also interesting to consider the case of C = 1 and

D = 2. In this case, f (B) is given by

f (B) = n

{(

2

B

)γ−1

+
[

1 −
(

2

B

)(γ−2)]2}

.

Although it is difficult to analytically derive its minimum, we

can estimate it by numerical computation. Figure 3 compares

upper bounds for (C,D) = (1,1) and (C,D) = (1,2) and lower

bounds for (C,D) = (1,1). This figure shows that the upper

bound becomes smaller as D increases in the case of C = 1.
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FIG. 3. (Color online) Analytical results for several configura-

tions. Comparison of upper bounds for (C,D) = (1,1),(1,2) and

lower bounds for (C,D) = (1,1).

Although, as shown in Fig. 4, the gap between the derived

lower and upper bounds is large (especially for larger C and

D), these are not trivial. For example, suppose that there exist

two nodes with degree no less than n − 1. Then the size of

RMDS for C = 2 is 2, which is O(1) [much less than O(n)].

The �(n) lower bound suggests that such a case seldom occurs

in random scale-free networks.
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FIG. 4. (Color online) The theoretical predictions for MDS

(C = 1) and robust domination RMDS (C = 2,3) with D = C. (a)

Lower and upper bound predictions for the fraction of nodes required

to control the entire network for covers C = 1,2,3. (b) Ratio of lower

bound MDS sizes for C = 2 and C = 1 (circles) and C = 3 and

C = 1 (triangles). (c) Ratio of upper bound MDS sizes for C = 2

and C = 1 (circles) and C = 3 and C = 1 (triangles).
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III. COMPUTATION OF ROBUST DOMINATION

A. ILP formulation for MDS in unipartite networks

Let G(V,E) be an undirected graph, where V and E are

sets of nodes and edges, respectively. We begin with the ILP

formulation for computation of an MDS [26]. From G(V,E),

we construct the following ILP instance:

minimize
∑

v∈V

xv,

subject to xu +
∑

{u,v}∈E

xv � 1 for all u ∈ V ,

xv ∈ {0,1} for all v ∈ V .

Then the set {v|xv = 1} clearly gives an MDS. It is known that,

in contrast to the bipartite matching [5], the MDS problem is

NP-hard. Therefore, it is reasonable to use ILP.

B. ILP formulation for robust domination

Suppose that each node must be covered twice except the

degree 1 and 0 nodes. Then we can formulate that this robust

dominating set problem for C = 2 [i.e., each node (with degree

greater than 2) is either in MDS or is covered by at least two

nodes in MDS, where each node with degree 1 is either in

MDS or is covered by at least one node in MDS] as follows.

Because it is impossible to cover each degree 1 node by two

edges, we have introduced this exceptional handling of degree

1 nodes. However, if the minimum degree is 2 or more, we

need not consider this exceptional case,

minimize
∑

v∈V

xv,

subject to 2xu +
∑

{v,u}∈E

xv � 2 for all u ∈ V such that deg(u) > 1,

xu +
∑

{v,u}∈E

xv � 1 for all u ∈ V such that deg(u) = 1,

xv ∈ {0,1} for all v ∈ V .

However, the GNU Linear Programming Solver (glpsol) executable could not solve this problem in reasonable CPU time. So

we strengthen the condition so each node with degree greater than 2 is covered by at least two nodes in MDS even if the node

belongs to MDS. Then the resulting IP becomes as follows:

minimize
∑

v∈V

xv,

subject to xu +
∑

{v,u}∈E

xv � 2 for all u ∈ V such that deg(u) > 1,

xu +
∑

{v,u}∈E

xv � 1 for all u ∈ V such that deg(u) = 1,

xv ∈ {0,1} for all v ∈ V .

It is to be noted that the solution obtained by the above ILP also satisfies the conditions of the original formulation. Therefore,

the solution obtained by use of this ILP also gives a robust dominating set although it is not necessarily minimum. We can also

consider a variant of MDS in which weight w(u,v) is assigned for each edge and each node u must be covered by edges with

total weight Wu. Then this variant can be formulated as

minimize
∑

v∈V

xv,

subject to w(u,u)xu +
∑

{v,u}∈E

(w(u,v)xv) � Wu for all u ∈ V such that deg(u) > 0,

xv ∈ {0,1} for all v ∈ V .

C. Implementation of the ILP problems

For the MDS (C = 1) and RMDS (C = 2) configurations

computed in real-world and simulated networks, the optimal

solution was calculated using the glpsol solver [49]. The

GNU Linear Programming Kit (GLPK) supplies a software

package intended for solving large-scale linear programming,

mixed integer programming, and other related problems. In

our problem, after translating the mathematical problem into

an ILP problem, the input model is solved using the glpsol

executable.

For the probabilistic MDS (PMDS), to be shown later,

the optimal solution for the ILP formulation was calculated

using the IBM ILOG CPLEX OPTIMIZER STUDIO, ver. 12.02.

As the GLPK, it is a software package that allows us to
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solve large-scale mathematical optimization problems. The

computation of the PMDS is more intensive than that of MDS

and RMDS, therefore we used CPLEX because it performed

faster than GLPK to find the optimal solution.

D. Generation of unipartite scale-free networks

We employ the following algorithm to construct unipartite

scale-free networks of size n, in which the degree distribution

of V (a set of nodes) follows P (k) ∝ k−γ under the constraint

that the minimum and maximum degrees are D and n,

respectively.

For given n,γ,D we generate a random unipartite network

in the following way:

(1) For each node v ∈ V , generate half edges ei = (v,ui)

(ui is a virtual node) according to the degree distribution

α1k
−γ under the constraint of the minimum degree D and

the maximum degree n, where α is selected so the number of

nodes in V is almost n.

(2) Repeat the following until there are almost no remain-

ing half edges: randomly select nonconnected ei = (v,ui) and

ej = (v′,uj ) such that v 	= v′ and then connect v and v′.
The probabilistic MDS, to be introduced later, was com-

puted using generated samples of synthetic scale-free networks

with a variety of scaling exponent γ and average degree 〈k〉
values using the Havel-Hakimi algorithm with random (Monte

Carlo) edge swaps (HMC) [50].
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FIG. 5. (Color online) Computer simulations for MDS size for

γ < 2. The MDS size calculated in computer-generated scale-free

networks for γ = 1.3, 1.5, and 1.7 are shown in (a), (b), and (c),

respectively. The configurations for minimum degree D and cover C

are shown in the figure legend. The lines display a scaling law of nδ .

The precise values for δ are, from top to bottom, (a) 0.804 ± 0.011,

0.8234 ± 0.009, 0.791 ± 0.015; (b) 0.771 ± 0.007, 0.781 ± 0.006,

0.704 ± 0.007; and (c) 0.810 ± 0.006, 0.804 ± 0.003, 0.714 ±
0.008. As predicted by the theory, configurations D = 1, C = 1 (blue)

and D = 2, C = 2 (red) exhibit very similar scaling exponents. Note

that D = 2 significantly decreases the MDS size. (d) The scaling

exponent δ predicted by theory compared with the scaling exponent

observed in computer simulations for each D and C configurations.

The results were averaged over 10 realizations. The error bars (s.e.m.)

are shown in the figure. The correlation coefficient r is above 0.999

in all cases.
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FIG. 6. (Color online) The MDS size calculated in computer

generated scale-free networks for γ = 2.3, 2.5. Configurations for

minimum degree D and cover C are shown in figure legend. The

lines show a scaling law as nδ . The precise values for δ are

from up to down (a) 0.976 ± 0.005, 0.978 ± 0.011, 0.951 ± 0.010

and (b) 0.993 ± 0.005, 0.995 ± 0.005, 0.986 ± 0.010. All three

configurations show very similar scaling exponents close to 1, as

predicted by theory. Note that D = 2 significantly decreases the MDS

size. The error bars (s.e.m.) are shown in the figure. The correlation

coefficient r is above 0.999 in all cases.

E. Computer simulations for RMDS

To confirm the theoretical predictions shown above, we

constructed artificial scale-free networks with a variety of

degree exponents γ and minimum degree D = 1 and D = 2.

An ensemble of scale-free networks was constructed for

each network size up to 10 000 nodes, and the mean value

together with standard error of the mean (s.e.m.) for MDS

size with C = 1 and C = 2 were computed. For γ < 2, the

theoretical results predict the same order of MDS size (the

same exponent δ in the scaling function nδ) for configurations

(D = 2, C = 2) and (D = 1, C = 1) [see Eq. (6)]. In contrast,

the results predict a different scaling for the configuration

(D = 2, C = 1), as shown by Eq. (3). Figure 5 presents the

simulation results for γ < 2, which agree with the analytical

predictions.

For γ > 2, the analytical computations predict the same

scaling functional form nδ with δ = 1 for all the three configu-

rations. The simulation results agree with this prediction with

high accuracy (see Figs. 6 and 7).

F. Robust control of real-world networks

We used the concepts and mathematical tools presented

above to investigate the robust control of several real networks.

The experimental data analysis includes undirected, directed,

and bipartite networks from biological and sociotechnical

systems (see Tables I, II, and III). We first present the results

for undirected networks and show that the MDS density for
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FIG. 7. (Color online) The MDS size calculated in computer

generated scale-free networks for γ = 2.7, 3.0. Configurations for

minimum degree D and cover C are shown in figure legend. The

lines show a scaling law as nδ . The precise values for δ are

from up to down (a) 0.994 ± 0.002, 0.999 ± 0.004, 0.986 ± 0.006

and (b) 0.998 ± 0.008, 0.992 ± 0.011, 0.993 ± 0.022. All three

configurations show very similar scaling exponents close to 1, as

predicted by theory. Note that D = 2 significantly decreases the MDS

size. The error bars (s.e.m.) are shown in the figure. The correlation

coefficient r is above 0.999 in all cases.

C = 1 increases with increasing γ . The computation of the

robust MDS density (C = 2) exhibits a similar dependency,

as predicted by Eq. (9) [Figs. 8(a) and 8(b)]. Interestingly,

the MDS ratio for C = 2 and C = 1 differs, on average, by a

factor of 2 or less [Fig. 9(d)], in agreement with the theoretical

predictions shown in Fig. 4(c). When overlapping the real data

and the predictions from Eqs. (9) and (10) for the lower and

upper bounds, respectively, for networks with γ > 2, we see

that the real data are always within the theoretical boundaries

(Fig. 10).

The MDS size for both C = 1 and C = 2 scales linearly

with n [see Fig. 9(a)], which is in agreement with the

theoretical predictions shown in Eqs. (9) and (10) for γ > 2

and the computer simulations (see Figs. 6 and 7). Note that

Fig. 8 displays the MDS fraction, and Fig. 9(a) represents the

MDS size.

To investigate the influence of the frequency of nodes with

degree 1 and 2 [P (1) = n(1)/n and P (2) = n(2)/n] on robust

control, we computed MDS1 and MDS2 versus P (1) and P (2).

We then calculated the ratio of MDS2:MDS1 versus P (1)

and P (2). The results indicate that a small P (1) and large

P (2) tend to be associated with a small MDS density (see

Fig. 11). The ratio of MDS2:MDS1 is less than 2 in most

cases.

The analysis for directed networks included an Internet

peer-to-peer (P2P) network, the transcriptional regulatory

network for Escherichia coli from the Regulon database, a

set of food webs from different ecosystems, U.S. political

blogs, and the chemical synapse network for C. elegans. The

results demonstrate that MDS1 and MDS2 densities increase

with increasing γout [Figs. 12(a) and 12(b)] and γin [Figs. 13(a)

and 13(b)], which is in agreement with the dependence found

for undirected networks. In addition, the MDS sizes for

C = 1 and C = 2 scale linearly with n [Figs. 9(b) and 9(c)].

Moreover, as in the undirected case, the MDS ratio between

C = 1 and C = 2 is almost always less than 2, with only

one exception [see Figs. 9(d)–9(f)]. Moreover, less than 50%

of nodes are needed to control the network in both the

typical (C = 1) and robust (C = 2) control configurations [see

Figs. 12(c), 12(d), 13(c), and 13(d)].

TABLE I. The real undirected networks analysed in this work. Type, name, and description of each undirected network. We used the discrete

maximum-likelihood fitting method to estimate the degree exponent γ from the cumulative degree distribution of each network [56,57]. The

standard error of γ is derived from the width of the maximum likelihood. The same method was used to estimate the degree exponent in the

directed and bipartite networks shown in Tables II and III.

Type Name Description

Protein PPI network DIPS (6 org.) [58] Protein networks for 6 organisms from DIPS.

PPI Human HPRD [59] Protein network of H. sapiens from HPRD.

PPI Yeast BioGrid [60] Protein network of S. cerevisiae from BioGrid.

Transportation U.S. airports [61] The largest U.S. airports connected by flights.

Collaboration Hep-Th [62] The High Energy Physics-Theory collaboration.

Gr-QC [62] The Quantum Cosmology research collaboration.

Communication Email [63] Email network in a university.

Languages Japanese [64] The connectivity of words in Japanese.

Spanish [64] The connectivity of words in Spanish.

Neuronal Neuronal junction [33] The electric junction network of C. elegans.

Intra-org. Sawmill [65] A communication network within a small enterprise.

Information Wiki [66] Linked information.

Recommendation U.S. politics books [67] U.S. politics books copurchased by the same buyers.
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TABLE II. The real directed networks analyzed in this work. Type, name, and description of each directed network. The networks whose

degree distribution follows a power law for in-degree or out-degree are indicated by I or O, respectively.

Type Name Description

Internet Internet P2P [68] Gnutella peer to peer network from August 5, 2002.

Internet P2P [68] Gnutella peer to peer network from August 6, 2002.

Internet P2P [68] Gnutella peer to peer network from August 8, 2002.

Internet P2P [68] Gnutella peer to peer network from August 9, 2002.

Gene regulation Transcriptional network (O) [69] Transcription regulatory network of E. coli.

Food web Cheslower (I) [70] Lower Chesapeake Bay in Summer food web.

Chespeake (I) [70] Chesapeake Bay Mesohaline food web.

Everglade [70] Everglades Graminoid Marshes food web.

Florida (O) [70] Florida Bay Trophic food web.

Michigan (I) [70] Lake Michigan food web.

St. Marks [70] St. Marks River (Florida) flow network.

Mondego (O) [70] Mondego Estuary - Zostrea site.

Political Political blogs [71] Blog network related to politics.

Neuronal Chemical Synapse [33] The chemical synapse network of C. elegans.

IV. ANALYSIS ON ROBUST DOMINATION IN

BIPARTITE NETWORKS

A. Computation of MDS in bipartite networks

We define a bipartite graph as G(V⊤,V⊥; E), where V⊤ is

a set of top nodes, V⊥ is a set of bottom nodes, and E is a

set of edges (E ⊆ V⊤ × V⊥). In our analysis, the directions of

the edges are considered from V⊤ to V⊥. Therefore, the set of

driver nodes will be a subset of V⊤, where nodes in V⊤ need

not be covered.

The computation of an MDS of a bipartite network is

equivalent to the computation of a minimum set cover.

Although it is an NP-hard problem, we have verified that

the optimal solution is obtained in networks with power-law

distributions of up to approximately 110 000 nodes within a

few seconds. The computation was formalised as the following

ILP problem:

minimize
∑

v∈V⊤

xv,

subject to
∑

{v,u}∈E

xv � 1 for all u ∈ V⊥,

xv ∈ 0,1 for all v ∈ V⊤. (11)

B. Computation of RMDS in bipartite networks

The above-mentioned ILP can be extended for computation

of an RMDS in bipartite networks. It is formalized as

minimize
∑

v∈V⊤

xv,

subject to
∑

{v,u}∈E

xv�1 for all u ∈ V⊥ such that deg(u) = 1,

∑

{v,u}∈E

xv�2 for all u ∈ V⊥ such that deg(u) > 1,

where deg(u) indicates the degree of node u. It should be noted

that for any node u ∈ V⊥ with degree 1, it is not possible to

cover u twice and thus we must relax the condition for these

nodes.

C. Generation of bipartite scale-free networks

We employ the following algorithm to construct bipartite

scale-free networks, in which the degree distributions of V⊤
and V⊥ follow P⊤(k) ∝ k−γ1 and P⊥(k) ∝ k−γ2 , respectively.

Here we consider n1 = |V⊤| and n2 = |V⊥|. The maximum

degree for the nodes in V⊤ corresponds to n1.

TABLE III. The real bipartite networks analyzed in this work. Type, name, and description of each bipartite network.

Type Name Description

Social Firms-World Cities [72] Services of firms across cities.

Facebook Forum UCA [73] Facebook users linked to topics.

Davis’s Southern Women Club [74] Attendance at social events by women.

Cond-Mat Sci. Coll. [75] Collaboration of scientists and papers.

Graph Book Bibliography [76] Author-by-paper network.

The Dutch Elite [77] Individuals connected to administrative bodies.

Biological Drugs-Targets [78] Drugs binding to protein targets.

Transcriptional network (Yeast) [79] Transcription regulatory network of S. cerevisiae.

ncRNA-protein network (human) [80] Interactions between ncRNAs and proteins in H. sapiens.

ncRNA-protein (6 organisms) [80] All ncRNA-protein interactions of six organisms.
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FIG. 8. (Color online) The MDS fraction in real undirected net-

works. The MDS fraction as a function of the degree exponent γ for

real undirected networks C = 1 in (a) and C = 2 in (b). The MDS

fraction as a function of the network size for the same real undirected

networks for C = 1 in (c) and C = 2 in (d). Classification of nodes

into network classes is only displayed for (a) and (b) (see figure

legend). Highlighted regions are visual guidance of the observed

tendency.

Then, for given n1, γ1, γ2, we generate a random bipartite

network in the following way:
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FIG. 10. (Color online) Comparison between theoretical pre-

dicted bounds and MDS in real undirected networks. The overlap

between the MDS fraction with C = 1 (MDS1) for undirected

networks and the predictions of Eqs. (6) and (7) for the lower and

upper bounds of networks with γ > 2. The real data are always within

the theoretical boundaries.

(1) For each node v ∈ V⊤, generate half edges ei = (v,ui)

(ui is a virtual node) according to the degree distribution

α1k
−γ1 , where α1 is selected so the number of nodes in V⊤

is almost n1.

(2) For each node w ∈ V⊥, generate half edges e′
j =

(u′
j ,w) (u′

j is a virtual node) according to the degree distri-

bution α2k
−γ2 , where α2 is selected so the number of e′

j s is

equal to the number of ej s.
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FIG. 9. (Color online) The MDS size scaling in real undirected and directed networks. The MDS size as a function of the network size

n for real (a) undirected and directed networks with (b) incoming and (c) outgoing links. The results display a scaling function of nδ with

δ close to 1, as predicted by the theoretical analysis. The precise values of the scaling exponent δ for C = 1 (plus) and C = 2 (circle) are

(a) 0.934 ± 0.046 (r = 0.981), 0.931 ± 0.036 (r = 0.989); (b) 1.094 ± 0.053 (r = 0.990), 1.034 ± 0.044 (r=0.992); and (c) 1.134 ± 0.071

(r=0.984), 1.092 ± 0.067 (r = 0.985), respectively. The correlation coefficient r is indicated between parentheses. The ratio between the MDS

sizes (MDS2:MDS1) computed with covers C = 2 and C = 1 is shown in parts (d)–(f) for the same real networks. The results show that the

ratio is almost always lower than 2. See Tables I and II for real data details.
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FIG. 11. (Color online) The dependence of the MDS fraction

on the degree distribution for real undirected networks. The MDS

fraction with C = 1 (MDS1) (a) and C = 2 (MDS2) (b) as a function

of the degree probability with degree 1 [P (1) = n(1)/n] and 2

[P (2) = n(2)/n]. The ratio of MDS2:MDS1 versus (c) P (1) and

(d) P (2), respectively. The ratio is below 2 in most cases. The results

demonstrate that small P (1) and large P (2) tend to be associated with

a small MDS fraction.

(3) Randomly connect eis and e′
j s in a one-to-one manner.

It is to be noted that n2 (the number of nodes of V⊥) is

determined automatically in step (2) to satisfy the condition

on edge numbers.
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FIG. 12. (Color online) The MDS fraction as a function of the

degree exponent γout for real directed networks C = 1 in (a) and

C = 2 in (b). The MDS fraction as a function of the network size for

the same real directed networks for C = 1 in (c) and C = 2 in (d).

In all cases the MDS fraction is lower than 0.5 (dotted line). Note

that four of seven food webs show power-law behavior for outgoing

degrees. Each color in circles corresponds to a network type as shown

in the legend.
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FIG. 13. (Color online) The MDS fraction as a function of the

degree exponent γin for real directed networks C = 1 in (a) and

C = 2 in (b). The MDS fraction as a function of the network size for

the same real directed networks for C = 1 in (c) and C = 2 in (d).

In all cases the MDS fraction is lower than 0.5 (dotted line). Note

that five of seven food webs show power-law behavior for incoming

degrees. The data for the transcriptional regulatory network is absent

because it does not follow a power law for incoming degrees. Each

color in circles corresponds to a network type as shown in the legend.

D. Data analysis of real-world bipartite networks

We collected a set of 10 real-world bipartite networks

corresponding to sociotechnical [Fig. 14(a)] and biological

systems [Fig. 14(b)]. We then formalized and computed the

MDS for the C = 1 and C = 2 configurations. Although the

MDS with C = 2 is always larger than the MDS with C = 1,

the difference is proportionally very small in most cases.

Figures 14(a) and 14(b) also illustrates that biological systems

tend to require a larger MDS size than sociotechnical systems.

The computer simulation of ensembles of bipartite scale-free

networks with a variety of degree exponents also demonstrates

that C = 1, D = 1 and C = 2, D = 2 can control the network

with a similar fraction of nodes. Therefore, robustly controlling

a bipartite network requires a similar fraction of nodes as the

typical, nonrobust system [see Figs. 14(c) and 14(d)].

V. THEORETICAL ANALYSIS FOR THE PROBABILISTIC

DOMINATION (PMDS)

In some real networks, each link has a probability of

failing, which leads to the probabilistic concept of robust

control (PMDS). For example, experimental analyses on

neural networks have confirmed the unreliability of central

synaptic transmission in rat brains [32]. The mean transmission

failure probability was found to be p = 0.71, with a range

of 0.3 to 0.95 (w = 0.24). In this work, we used the well-

studied C. elegans neural network to investigate probabilistic

robust control. To investigate this type of systems from a

theoretical perspective using the robust MDS approach, we

assume that each edge (v,u) has the probability of failure
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FIG. 14. (Color online) The MDS size computed on real-world bipartite networks. (a) Social networks and (b) biological networks computed

for C = 1 and C = 2 as shown in the legend. Note that social networks tend to be controlled with a smaller fraction of nodes compared to

biological networks. [(c)–(d)] Computation of the MDS in synthetic bipartite networks generated with the model shown in Sec. IV C with

several values of degree exponents γ1 and γ2 and three configurations (C = 1, D = 1), (C = 2, D = 1), and (C = 2, D = 2). Note that the

minimum degree D = 2 almost completely compensates the increasing of the MDS size from the robust control C = 2.

Pv,u [see Fig. 1(e)]. We require that each node is covered

by multiple nodes in an MDS so the probability that at least

one edge is active is at least θ . Let S be a DS. Then S must

satisfy

(∀u)(1 −
∏

v∈S

Pv,u) � θ. (12)

As we will show later, this problem can be also formalized

and solved using ILP.

p-w p+w

p+w

p-w

(1-θ)/(p+w)

(a)

xy=1-θ

p-w p+w

p+w

p-w

(b)

xy=1-θ

(1-θ)/(p-w)

FIG. 15. Graphical representation of the case D = 2 and w > 0.

In order to estimate the fraction of degree-2 nodes to be added to a DS,

it is enough to consider the regions (A) and (B) for the cases of (p +
w)(p − w) < 1 − θ < (p + w)(p + w) and (p − w)(p − w) < 1 −
θ < (p + w)(p − w), respectively.

A. The case of D = 1

First, we consider the case of D = 1 (i.e., the minimum

degree is 1) and w = 0. Let DS be an MDS for G(V,E) for

the nonprobabilistic version. Let U be a set of degree 1 nodes,

each of which does not belong to DS but is dominated by a

node in DS. Let {u,v} be the only edge connecting to v ∈ U .

We can observe:

if 1 − Pu,v < θ , v must be covered by itself.

Therefore, all nodes in U should be added to DS (in a

probabilistic version) when θ > 1 − Pu,v . Therefore, it is

expected that the MDS size increases approximately from |DS|
to |DS| + |U | at around θ = 1 − p. For example, consider the

case of p = 0.71. Then there should be great increase of the

MDS size at θ = 1 − 0.71 = 0.29. It shows good agreement

with the simulation result (see Figs. 16 and 17).

B. The case of D = 2

We can extend the above analysis to the case of D = 2 (i.e.,

the minimum degree is 2) and w = 0. Let DS be an MDS

for G(V,E) for the nonprobabilistic version. In this case, we

consider two types of nodes of degree 2:

(a) v has one edge connecting to a node in DS,

(b) v has two edges connecting to nodes in DS,
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FIG. 16. (Color online) Probabilistic MDS simulation results.

The probabilistic MDS fraction in simulated scale-free networks with

(a) D = 1 and (b) D = 2 for γ = 1.5 and D = 2 (c) D = 1 and

(d) D = 2 for γ = 1.7. The predicted theoretical thresholds (dashed

lines) that significantly changes the MDS size are in fair agreement

with observed results in computer simulations. The configurations for

the probability of link failure P and the variability change w of the

failure probability [p − w, p + w] are shown in the figure legend.

where each node does not belong to DS but is dominated by

a node in DS. Let U1 and U2 be the sets of type (a) and type

(b) nodes, respectively. Then nodes in U1 should be added to

DS if 1 − p < θ . On the other hand, nodes in U2 should be

added to DS if 1 − p2 < θ . Therefore, it is expected that the

MDS size increases approximately from |DS| to |DS| + |U1| at

around θ = 1 − p and from |DS| + |U1| to |DS| + |U1| + |U2|

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
D

S
 f

ra
ct

io
n

P 0.71 W 0.24

P 0.71 W 0.0

P 0.10 W 0.0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
 θ

0

0.2

0.4

0.6

0.8

1

 M
D

S
 f

ra
ct

io
n

0 0.2 0.4 0.6 0.8 1
 θ

0

0.2

0.4

0.6

0.8

1

D=1 γ=2.5

D=1 γ=3.0

D=2 γ=3.0

D=2 γ=2.5
(a) (b)

)d()c(

0.49

0.290.29
0.53

0.05

0.90
0.90

FIG. 17. (Color online) The probabilistic robust domination on

synthetic scale-free networks. The probabilistic MDS fraction in

simulated scale-free networks with (a) D = 1 and (b) D = 2 for

γ = 2.5 and (c) D = 1 and (d) D = 2 for γ = 3.0. The predicted

theoretical thresholds (dashed lines) that significantly change the

MDS size are in fair agreement with the observed results from

the computer simulations. The configurations for the probability of

link failure p and the variability change w of the failure probability

[p − w, p + w] are shown in the figure legend.

at around θ = 1 − p2. In the case of p = 0.71, these two

threshold values are 0.29 and 0.49, in good agreement with

the simulation result.

C. The case of D = 1 and w > 0

Next we consider the case of D = 1 and w > 0. As in the

above, let DS be an MDS for G(V,E) for the nonprobabilistic

version, and let U be a set of degree 1 nodes each of which

does not belong to DS but is dominated by a node in DS. Let

e = {u,v} be the only edge connecting to v ∈ U . Let p + 	v

be the failure probability of this edge e, where −w � 	 � w.

We can observe:

if 1 − (p + 	v) < θ , v must be covered by itself.

We define U	 by

U	 = {v|v ∈ U,p + 	v > p + 	}.

Therefore, all nodes in U	 should be added to a DS (in a

probabilistic version) where 	 = 1 − p − θ . Here the size of

U	 is estimated as

|U	| ≈
(

	 + w

2w

)

|U |,

where −w � 	 � w. By replacing 	 with 1 − p − θ , we

have

|U	| ≈
(

1 − p − θ + w

2w

)

|U |.

Therefore, it is expected that the MDS size is approximately

given by |DS| + (
1−p−θ+w

2w
)|U |. It should be noted that

1−p−θ+w

2w
becomes 0 and 1 at θ = 1 − p − w and θ = 1 − p +

w, respectively. In the case of p = 0.71 and w = 0.29, these

two threshold values are 0.05 and 0.53, in good agreement with

the simulation results (see Figs. 16 and 17). This discussion

can be generalized for the cases in which 	v does not follow

the uniform distribution.

D. The case of D = 2 and w > 0

Finally, we consider the case of D = 2 and w > 0. Let v

be a degree-2 node and u1 and u2 be the neighboring nodes to

v. Then we estimate the fraction of degree-2 nodes that does

not satisfy

1 − Pu1,vPu2,v � θ,

where such a node v should be added to a DS. For that purpose,

it is enough to calculate the area shown in Fig. 15.

For θ satisfying (p + w)(p − w) < 1 − θ < (p + w)(p +
w), we consider the region (A) whose area is given by

PA = (p + w)

[

(p + w) −
(

1 − θ

p + w

)]

−
∫ p+w

1−θ
p+w

1 − θ

x
dx

= (p + w)

[

(p + w) −
(

1 − θ

p + w

)]

− (1 − θ )

[

ln(p + w) − ln

(

1 − θ

p + w

)]

.
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Therefore, in this case, the fraction is given by PA/((2w)2)

because (Pu1,v,Pu2,v) is uniformly distributed in the region of

[p − w,p + w] × [p − w,p + w].

For θ satisfying (p − w)(p − w) < 1 − θ < (p + w)(p −
w), we consider the region (B) whose area is given by

PB = (2w)2 −
∫ 1−θ

p−w

p−w

1 − θ

x
dx + (p − w)

×
[(

1 − θ

p − w

)

− (p − w)

]

= (2w)2 − (1 − θ )

[

ln

(

1 − θ

p − w

)

− ln(p − w)

]

+ (p − w)

[(

1 − θ

p − w

)

− (p − w)

]

.

Again, the fraction is given by PB/((2w)2). The simulation

results with 1000 nodes for D = 1, D = 2 with w > 0

configurations are shown in Figs. 16 and 17. We also compared

the theoretical results for the case D = 2 with those from the

simulations performed on scale-free networks with D = 2 and

γ = 3. The plots show a similar overall tendency, although the

inflection point is more noticeable in the theoretical curve (see

Fig. 18). It is worth noticing that the theoretical values PA

and PB are scaled so these take almost the same values as

the simulated ones at the beginning and ending points (i.e.,

so the values take between 0.3 and 0.85 instead of between

0.0 and 1.0) since it is assumed in theoretical analysis that

all nodes are of degree 2 and the effects of the other nodes

are ignored (note also that degree 2 nodes occupy a major

portion of nodes in the case of D = 2). This comparison result

suggests that theoretical analysis captures some tendency even

if nodes with degree more than 2 are ignored.
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FIG. 18. (Color online) Theoretical predictions and simulations

of PMDS. Comparison of the probabilistic MDS size computed in

simulated scale-free networks with D = 2 and γ = 3 and the case

of D = 2 predicted by theory. Theoretical values are scaled so these

take almost the same values as the simulated ones at the beginning

and ending points because, in the theoretical analysis, it is assumed

that all nodes are of degree 2 and the effects of the other nodes are

ignored.

E. ILP formulation for probabilistic robust domination (PMDS)

We assume that each edge (v,u) has the probability of

failure Pv,u. We want each node be covered by multiple nodes

in MDS so the probability that at least one edge is active is at

least θ . Let S be a dominating set. Then we require S to satisfy

(∀u)(1 −
∏

v∈S

Pv,u) � θ.

Then we have

1 −
∏

v∈S

Pv,u � θ,

∏

v∈S

Pv,u � 1 − θ,

∑

v∈S

ln(Pv,u) � ln(1 − θ ),

∑

v∈S

− ln(Pv,u) � − ln(1 − θ ).

Then we have

minimize
∑

v∈V

xv,

subject to xu � 1, for all u ∈ V such that deg(u) = 0,

− ln(1 − θ )xu +
∑

{v,u}∈E

((− ln(Pv,u))xv)

� − ln(1 − θ ),

for all u ∈ V such that deg(u) > 0,

xv ∈ {0,1}, for all v ∈ V ,

where deg(u) indicates the degree of node u.

F. Probabilistic robust domination applied to the C. elegans

neuronal network

Recent reconstructions of the C. elegans neural network

have significantly updated the wiring diagram of the somatic

nervous system. The new reconstruction includes original data

from White et al. [51] and Hall and Russel [52] and adds new

information. In particular, 3000 synaptic contacts, including

gap junctions, chemical synapses, and neuromuscular juctions,

were updated or added to the latest network version [33].

As as a result, the large-scale structure of the network has

significantly changed with respect to that of White et al. Here

we focus on the connectivity of gap junction and chemical

synapse networks of C. elegans neurons. The channels that

provide electrical coupling between neurons are called gap

junctions. In contrast, chemical synapses use neurotransmitters

to link neurons. Because these network biologically differ,

they are treated independently, as done in Ref. [33]. Although

it might be possible that gap junctions could conduct current

in only one direction, this feature has not been observed or

confirmed yet in C. elegans [33]. Therefore, this network was

considered as undirected network. The chemical synapses,

in contrast, contains directionality capability, a feature that

has been confirmed using micrographs [33]. The analyzed

gap junction network consisted of 279 neurons and 514

gap junction connections. The giant connected component is
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composed of 248 neurons and two smaller components of 2

and 3 neurons. After removing the 26 isolated neurons, we per-

formed our analysis using 253 neurons and 514 connections.

The statistical analysis revealed a power-law distribution for

the degree distribution with a characteristic degree exponent

of γ = 3.14 [33]. The chemical synapse network consisted

of 279 neurons and 2194 directed connections. The statistical

analysis showed that the in-degree (out-degree) distribution

followed a power law with degree exponent γin = 3.17 (γout =
4.22), respectively. These results contrast with analyses done

using the data set from White et al. [51], which reported an

exponential decay for the degree distribution [53].

Experimental analyses on neural networks have confirmed

the unreliability of central synaptic transmission in rat

brains [32]. The mean transmission failure probability was

found to be p = 0.71, with a range from 0.3 to 0.95 (w =
0.24). In this work, we used the most well-studied neural

network corresponding to the C. elegans (chemical synapse

and gap junction) to investigate probabilistic robust control.

A visual representation of experimental neural gap junction

(undirected) for C. elegans is shown in Fig. 19. A transmission

failure probability distribution similar to that observed in rat

brains was mapped on the links of these networks, making

a fraction of them unreliable. The results of the analyses are

described in Figs. 16 and 17 for computer simulations and

Figs. 20–22 for real neural gap junction and chemical synapse

networks and suggest that the presence of variance of the

FIG. 19. (Color online) The neural gap junction network. Visu-

alization of the experimental gap junction undirected network for

C. elegans. A probability distribution of synapse transmission failure

with a peak at p = 0.71 and width of w = 0.24 (0.47–0.95) is mapped

onto the links.
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FIG. 20. (Color online) The probabilistic MDS size computed on

the neural gap junction undirected network. The computation of the

probabilistic MDS size using the real neural gap junction network

for C. elegans organism where a distribution of link failure was

mapped onto the network as shown in legend for three values of

w (circle, square, and diamond symbols). The results of synthetic

scale-free networks constructed using the model shown in Sec. III

D and calculated with the same degree exponent and the number

of nodes observed in the real C. elegans network (star symbols).

When simulated networks have a minimum degree D = 2, the MDS

size decreases as predicted by theory. Because in this simulation the

synthetic network have different average degree, the results tend to

be higher than those from the real network.

failure probability w does not significantly affect the fraction

of driver nodes. In contrast, it is strongly affected by both the

minimum degree D and the average failure probability p. This

biological example of unreliable links suggests that theoretical

results and simulations on probabilistic robust control analysis

may have an impact on understanding and controlling at will

real-world systems with unreliable components.
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FIG. 21. (Color online) The probabilistic robust domination on a

real neural gap junction network. The computation of the probabilistic

MDS size using (a) the real neural gap junction network for C. elegans

where the distribution of link failures was mapped to the network as

shown in the legend. (b) The results of synthetic scale-free networks

constructed using the HMC model with the same number of nodes and

average degree display a similar tendency. The MDS size decreases

as predicted by theory when simulated networks have a minimum

degree D = 2.
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FIG. 22. (Color online) The probabilistic MDS size computed

on the chemical synapse directed network. The computation of the

probabilistic MDS size using the real chemical synapse directed

network for C. elegans where a distribution of link failure was mapped

onto the network as shown in legend for three values of w. Note that

the distribution follows a curve function rather than a straight line as

shown in the undirected case.

VI. CONCLUSION

We have introduced the concept of structurally robust

control of complex networks and have used the MDS model,

which is widely applied in engineering problems, to illus-

trate an example of robust complex network controllability.

Counterintuitively, the developed analytical tools, computer

simulations and real-world network analyses demonstrate that

robust control in a large network does not change the order

of required driver nodes compared to a conventional system

without such robust capability. When using an MDS with

C = 1, D = 1, the system can easily become uncontrollable

if only one power or communication line fails during major

natural disasters. In contrast, in the RMDS framework (C = 2,

D = 2) the system remains controllable even under arbitrary

single or multiple link failure. Therefore, both configurations

require exactly the same order of controllers. Engineering and

biological systems could benefit from these findings.

In addition, the order of the MDS changes for γ < 2 by

changing the minimum degree D (e.g., constructing real net-

works with degree D > 1), unveiling another tool to decrease

the number of driver nodes. Because some real networks

have unreliable links, we have extended our framework to

PMDS and have successfully applied the developed analytical

tools to real neural networks of C. elegans with unreliable

synaptic transmission. With the forthcoming comprehensive

map of neural connections in the human brain [54,55], the

presented method could offer new avenues to examine the

brain’s large-scale structure to address synaptic reliability and

to stimulate large fractions of the brain by interacting only

with relatively few components.

It is worth remarking that our analysis on robust net-

work control emphasizes the importance of the network

topology and focuses on deriving the relative change of the

required number of controllers in both robust and nonrobust

configurations. Studies done in the context of fault-tolerant

control often include more elaborate node dynamics to

simulate synchronization of networks and agents communi-

cating over wireless connections. Instead, our MDS model-

based mathematical analysis relies on mean-field theory

concepts. To our best knowledge, there is no other theo-

retical results for robust property of MDS size on scale-

free networks in both control theory and network science

fields.

The proposed concept of structurally robust control of

complex networks could also be investigated using a different

algorithmic framework. As discussed above, we selected

the MDS model because it has already found applications

in real engineering systems. However, the concept could

also be mathematically formalized and implemented using,

for example, the maximum matching model [5]. In this

case, additional computations would be needed to inves-

tigate the order of drivers in an optimal robust control

configuration; therefore, this analysis is left for future

work.

In addition, the presented method can also address the

simultaneous failure of multiple links. The aim of the RMDS

(C = 2) framework is to construct a system that remains

controllable even if an arbitrary link is damaged. However,

the developed analytical tools also allow us to design a system

with a more robust configuration (C = 3) or (C = 4) so the

network is still controllable even in case of arbitrary failure of

pair or triplet of links, respectively.

The emerging picture for probabilistic failure or mal-

function of transportation and transmission lines in real-

world complex infrastructures, sociotechnical networks, and

biological networks emphasizes the importance and role of the

presented robust DS approach for controllability. The proposed

framework and tools offer a new direction for understanding

the linkage between controllability and robustness in complex

networks, with implications from engineering to biological

systems.
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