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Abstract

In complex dynamics, the complex plane� is partitioned into invariant subsets. In classical sense, these subsets are of course
Fatou set and Julia set. The latest results are concentrated on the partition of complex plane by the sets of the form I( f ), K(
f ) and BU( f ). For a transcendental entire function f, the set I(f) = {z��: � �(z)→ ∞ as n→ ∞} is an escaping set, the set
K(f) ={z ��:� R > 0 such that |� �( z)| ≤ R for all n≥ 0}is a bounded orbit set and BU(f) = ��(I(f)� K(f)) is a neither
escaping nor bounded orbit set. We study here basic similarity and topological similarity among the sets I(f), K(f) and BU(f).
In our general review, we find both types of similarity occur among these sets and so we call these sets by structurally
similar sets
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1. Introduction

We denote the complex plane by � and set of integers greater than zero by 	. We assume the function
f: �→ � is transcendental entire function (TEF) unless otherwise stated. For any n�	
 �� always
denotes the nth iteratesof f. A family � = {f: f is meromorphic on some domain X of �∞}forms
normal family if every sequence (f i)i�	 of functions contains a subsequence which converges
uniformly to a finite limit or converges to ∞ on every compact subset D of X .The Fatou set of f
denoted by F( f) is the set of point's z�� such that sequence (� ���� 	 forms a normal family in some
neighborhood of z in the sense of Montel. A maximally connected subset of the Fatou set F(f) is
called Fatou component. The complement of Fatou set is called Julia set and it is denoted by J(f).
Classically, it is known that the sets F( f) and J( f) form a fundamental partition of complex plane �.
The basic properties and structures of these sets can be found in the work of Bergweiler (1993),
Carleson and Gamelin (1992), Hua and Yang (1998), Milner (2006) and Morosawa et. al (1999).

Based on the study of the basic properties and structures of Fatou set and Julia set, we find that these
two sets are totally different. For example, Fatou set is largest open set, Julia set is smallest closed set,
Fatou set is stable and Julia set is chaotic etc. Our concerns of study concentrate on the alternative
dynamical partition of the complex plane by structurally similar sets depending on the nature of the
orbits.

For any z� �, the sequence ������ � � of iterates of function f is called the orbit of z under f . The
orbit of any point in the complex plane may escape to infinity, it may be bounded, or it neither may
escape nor bounded. In this paper, we are concerned with sets associated to above mention all three
types of orbits.

The set of points whose orbits are escaped is called escaping set and actually, it is a set defined as
follows.

Definition 1.1 (Escaping set). For a TEF f, the set of the form

I(f) = {z��:� �(z)→∞ as n→∞}

Is called escaping set. Any point z �I( f ) is called escaping point.
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For a TEF f, the escaping set I(f) was first studied by A. Eremenko (1989) together with formulation
of the following two conjecture.

Conjecture 1.1: Each component of I( f ) is unbounded.

Eremenko [6] himself proved that I(f) ≠ �, I(f) ∩ J(f) ≠ �, J(f) = ∂ I(f). He also proved that all
components of ���are unbounded and conjectured that same may be hold for all components of I(f)
which is the conjecture 1.1. The conjecture 1.1 has inspired many mathematicians and they have made
substantial amount of work in transcendental dynamics. With remarkable attempts and efforts, much
progress has been made in special cases and there are various partial results, but in general, the
conjecture is still unsolved.

The set of points whose orbits are bounded is called bounded orbit set which is defined as follows.

Definition 1.2 (Bounded orbit set). For TEF f, the set of the form

K(f) = {z��: � R>0 such that �� �(z)| ≤ R for all n ≥ 0}

is called bounded orbit set.

If f is a non-linear polynomial, the set I( f) is the basin of attraction of the point at infinity and hence
a unbounded component of Fatou set and K( f) is known as filled in Julia set, a much studied compact
bounded component of Fatou set. For transcendental entire function f , the set I( f) was extensively
studied by Eremenko (1989), Rippon and Stallard (2009, 2011, 2015), Rottesfusser and Schleicher
(2005), and Schleicher and Zimmer(2003) and the set K( f) has received less attention and was
studied by Bergweiler (2012) and Osborne (2013).

The set of points whose orbits are neither escaped nor boundedis called neither escaping nor bounded
orbit set which is a set of the following form.

Definition 1.3 (Neither escaping nor bounded orbit set). For TEF f, the set of the form

BU(f) = ��(I(f)�K( f ))

is called neither escaping nor bounded orbit set.

For a non-constant polynomial function f, we have BU(f) =�. However for TEFf ,BU(f) ≠ �. This set
was studied first time by Osborne and Sixsmith [12].

Note that the set BU( f)together with I( f) form a set ��(z) of points whose orbits are unbounded and
it is a set compliment to K( f) in �. This type of set was studied first time intensively by Osborne,
Rippon and Stallard (2015).

The structure of this paper is as follows. In section 2, we collect basic properties of the sets I(f), K( f )
and BU(f) and on the basis of these properties, we find that there is a fundamental basic similarity
among these sets. In section 3, we review topological properties mainly the connectedness and
boundedness properties of these sets. Based on these properties, we find that there is also topological
similarity among these sets. Finally, we conclude that both types of similarity occur among the sets I(
f), K( f) and BU( f), and we call these sets by structurally similar sets.

2. Basic Similarity Among the Sets I(f), K(f) and BU(f)

In complex dynamics, the complex plane is partitioned by invariant subsets. The most important
classical partition is by structurally different Fatou set and Julia set. We have here another partition by
the sets I(f), K(f ) and BU( f) . We expect that these sets are structurally similar. The question arises-
are the sets I(f), K(f) and BU( f) invariant? To look answer, we need the notion of invariant set.
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Definition 2.1(Completely invariant set). A set U�� is called forward invariant if z� U implies that
f(z)�U. It is called backward invariant if f--1(U) = {z ��: f (z) = w � U}� U. It is called completely
invariant if it is both forward and backward invariant.

The following simple result due to Osborne and Sixsmith [12] will be worth mentioned.

Theorem 2.1. For a TEF f , each of the sets I( f ), K( f ) and BU( f ) is completely invariant and
together they form a dynamical partition of complex plane �.

By this theorem 2.1, we can say that the complete study of dynamical plane � is possible via the sets
I(f), K(f) and BU(f) . We call a property of sets given by this theorem by first kind of basic
similarity.

The following second types of basic similarities hold among the sets I( f), K( f) and BU( f) .

Theorem 2.2. Let f be a TEF. Then

a. I(f) ≠ �, K(f) ≠ � and BU(f) ≠ �
b. I(f)∩ J(f)≠ �, K(f)∩ J(f)≠ � and BU(f)∩ J(f)≠ �
c. J(f) = ∂ I(f), J(f) = ∂K( f ) and J(f) = ∂BU(f ).

The statements I(f) ≠ �, I(f) ∩ J(f) ≠ � and J(f) = ∂I( f) were proved by Eremenko (1989)[Theorems
1, 2], K(f) ≠ �, J(f) = ∂ K( f) and K(f) ∩ J(f) ≠ �were stated by Bergweiler (2012) and BU(f) ≠ � and
BU(f) ∩ J(f) ≠ �were proved by Baker and Dominguez (2000) [Lemma 1], J(f) =∂BU( f) was proved
by Osborne and Sixsmith (2015) [ Theorem 1.1 (b)].

By this theorem 2.2, we can say that there is strong connection between these sets and the Julia set J(f)
as all these sets are non-empty like Julia set and all these sets intersect Julia set as well as boundary of
all these sets is the Julia set. We call properties of the sets given by this theorem by second kind of
basic similarity.

The following third type of basic similarity hold among the sets I( f ), K( f ) and BU( f ) .

Theorem 2.3. Let fbe a TEF. Then

a. all of these three sets I( f ), K( f ) and BU( f )are neither open nor closed,

b. let U is a Fatou component such that U∩I(f) ≠ �, U∩K(f) ≠ � and U∩ BU(f) ≠ � . Then
U� I(f), U�K( f ) and U�BU(f).

Proof. (a). If I( f) is open then I(f)�F(f) which is a contradiction for theorem 2.2 (b). If I( f) is
closed, then J(f)�I( f) which is a contradiction for theorem 2.2 (c). K(f) and BU( f) follows from
the similar argument.

(b). If U∩BU(f) ≠ �, then U�BU( f) for a Fatou component U, follows from[12, Theorem 1.1(a)]).
The rest part follows from the similar argument.

The theorem 2.3 tells that each of the sets I(f), K( f ) and BU( f) neither open nor closed and if a
Fatou component U intersects each of these set, then by normality U contained in each of them.
Equivalently, every component of Julia set intersects each of sets I(f), K(f) and BU(f). We call
properties of the sets given by this theorem 2.3 by the third kind of basic similarity.

Definition 2.2.Two or more subsets of a complex plane are said to be basic similar sets if between or
among them there exist first, second and third kind of basic similarity. Otherwise, the sets are said to
be a similar.
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It is obvious that the sets I(f), K(f) and BU( f) are basic similar sets. Also the sets K(f) and ��(z)are
basic similar sets. On the other hand, the Fatou set F( f) and Julia set J( f) are a similar sets because
between F( f) and J( f ) there is only first kind of similarity.

Open Problem: Are there any other basic similar sets other than I(f), K(f) and BU(f)or K(f) and
��(z)?

3. Topological similarity among the sets I(f), K(f) and BU( f )

In this section, we study connectedness and boundedness properties of the sets I(f ), K( f ). On the
basis of this study, we see that there is certain amount of similarity among these sets. If there is
similarity, we call it by topological similarity, and the sets are said to be topologically similar.

Rippon and Stallard [Theorem 1.2] have provided conditions for the connectedness of the escaping set
I(f). The parallel results were proved by Osborne, Rippon, and Stallard (2011)[Theorems 1.3, 3.1, 4.1,
4.6] for the set ��(z). As a conclusion of all above mentioned results, we can summarize the following
result regarding the connectedness of the set I(f) .

Theorem 3.1:Let f be TEF. The escaping set I( f ) is either connected or it has uncountable many
components, infinitely many of which are unbounded.

Osborne (2013)[Theorem 1.1] proved the following result concerning the connectedness property of
the set K( f) .

Theorem 3.2: Let f be a TEF. Then K( f ) is either connected or it has infinitely many components.

In the same paper, Osborne provided examples of TEFs for which K(f) is connected or totally
disconnected. We refer examples 5.2, 5.3 and 5.4 for the transcendental entire functions that have
totally disconnected K(f) . For the function f(z) = λ�� where 0 <λ <���, Fatou set F( f) contains the
immediate basin of attracting fixed point. So that K(f)�F( f) and since F( f) is connected and
� � � = �. It follows that K(f) is connected.

The following analogous result was obtained by Osborne and Sixsmith(2015) [Theorem 1.2(c)].

Theorem 3.3: Let f be a TEF. Then either BU( f ) is connected or every neighborhood of any points
in J( f ) meets uncountable many components of BU( f ).

The important fact we have to keep in mind here is that for particular TEF f , the connectedness of K(
f) may not imply the connectedness of BU(f) and vice versa. For example, K( f) is connected for
the function f(z) = λ�� where 0 <λ <���, while BU( f) is totally disconnected. Also, for particular
TEF f, there may be both of the sets are connected or totally disconnected. For example, both sets K(
f) and BU( f) are totally disconnected for the Fatou function f(z) = z + 1 + ���
The connectedness properties given in the theorems 3.1, 3.2 and 3.3 also hold for the set ��(f) . We
refer [11] for more detailed study of this set.

Note that there are different conditions for connectedness of each of the sets I( f), K( f) and BU( f).
See [10, 11, 12, 14and 17] for more detailed study of these sets. Our concern of study is not to analyze
all these conditions but to see similarity on the connectedness of each of these sets.

On the basis of the results given in the theorems 3.1, 3.2 and 3.3, we call the similarity among the sets
I( f), K( f)and BU(f) by connectedness similarity or topological similarity. In other words, two or
more subsets of the complex plane � are said to have connected similarity if these sets are either
connected or they have infinitely many components. It is very obvious that the sets I( f), K( f) and
BU( f) or ��( f) and K(f) have connectedness similarity.
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Baker and Dominguez (2000) [Theorem B] investigated that the Julia set J(f)is either connected or it
has uncountable many components. Thus the sets I( f), J( f) and BU( f) also have connectedness
similarity. Such type of connectedness does not hold for Fatou set, so it has no connectedness
similarity with any of the sets I(f), J(f), K(f) and BU( f) .

At the end of this section, we discuss the boundedness properties of sets I( f), K( f) and BU(f) in the
sense that each of these set has unbounded components or not. It well known that every component of
��� is unbounded [6, Theorem 3]. Osborne and Sixsmith(2015) [Theorem 1.2(a)] have shown that
iffhas no multiply connected Fatou components, then all components of ���� are unbounded. It is
known that the set K(f) (stated by Osborne ) is not bounded for TEF f. On the basis of these results,
we can conclude the following results.

Theorem 3.4: Let f be a TEF. Then the set I(f) has at least one unbounded component Unfortunately,
analogous result for the sets K( f ) and BU( f ) does not hold in general and so there is no
boundedness similarity among the sets I( f ), J( f ) and BU( f ).

We are going to define our basic term that we have already proposed.

Definition 3.1: Two or more subsets of the complex plane � are said to be structurally similar if
between or among them there exist both basic and topological similarity.

It is obvious that the sets I(f), K(f) and BU(f) are both basic and topologically similar sets. Also the
sets K(f) and ��( f ) are both basic and topologically similar sets. So these sets are structurally
similar.

We have formulated the following conjecture as a conclusion of this paper.

Conjecture 3.1: There are no structurally similar sets other than I(f), K(f)and BU( f ) or K( f ) and
��( f ) of TEF f in the complex plane �.
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