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Abstract

The spread of novel coronavirus SARS-CoV-2 has directed to a state of an unprecedented global pandemic. Many
synthetic compounds and FDA-approved drugs have been significantly inhibitory against the virus, but no SARS-
CoV-2 solution has been identified. However, small molecule fragment–based derivatives of potent phytocompounds
may serve as promising inhibitors against SARS-CoV-2. In the pursuit of exploring novel SARS-CoV-2 inhibitors, we
generated small molecule fragment derivatives from potent phytocompounds using neural networking and machine
learning–based tools, which can cover unexplored regions of the chemical space that still retain lead-like properties.
Out of 300 derivative molecules from withaferin-A, hesperidin, and baicalin, 30 were screened out with synthetic
accessibility scores > 4 having the best ADME properties. The withaferin-A derivative molecules 61 and 64 exhibited
a significant binding affinity of − 7.84 kcal/mol and − 7.94 kcal/mol. The docking study reveals that withaferin-A mol 61
forms 5 polar H-bonds with the Mpro where amino acids involved are GLU166, THR190, CYS145, MET165, and
GLN152 and upon QSAR analysis showed a minimal predicted IC50 value of 7762.47 nM. Furthermore, the in silico
cytotoxicity predictions, pharmacophore modeling, and molecular dynamics simulation studies have resulted in
predicting the highly potent small molecule derivative from withaferin-A (phytocompound from Withania somnifera)
to be the potential inhibitor of SARS-CoV 2 protease (Mpro) and a promising future lead candidate against COVID-19.
The rationale of choosing withaferin-A from Withania somnifera (Ashwagandha) was propelled by the innumerous
applications of Ashwagandha for the treatment of various antiviral diseases, common cold, and fever since time
immemorial.
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Introduction

The novel coronavirus disease 2019 (COVID-19), caused by
SARS-CoV-2 which vented in December 2019 in Wuhan,
China, is creating disaster by causing significant morbidity
and mortality. Cases of COVID-19 are being reported in near-
ly every country around the globe. As of September 9, 2020,
the number of confirmed cases reached 27,486,960 globally,
with 894,983 deaths (https://covid19.who.int/). In India, the
number of confirmed cases reached 4,462,965, and the death
toll reached 75,091 (https://www.worldometers.info/
coronavirus/country/india/). Coronaviruses have been
implicated in other epidemics in recent decades, such as
acute respiratory disease (SARS) and Middle East respiratory
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disease (MERS). But compared to these, the transmission rate
of COVID-19 is much higher, with substantial spreading of
the viral infection from one infected individual to two to three
healthy individuals on average.

Coronaviruses (CoVs), members of the Coronaviridae

family, are among the largest known single-stranded RNA
viruses [1]. CoVs contain the biggest genomes among all
known RNA viruses, up to 26 to 32 kb in length [2]. The
coronavirus genome is composed of four major structural pro-
teins: the spike (S) protein, the nucleocapsid (N) protein, the
protein membrane (M), and the protein envelope (E) that are
indispensable for the development of a complete viral particle
[3, 4]. A significant chunk of the genome of coronavirus is
transcribed into polypeptides necessary for viral replication
and gene expression. An approximately 306-amino acid poly-
peptide called main protease (Mpro) has a highly conserved
sequence and is a crucial enzyme necessary for coronavirus
replication [5]. Due to the known protein structure, main pro-
teases are the primary targets for designing antiviral drugs to
combat coronavirus infections [6, 7]. Towards this effort, nu-
merous inhibitors have been designed to block different stages
of viral entry, attachment, and replication in host cells. These
compounds are then tested in cell-based systems [8, 9].
Currently, the CoV-associated pathologies are not approved
for any specific antiviral treatment. The majority of therapies
rely mostly on the control of symptoms and support treat-
ments [10]. Few therapeutic agents that are under develop-
ment are ribavirin, interferon (IFN)-α, and mycophenolic ac-
id. Reports cited the effectiveness of anti-HIV drugs such as
ritonavir, lopinavir, either alone or in combination with
oseltamivir, remdesivir, and chloroquine [11]. Among these,
ritonavir, remdesivir, and chloroquine showed efficacy at the
cellular level. However, further experimental support and val-
idation are needed to verify safety and efficacy. Common
phytocompound and plant medicines were also used for de-
cades in the fight against normal flulike conditions and fever.
Ashwagandha (Withania somnifera) is an Indian Ayurvedic
plant, used for herbal therapies in traditional medicine.
Ashwagandha is considered to improve the immune system
and to have a range of prophylactic and medicinal actions
[12]. Withaferin-A is a bioactive withanolide from
Ashwagandha that reportedly possesses inhibitory activity
for HPV and influenza viruses [12, 13]. Based on these obser-
vations, the ability of the SARS-CoV-2 main protease (Mpro)
inhibitors withaferin-A and its derivatives has been explored.

In a combination of the docking results reported earlier
[14–23], naturally abundant phytocompounds like hesperidin,
baicalin, myricitrin, calceolarioside B, methyl rosmarinate, rutin,
diosmin, apiin, diacetylcurcumin, withaferin-A, zingiberene, and
limonene might be worthy of clinical trials [24]. However, there
is no report indicating the potential of important fragments and
small molecule derivatives of these phytocompounds as potential
agents against SARS-CoV-2 main protease (Mpro).

Several commercially available FDA-approved antiviral
drugs such as lopinavir, ritonavir, remdesivir, and several other
antiviral drugs are previously predicted to bind to the main pro-
tease of SARS-CoV. SARS-CoV-2 3CLpro or Mpro also shows a
projected affinity and a strong efficacy value of Kd > 100 nM
with these drugs [25, 26]. Prediction suggests that viral
proteinase-targeting drugs could effectively influence the viral
replication process. This prediction was backed by studies on
molecular docking of HIV proteinase inhibitors of CoV protease
[27]. This study showed that lopinavir, atazanavir, and ritonavir
may inhibit the CoV proteinase. In case studies with inhibitor
medicines such as hydroxychloroquin and remdesivir, atazanavir
and ritonavir were tested similar to lopinavir [28]. But there is no
significant evidence hitherto, whether these drugs can act effi-
ciently as predicted against COVID-19 or not. Here we have
reported the molecular interaction studies for both FDA-
approved synthetic inhibitors and phytocompounds with the
main protease Mpro. In doing so, we aimed to screen out the best
phytocompound in comparison to synthetic drugs. In addition,
the ADMET profiles of all the compounds were taken into ac-
count in order to apply a chemoinformatics approach to find out
the small molecule fragments and derivatives of the best docked
phytocompounds. Furthermore, quantitative structure-activity re-
lationship (QSAR) analysis was performed to predict the IC50
values of novel derivatives. The CLC-Pred and pharmacophore
models, along with molecular dynamics simulations, further sup-
plemented these results in order to ascertain the best derivative
compound from the initial set of phytocompounds.

Materials and methods

Retrieval of ligands

The rationale for the selection of 12 phytocompounds and 12
FDA-approved synthetic drugs was based on the reports
depicted in Table S-1A (supplementary material). The 12
FDA-approved drugs are reported to have a significant inhib-
itory effect upon CoV main proteases and are thus considered
as reference drugs in the study (Table S-1B, supplementary
material). All of the selected molecules were retrieved from
the PubChem domain (URL https://pubchem.ncbi.nlm.nih.
gov/) [29]. The respective PubChem IDs are also listed in
Table S-1A. A flowchart representing the pipeline adopted
in the study is depicted in Fig. 1.

ADMET screening of the phytocompounds

A significant step in the production of drugs is the estimation
of essential pharmacological properties of the possible small
molecules in silico and in vivo. In silico approaches (referring
to virtual screening) are preferable over in vivo predictions
that are costly and time-consuming. A graph modeling–
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based tool, pkCSM (predicting small molecule pharmacoki-
netic properties using graph-based signatures), was used for
studying ADMET (absorption, distribution, metabolism, ex-
cretion, and toxicity) properties. In this analysis, the respective
canonical SMILEs of the compounds were used to calculate
the ADMET properties.

Molecular interaction studies of Mpro with naturally
derived phytocompounds and FDA-approved drugs

Molecular interaction studies using docking have predicted
potential interactions between drug targets through energy
minimization and binding energy calculations. The interaction

between small molecules (ligands) and the respective protein
receptor (which may be an enzyme) is a possible site of inhi-
bition [30]. The molecular docking studies were carried out in
AutoDock 4.2.1 [31]. Ligands retrieved from PubChem data-
base for the docking analysis in 3D SDF format were trans-
lated and stored in Mol2 format using Open Babel 2.2.3 [32].

The atomic resolution structures resolved in X-ray and
NMR 3D coordinates of the target protein molecule CoVmain
protease (Mpro) (PDB id 2gz9) were downloaded from the
protein data bank (RCSB-PDB) and processed using the
AutoDock tool. Ligand preparation and molecular docking
were done according to the methods of Ghosh and co-
workers. [33]. The rationale of this study was based on the

Fig. 1 Flowchart of pipeline adopted in the study to identify small molecule inhibitors of Mpro
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ability of phytocompounds and FDA-approved synthetic
drugs to bind with the target protein. It was then necessary
to evaluate the binding free energy (∆G) in order to establish a
comparison that might screen for the best phytocompound
against CoV main protease (Mpro). Generation of small mole-
cule derivatives of the best docked phytocompounds.

Generation of small molecule derivatives of the best
docked phytocompounds

The 3 best docked phytocompounds (withaferin-A,
hesperidin, and baicalin) in the sdf format were uploaded in-
dividually to the deep neural networking–based LigDream
tool (https://www.playmolecule.org/LigDream/) to generate
derivative molecules along with their canonical smiles from
each phytocompound. DNNs are used to design effective
routes of chemical synthesis where reversed reactions
formally decompose the molecule (retrosynthesis) [34]. This
process results in a series of reactions which can then be per-
formed in the forward direction in the laboratory to synthesize
the target fragments.

ADME analysis of the derived small molecules

The SMILE strings of 100 derivatives from each
phytocompound has analyzed in the SwissADME web tool
(http://www.swissadme.ch/) to quantify the physicochemical
descriptors and estimate ADME parameters, drug-like nature,
pharmacokinetic properties, andmedicinal chemistry friendliness
of multiple small molecules that are the prerequisites for a suc-
cessful drug discovery. In this study, the ADMET profiles were
analyzed for 300 derivatives to further screen out small molecule
derivatives on the basis of their synthetic accessibility score and
the drug likeliness parameters (Lipinski/Ghose/Veber/Egan/
Muegge). Only those molecules that showed a synthetic acces-
sibility score in a range of 1–4 and having no violation of drug
likeliness parameters were considered for further studies. A final
set of 30 molecules was obtained from 300 derivatives generated
from the three preferred phytocompounds.

Molecular docking of Mpro with phytocompound
derivatives

The second set of docking was performed to evaluate the
binding free energy (∆G) for the selected phytocompound
derivatives. A similar docking strategy was adopted as de-
scribed in the previous section.

Quantitative structure-activity relationship (QSAR)
analysis of the screened derivative molecules

Structure-activity relationships (SAR) based upon machine
learning and statistical methods are extensively used in many

areas of drug development, ranging from primary screening to
lead optimization [35]. In this study, the phytocompounds
were subjected to QSAR analysis applying a multiple linear
regression model using EasyQSAR 1.0. A QSAR equation
can be given as:

Biological Activity ¼ Constant þ C1 P1ð Þ þ C2 P2ð Þ

þ C3 P3ð Þ þ…… Cn Pnð Þ

where the parameters P1 through Pn are computed for each
molecule in the series and the coefficients C1 through Cn are
calculated by fitting variations in the parameters and the bio-
logical activity. These P1, P2, P3, and so on are the descriptor
variables of the QSAR equation [35]. For this purpose, mo-
lecular descriptors were obtained using the information’s from
the tool Marvin 20.15, 2020 (http://www.chemaxon.com),
and respective experimental IC50 values of the training
dataset were collected from ChEMBL database (https://
www.ebi.ac.uk/chembl/). The training dataset included 18
reported inhibitor molecules and 6 ligand descriptors, viz.,
molecular weight, LOGP, refractivity, polar surface area-2D,
polarizability, and molecular surface area-3D which were
used to predict the QSAR model. Thereafter, IC50 values of
10 test datasets including 7 best docked derivative molecules
and their 3 parent phytocompounds were derived based on the
predicted QSAR model. The model was developed from a
specific chemical class of SARS-CoV inhibitors and not upon
the values of the molecular descriptors. So the influence of the
number of training set compounds on the applicability domain
of the QSAR model is considered trivial. However, owing to
the small training set of compounds, the domain of applica-
bility will naturally be localized.

In silico prediction of cytotoxicity for tumor and non-
tumor cell lines

In silico cytotoxicity prediction was carried out for tumor and
non-tumor cell lines using CLC-Pred (Cell Line Cytotoxicity
Predictor). CLC-Pred tools predict cytotoxicity of tumor cell
lines depending on the cytotoxicity relationships between the
structure and the cell lines built by Prediction of Activity
Spectra for Substances (PASS) special training sets equipped
with the leave-one-out cross-validation procedure. The in
silico prediction results reportedly accord with the results of
in vivo experiments by about 96% [36]. The web service,
http://www.way2drug.com/Cell-line/, was used to predict the
cytotoxic effects of chemical compounds in non-transformed
and cancer cell lines based on the structural formula in silico.
CLC-Pred provides a likelihood of the cytotoxicity of a chem-
ical compound to evaluate whether the substance will be used
in the experimental screening. The interpretation was done
using the default parameters as described in CLC-Pred’s
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protocol. Using the parameters of this protocol, “Pa” indicates
activity, and “Pi” indicates inactivity. Thus, our screening
with Pa > Pi indicated that the probability of action is consid-
erably higher than the probability of inactivity.

Pharmacophore modeling

“Pharmacophores” are mostly considered to be molecular
fragments or functional groups of a chemical compound. A
pharmacophore may be generated in a structural or ligand-
based method. [37]. Here we have used pharmacophore
modeling based upon the ligand-based approach to establish
the pharmacophore models of the phytocompound deriva-
tives. The PDB format file of the target receptor molecule
main protease (Mpro) and the two best ligands or the
pharmacophore feature molecules in mol2 format were ana-
lyzed in the ZINCPharmer Pharmacophore tool (zincpharmer.
csb.pitt.edu). The ZINCPharmer utilizes the Pharmer open-
source pharmacophore search to screen a large database of
fixed conformers such as hydrophobic interactions, hydrogen
bond donor/acceptor, positive/negative ions, and other
pharmacophore features for pharmacophore matches [38].

MD simulation study

At the atomistic level, the MD simulation results allowed for
the investigation of the structural dynamics of the receptor
CoV-2 protease (Mpro) upon binding with small ligand (pro-
posed drug) molecules. Molecular dynamics (MD) simulation
studies were carried out in order to determine the backbone
configuration of SARS-Cov-2 main protease bound to
withaferin-A derivative molecule 61. To set up the simulation
initially, the systems were built for Mpro with and without the
withaferin-A derivative molecule 61 ligand in the system
builder. MD simulation study was carried out in Desmond
vs 2020–1. To set up the initial parameters of an orthorhombic
box of 10x10x10 Å, Desmond system builder was used. The
target protein Mpro and target-ligand complex were neutral-
ized with NaCl by adding 0.15 M Na + ions. The prepared
systems were relaxed using the Desmond default protocol of
relaxation [39]. An MDS run of 50 ns was set up at constant
temperature and constant pressure (NPT) for the final produc-
tion run. The NPT ensemble was set up using the Nosé-
Hoover chain coupling scheme at a temperature of 300 K for
final production and throughout the dynamics with relaxation
time 1 ps. An RESPA integrator was used to calculate the
bonding interactions for a time step of 2 fs. All other param-
eters were associated in the settings followed as described by
Shaw and co-workers [39]. After the final production run, the
simulation trajectories of SARS-CoV-2 main protease com-
plexed with withaferin-A derivative molecule 61 were ana-
lyzed for the final outcome of RMSD, RMSF, and ligand
RMSF, derived from the simulation studies.

Results and discussions

The safety and efficacy of drug candidates are the necessary
prerequisites for regulatory approval, and an initial ADMET
profiling of the chosen reference drugs and phytocompounds
provides the ADME properties which confirm the drug
likeliness of the selected phytocompounds. The comparable
statement fromADMET profiles of the phytocompounds with
respect to the FDA-approved synthetic drugs is displayed in
Table 1. The water solubility of a compound (logS) reveals the
solubility of the molecule in water at 25 °C. The
phytocompounds diacetylcurcumin (−6.225), withaferin-A
(−5.063), and zingiberene (−5.967) displayed highest solubil-
ities (log mol/L) over the reference set of drugs considered in
this study. The intestinal absorptions of the phytocompounds
(Table 1) are significantly lower than the synthetic drugs. The
phytocompounds diacetylcurcumin, withaferin-A,
zingiberene, and limonene shows the highest intestinal ab-
sorption among the tested phytocompounds and are compara-
ble to the reference set of drugs. The steady-state volume of
distribution (VDss) is the theoretical volume that the total drug
would need to be uniformly distributed to give the same con-
centration as in blood plasma. VDss is considered low if be-
low − 0.15 and high if above 0.45 in a logarithmic scale of
L/Kg. The tested phytocompounds (Table 1) depict compara-
ble VDss to the synthetic drugs. Also, all the phytocompounds
gave negative results to AMES toxicity which indicated that
the compounds are safe to be carried forward in further
analysis.

Molecular docking of phytocompounds and reference
drugs

Molecular docking is employed to find out the interaction of
our chosen reference drugs (bictegravir, tegobuvir, baricitinib,
remdesivir, nelfinavir, hydroxychloroquin, prulifloxacin, mef-
loquine, favipiravir, dexamethasone, chloroquine, methyl-
prednisolone) and selected phytocompounds (hesperidin,
baicalin, myricitrin, calceolarioside B, methyl rosmarinate,
rutin, diosmin, apiin, diacetylcurcumin, withaferin-A,
zingiberene, limonene). Our investigations and results from
molecu la r dock ing of the syn the t i c d rugs and
phytocompounds with the SARS-CoV2 target protein main
protease (Mpro) revealed that the docking scores of most of
the phytocompounds are comparable to that of the synthetic
drugs (Table 2).

However, withaferin-A showed best docking score among
all the phytocompounds as well as synthetic drugs that were
screened (Table 2). The compounds with low binding energy
and inhibitory concentration are better suited to act as drug
compounds owing to their better binding conformations.
Thus, withaferin-A, hesperidin, and baicalin having binding
energies − 9.22 kcal/mol, − 6.87 kcal/mol, and − 6.68 kcal/
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mol, respectively, were selected for further analysis. The syn-
thetic drug methylprednisolone having binding energy −

8.02 kcal/mol was selected to be taken as a reference. The
docked ligand molecules with protease were shown in Fig. 2
(a), (c), (e), and (g). While Figs. 2 (b), (d), (f), and (h)
highlighted all the amino acids involved in the ligand-
receptor binding. Sharma and Deep previously reported
withaferin as a potential phytocompound against Mpro, and
their experiments generated a dock score of − 8.9 kcal/mol
[40]. Our result however is substantiated and better than the
previous findings as reported elsewhere [40].

The phytocompound withaferin-A binds to the SARS-
CoV2 Mpro strongly, and the polar and nonpolar amino acid
residues involved are GLN192, THR190, PRO168, LEU167,
ALA191, GLN189, ARG188, GLU166, HIS164, MET49,
MET165, HIS41, GLY143, CYS145, LEU27, THR25, and
THR26, while CYS145, HIS163, ASN142, GLU166,
HIS41, THR45, LEU141, PHE140, HIS172, SER144,
HIS164, THR25, VAL42, CYS44, GLU47, ALA46,

MET49, ASP187, ARG188, GLN189, and MET165 amino
acids are involved in hesperidin::Mpro binding. The baicalin
and SARS-CoV2 Mpro binding involves ARG88, GLN83,
GLU178, TYR37, LYS102, TYR101, ASP33, THR98,
PRO99, LYS100, and PHE103 amino acids, while the refer-
ence drug methylprednisolone involves THR190, GLN192,
GLU166, LEU141, HIS163, ASN142, GLY143, GLN189,
ARG188, MET49, MET165, HIS41, HIS164, HIS172,
CYS145, SER144, and PHE140 amino acids to bind to the
catalytic core of SARS-CoV2 Mpro. Sharma and Deep how-
ever previously reported that the withaferin-A shows interac-
tions with residues Thr 24, Thr 25, Cys 44, Ser 46,Met 49, His
41Leu 141, His 164, Phe 140, Asn 142, and Glu 166 of the
SARS-CoV2 Mpro.

Table 3 depicts withaferin-A, hesperidin, and baicalin hav-
ing the best dock scores having comparable amino acids in-
volved in the catalytic core as is present in the reference drug
methylprednisolone, and thus these 3 phytocompounds are
considered to generate small molecule fragment derivatives.

Table 1 ADMET profiles of synthetic drugs and phytocompounds selected for the study

Water solubility
(log mol/L)

Intestinal absorption
(% absorbed)

VDss (human)
(log L/kg)

Total clearance
(log ml/min/kg)

AMES toxicity
(yes/no)

Maximum dosage
(human)
(log mg/kg/day)

Synthetic drugs

Bictegravir −3.495 82.275 −0.241 0.543 NO −0.016

Tegobuvir −3.041 81.252 −0.152 0.18 NO 0.2

Baricitinib −3.129 79.532 0.059 0.854 NO 0.854

Remdesivir −3.07 71.109 0.307 0.198 NO 0.15

Nelfinavir −3.894 70.888 0.563 0.399 NO −0.576

Hydroxychloroquin −3.627 90.217 1.076 1.152 YES −0.091

Prulifloxacin −3.161 60.602 −0.081 0.119 NO 0.119

Mefloquine −4.874 85.961 0.83 0.43 NO −0.283

Favipiravir −2.121 91.69 −0.218 0.518 NO 1.291

Dexamethasone −4.147 81.31 −0.078 0.658 NO 0.097

Chloroquine −4.249 89.95 1.332 1.092 YES −0.167

Methylprednisolone −3.787 73.366 −0.144 0.712 No −0.183

Phytocompounds

Hesperidin −3.014 31.481 0.996 0.211 NO 0.525

Baicalin −2.764 26.224 0.267 0.04 NO 0.652

Myricitrin −2.892 43.334 1.552 0.303 NO 0.454

Calceolarioside B −2.96 38.482 1.559 −0.186 NO 0.201

Methyl rosmarinate −3.17 64.776 0.75 0.187 NO −0.027

Rutin −2.892 23.446 1.663 −0.369 NO 0.452

Diosmin −2.929 29.319 1.428 −0.113 NO 0.565

Apiin −2.851 17.411 1.004 −0.054 NO 0.446

Diacetylcurcumin −6.225 94.745 −0.808 0.382 NO 0.633

Withaferin-A −5.063 85.345 −0.131 0.435 NO −0.695

Zingiberene −5.967 95.561 0.629 1.441 NO 0.414

Limonene −3.568 95.898 0.396 0.213 NO 0.777
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The molecular docking and QSAR analysis was performed
to screen out the best potential hits against SARS-CoV2 main
protease (Mpro) from the phytocompounds by taking reference
FDA-approved synthetic drugs. Prashanth and co-workers,
2020 [41] recently reported tenufolin as a highly effective
phytocompound against SARS-CoV2 showing a dock score
of − 8.8 kcal/mol. Our results for initial molecular docking
studies successfully identified withaferin-A to be the best in-
hibitor of Mpro whose dock score(− 9.22 kcal/mol) surpassed
every other synthetic drugs taken as reference. Reports from
Kumar and co-workers, 2020 [22, 42], revealed that
withaferin-A and withanone could also bind and stably inter-
act to the catalytic site of TMPRSS2 which further validates
the strong potential of withaferin compounds against SARS-
CoV2. Also, we considered phytocompounds hesperidin (−
6.87 kcal/mol) and baicalin (− 6.68 kcal/mol) for further anal-
ysis owing to their significantly better binding energies over
other chosen compounds on an average.

Generation of small molecule derivatives

The deep learning and neural networking–based LigDream
tool (https://www.playmolecule.org/LigDream/) within the
PlayMolecules software generated 100 small molecule
derivatives for each of the three phytocompounds. All the
derivatives were tested for the adsorption, distribution,
metabolism, and excretion analysis using SwissADME
software. Only those compounds were chosen which had no
violations of Lipinski’s rule of 5 and had synthetic
accessibility score between 1 and 4. This step of screening
resulted in 8 derivative compounds from withaferin-A, 1
from hesperidin, and 21 derivatives of baicalin. A final set

of 30 molecules was obtained from 300 derivatives
generated from 3 phytocompounds. All 30 derivatives thus
obtained were again docked with the SARS-CoV2 main pro-
tease target. Tables S-2(A), S-2(B), and S-2(C) (supplemen-
tary material) show the best derivatives screened on the basis
of ADME profiling from the 100 derivatives generated from
each phytocompounds along with their binding energies and
inhibitory concentrations obtained by molecular docking with
Mpro.

The best small molecule fragment derivatives from the 3
phytocompounds obtained were re-docked with the main pro-
tease of SARS-CoV 2 to identify a set of finest small molecule
inhibitors of Mpro based upon the dock scores generated. Two
derivates of withaferin-A, 1 derivative of hesperidin, and 4
derivatives from baicalin were considered as the best hits for
QSAR analysis.

QSAR analysis

Dataset selection and descriptor calculation

In present work, the dataset selection and descriptor calcula-
tion for the QSAR analysis involved the collection of a set of
18 molecules (Table S-3, supplementary material) as inhibi-
tors against the main protease of SARS-CoV 2 virus from the
CHEMBL database. The dataset used comprises of varied
classes of compounds where the experimental activity of each
compound is expressed in IC50 (nM) values. For model de-
velopment, we have converted the IC50 values to pIC50
(pIC50 = -logIC50) values. All the compounds were drawn
using MarvinSketch, followed by cleaning of molecules.
The descriptors were computed using MarvinSketch.

Table 2 Comparative chart depicting the binding energies and inhibitory concentrations of synthetic drugs and phytocompounds

Synthetic drugs Phytochemical compounds

Binding energy
(kcal/mol)

Inhibitory concentration
(uM)

Binding energy
(kcal/mol)

Inhibitory concentration
(uM)

1. Methylprednisolone −8.02 1.32 1. Withaferin-A −9.22 0.175

2. Dexamethasone −7.4 3.79 2. Hesperidin −6.87 9.23

3. Tegobuvir −7.33 4.24 3. Baicalin −6.68 12.72

4. Bictegravir −7.26 4.79 4. Diacetylcurcumin −6.5 17.26

5. Nelfinavir −7.01 7.32 5. Methyl rosmarinate −6.37 21.32

6. Prulifloxacin −6.91 8.57 8. Apiin −5.88 49.19

7. Baricitinib −6.82 10.0 11.Zingiberene −5.87 50.21

8. Hydroxychloroquin −5.88 49.19 3. Myricitrin −5.41 108.38

9. Mefloquine −5.83 53.08 6. Rutin −5.04 201.68

10. Chloroquine −5.80 56.34 4. Calceolarioside B −4.98 223.93

11. Remdesivir −5.08 188.87 12.Limonene −4.67 375.22

9. Favipiravir −4.65 391.39 7. Diosmin −4.27 741.0
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Analysis and prediction of IC50 of phytocompounds

The QSAR analysis (Fig. 3) with descriptors molecular
weight (MW), LOGP, refractivity, polar surface area
(PSA), polarizability, and molar surface area (MSA) re-
veals an Rsq = 67.25%, adjusted Rsq = 49.39%, F statis-
tics = 3.76, and critical F = 2.70. Among all the descrip-
tors, polarizability demonstrated a negative correlation of
− 0.02 with the activity. It is also important to mention
that LOGP contributed in activity to a greater extent with

a percentage contribution of 44%. The predicted IC50
values of 10 test data including 7 best docked derivative
molecules and their 3 parent phytocompounds are
depicted in Table 4.

Molecular docking analysis of withaferin-A derivatives with M
PRO

The molecular docking studies of SARS-CoV2 main pro-
tease (Mpro) with withaferin-A derivative molecules 61

Fig. 2 Molecular dock pose of a withaferin-A and Mpro complex, b
withaferin-A-Mpro binding in 2D, c hesperidin and Mpro complex, d
hesperidin-Mpro binding in 2D, e baicalin and Mpro complex, f baicalin-

Mpro binding in 2D, g methylprednisolone and Mpro complex, h
methylprednisolone-Mpro binding in 2D
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and 64 (Fig. 4a–d) having the lowest IC50 values as ob-
tained by the QSAR study generated significant binding
free energies of − 7.84 kcal/mol and − 7.94 kcal/mol, re-
spectively (Table 5). The docking study reveals that the
withaferin-A mol 61 forms 5 polar H-bonds with the Mpro

where amino acids involved are GLU166, THR190,
CYS145, MET165, and GLN152 (Table 5), and the
withaferin-A mol 64 forms 4 polar H-bonds with Mpro

involving amino acids THR190, GLN192, CYS145, and
GLU166 (Table 5), while Table 3 shows that the parent
molecule withaferin-A forms only 2 polar H-bonds with
Mpro with amino acids GLN192 and THR190 involved.

Thus, the withaferin-A derivatives are predicted to exhibit
better binding with the target protease of SARS-CoV2
over the parent withaferin-A molecule.

Our study identified the 2 withaferin derivatives to be
the top hits among all other derivatives owing to their rel-
atively low predicted IC50 values. Further upon compara-
tive analyzing the ligand-receptor interactions of the deriv-
atives and parent withaferin-A molecule with Mpro reveals
4 to 5 polar hydrogen bonds of derivatives in the catalytic
region of Mpro while only 2 polar H-bonds were involved
in the interaction of the parent withaferin-A molecule with
Mpro.

Fig. 2 (continued)

Page 9 of 17     97J Mol Model (2021) 27: 97



In silico cytotoxicity prediction and analyses

Withaferin-A fragment derivative molecules 61 and 64 that
showed the lowest predicted IC50 values were selected to
predict the biological spectrum by PASS. It finds the proba-
bility of activity and inactivity against tumor and non-tumor
cells out of a maximum probability score of 1. In the PASS
filter, the significant anticarcinogenic activity was displayed
with osteosarcoma for both the withaferin-A derivative mole-
cules 61 and 64 having an active coefficient 0.414 and 0.412,
respectively (Table 6). Nonetheless, these derivatives have a
significant role in inhibiting the growth of major carcinoma
cell lines such as colon adenocarcinoma, gastric carcinoma,
stomach carcinoma, prostate carcinoma, ovarian adenocarci-
noma, thyroid gland undifferentiated (anaplastic) carcinoma,
T-lymphoid carcinoma, and osteosarcoma. These results indi-
cate a strong potential for anticarcinogenic activity. It is also
shown in Table 7 that the activity of the fragment derivatives
maintained the growth of embryonic lung fibroblasts (0.254,
0.226), embryonic kidney fibroblasts (0.208), umbilical vein
endothelial cells (0.163, 0.413), lymphocytes (0.092, 0.085),
and fibroblasts (0.135). This bioactivity analysis confirms the
role of withaferin derivative molecules 61 and 64 in maintain-
ing human health against tumor generation and inflammation.

Generation of pharmacophore models

Pharmacophore modeling based on the principle of Lipinski’s
rule of five displayed a more accurate picture of the
withaferin-A derivative ligand interaction with the binding
site of the SARS-CoV2 main protease more accurately to
predict the drug likeliness. The pharmacophore model of de-
rivative molecule 61 displayed that it has four hydrogen bond
acceptors and three hydrophobic interactions which is a major
parameter of drug likeliness (Fig. 4e). Moreover, the Pharmer
webserver identified 6 new hits for derivative molecule 61 by
identifying its hydrophobic, hydrogen bond donor/acceptor,
positive/negative ions, and other pharmacophore features

and are enlisted in Table S-4 (supplementary material). The
pharmacophore model of derivative molecule 64 displayed
that it has 4 hydrogen acceptors and also 4 hydrophobic inter-
actions (Fig. 4f). This model did not generate any further hit
compound.Withaferin derivativemolecule 61 is considered to
be more potent than derivative mol 64 and thus carried for-
ward for further investigations.

ADME toxicity prediction of withaferin-A fragment

derivatives

In order to be an effective drug, a potent molecule must
meet its target in the body in adequate concentration and
remain there in a bioactive form sufficiently long to cause
the predicted biological events. Early in the drug discov-
ery process, assessment of absorption, distribution, metab-
olism, and excretion (ADME) occurs at a stage when cho-
sen compounds are abundant, but access to the physical
samples is restricted. Withaferin-A derivative molecule
61, using the SwissADME tool showed a significant lipo-
philicity of 1.47 (Fig. S-5A, supplementary material).
Typically, lipophilicity falls in a range between
(XLOGP3) − 0.7 and + 5.0. The molecular weight of the
molecule was shown to be 373.51 g/mol, where the ac-
ceptable range is between 150 and 500 g/mol). The mol-
ecule’s polarity, measured as topological polar surface
area (TPSA), was found to be 89.13 Å2, where the accept-
able range is typically between 20 and 130 Å2. The sol-
ubility was derived at log S -2.95, a value not recom-
mended higher than 6.0. Taken together, these data indi-
cate that the molecule is soluble in water and moderately
polar with some bond flexibility (measured at 8.0 where a
value greater than 9.0 indicates rotatable bonds). Given
these analyses, the compound is predicted to be an orally
bioavailable or administered drug.

Other pharmacokinetic parameters were found. The drug
had a high absorption in the GI tract (white oval shape, Fig. S-
5B, supplementary material) and had permeability across the

Table 3 Binding energy and active site residues present in the catalytic core of Mpro(2gz9)-ligand complex

Ligand Predicted free energy of
binding (ΔG) kcal/mol

Polar residue involved in
hydrogen bonding

Amino acid residues involved in other bonds

Withaferin-A −9.22 GLN192, THR190 PRO168, LEU167, ALA191, GLN189, ARG188, GLU166,
HIS164, MET49, MET165, HIS41, GLY143, CYS145,
LEU27, THR25, THR26

Hesperidin −6.87 CYS145, HIS163, ASN142,
GLU166, HIS41, THR45

LEU141, PHE140, HIS172, SER144, HIS164, THR25,
VAL42, CYS44, GLU47, ALA46, MET49, ASP187,
ARG188, GLN189, MET165

Baicalin −6.68 ARG88, GLN83, GLU178 TYR37, LYS102, TYR101, ASP33, THR98, PRO99,
LYS100, PHE103

Methylprednisolone −8.02 THR190, GLN192, GLU166,
LEU141, HIS163, ASN142,
GLY143

GLN189, ARG188, MET49, MET165, HIS41, HIS164,
HIS172, CYS145, SER144, PHE140
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blood-brain barrier. These parameters are typically failed by
most drug candidates but were apparent with withaferin-A
derivative molecule 61. In contrast, the withaferin-A deriva-
tive molecule showed high blood-brain barrier (BBB) perme-
ability (yellow oval shape, Fig. S-5B, supplementary
material).

One of the major physiological phenomena in human and
higher eukaryotes is to efflux the drug molecule from the cen-
tral nervous system for protection. This poses a major concern
in drug delivery systems. In this case, the derivative molecules
are retained within the neurological system where the CNS did

not show any signs of efflux (no blue spot within the yellow
oval, Fig. S-5B, supplementary material). On the other hand,
themolecule also displayed a reasonable skin permeation of log
Kp − 7.53 cm/s. Hence, the drug can be considered as a safe
and effective potential fragment derivative of withaferin-A.

Molecular dynamics and simulation study

For MD simulation, systems were developed both for
SARS-CoV2 main protease (Mpro) and withaferin-A deriv-
ative mol 61 bound complex that were analyzed for 50 ns.

Table 4 Predicted IC50 and corresponding values of descriptors obtained through QSAR analysis

Derivative compounds MW LOGP Refractivity PSA Polarizability MSA Predicted activity (ic50nm)

Withaferin mol 61 373.51 0.67 96.33 80.75 38.63 626.49 7762.471166

Withaferin mol 64 373.51 0.71 96.23 80.75 38.63 625.49 7943.282347

Hesperidin mol 28 461.42 2.64 114.58 116.3 41.98 613.08 45,708.81896

Baicalin molecule 65 407.42 2.52 109.29 101 42.91 557.57 30,902.95433

Baicalin molecule 78 406.39 2.56 104.29 98.19 42.87 531.21 38,018.93963

Baicalin molecule 79 449.41 2 114.68 127.3 44.6 575.75 28,840.31503

Baicalin molecule 99 424.4 2.11 110.93 125.4 41.62 550.22 30,902.95433

Phytocompounds MW LOGP Refractivity PSA Polarizability MSA Predicted activity (ic50nm)

Withaferin-A 470.6 3.58 127.19 96.36 50.24 705.71 38,018.93963

Hesperidin 610.6 0.65 140.77 234.3 56.68 804.64 14,791.08388

Baicalin 446.4 0.76 104.93 183.2 40.82 527.68 23,442.28815

Fig. 3 QSAR activity plot and governing equation for the derivative molecules and phytocompounds
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Fig. 4 Molecular dock pose of awithaferin-A mol 61 and Mpro complex,
b withaferin-A mol 61::Mpro binding in 2D, c withaferin-A mol 64 and
Mpro complex, d withaferin-A mol 64::Mpro binding in 2D, e
pharmacophore model of withaferin-A derivative molecule 61 showing

pharmacophore interaction at the binding site of main protease (Mpro), f
pharmacophore model of withaferin-A derivative molecule 64 showing
pharmacophore interaction at the binding site of the main protease (Mpro)
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RMSD plots thus generated from the MDS production
displayed the conformational change of the target protein,
i.e., SARS-CoV2 Mpro, as displayed in Fig. 5a, whereas
withaferin-A derivative molecule 61 bound Mpro displayed
more stability as compared to the SARS-CoV2 Mpro alone
(Fig. 5b). Initial changes were observed in RMSD from 1.2
to 3.4 Å for the first 18 20 ns, and later large conforma-
tional changes observed at 65–78 ns before final stabilized
conformation were achieved (Fig. 5a). By contrast, the
Mpro-withaferin-A derivative molecule 61 bound complex
showed much better stability in the Cα-backbone confor-
mation. The ligand conformation over the aligned position

of Cα-backbone of the main protease displayed the con-
formational difference of 1.6 Å until 60 ns due to the dif-
fused pattern. Later, the stabilized RMSD was observed
from 60 to 100 ns due to ligand accommodation at the
binding cavity of Mpro (Fig. 5b). A final conformational
variation was observed for the bound complex from the
beginning of the simulation till the end at 50 ns was
0.8 Å (Fig. 5b). This suggested that the ligand-bound state
of the SARS-CoV2 main protease gained much more sta-
bility during the simulation as compared to the unbound
state. Moreover, RMSF plots exhibited the evidence de-
rived from the RMSD plot where clearly visible that the

Table 5 Binding energy and active site residues present in the catalytic core of Mpro(2gz9)-withaferin-A derivative molecules 61 and 64

Ligand Predicted free energy of
binding (ΔG) kcal/mol

Polar residue involved in
hydrogen bonding

Amino acid residues involved
in other bonds

Withaferin-A mol 61 −7.84 GLU166, THR190, CYS145, MET165, GLN152 LEU141, SER144, PRO168,

Withaferin-A mol 64 −7.94 THR190, GLN192, CYS145, GLU166 HIS41, MET49, GLN189

Table 6 PASS prediction coefficient with tumor cell lines based on the best phytocompound derivatives with lowest IC50 obtained after QSAR
analysis

Compounds Pi* Pa* Cell line Cell line name full Tissue Tumor type

Withaferin-A mol 61 0.128 0.089 DLD-1 Colon adenocarcinoma Colon Adenocarcinoma

0.155 0.130 NCI-N87 gastric carcinoma Stomach Carcinoma

0.167 0.141 St-4 Stomach carcinoma Stomach Carcinoma

0.197 0.107 COLO 205 Colon adenocarcinoma Colon Adenocarcinoma

0.225 0.120 DU-145 Prostate carcinoma Prostate Carcinoma

0.312 0.091 OVCAR-5 Ovarian adenocarcinoma Ovarium Adenocarcinoma

0.317 0.061 8505C Thyroid gland undifferentiated
(anaplastic) carcinoma

Thyroid Carcinoma

0.344 0.035 H9 T-lymphoid Hematopoietic and
lymphoid tissue

Leukemia

0.414 0.008 SJSA-1 Osteosarcoma Bone Sarcoma

Withaferin-A mol 64 0.412 0.009 SJSA-1 Osteosarcoma Bone Sarcoma

0.353 0.031 H9 T-lymphoid Hematopoietic and
lymphoid tissue

Leukemia

0.348 0.067 OVCAR-5 Ovarian adenocarcinoma Ovarium Adenocarcinoma

0.327 0.048 8505C Thyroid gland undifferentiated
(anaplastic) carcinoma

Thyroid Carcinoma

0.262 0.096 DU-145 Prostate carcinoma Prostate Carcinoma

0.135 0.082 DLD-1 Colon adenocarcinoma Colon Adenocarcinoma

0.169 0.137 St-4 Stomach carcinoma Stomach Carcinoma

0.156 0.128 NCI-N87 gastric carcinoma Stomach Carcinoma

0.199 0.173 PC-3 Prostate carcinoma Prostate Carcinoma

0.211 0.200 MKN-7 Gastric carcinoma Stomach Carcinoma

Pa*, probability “to be active”; Pi**, probability “to be inactive”
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positional fluctuations of amino acids were more in as
compared to the withaferin-A derivative bound state (Fig.
5c and d). The diffusion of ligand at the initial stage of the
simulation indicated the entry movement through the
SARS-CoV2 main protease receptor complex and later sta-
bilized due to deep entry inside the binding cavity and
significant binding. In addition, ligand RMSF plot (Fig.
5e) exhibited the interaction position of withaferin-A de-
rivative molecule 61 within SARS-CoV2 during the simu-
lation. The protein-ligand complex is first aligned on the
protein backbone, and then the ligand RMSF is measured
on the ligand heavy atoms. The ligand root-mean-square
fluctuation reveals that the atomic residues from 1 to 12
illustrate elevated fluctuations. But the fluctuation curve
from 12th atom to 13th exhibits a sharp ramp which means
that at this point, the ligand is entropically changed and
thereby fits the catalytic core of SARS-CoV-2 Mpro (Fig.
5e).

Our docking results, QSAR studies, and MD simula-
tions are in coherence with the previously published lit-
eratures. Our study shows that the binding energy for the
ligand withaferin-A and its 2 best derivatives mol 61 and
64 are considerably high (refer to Table 5) and their
respective inhibitory constant (ki) values are low (refer
to Table S- 2A, supplementary material). Upon QSAR
study, the predicted activity (IC50) comes the lowest
for withaferin derivative mol 61 and 64. Hence, we con-
clude that the predicted molecules are having high affin-
ity towards the target and the ligands will show activity
even at lower concentration. Results on data mining–
based predictions of some hit fragments from natural
compounds are reported by Ghosh et al. (2020) [43],
but our study is the first to report the effectiveness of
small molecule fragment derivative of withaferin-A
against SARS-CoV2 Mpro by integrating DNN and ma-
chine learning–based tool in screening out derivatives
against SARS-CoV2 which still retain lead-like proper-
ties. The predictions in this report may open new

possibilities for the use of small molecule inhibitor drugs
to successfully combat COVID-19.

Conclusion

The COVID-19 outbreak originated by the highly patho-
genic SARS-CoV-2 coronavirus has posed a major threat
to public health and needs urgent intervention. With the
current global crisis, all successful diagnostics and novel
treatments need to be produced at a reasonable price with
limited to no side effects. Over the last 30 years, structural
bioinformatics and cheminformatics have emerged as an
effective drug discovery technique. In this regard, 3D tar-
get protein frameworks have played important roles in
designing as well as the development of novel or alterna-
tive drugs. Medicinal plants are considered a significant
source for the treatment of various diseases. In the current
study, the antiviral potential of some phytoconstituents
and their small molecule derivatives was studied. The re-
sults of molecular docking, QSAR analysis, and MD sim-
ulations suggested that withaferin-A and associated frag-
ment derivatives may act as an inhibitor for the Mpro pro-
tease of SARS-CoV-2. Withaferin-A, a bioactive
withanolide from Ashwagandha, was shown to possess
inhibitory activity for HPV and a wide range of influenza
viruses. Based on previous reports as well as the results
presented here, we propose withaferin-A derivatives as
efficient lead compounds of potential drugs for combat-
ting COVID-19. The six hit compounds generated by the
pharmacophore model of withaferin-A derivative mole-
cule 61 from the ZINC database might be used to screen
for anti-CoV activities. Further, experimental work for all
of the compounds predicted in this study needs to be
carried out in order to verify specific drug likeliness in
greater depth. The in silico strategy of integrating DNN
and machine learning–based tool adopted here might be
utilized to explore the potential applications of several

Table 7 PASS prediction coefficient with non-tumor cell lines based on the best phytocompound derivatives with lowest IC50 obtained after QSAR
analysis

Compounds Pa* Pi** Cell line Cell line name Tissue/organ

Withaferin-A mol 61 0.254 0.071 WI-38 VA13 Embryonic lung fibroblast Lung

0.163 0.041 HUVEC Umbilical vein endothelial cell Endothelium

0.092 0.032 MT2 Lymphocyte(HTLV-producing cell line) Blood

Withaferin-A mol 64 0.226 0.088 WI-38 VA13 Embryonic lung fibroblast Lung

0.208 0.097 HEK293 Embryonic kidney fibroblast Kidney

0.143 0.050 HUVEC Umbilical vein endothelial cell Endothelium

0.085 0.043 MT2 Lymphocyte (HTLV-1 producing cell line) Blood

0.135 0.117 NHDF Fibroblast Skin
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other medicinal phytocompounds and also the available
drugs against COVID-19. Finally, a line of caution: prior
to using any outcome of an in silico study, a rigorous
in vivo and in vitro research is obligatory.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00894-021-04703-6.
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