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Abstract

Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III
secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate
infection. The ability of bacteria to inject effectors into host cells is essential for infection,
survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia,
Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide
variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic
plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of
structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which
consists of a membrane-embedded basal structure, an external needle that protrudes from the
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bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is
assembled between the needle tip complex and the host cell, serving as a gateway for translocation
of effector proteins by creating a pore in the host cell membrane. Following delivery into the host
cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell
signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally,
chaperones serve as regulators of secretion by sequestering effectors and some structural proteins
within the bacterial cytoplasm. This review will focus on the latest developments and future
challenges concerning the structure and biophysics of the needle apparatus.

OVERVIEW OF THE NEEDLE APPARATUS

More than a dozen different structural proteins assemble to form the type III secretion
system (T3SS) needle apparatus. The needle complex, which consists of a basal structure
and an external needle, was first visualized by electron microscopy of osmotically shocked
Salmonella typhimurium.1 Similar structures were also observed in other bacteria, such as
Shigella flexneri,2Yersinia pestis,3Escherichia coli,4 and Pseudomonas aeruginosa.5

Following years of extensive genetic, biochemical, and biophysical research, the core
components of the complex were identified. The ~3.5 MDa needle complex contains a basal
structure spanning the periplasm that is embedded within the inner and outer bacterial
membranes followed by a needle-like structure that protrudes into the extracellular space
(Figure 1). In Salmonella, the basal structure is assembled from oligomeric rings of InvG,
PrgK, and PrgH,6 and an inner rod structure formed by PrgJ.7 The basal structure supports
the entire needle complex by anchoring the needle on the bacterial membranes. The needle
itself is composed of protomers of PrgI arranged in a spiral symmetry around a central ~25
Å diameter channel to allow the passage of effector proteins.8 At the needle tip, multiple
copies of SipD form a platform for the translocon.9 Upon contact with the host cell, the
assembly of the entire needle apparatus is completed by the formation of the translocon,
which is formed by the transmembrane proteins SipB and SipC.9 Structural homologues of
each protein are present in the T3SSs of other Gram-negative bacteria (Table 1). The
assembly of the needle apparatus is a highly regulated process involving specific protein–
protein, protein–membrane, and protein–small molecule interactions. Likewise, the order of
protein secretion is also regulated;10 for example, needle proteins pass through the nascent
apparatus prior to the tip and the translocon proteins. Each protein plays a critical role in the
proper assembly of the needle apparatus, as null mutations of any of the structural
components render bacteria incapable of assembling a functional needle apparatus.11 The
following sections will focus on the structure, biophysics, and protein–protein interactions of
the core components of the T3SS needle apparatus.

BASAL STRUCTURE

The basal structure anchors the needle to the bacterial membranes by traversing the inner
membrane (IM), the periplasm, and the outer membrane (OM).1 The base measures
approximately 250 Å × 300 Å and is comparable in size to the flagellar basal body.6 PrgH,
PrgK, and InvG assemble into ringlike structures at the IM and OM in Salmonella.6 The IM
and OM rings enclose a tubelike inner rod structure formed by PrgJ7 in Salmonella, MxiI12

in Shigella, and YscI13 in Yersinia. The atomic structure of the assembled inner rod is
currently unknown; however, NMR and circular dichroism spectroscopy indicate that PrgJ
in the monomeric form is a partially folded protein.14 Further, yeast two-hybrid and GST
pull-down experiments showed a direct binding interaction between the Yersinia inner rod
protein YscI and the needle protomer YscF.15

In Salmonella, the IM ring structure is formed by PrgH and PrgK, which assemble into two
concentric rings, with PrgK forming the smaller ring and PrgH forming the outer ring6,12,16
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(Figure 2A,B). PrgK belongs to the highly conserved YscJ/EscJ family of periplasmic
lipoproteins, and NMR results for the enteropathogenic E. coli (EPEC) EscJ revealed a two-
domain structure connected by a flexible linker (Figure 2C).17 These proteins are localized
to the outer leaflet of the IM with their lipidated N-terminal domain and contain N-terminal
signal sequences that are cleaved upon insertion in the membrane.12,17,18 X-ray
crystallography showed that EscJ packs into a 24-mer ring structure18 with overall
dimensions similar to those of the IM rings.19 Homology modeling based on the EscJ
template generated the atomic model of Salmonella PrgK, which was then fit into the EM
density map of the Salmonella base.20 The outer IM ring consists of 24 monomers of PrgH,
a bitopic membrane protein with an N-terminal cytoplasmic domain and a large C-terminal
periplasmic domain.20,21 The crystal structure of PrgH (residues 170–362) showed a
distinctive “boot-shaped” organization of its modular domains (Figure 2C).21 The NMR
structure of the N-terminal domain of Shigella MxiG (Figure 2C) (the homologue of
Salmonella PrgH) supported the 24-subunit structure of the Shigella IM ring.22

The OM ring is formed by the secretin family of integral membrane proteins that includes
Salmonella InvG,20Yersinia YscC,23Shigella MxiD,24 and EPEC EscC.21 A neck region
spanning the periplasm connects the OM ring to the IM rings. The N-terminal domain of
InvG forms the neck region of the base and is associated with the PrgH IM ring,20 whereas
the C-terminal domain forms the rest of the OM ring.21 Electron microscopy of the Shigella
base at 21–25 Å resolution showed an OM ring with a 12-fold symmetry.24 Recently, the
refined structure of the Salmonella base at 10 Å resolution showed a 15-fold symmetry for
the OM ring (Figure 2B).20 This higher-resolution structure of the base was achieved by
selectively disassembling the basal components into stable IM and OM rings by pH
treatment.20 The structural model of the Salmonella InvG based on the crystal structure of
EPEC EscC (Figure 2C) was fit into the EM density map of the Salmonella basal structure
to generate an atomic model of the Salmonella OM ring.21

Secretins are transported to the OM with the help of pilotins, which are small lipoproteins
that assist in the assembly of the OM ring.25 The Shigella pilotin protein MxiM forms a
pseudo-β-barrel with a hydrophobic pocket for binding lipids.26 MxiM interacts with the
secretin protein MxiD, and the binding interaction blocks the lipid-binding pocket in
MxiM.25 The pilotins also contain a characteristic signal peptide leader sequence with a
conserved cysteine residue can be lipidated.25 These features are thought to help in the
membrane targeting of the secretin–pilotin complex.25

Secretion through the base is controlled by an export apparatus,27 which serves as a platform
for the assembly of the basal structure and controls substrate specificity.27–29 The export
apparatus is a complex of highly conserved integral membrane proteins: YscR, YscS, YscT,
YscU, and YscV in Yersinia28,29 and SpaP, SpaQ, SpaR, SpaS, and InvA in Salmonella.27

In Yersinia, the assembly of the base and export apparatus is initiated independently at the
outer and inner membranes.28,29 In Yersinia, the OM ring of the base is formed by the
secretin protein YscC (and assisted by the YscW pilotin), which then recruits the outer IM
ring protein, YscD.28 Simultaneously, the export apparatus proteins YscR, YscS, and YscT
assemble at the inner membrane, which promote the polymerization of YscV.29 These two
pathways can independently recruit the inner IM ring protein, YscJ, which is thus thought to
link these two substructures.29 However, in Salmonella, the prior assembly of the export
apparatus proteins (SpaP, SpaQ, and SpaR) at the IM is required for the assembly of the IM
ring.27

The hierarchy of secretion of structural components and virulence effectors through the base
is regulated in part by the export apparatus protein YscU in Yersinia,30 SpaS in
Salmonella,31 Spa40 in Shigella,32 and EscU in EPEC.31 The overall structure of these
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proteins consists of an N-terminal transmembrane domain that is connected to a C-terminal
globular cytoplasmic domain by a flexible linker.30,31 The cytoplasmic domain shows a
conserved fold composed of a central five-stranded mixed β-sheet surrounded by four α-
helices.30–32 The cytoplasmic domain undergoes an autocatalytic cleavage at a highly
conserved NPTH motif, resulting in an altered surface feature, which is important for
substrate specificity switching.32 The largest component of the export apparatus, the YscV29

family of proteins (including Salmonella InvA33 and Shigella MxiA34), forms a ring directly
below the base. The atomic structures of the cytosolic domains of InvA,33 MxiA,34 and the
flagellar homologue FlhA35 show a conserved fold composed of four subdomains. The
cytosolic domain of Shigella MxiA formed a nonameric ring, and residues lining the internal
surface of this ring are important for secretion of T3SS substrates.34

An ATPase complex associated with the bacterial IM36 is responsible for energizing the
export of substrates through the needle apparatus. The ATPase complex couples ATP
hydrolysis to the unfolding and release of effector proteins from their cognate chaperones
prior to secretion through the needle apparatus.34,37 The major component of the ATPase
complex is a homohexamer formed by the EscN protein family (with homologues listed in
Table 1), which is related to the α and β subunits of the F1 ATP synthase.38

STRUCTURE OF THE NEEDLE

The needle is assembled from multiple copies of a single protein, the needle protomer.
Needle protomers are small polar proteins of <90 residues.12 Early experiments with
recombinant forms of these proteins impeded structure determination because of their
tendency to aggregate in solution.39 However, deletion of the last five residues at the C-
terminus allowed for determination of the atomic structure of the Shigella needle protomer
MxiH by crystallography,40 and Burkholderia BsaL41 and Salmonella PrgI42 needle
protomers by NMR spectroscopy (Figure 3A). Unfortunately, this deletion also inhibited
polymerization of the needle and abolished host cell invasion.43 Shortly after, the crystal and
NMR structures of a soluble and functional V65A/V67A double mutant of full-length PrgI
were determined (Figure 3A).43 The monomeric forms of needle protomers adopt α-helical
hairpin structures, essentially two α-helices joined by a four-residue PXXP motif (where X
is any amino acid), containing a turn in the central region of the protein (Figure 3A). The
Pseudomonas PscF, however, lacks a PXXP motif and instead contains an AXXP motif.44

Complete structures of the Yersinia YscF and Pseudomonas PscF needle protomers are
currently unknown; however, their partial structures in complex with their chaperones
(YscE–YscG45 and PscE–PscG,44 respectively) are known. The structured regions of YscF
(Figure 3A) and PscF in these complexes also form α-helices. Although YscF and PscF
have chaperones, no chaperones have been reported for BsaL, MxiH, or PrgI.

Multiple copies of needle protomers assemble to form the T3SS needle. Electron
microscopy and X-ray fiber diffraction of Shigella needles allowed the atomic scale
modeling of a T3SS needle at 16 Å resolution.46 This model revealed a structure measuring
500 Å in length and 70 Å in width enclosing an inner channel with a diameter of ~25 Å.46

Subsequently, when the atomic structures of needle protomers became available, they were
used to fit the electron density maps of the Shigella40 and Salmonella8 needles. The N-
terminal region of MxiH lacked electron density in the crystal structure.40 Therefore, it was
modeled in the Shigella needle as an α-helix facing the lumen, based on the predicted α-
helical propensities of residues within the region.40 Similarly, in the Salmonella needle
model, approximately half of the length of PrgI containing the flexible N- and C-termini was
absent because of the conformational heterogeneity of the PrgI protomer in the NMR
structure.8 The Shigella needle was shown to contain ~5.6 subunits per turn with a helical
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pitch of 24 Å,40 while the Salmonella needle contained ~6.3 subunits per turn with a helical
pitch of 26 Å.8

Recently, higher-resolution atomic models of the Shigella47 and Salmonella48 needles were
reported. These models represent our current understanding of the atomic structures of the
T3SS needles. Fujii et al. used cryo-electron microscopy (cryo-EM) to determine the
structure of purified Shigella needles formed by the overexpression of recombinant full-
length MxiH.47 The atomic model of the Shigella needle was obtained by fitting the crystal
structure of MxiH residues 26–51 (the “head” structure) into the 7.7 Å resolution electron
density map.47 In this model, the first 38 residues of MxiH form a straight α-helix facing the
lumen and the exterior surface of the needle is formed by the C-terminus of MxiH, which
contains a short α-helix (residues 44–50), a β-hairpin (residues 51–64), and a kinked helix
(residues 65–83).47 Intersubunit interactions are present between the β-hairpin and the
PXXP motif, as well as the β-hairpin and the C-terminus of adjacent subunits. The needle is
further stabilized by helix–helix interactions between adjacent subunits.

Loquet et al.,48 on the other hand, used solid-state NMR spectroscopy (ssNMR) to
determine the structure of Salmonella needles polymerized from full-length recombinant
PrgI (Figure 3B). The use of [1-13C]glucose or [2-13C]glucose instead of the traditional
uniform labeling with 13C-labeled glucose49 as the carbon source for bacteria expressing
recombinant PrgI reduced the NMR signal complexity of the megadalton needle. Coupled
with 15N labeling, ssNMR allowed the identification of intra- and intersubunit 15N–13C
distance restraints,48 which were used in combination with Rosetta modeling50 to generate
the atomic structure of the Salmonella needle48 (Figure 3B). According to the ssNMR
model, the Salmonella needle is composed of PrgI protomers with an α-helical hairpin head
structure similar to those that have been described previously.42,43 However, unlike
previously determined crystal and NMR structures, ssNMR secondary structure analysis
excluded conformational heterogeneity at the N- and C-termini, except for Met1 and Ala2.48

The Salmonella needle has an 80 Å outer diameter with a 25 Å lumen, similar to values
previously described.8,51 Unlike previous reconstructions,8 however, the needle was shown
to contain ~5.7 subunits per turn with a helical pitch of 24 Å.48 The needle is held together
by multiple intra- and intersubunit contacts. The intrasubunit contacts are primarily
hydrophobic interactions between the two helices of the hairpin, and the intersubunit
interactions are present on the lateral and axial surfaces of each subunit.48

There are two major differences between the ssNMR model48 of the Salmonella needle and
previous needle models.8,40,47 The first difference is that in the ssNMR Salmonella needle
model, the N-terminus of PrgI faces the exterior of the needle while the C-terminal tail faces
the interior48 (Figure 3B). Immunoelectron microscopy against the N-terminus of PrgI
confirmed that nonconserved residues in the N-terminal region face the exterior of the
needle, while highly conserved residues in the C-terminus are contained within the lumen.48

In contrast, the EM models have reported that the N-terminus of the needle protomer faces
the lumen while the C-terminus faces the exterior.8,40,47 This was supported by secretion
experiments in which the N-terminus of MxiH tolerated more substantial modifications than
the C-terminus.47 Another difference is that throughout the Salmonella needle protomer, no
β-hairpin was detected, in contrast to the structure of the Shigella needle protomer.47 Poyraz
et al.,43 however, reported that residues I71–I76 of PrgI V65A/V67A undergo a backbone
α-helix–β-strand conversion upon polymerization. In the Shigella needle, the β-hairpin is
hypothesized to regulate assembly and the positioning of the subunits within the needle.47

ssNMR data of Shigella needles should clarify these differences.
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NEEDLE TIP

On the distal end of the needle sits a tip protein complex that functions to sense the presence
of eukaryotic cells, to serve as a platform for the assembly of the translocon, and to regulate
the secretion of effector proteins into the host cell.9,52 The T3SS tip proteins can be grouped
into two classes based on their structures and properties. One class is formed by Salmonella
SipD, Shigella IpaD, and Burkholderia BipD tip proteins, which have sequences that are 30–
50% identical and are structural homologues with a Cα root-mean-square deviation of <1.5
Å.53–56 Members of the SipD family of tip proteins share a more distant resemblance to
another class of tip proteins, the Yersinia LcrV and the Pseudomonas PcrV tip proteins, with
sequences that are ~37% identical.

The SipD, IpaD, and BipD53–56 tip proteins contain eight α-helices and five β-strands,
which are arranged into three distinct structural elements: an N-terminal α-helical hairpin, a
long central coiled-coil, and a C-terminal region of mixed α-helices and β-strands (Figure
4A–D). The central coiled-coil is a distinct structural feature of all tip proteins and is
responsible for their overall oblong shape. The coiled-coil motif, especially the C-terminal
residues, is important for the interaction of the tip protein with the needle, and the needle
protomer is expected to bind at multiple sites on the coiled-coil motif.52,55–58 A three-
stranded antiparallel β-sheet connects the central coiled-coil to the mixed α/β region.53–55

The first 30–40 residues of the tip proteins are disordered in the crystal structures of SipD,
IpaD, and BipD.52 The N-terminal α-hairpin folds independently and functions as a self-
chaperone by preventing the self-oligomerization of SipD and IpaD53,56,59 and hinders the
interaction between the needle protomer PrgI and the tip protein SipD.56 Upon assembly of
SipD at the needle tip, the α-hairpin is expected to be displaced by the needle protomer,
which interacts with the coiled-coil domain.53,56,58

The 2.2 Å crystal structure of LcrV60 (Figure 4) represents what is currently known about
the atomic structure of the Yersinia/Pseudomonas LcrV/PcrV family of tip proteins. Similar
to the SipD, the structure of LcrV also contains a long central coiled-coil, which is flanked
by globular domains on the N- and C-termini, giving an overall “dumbbell shape” to
LcrV.60 LcrV, however, lacks the self-chaperoning α-helical hairpin found in SipD. Instead,
a small cytoplasmic protein, LcrG, functions as the chaperone for LcrV.11 Likewise, the
LcrG homologue in Pseudomonas, PcrG, functions as a chaperone for the PcrV tip protein.
In addition to binding their cognate tip proteins, LcrG and PcrG negatively regulate
secretion of effectors61,62 in Yersinia and Pseudomonas. Deletion of lcrG decreases the level
of LcrV secretion,63 and host cell contact with Yersinia upregulates the expression of LcrV,
which then forms a tight binding complex with LcrG; this interaction relieves the negative
block on effector secretion by titrating away LcrG.61,62,64 The N-terminal regions of LcrG
and PcrG are required for binding to their cognate tip proteins,61,65,66 and the coiled-coil
region of LcrV is involved in the interaction with LcrG.65,67 The absence of an
intramolecular chaperoning domain in LcrV and PcrV hints at divergent assembly processes
at the needle tip between the Salmonella/Shigella and Yersinia/Pseudomonas species.

A major challenge in this field is the determination of atomic-resolution structures of the tip
protein docked at the needle tip. Currently, low-resolution electron micrographs of the
Yersinia LcrV tip68 and the Shigella IpaD tip69,70 as well as models made by docking the
crystal structures of tip proteins on the needle11,40 are available. Electron micrographs of the
Yersinia needle tip show a well-defined tip complex that was estimated to be formed by an
LcrV pentameric ring.68,71 The Yersinia LcrV tip complex showed a distinct head, neck, and
a base, and Broz et al.71 concluded that the LcrV N-terminal globular domain forms the
base, the C-terminal globular domain forms the head, and the coiled-coil region forms the
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neck. The base was also shown to be responsible for the correct insertion of the Yersinia
translocon protein YopB into the host cell membrane.71

Results from electron microscopy of the Shigella tip complex also estimated a stoichiometry
of a pentameric IpaD at the needle tip.70 However, the Shigella tip complex did not show the
head, neck, and base morphology that was seen in the Yersinia needle tip. This difference
was partly ascribed to the difference in the structure of IpaD and LcrV where the domains
flanking the IpaD coiled-coil were more elongated in shape compared to the more globular
domains flanking the LcrV coiled-coil. In the Shigella tip complex, the IpaD coiled-coil is
aligned with the vertical axis of the tip complex with a 20° tilt and the tip complex forms an
internal channel diameter from 40 Å at the middle to 22 Å at the top.70 The most distinctive
feature of this structure is that the IpaD mixed α/β domain undergoes a 165° rotation about
the horizontal axis, forming a scepterlike structure at the top of the tip complex.70 In support
of this drastic rotation, tip complexes made of IpaD lacking the mixed α/β domain (residues
192–267) were shorter by ~37 Å and lacked electron density for the scepterlike structure.70

Prior to contact with the host cell membrane, the tip complex is present at the needle tip
while the translocon is yet to be assembled.9,69,72 The tip complex therefore controls the
secretion of the translocon proteins, and this process is not well understood. It has been
proposed that the pentameric tip complex forms a closed conformation that prevents protein
secretion11 and, upon receiving an extracellular signal in the presence of the host cell,72,73

changes into an open conformation that allows protein secretion to complete the assembly of
the needle apparatus. Bile salts, levels of which are elevated in the intestines, have been
identified as extracellular signals that can affect type III secretion in the enteric pathogens
Shigella74–76 and Salmonella.77,78 Bile salts bind to IpaD72,73,75,76 and SipD;56,76,79

however, despite the structural homology of IpaD and SipD, bile salts bind these proteins at
different sites and affect their respective T3SSs in opposite ways. Bile salts increase the
level of type III secretion and invasiveness of Shigella74–76 but repress the transcription of
T3SS proteins and decrease the invasiveness of Salmonella.77,78 The mechanism of how
extracellular signals affect the structure and conformation of the tip complex remains to be
elucidated.

TRANSLOCON

The final stage in the assembly of the needle apparatus is the formation of the translocon,
which forms a 20–30 Å pore on the host cell membrane to allow the passage of effectors
into the host cell.2,80–82 The translocon is assembled from two integral membrane proteins
named SipB and SipC in Salmonella,83 IpaB and IpaC in Shigella,2,84 YopB and YopD in
Yersinia,82 and PopB and PopD in Pseudomonas.85 The translocon proteins are important
for the entry of bacteria into eukaryotic cells as demonstrated by the internalization of latex
beads coated with IpaB and IpaC into HeLa cells.86 While inside the bacterial cytosol, the
translocon proteins are bound to their chaperones to maintain their intracellular stability.
SipB and SipC are chaperoned by SicA in Salmonella.87 The chaperones for the translocon
proteins in other species are the Shigella IpgC,88Yersinia SycD (also named LcrH),89 and
Pseudomonas PcrH90 proteins.

The major translocon proteins from Shigella and Salmonella (IpaB and SipB) are 62 kDa α-
helical proteins that can bind to cell membranes.91 The Yersinia YopB and Pseudomonas
PopB share a higher degree of conservation and are ~40 kDa in size.92 The N-terminal
region of IpaB and SipB is responsible for their self-oligomerization.91 Two transmembrane
helices facilitate intimate attachment to lipid membranes.91,93 The extreme C-terminus is
predicted to form an amphipathic helix and is important for invasion of the host cell and
regulation of effector secretion.91,94,95 The crystal structures of the protease resistant
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fragments in the N-terminal regions of IpaB (residues 74–224) and SipB (residues 82–226)
revealed a trimeric coiled-coil domain formed by three antiparallel α-helices96 (Figure 5A).

The Shigella IpaC,52Salmonella SipC,9Yersinia YopD,97 and Pseudomonas PopD98 are the
minor translocon proteins and form complexes with the major translocon proteins, and this
interaction is necessary for the attachment and entry into epithelial cells.9 Incubation of
Shigella with recombinant IpaC led to an increased level of invasion of epithelial cells,99,100

and recombinant SipC can interact with actin.101 Similar to other T3SS proteins, the N-
terminus of these molecules is required for their secretion,9,100,102,103 and a central
hydrophobic region allows binding to lipid membranes.104 The C-terminus, which is
predicted to be helical, has been implicated in actin modulation105–107 and hemolytic
activity.108 In addition, the conserved C-terminus is also involved in the homotypic
oligomerization of IpaC.100

The chaperones of the translocon proteins belong to class II of T3SS chaperones and are
responsible for partitioning the intracellular pools of the major and minor translocon
proteins, thereby preventing their premature degradation.87,109,110 Chaperones bind at the
N-terminal regions of translocon proteins.90,111–114 Cocrystal structures of chaperones
bound to peptides derived from the chaperone-binding regions of the translocon proteins
revealed how chaperones recognize their cognate translocon proteins (Figure 5B).90,113,115

The chaperones form a homodimer of tetratricopeptide motifs composed of antiparallel α-
helical repeats. In the cocrystal structure of the Shigella IpgC–IpaB peptide complex,115

IpgC forms a dimer with each IpgC molecule forming a concave cleft ~10 Å in width to
accommodate the IpaB peptide, and the IpgC–IpaB protein–protein contacts are mediated by
conserved residues on both proteins. The 32 N-terminal residues of IpgC are responsible for
its homodimerization, and this dimerization pattern is conserved in the Salmonella SicA115

and Yersinia SycD116 chaperones. Amino acid substitutions in the IpgC N-terminal region
decreased the level of secretion of effectors and bacterial invasion.115

The major translocon proteins IpaB and SipB interact with lipids such as cholesterol and
sphingomyelin,117,118 and cholesterol is required for effector translocation in Shigella,
Salmonella, and EPEC.117,118 Further, the interaction of sphingomyelin and cholesterol with
IpaB is proposed to induce the recruitment of IpaC to assemble the translocon.118 In
addition to their structural role in the assembly of the translocon, the translocon proteins are
also delivered into the host cell where they interact with a number of cellular factors.119

IpaB binds to caspase-1, and this leads to apoptosis of macrophages.120,121 Furthermore, the
C-terminus of IpaC induces actin polymerization and formation of filopodia and
lamellipodia in fibroblast cells.105,106 Cytoskeletal rearrangements induced by IpaC were
dependent on the function of Cdc42 and Rac GTPases.105,106 The C-terminus of SipC
(within residues 200–409) could also induce actin polymerization in HeLa cells.105,106

CONCLUSION

Since the visualization of parts of the needle apparatus at low resolution 15 years ago, much
progress has been achieved in determining atomic-resolution structures of components
there-of from electron microscopy, crystallography, and NMR spectroscopy. However,
much remains to be elucidated in understanding this macromolecular nanoinjector device.
Among them are the atomic structures of the translocon and the tip complex. Because the
needle apparatus plays a critical role in pathogenesis, understanding its assembly will
contribute to the development of novel anti-infectives.
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Figure 1.
Cartoon of the type III secretion system showing the needle apparatus in contact with the
host cell.
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Figure 2.
(A) Salmonella T3SS basal structure that spans the outer membrane (OM), the periplasm,
and the inner membrane (IM) and is formed by (B) rings of InvG (red), PrgH (purple), and
PrgK (blue).20 (C) Structures of proteins that form the T3SS basal body: EPEC EscC,21

EPEC EscJ,18Salmonella PrgH,21 and Shigella MxiG.22
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Figure 3.
(A) Structures of needle protomers Salmonella PrgICΔ5 (CΔ5, deletion of five C-terminal
residues),42 PrgI* (a functional V65A/V67A double mutant),43 PrgI polymerized into
needles,48Shigella MxiHCΔ5,40 MxiH polymerized into needles,47 and Burkholderia
BsaLCΔ5.41 Regions that adopted β-strands upon needle assembly are colored green. (B)
Atomic model of the Salmonella needle derived by solid-state NMR showing that the N-
terminus of PrgI faces the exterior.48
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Figure 4.
Structure of tip proteins from (A) Y. pestis,60 (B) Burkholderia pseudomallei,54 (C) S.
flexneri,53 and (D) S. typhimurium.55
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Figure 5.
(A) Structures of the N-terminal domains of the Shigella IpaB and Salmonella SipB
translocon proteins.96 (B) Cocrystal structures of IpgC,115 SycD,113 and PcrH90 chaperones
bound to peptides derived from their cognate translocon proteins.
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Table 1

Structural Proteins of the T3SS Needle Apparatus

role Salmonella Shigella Yersinia EPEC Pseudomonas

translocon SipB IpaB YopB EspB PopB

translocon SipC IpaC YopD EspD PopD

needle tip SipD IpaD LcrV EspA PcrV

needle PrgI MxiH YscF EscF PscF

OM ring InvG MxiD YscC EscC PscC

inner rod PrgJ MxiI YscI EscI PscI

IM ring PrgK MxiJ YscJ EscJ PscJ

PrgH MxiG YscD EscD PscD

export apparatus SpaP Spa24 YscR EscR PscR

SpaQ Spa9 YscS EscS PscS

SpaR Spa29 YscT EscT PscT

SpaS Spa40 YscU EscU PscU

InvA MxiA YscV EscV PerD

ATPase InvC Spa47 YscN EscN PscN
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