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Insects make up the largest and most diverse group of organisms on earth with several

million species to exist in total. Considering the sheer number of insect species and

the vast variety of ways they interact with their environment through chemistry, it is

clear that they have significant potential as a source of new lead molecules. They have

adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various

microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds

have been identified including for example defensin peptides. Insect defensins were

found to have broad-spectrum activity against various gram-positive/negative bacteria as

well as fungi. They exhibit a unique structural topology involving the complex arrangement

of three disulfide bonds as well as an alpha helix and beta sheets, which is known as

cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make

them promising candidates for the development of novel antibiotics lead molecules. This

review highlights the current knowledge regarding the structure-activity relationships of

insect defensin peptides and provides basis for future studies focusing on the rational

design of novel cysteine-rich antimicrobial peptides.
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INTRODUCTION

Peptides are known to play pivotal roles in many physiological functions and besides their action
as signaling molecules they are crucial for the interaction with other organisms. This includes
for example antimicrobial peptides (AMP) that represent an important part of the organism’s
defense machinery or peptide toxins as part of venom cocktails (Brogden et al., 2003; Favreau
et al., 2006; Aili et al., 2014). AMPs are a diverse class of naturally occurring compounds that
have been identified in a variety of organisms, from invertebrates to vertebrates including humans
(Shafee et al., 2017). In particular insects are known for their immune system that has evolved
a complex arrangement of constitutive and inducible AMPs that are used to defend against
invading microorganisms (Kingsolver et al., 2013) and allow a symbiotic lifestyle with various
microbes (Douglas, 2015). With regard to the quest for novel antimicrobial agents to target
multidrug resistant pathogens such insect AMPs are promising starting points for antibiotic drug
development approaches (Ageitos et al., 2016; Mahlapuu et al., 2016). The variety of these peptides,
both in terms of structure as well as activity reflects the unique diversity of insect species. Insects
are the largest and most diverse group of living organisms on earth (Hellmann and Sanders, 2007).
Approximately, 950,000 species are described to date (Berenbaum and Eisner, 2008) and around
4,000,000 insect species are estimated to exist in total (May, 2000). Considering the sheer number of
insect species and the vast variety of ways they interact with their environment through chemistry,
it is clear that they have significant potential as a source of new lead molecules (Dossey, 2010).
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In particular insect AMPs have recently attracted increased
attention with regard to their possible medical as well as
agrochemical applications (Yi et al., 2014; Tonk and Vilcinskas,
2017).

Bioactive peptides are promising novel drug leads that may
fill the gap between small molecules and larger biologicals.
This is reflected by a multitude of recent peptide discovery
and development approaches (Craik et al., 2013). However,
their use as therapeutic lead molecules is challenged by their
typically poor stability and lack of oral bioavailability (Adessi
and Soto, 2002; Otvos and Wade, 2014). This is often due
to the linear nature of peptides that not only exhibit free
ends but multiple cleavage sites that are readily recognized by
enzymes that degrade peptide chains into inactive fragments or
single amino acids. The presence of multiple disulfide bonds
resulting in more compact structures typically increases stability
and bioavailability. Several naturally-occurring disulfide-rich
peptide families have been described such as plant cyclotides,
knottins, conotoxins, or relaxin family peptide hormones. These
cysteine-stabilized peptides are exhibiting a well-defined three-
dimensional structure making them of particular interest for
structure-activity relationship studies (Huang et al., 2010; Clark
et al., 2011; Akondi et al., 2014; Patil et al., 2016). Due to their
unique three-dimensional topologies, a wide range of activities
and amenability to chemical synthesis they have been shown to
represent valuable structural templates for peptide engineering
(Carstens et al., 2011; Poth et al., 2013; Kintzing and Cochran,
2016). Within insects such a class of disulfide-rich peptides
is known as “insect defensins” (Lambert et al., 1989). They
exhibit a complex three-dimensional pattern, which is referred
to as cysteine stabilized αβ motif (CSαβ). Importantly, as part
of the immune system these peptides were found to have a
broad spectrum of antimicrobial activities against bacteria, fungi
and other parasites. This review will (i) highlight the current
knowledge regarding structure-activity relationships of insect
defensins and aims to (ii) provide a basis for future rational
design of novel cysteine-rich AMPs.

EXPLORING THE DIVERSITY OF
CYSTEINE-RICH INSECT ANTIMICROBIAL
PEPTIDES

Given the sheer number of different insect species, it is not
surprising that a variety of different AMPs can be found within
these organisms. The ability of insects to adapt to almost every
terrestrial ecosystem and their exposure to a variety of pathogens
is reflected in the expression of different types and numbers
of AMPs in individual species (Vilcinskas, 2013). However, the
discovery of bioactive peptides from such small organisms by
classical mass spectrometry based peptidomics approaches is
facing serious challenges. This is due to highly complex samples
that are limited in quantity and bioactive compounds present in
trace amounts only that can easily be overlooked or only partially
be identified (Wiese et al., 2006; Ueberheide et al., 2009). To
fully unveil the diversity of peptides from such biological samples
new advances in analytical chemistry, nucleotide sequencing

and high-throughput drug screening are essential to aid in
the discovery of novel AMPs. Indeed, refined methodologies
that combine classical chemical analysis with bioinformatics
workflows have proven useful to harness the variety of peptides
and expand the knowledge of natural product peptidomes
(Koehbach and Jackson, 2015). Though, to date the majority of
identified defensin sequences was retrieved using either mass
spectrometry based characterization of insect hemolymphs or
cDNA cloning (see references in Table 1). Recent studies that
describe the use of transcriptomes and genomes as valuable
source of novel defensin sequences are significantly expanding
the number of identified peptides per single study (Gruber and
Muttenthaler, 2012; Poppel et al., 2015) and provide new insights
into defensin diversity. Although nucleotide based peptide
discovery provides additional information about the biosynthetic
origin of peptides it lacks information regarding potential
post-translational modification such as C-terminal amidation.
Defensins are embedded in larger precursor molecules that
consist of an ER signal peptide, a propeptide domain that
precedes the mature peptide domain and ends with a conserved
dibasic cleavage motif (Gruber and Muttenthaler, 2012). Mature
peptides are typically around 40 residues long and carry an
overall positive net charge with infrequent reports of anionic
examples (Figures 1B,C; Wen et al., 2009; Xu et al., 2016).

STRUCTURE-ACTIVITY RELATIONSHIPS
OF INSECT DEFENSINS

The variety of insect AMPs is also reflected within their
secondary and tertiary structures. They can be broadly divided
into three major groups, i.e., (i) primarily α-helical peptides,
(ii) peptides rich in one particular amino acid (e.g., proline or
glycine) and (iii) cysteine-rich peptides. Recent review articles
have addressed current knowledge about groups (i) and (ii)
(Huang et al., 2010; Li et al., 2014; Xhindoli et al., 2016).
Based on additional secondary structure elements cysteine-rich
insect AMPs can be subdivided into, (i) peptides exhibiting
antiparallel triple-stranded β-sheets (e.g., Alo-3; Barbault et al.,
2003), (ii) peptides that form a hairpin-like β-sheet structure
(e.g., thanatin; Mandard et al., 1998) and (iii) defensins, i.e.,
peptides with a complex arrangement of α-helixes and β-sheets
stabilized by disulfide-bonds (e.g., phormicin; Cornet et al.,
1995), which are focus of this review. Insect defensins are
defined to contain six conserved cysteines that form a typical
arrangement of three disulfide bonds. However, peptides such
as drosomycin contain eight cysteines, which is a conserved
feature of plant defensins. Further, these peptides consist of a
α-helix and antiparallel β-sheets (Figures 1D–F). Two disulfide
bonds connect the C-terminal β-sheet and the α-helix and the
third connects the N-terminal loop with the second β-sheet.
Similar to peptides from plants or fungi they are hence classified
as cis-defensins as opposed to trans-defensins found within
vertebrate species (Shafee et al., 2017). The tight arrangement
of secondary structural elements is reflected in high stability
against heat or proteases. Accordingly, this structural topology
is known as cysteine-stabilized αβ motif (CSαβ) and is common
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TABLE 1 | Naturally occurring insect defensin peptides with reported antimicrobial activity.

Peptidea (Organism) Length (AA) Net charge Activityb References

G+ G− F

Heliomicinc (Heliothis virescens) Lamberty et al., 1999

DKLIGSCVWGAVNYTSDCNGECKRRGYKGGHCGSFANVNCWCET 44 +1 – – X

ARD1c (Archaeoprepona demophon) Landon et al., 2004

DKLIGSCVWGAVNYTSNCNAECKRRGYKGGHCGSFANVNCWCET 44 +2 n.d. n.d. X

GmDefensin, GmDef-like (Galleria mellonella) Lee et al., 2004; Cytrynska

et al., 2007

DTLIGSCVWGATNYTSDCNAECKRRGYKGGHCGSFLNVNCWCE 43 0 – – X

DKLIGSCVWGATNYTSDCNAECKRRGYKGGHCGSFWNVNCWCEE 44 0 X – X

Gallerimycin (Galleria mellonella) Schuhmann et al., 2003

GVTITVKPPFPGCVFYECIANCRSRGYKNGGYCTINGCQCLR 42 +4 – – X

Drosomycinc (Drosophila melanogaster) Fehlbaum et al., 1994

DCLSGRYKGPCAVWDNETCRRVCKEEGRSSGHCSPSLKCWCEGC 44 +1 – – X

Termicinc (Pseudocanthotermes spiniger) Lamberty et al., 2001b

ACNFQSCWATCQAQHSIYFRRAFCDRSQCKCVFVRG*d 36 +4 – – X

Defensin (Aeshna cyanea) Bulet et al., 1992

GFGCPLDQMQCHRHCQTITGRSGGYCSGPLKLTCTCYR 38 +3 X – n.d.

Insect defensin A (phormicin)c, B (Phormia terranovae) Lambert et al., 1989

ATCDLLSGTGINHSACAAHCLLRGNRGGYCNGKGVCVCRN 40 +3 X X X

Sapecin Ac, B, C (Sarcophaga peregrina) Matsuyama and Natori, 1988;

Yamada and Natori, 1993

ATCDLLSGTGINHSACAAHCLLRGNRGGYCNGKAVCVCRN 40 +3 X – –

LTCEIDRSLCLLHCRLKGYLRAYCSQQKVCRCVQ 34 +4

ATCDLLSGIGVQHSACALHCVFRGNRGGYCTGKGICVCRN 40 +3

Tenecin 1 (Tenebrio molitor) Moon et al., 1994

VTCDILSVEAKGVKLNDAACAAHCLFRGRSGGYCNGKRVCVCR 43 +4 X – n.d.

Defensin (Allomyrina dichotoma) Miyanoshita et al., 1996

VTCDLLSFEAKGFAANHSLCAAHCLAIGRRGGSCERGVCICRR 43 +3 X – n.d.

AaeDef A (Aedes aegypti) Lowenberger et al., 1995

ATCDLLSGFGVGDSACAAHCIARGNRGGYCNSKKVCVCRN 40 +3 X X n.d.

AalDefD (Aedes albopictus) Gao et al., 1999

ATCDLLSGFGVGDSACAAHCIARGNRGGYCNSKKVCVCPI 40 +2 – X n.d.

AgaDef 1 (Def-AAA)c, 2 (Anopheles gambiae) Richman et al., 1996

ATCDLASGFGVGSSLCAAHCIARRYRGGYCNSKAVCVCRN 40 +4 X – –

QLKNLACVTNEGPKWANTYCAAVCHMSGRGAGSCNAKDECVCSMT 45 +1 X – –

Smd 1,2 (Stomoxys calcitrans) Lehane et al., 1997

AAKPMGITCDLLSLWKVGHAACAAHCLVLGDVGGYCTKEGLCVCKE 46 0 n.d. – n.d.

ATCDLLSMWNVNHSACAAHCLLLGKSGGRCNDDAVCVCRK 40 +1 n.d. X n.d.

GmDef Ae (Glossina morsitans) Boulanger et al., 2002

VTCNIGEWVCVAHCNSKSKKSGYCSRGVCYCTN 33 +3 X – n.d.

RprDef A, B, C (Rhodnius prolixus) Lopez et al., 2003

ATCDLFSFRSKWVTPNHAACAAHCLLRGNRGGRCKGTICHCRK 43 +7

ATCDLLSFRSKWVTPNHAGCAAHCLLRGNRGGHCKGTICHCRK 43 +6 X – –

ATCDLFSFRSKWVTPNHAGCAAHCIFLGNRGGRCVGTVCHCRK 43 +5

Lucifensinc [Lucilia sericata, L. cuprina (II)] Cerovsky et al., 2010; El

Shazely et al., 2013

ATCDLLSGTGVKHSACAAHCLLRGNRGGYCNGRAICVCRN 40 +4 X n.d. n.d.

ATCDLLSGTGIKHSACAAHCLLRGNRGGYCNGRAICVCRN 40 +4 X n.d. n.d.

LSerDef 3, 4, 6, 7 (Lucilia sericata) Poppel et al., 2015

ATCDLLSGTGANHSACAAHCLLRGNRGGYCNSKAVCVCRN 40 +3 X – n.d.

(Continued)
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TABLE 1 | Continued

Peptidea (Organism) Length (AA) Net charge Activityb References

G+ G− F

LTCNIDRSFCLAHCLLRGYKRGFCTVKKICVCRH 34 +6

GTCSFSSALCVVHCRVRGYPDGYCSRKGICTCRR 34 +5

FTCNSYACKAHCILQGHKSGSCARINLCKCQR 32 +5

Defensin (Drosophila melanogaster) Dimarcq et al., 1994

ATCDLLSKWNWNHTACAGHCIAKGFKGGYCNDKAVCVCRN 40 +3 X – n.d.

Navidefensin2-2 (Nasonia vitripennis) Gao and Zhu, 2010

FSCDVLSFQSKWVSPNHSACAVRCLAQRRKGGKCKNGDCVCR 42 +5 X – –

Defensin NV (Nasonia vitripennis) Ye et al., 2010

VTCELLMFGGVVGDSACAANCLSMGKAGGSCNGGLCDCRKTTFKELWDKRFG 52 +1 X X X

Defensin (Bombus pascuorum) Rees et al., 1997

VTCDLLSIKGVAEHSACAANCLSMGKAGGRCENGICLCRKTTFKELWDKRF* 51 +3 X X n.d.

Royalisin (Apis mellifera) Fujiwara et al., 1990

VTCDLLSFKGQVNDSACAANCLSLGKAGGHCEKGVCICRKTSFKDLWDKRF* 51 +3 X – n.d.

SpliDefensin (Spodoptera littoralis) Seufi et al., 2011

VSCDFEEANEDAVCQEHCLPKGYTYGICVSHTCSCIYIVELIKWYTNTYT 50 −5 X X –

PxDef (Plutella xylostella) Xu et al., 2016

RIPCQYEDATEDTICQQHCLPKGYSYGICVSYRCSCV 37 −1 X X X

DLP4 (Hermetia illucens) Park et al., 2015

ATCDLLSPFKVGHAACAAHCIARGKRGGWCDKRAVCNCRK 40 +6 X – n.d.

Defensin 1 (Tribolium castaneum) Rajamuthiah et al., 2015

VTCDLLSAEAKGVKVNHAACAAHCLLKRKRGGYCNKRRICVCRN 44 +8 X n.d. n.d.

Defensin (Simulium bannaense) Wei et al., 2015

ATCDLLSISTPWGSVNHAACAAHCLALNRGFRGGYCSSKAVCTCRK 46 +4 X – n.d.

Defensin (Cimex lectularius) Kaushal et al., 2016

ATCDLFSFQSKWVTPNHAACAAHCTARGNRGGRCKKAVCHCRK 43 +7 X – n.d.

Psdefensin (Protaetia brevitaris seulensis) Lee et al., 2016

VTCDLLSLQIKGIAINDSACAAHCLAMRRKGGSCKQGVCVCRN 43 +4 X X n.d.

Defensin (Oryctes rhinoceros) Ishibashi et al., 1999

LTCDLLSFEAKGFAANHSLCAAHCLAIGRKGGACQNGVCVCRR 43 +3 X n.d. n.d.

Defensin A, B (Anomala cuprea) Yamauchi, 2001

VTCDLLSFEAKGFAANHSICAAHCLAIGRKGGSCQNGVCVCRN 43 +2 X – n.d.

VTCDLLSFEAKGFAANHSICAAHCLVIGRKGGACQNGVCVCRN 43 +2 X X n.d.

Defensin (Calliphora vicina) Chernysh et al., 2000

ATCDLLSGTGANHSACAAHCLLRGNRGGYCNGKAVCVCRN 40 +3 X – –

Holotricin (Holotrichia diomphalia) Lee et al., 1995

VTCDLLSLQIKGIAINDSACAAHCLAMRRKGGSCKQGVCVCRN 43 +4 X – n.d.

PduDefensinf (Phlebotomus duboscqi) Boulanger et al., 2004

ATCDLLSAFGVGHAACAAHCIGHGYRGGYCNSKAVCTCRR 40 +3 X n.d. X

Defensin (Pyrrhocoris apterus) Cociancich et al., 1994

ATCDILSFQSQWVTPNHAGCALHCVIKGYKGGQCKITVCHCRR 43 +4 X X n.d.

Defensin (Palomena prasina) Chernysh et al., 1996

ATCDALSFSSKWLTVNHSACAIHCLTKGYKGGRCVNTICNCRN 43 +4 X X –

Coprisinc (Copris tripartitus) Hwang et al., 2009; Lee et al.,

2012

VTCDVLSFEAKGIAVNHSACALHCIALRKKGGSCQNGVCVCRN 43 +3 X n.d. X

Defensin B, C (Zophobas atratus) Bulet et al., 1991

FTCDVLGFEIAGTKLNSAACGAHCLALGRRGGYCNSKSVCVCR 43 +3 X X n.d.

FTCDVLGFEIAGTKLNSAACGAHCLALGRTGGYCNSKSVCVCR 43 +2 X X n.d.

Defensin 1 (Acalolepta luxuriosa) Ueda et al., 2011

(Continued)
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TABLE 1 | Continued

Peptidea (Organism) Length (AA) Net charge Activityb References

G+ G− F

FTCDVLSVEAKGVKLNHAACGIHCLFRRRTGGYCNKKRVCICR 43 +7 X X n.d.

Defensin A (Chironomus plumosus) Lauth et al., 1998

LTCDILGSTPACAAHCIARGYRGGWCDGQSVCNCRR 36 +2 X – n.d.

Mdde (Musca domestica) Wang et al., 2006

ATCDLLSGTGVGHSACAAHCLLRGNRGGYCNGKGVCVCRN 40 +3 X X –

Defensin (Formica rufa) Taguchi et al., 1998

FTCDLLSGAGVDHSACAAHCILRGKTGGRCNSDRVCVCRA 40 +2 X n.d. n.d.

aConserved cysteines are underlined in green for ease of comparison, bG+/G− gram-positive/gram-negative bacteria, F filamentous fungi, tested activity of peptides is indicated by X

(active) or — (inactive) or n.d., if not determined, activities are extracted from given references as well as the Defensin Knowledgebase (Seebah et al., 2007), cNMR structure has been

resolved, dAsterisk indicates C-terminal amidation, eActive against Trypanosoma brucei, fActive against Leishmania major.
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FIGURE 1 | Structural diversity of insect defensins. Sequence analysis of 57 peptides (Table 1) illustrating the diversity of insect defensins. (A) All sequences share a

conserved pattern of six cysteine residues. Intercysteine loop 2 (n = 3) and loop 5 (n = 1) are fully conserved across all peptides and loop 1 shows the overall highest

sequence variability (n = 4–16). The minimal, maximal, and most abundant (italic font) length of individual sequence stretches are indicated. (B) The length distribution

shows that insect defensins are between 32 and 52 residues long, with the majority (54%) being 40 or 43 residues. (C) Insect defensins are typically cationic with

reported charges varying between −5 and +8 and the majority (49%) of peptides holding a +3 or +4 net charge. (D) Sequences of the antibacterial phormicin and

the antifungal heliomicin showing the disulfide connectivity of insect defensins. Stretches that form part of the α-helix (orange) and β-sheets (green) are indicated.

Solution NMR structures of (E) phormicin (PDB: 1ICA) and (F) heliomicin (PDB: 1I2U) showing the cysteine-stabilized αβ motif. Secondary structural elements, i.e.,

α-helix (orange), β-sheets (green) and disulfide bonds (yellow) are highlighted, cysteines (roman numerals) and loops (L) are indicated. Surface representations show

negatively (red) and positively (blue) charged residues, demonstrating the overall cationic character of the surface of the peptides.

among defensin peptides across different organisms, from plants
to invertebrates to vertebrates (Dias Rde and Franco, 2015;
Tarr, 2016; Shafee et al., 2017). Although all insect defensins

share this common structural motif their primary sequence
(Figure 1A) as well as their spectrum of antimicrobial activity
varies considerably (Table 1). It is evident that the majority of
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tested peptides exhibits activity against gram-positive bacteria,
however several peptides exhibit potent activity against gram-
negative bacteria or are primarily active against fungi (Table 1).
Repositories such as Defensin Knowledgebase or ADP (Seebah
et al., 2007; Wang et al., 2016) are useful resources for retrieving
sequences for activity comparisons.

Yet, the attempt to accurately compare antimicrobial activities
and relate them to the peptide sequences and secondary
structures is challenging. Importantly, there is a large variety of
different pathogens that have been selected for testing of defensin
activity and some peptides have only been tested for individual
pathogens, e.g., only one single strain of a gram-positive or
gram-negative bacterium and it is also worth to mention that
testing for antifungal activity was not carried out in a large
number of studies (Table 1). Thus, activity spectra for these
peptides need yet to be established. Further, assay conditions
and concentration thresholds that are used to describe peptides
as active or inactive can vary remarkably. For example in the
initial study that identified the specific antifungal activity of
drosomycin the highest concentration tested was 20 µM and the
peptide thus referred as inactive against bacteria (Fehlbaum et al.,
1994). In contrast the termite-specific termicin was reported
to have weak activity against bacteria only at concentrations
between 25 and 100 µM (Lamberty et al., 2001b). Additionally
a range of different ways to describe activity is used such as
µg/mL, molarity or the diameter of growth inhibition at a
given concentration, thus making a quick and direct comparison
not trivial. When characterizing defensin activity it also has to
be noted that some studies use AMPs devoid of cysteines as
control peptides and such studies are more difficult to use for
comparison. Not at least experimental conditions such as the
use of varying salt concentrations can change the activity of
individual peptides dramatically and should also be considered
in activity comparisons (Lee et al., 1997).

With regard to structure-activity relationships, a key
limitation for insect defensins is the low number of resolved
three-dimensional structures. Comparisons purely based
on primary sequences are error-prone (Grishin, 2001) and
conservation within secondary and tertiary structure is higher
as compared to the primary sequences (Shafee et al., 2016).
Currently only nine peptides have been characterized using
solution NMR spectroscopy, including four antifungal, i.e.,
heliomicin (Lamberty et al., 2001a), drosomycin (Landon et al.,
1997), termicin (Da Silva et al., 2003), and ARD1 (Landon et al.,
2004) as well as five anti-gram-positive peptides, i.e., phormicin
(Cornet et al., 1995), sapecin (Hanzawa et al., 1990), Def-AAA
(Landon et al., 2008), lucifensin (Nygaard et al., 2012), and
coprisin (Lee et al., 2013). Nevertheless, these studies provide
valuable information about structure-activity relations for both
antibacterial as well as antifungal insect defensins and shed light
on structural determinants underlying biological activity.

For example mutation studies on the antifungal peptide ARD1
revealed subtle changes in hydrophobicity and cationicity to
enhance the activity spectrum and increase potency (Landon
et al., 2004). In an attempt to confer anti-bacterial activity onto
the antifungal heliomicin which only differs from ARD1 in
two positions changes within the N-terminal sequence led to a

loss of antifungal activity highlighting its functional importance
(Lamberty et al., 2001a). It should be noted here that peptides
with antifungal activity have a longer N-terminus that forms an
additional β-sheet and brings N- and C-terminal residues in close
proximity as compared to antibacterial counterparts (Figure 1F,
Table 1). The third antifungal peptide with the length of 44 amino
acids is drosomycin. Interestingly, it has an additional disulfide-
bond similar to the plant defensins RsAfp2 or NaD1 (Van Der
Weerden et al., 2013). Compared to the other antifungal insect
defensins it has an additional disulfide bond that connects the
N-terminal loop to the C-terminus of the peptide. A modeling
study comparing drosomycin to other plant antifungal defensins
such as RsAFP2 suggested a hydrophobic patch in which a lysine
residue is embedded as key determinant for antifungal activity
(Landon et al., 2000). Indeed, experimental evidence verified
this lysine residue while testing the functional role of charged
residues for the antifungal activity of drosomycin (Zhang and
Zhu, 2010). The fourth antifungal insect defensin for which a
structure has been resolved is the termite-specific termicin. It
carries an overall net charge of +4 and seems to be overall
less different to antibacterial defensins. While exhibiting an
amphiphilic character similar to drosomycin or heliomicin, the
positions of hydrophilic and hydrophobic residues exposed on
the surface are opposite. Several residues including for example
the two arginine residues in loop 3 were proposed as possible
interacting partners involved in antifungal activity (Da Silva
et al., 2003), however experimental evidence for this hypothesis
is still missing. The other three antifungal defensins known
to date are Gallerimycin, Gm defensing, and Gm defensin-
like peptide (Schuhmann et al., 2003; Cytrynska et al., 2007).
Gm defensin and Gm defensin-like peptide show the highest
sequence similarity (∼90% identity) to heliomicin and ARD1
including a conserved N-terminal sequence stretch, whereas
Gallerimycin has a particular long N-terminus and shorter loop
1 and loop 5 sequences (Table 1). It appears that multiple factors
contribute to specificity toward antifungal activity involving the
N-terminal portion of the peptide as well as a subtle interplay
between hydrophobic and charged residues.

For the primarily antibacterial defensins only five available
structures represent a very limited number given the large
number of different peptide sequences (Table 1). Additionally it
is worth to mention that phormicin, sapecin, and lucifensin only
differ by individual amino acids and thus it is not surprising that
their three-dimensional topologies are highly similar (Hanzawa
et al., 1990; Cornet et al., 1995; Nygaard et al., 2012). In an
attempt to increase activity against Staphylococcus aureus a
detailed study was reported using the Anopheles defensin as well
as an alignment of 40 insect defensin sequences as basis for the
design of 45 peptide mutants (Landon et al., 2008). A change in
loop 1 (-GFGVGSSL- to -KWNWHTA-) resulted in a peptide
with increased activity but also increased toxicity as compared
to the native defensin. A second series of mutations further
underpinned the importance of loop 1 for both, activity against
S. aureus as well as toxicity yet fails to identify single residues
that are responsible and highlighting the complexity of sequence-
based approaches. Although sequence differences in loop 1
were clearly reflected by differences in the three-dimensional
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structures, all but one peptide were found to have the CSαβ fold.
This is in line with the sequence of the dung-beetle defensin
coprisin. It has an elongated loop 1 sequence that shows a
high degree of flexibility along the typical well-defined CSαβ

portion (Lee et al., 2013) that is similar to all other insect
defensins. A follow-up study that investigated the importance
of the disulfide-bonds within coprisin clearly demonstrated that
a removal of cysteine residues leads to dramatic loss of activity
against bacteria, whereas antifungal activity was less affected
(Lee et al., 2014). Notably also a series of non-apeptides showed
significantly reduced activity and thus underpins the importance
of the CSαβ motif for antimicrobial activity.

In addition to these factors relating to three-dimensional
aspects of insect defensins, it is unclear whether posttranslational
modifications such as amidation do play a role with regard to
peptide activity. Amidation is common upon many bioactive
peptides and often crucial for activity. It is also found within
insect AMPs such as for example cecropins (Steiner et al.,
1981). However, most of the insect defensins known to date
are described as C-terminal acids and only few examples such
as the bumblebee defensin or the termite defensin termicin
have been identified by mass spectrometry to be C-terminally
amidated (Rees et al., 1997; Lamberty et al., 2001b; Favreau et al.,
2006). Possible implications regarding the biological activity and
mechanism-of-action remain speculative.

MECHANISMS-OF-ACTION OF INSECT
CSαβ PEPTIDES—FROM MEMBRANE
EFFECTS TO ION CHANNEL
PHARMACOLOGY

Similar to the broad range of microorganisms targeted by insect
defensins their mechanisms-of-action seem equally complex and
knowledge remains sparse. Their activity is primarily explained
by the presence of positive charges exposed on the surface
(Figures 1E,F) that can interact with negative charges on the
outside of microbes leading to the insertion and perforation of
membranes (Brogden, 2005). However, it is nowadays evident
that antimicrobial peptides are also acting on specific target
structures such as lipid II or sphingolipids (Wilmes et al.,
2011). To date specific protein targets for insect defensins
remain to be identified and structure-activity studies may
prove useful in deciphering molecular mechanism underlying
bioactivity. Further, reported activity of anionic antimicrobial
peptides (Xu et al., 2016) clearly indicates that electrostatic
interactions alone cannot explain the antimicrobial activity,
and it remains to be shown if these peptides exhibit different
mechanisms-of-actions. Interestingly there are several insect

defensin-like CSαβ peptides from scorpions that potently inhibit
voltage gated potassium channels. Indeed there seems to be
an evolutionary link between the antimicrobial and (neuro)-
toxic activity of peptides containing a CSαβ fold (Zhu et al.,
2014). From an evolutionary perspective it seems evident that
the presence of a conserved three-dimensional fold in both
antimicrobial defense peptides and scorpion toxins reflects

a common strategy to defend against invading organism or
predators by means of membrane interaction. Within scorpion
toxins a conserved lysine residue interacting with the channel’s
selectivity filter characterizes the pore-blocking activity (Garcia
et al., 2001). Although this residue is also found in some
insect defensins, it appears that a flexible N-terminal loop
(=loop 1) within antimicrobial defensins impairs access to
the channel pore as compared to scorpion type defensins that
lack such a loop (Zhu et al., 2014). Notably this intercysteine
loop sequence shows high variability (n = 4–16, Figure 1A)
and thus it allows speculations regarding potential promiscuous
activity of individual insect peptides. Though, to date no
study attempted to accurately analyse this evolutionary link of
antimicrobial insect peptides and scorpion Kv toxins and it is
still unclear how peptides that share a such a high degree of
structural similarity can exhibit such a diverse range of biological
activities.

CONCLUSION

Given the number of insect species, the variety of defensin
peptides and a range of activities it is evident that insect
defensins are valuable structural templates for rational design
of a novel class of “designer AMPs.” Hence it is crucial to
have a detailed understanding on how structural aspects are
reflected in peptide activity both with regard to pathogen
specificity as well as undesired side effects such as cell toxicity.
Current literature provides a solid, yet incomplete basis for
rational structure based drug design. The urgent need for
the development of novel antibiotic lead molecules provides
significant justification and new impetus for further detailed
exploration of structure-activity relationships of antimicrobial
insect CSαβ peptides.
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