
Structure Analysis for Dynamic Software Architecture

Tingting Han Taolue Chen Jian Lu
State Key Laboratory of Novel Software Technology, Nanjing University,

Nanjing, Jiangsu, P.R.China, 210093
{hantt,ctl,lj}@ics.nju.edu.cn

The open and dynamic Internet environment greatly
urges software entities that are distributed on different lo-
cations to coordinate with each other to accomplish a com-
puting task. Software architecture is applied to abstract the
software entities to be components and the coordination be-
tween them to be connectors and then a model is extracted
as the architecture on which the design, analysis and verifi-
cation are based. Currently, the notion of dynamic software
architectures that can modify their architecture and enact
modifications during the system execution has become one
of the most active research areas.

In this paper, we focus on the dynamic evolution of
system structure other than coordination mechanisms (e.g.
communication protocols). It is widely recognized that
some restrictions should be imposed on the system evolu-
tion to ensure that the system structure may remain one style
or transform within a scope. These conditions, to a large ex-
tent, make the system execute under control as expected.

Our formalization towards structural properties of graph-
ically described software architectures mainly covers three
aspects:

1) To model the system with a graph-based calculus. The
data model is graph-based for the sake of a more natural and
intuitionistic way to only record the structural information
but omits the behavioral information. Comparing to many
of the existing works, we explicitly separate the behavior
and the topology aspects, in which one of our novelties lies.
Moreover, we model private resources which is becoming
aware in many of the applications by means of name hiding
notions inspired by the π-calculus.

On the basis of the model, a modification language is
provided to specialize the dynamic actions that the software
architectures might perform in an explicit way. In syntax, its
primitive operations include “add” components and connec-
tors, “remove” components and connectors as well as “at-
tach” and “detach” components and connectors. Moreover,
the various ways of combining the primitive operations will
lead to the changes of the architecture. The formal seman-
tics of the language is presented in an operational style.

2) To specify the properties that the system should hold

by spatial logic. We tailor spatial logic to take on this role,
since it has strong expressing power for describing precisely
certain properties, especially those hold at a certain loca-
tion, at some location, or at every location. Concretely, we
apply location formulas to perfectly cover the nested sub-
systems; the private communication between certain com-
ponents may be dealt with by the restriction formula with
modal operators R©, �, and quantifiers N, H and recur-
sion has been introduced into spatial logic for clearness and
conciseness. Technically, the standard approach to intro-
duce recursion into a modal logic is via fixpoint, as in µ-
calculus, however such work is not trivial because of the
possible interaction of the rich modalities, such as R©, �, N
and first-order quantification and the fixpoint operator. In
order to deal with such problems, we make a distinction be-
tween proposition and predicate, thus these interactions can
be nicely solved in the sense that a concise semantics inter-
pretation for logic formulas can be given.

3) To verify whether the data model evolves to meet the
specification by means of model checking. The verification
and automatic detection of errors in software architectures
aids to locate errors and increase the reliability of these sys-
tems.

Our work is inspired by [1] which uses spatial logic to
query graphs. However, it neglects the spatial operators and
quantifiers that deal with the private resources. We extend
their logic in this paper. And our spatial logic is designed
specially to describe dynamic software architecture. Still, a
modification language other than a query language is con-
structed for the purpose of architecture evolution.

As future works, we intend to combine the behavior
and structure analysis for software architecture in the same
framework which provides a unified specification and
verification approach.

[1] L. Cardelli, P. Gardner, G. Ghelli. A spatial logic
for querying graphs. In 29th Colloquium on Automata,
Languages and Programming (ICALP 2002), Lecture Notes
in Computer Science, pages 597-610. Springer-Verlag,
2002.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

