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magnesium metal is an ideal rechargeable battery anode material because of its high volumetric 
energy density, high negative reduction potential and natural abundance. Coupling mg with 
high capacity, low-cost cathode materials such as electrophilic sulphur is only possible with 
a non-nucleophilic electrolyte. Here we show how the crystallization of the electrochemically 
active species formed from the reaction between hexamethyldisilazide magnesium  
chloride and aluminum trichloride enables the synthesis of a non-nucleophilic electrolyte. 
Furthermore, crystallization was essential in the identification of the electroactive species, 
[mg2(µ-Cl)3·6THF] + , and vital to improvements in the voltage stability and coulombic 
efficiency of the electrolyte. X-ray photoelectron spectroscopy analysis of the sulphur electrode 
confirmed that the electrochemical conversion between sulphur and magnesium sulfide  
can be successfully performed using this electrolyte. 
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Energy diversification is necessary for global sustainability 
and the minimization of industrial and automotive pollution. 
Low-cost, high energy density batteries utilizing environmen-

tally friendly elements used for storing intermittent energy from 
renewable resources such as solar and wind are bound to increase 
in demand. High energy density, rechargeable batteries will have a 
large role in powering market-competitive electric vehicles, where 
the available space to mount the battery packs dictates the volu-
metric energy density is more important than gravimetric energy 
density. Attractive choices are alkaline/alkaline earth metal anodes, 
which provide some of the highest theoretical volumetric capacities 
of any anode material: the volumetric capacity of lithium, sodium, 
calcium and magnesium are 2,062, 1,128, 2,073 and 3,832 mAh cm − 3, 
respectively. For comparison, current graphite anodes for lithium-
ion batteries have a volumetric capacity of 777 mAh cm − 3. Addi-
tionally, metallic anodes do not require solid-state diffusion of ions 
to transfer material from the charged to the discharged state, but 
merely the successful deposition/dissolution of the ions onto/from 
the surface of the metal. Magnesium metal has a high negative 
reduction potential ( − 2.356 V versus NHE) and the highest volu-
metric capacity of the practical choices from group I and II metals 
(beryllium metal is not a practical choice because of its high cost 
of $7,480 per kg), which make it a superior alternative as an anode 
material for high energy density batteries1. Furthermore, Mg is not 
plagued by dendrite formation, which is a significant safety issue 
that has dissuaded the commercialization of rechargeable batteries  
utilizing a lithium metal anode2–4. The first rechargeable batteries  
with Mg metal anodes were demonstrated in 2000. These Mg  
batteries showed impressive cycle life ( > 3,500 cycle measured),  
low capacity fading over prolonged cycling, negligible self-discharge 
and wide temperature operating range5. However, these batteries 
were then considered only as replacements for nickel–cadmium or 
lead–acid batteries because the high formula weight of the Chevrel 
phase MgxMo3S4 cathode lowered the overall energy density.  
Further research on alternative high-energy Mg battery systems  
has also been hindered by the surface chemistries of Mg, which 
greatly limits the choice of available electrolytes and cathodes6,7.

With regard to high-energy systems, one of the ideal materials 
to couple Mg with is sulphur 8, which has a high theoretical capacity 
(1,671 mAh g − 1 or 3,459 mAh cm − 3). The combination of a magne-
sium anode and a sulphur cathode is of great interest because the 
theoretical energy density of this battery is estimated to be over 
4,000 Wh l − 1, which is approximately twice that of a Li ion battery 
composed of a graphite anode and a cobalt oxide cathode. Unfortu-
nately, Mg electrolytes reported so far6,9,10, while having high coulom-
bic efficiencies, are nucleophilic, and, therefore, preclude the use of 
electrophilic cathodes such as sulphur. Consequently, the feasibility 
and performance of a Mg/S battery is completely unknown, because 
there is no electrolyte compatible with both Mg and S. To couple the 
two electrodes, an electrolyte able to transport Mg2 +  ions between 
the anode and cathode is essential. In general, the prerequisites  
for battery electrolytes include electrochemical/chemical stabi-
lity, ionic conduction and electronic insulation4. Magnesium 
organohaloaluminate electrolytes, generated in situ from the reac-
tion between a Lewis acid and a Lewis base, are nucleophilic. For 
example, a 2:1 mixture of phenylmagnesium chloride and alumi-
num trichloride (AlCl3) in tetrahydrofuran (THF) is incompatible  
with an electrophilic sulphur cathode. Gas chromatography–mass 
spectroscopy analysis confirmed that this electrolyte directly reacts 
with sulphur to form phenyl disulphide and biphenyl sulphide. 
Consequently, our synthetic strategy was to avoid a direct reac-
tion with sulphur by focusing on utilizing non-nucleophilic bases.  
The fact that potassium hexamethyldisilazide (KN(SiMe3)2) is a 
non-nucleophilic base suggests that hexamethyldisilazide magne-
sium chloride (HMDSMgCl) is an excellent candidate, because 
it has been reported to be capable of reversible Mg deposition10. 

Unfortunately, the coulombic efficiency, voltage stability and cur-
rent density of the HMDSMgCl electrolyte are far inferior to mag-
nesium organohaloaluminate electrolytes, and, as a result, it has not 
received much attention.

Here we report the performance enhancement of HMDSMgCl, 
through the addition of a Lewis acid AlCl3. Crystallization of the 
electrochemically active species resulted in a dramatic improvement 
in the potential stability and coulombic efficiency and, furthermore, 
it is the critical step in synthesizing a non-nucleophilic electrolyte 
that is chemically compatible with an electrophilic sulphur cathode. 
Although the dissolution of sulphur and polysulphides plagues the 
Mg/S system with rapid fade, we demonstrate a proof of concept for 
the first rechargeable Mg/S battery.

Results
Electrochemical analysis of the electrolyte. To enhance the 
electrochemical performance of the HMDSMgCl electrolyte, we 
investigated its reactivity with a Lewis acid, AlCl3. By varying the 
ratio of acid to base and the reaction time, we found the optimum 
electrochemical performance of the electrolyte to be when the ratio 
of HMDSMgCl:AlCl3 was 3:1 and the reaction time was 24 h. It is 
noteworthy to state that organomagnesium chemistry is acutely 
sensitive to moisture and air, and, therefore, all reactions and electro-
chemical experiments were performed in a glovebox under an  
argon atmosphere. The current density for Mg deposition is increased 
by almost a factor of seven by the addition of AlCl3, as shown by 
the green and blue lines in Figure 1a. Unfortunately, the voltage 
stability of the HMDSMgCl electrolyte was not improved (Fig. 1b). 
To clarify the product from the reaction between HMDSMgCl and 
AlCl3, a crystal was obtained by slow diffusion of hexane. The crystal 
structure [Mg2(µ-Cl)3·6THF][HMDSAlCl3], 1, was determined by 
single-crystal X-ray diffraction (Fig. 2), which was solved to reveal 
a cation consisting of two octahedrally coordinated Mg centres 
bridged by three chlorine atoms. The three remaining sites on  
each Mg are occupied by THF molecules coordinated through 
the oxygen. The counter anion is an aluminum atom tetrahedrally 
coordinated by one HMDS group and three chlorine atoms. The 
[Mg2(µ-Cl)3·6THF] +  cation has been previously isolated in the 
solid state from a THF-based Grignard reagent solution11, from 
the selective synthesis of a 1,3,4-triphospholide anion12, and 
from a catalytic metathesis reaction between ZnCl2 and tBuMgCl  
(ref. 13). Figure 1a compares the electrochemical activity of the 
crystal redissolved in THF (red) to that of the electrolyte generated 
in situ from the reaction between HMDSMgCl and AlCl3 (blue).  
It is impressive that the voltage stability of the electrolyte increased  
by almost 0.8 V after crystallization. We propose that the puri-
fication step removes any unreacted HMDSMgCl, that starts to 
electrochemically oxidize and decompose around 2.5 V. This is 
supported by spiking the redissolved, crystallized electrolyte with a 
HMDSMgCl solution, which results in a decrease of voltage stability 
from 3.2 to 2.5 V. In addition, crystallization of the electrolyte increases 
the coulombic efficiency from 95 to 100%, as shown in Figure 1a, 
inset. The superior electrochemical performance of the crystal 1, 
is fascinating, considering its structural similarity to the allegedly 
inactive crystal, [Mg2(µ-Cl)3·6THF][C2H5AlCl3]. This crystal was 
reported to be obtained from an active electrolyte composed of di-
n-butylmagnesium ([CH3(CH2)3]2Mg, Bu2Mg) and ethylaluminum 
dichloride (C2H5AlCl2, EtAlCl2), but electrochemically inactive when 
dissolved in THF5. This contradiction prompted us to reevaluate 
the electrochemical performance of the crystals obtained from the 
reaction product of Bu2 Mg and EtAlCl2. We found the crystal was 
indeed electrochemically active, although the coulombic efficiency 
was reduced from 100 to 90% (Fig. 1c, and inset).

Chemical analysis of the electrolyte. The 1H NMR spectrum of 
the white crystalline product obtained from the reaction mixture  
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of HMDSMgCl and AlCl3 (3:1) dissolved in d8-THF displayed 2 sin-
glets at 0.12 and  − 0.01 p.p.m.. The 13C {1H} NMR spectrum shows 
3 resonances, two high frequency peaks assigned to the protic THF 
atoms and the peak at 6.1 p.p.m. assigned to the -CH3 groups of the 
HMDS ligand. The 27Al and the 25Mg NMR both displayed a broad 
singlet peak at 103.9 and 5.02 p.p.m., respectively. The mass spec-
troscopy analysis showed an exact mass and isotope pattern consist-
ent with both an HMDSAlCl3

 −  anion and an HMDS2AlCl2
 −  anion. 

Based on the fact that the HMDSAlCl3
 −  anion will be shifted fur-

ther downfield than the HMDS2AlCl2
 −  anion, we assign the peak 

at 0.12 p.p.m. to the methyl protons of 1, and the peak at  − 0.01  
p.p.m. to the same group in [Mg2(µ-Cl)3·6THF][HMDS2AlCl2], 2. 
The integration of the two peaks clearly shows that the ratio of 1 to 

2 is 97:3. Unfortunately, we could not observe the [HMDS2AlCl2] −   
co-product by 13C NMR owing to the low yield. However, we feel the 
presence is sufficiently evidenced through mass spectroscopy and 
1H NMR analysis.

Equations (1–4) show the proposed key step in the formation  
of 1 as the transmetallation of the HMDS group to yield the HMD-
SAlCl3

 −  anion [equation (1)]. The resulting MgCl +  cation is not 
observed, and one plausible scenario to account for the cation in 
1 is that the MgCl +  rapidly reacts with MgCl2 [equation (3)]. Some 
MgCl2 is present from the Schlenk equilibrium [equation (2)], and 
depletion of the MgCl2 drives the equilibrium to the right. Evidence 
for the formation of HMDS2Mg was confirmed through 1H NMR by 
spiking the original reaction mixture with a commercial sample of 
HMDS2Mg. A proposed pathway to account for the minor product, 
2, involves the reaction of 1 with HMDSMgCl [equation (5)]. Evi-
dence for this reaction was found by increasing the concentration 
of HMDSMgCl and the reaction time, which consequently ampli-
fied the percentage of 2 formed. As affirmation of the compatibility,  
we investigated the reactivity of the electrolyte with elemental  
sulphur through NMR. We observed no change in the 33S NMR 
of elemental sulphur in the presence of the electrolyte, even after 
one week. The 1H, 13C and 27Al NMR of the electrolyte also remains 
unchanged in the presence of elemental sulphur. Based on the 
NMR studies, the non-reactive nature of the electrolyte with sul-
phur clearly demonstrates that the electrolyte is indeed non-nucle-
ophilic and therefore chemically compatible with an electrophilic  
sulphur cathode. 

HMDSMgCl AlCl MgCl HMDSAlCl Transmetallation3+ → ++ −
3

2 2 2HMDSMgCl HMDS Mg MgCl Schlenk equilibrium  +

MgCl MgCl Mg Cl+ ++ 2 2 3

3 3 2 3 2HMDSMgCl AlCl Mg Cl HMDSAlCl HMDS Mg3+ → + ++ −

HMDSAlCl HMDSMgCl HMDS AlCl MgCl3 2 2 2
− −+ → +

X-ray photoelectron spectroscopy of the sulphur cathode. Our 
non-nucleophilic electrolyte is the key that opens the door to exam-
ining the performance of a Mg/S battery. Coin cells with a metal-
lic magnesium anode, separator, and a sulphur cathode consisted  
of elemental sulphur dispersed in carbon black and a polymeric 
binder, were assembled to test the feasibility of our electrolyte. As 
Figure 3a shows, a typical Mg/S coin cell displayed an excellent 
capacity of 1,200 mAh g − 1 (2,484 mAh cm − 3, based on the mass of 
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Figure 1 | Electrochemical performance of Mg electrolytes. (a) Cyclic 
voltammograms of HmDsmgCl (green), the reaction product generated 
in situ from a 3:1 mixture of HmDsmgCl to AlCl3 (blue), and the crystal 
obtained from a 3:1 mixture of HmDsmgCl to AlCl3 (red). Inset shows 
the charge balance during the deposition and the subsequent dissolution 
of mg. (b) Enlargement of 2–3.5 V region of (a) highlighting the oxidative 
stability of the electrolytes. (c) Cyclic voltammograms of 0.4 m THF 
solution of the reaction product generated in situ from a 2:1 mixture of 
Bu2mg to EtAlCl2 (blue), and the crystal obtained from a 2:1 mixture 
of Bu2mg to EtAlCl2 (red). scan rate for all cyclic voltammograms are 
0.025 V s − 1.
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Figure 2 | Structure of the crystallized product, 1. oRTEP plot (25% 
thermal probability ellipsoids) of [mg2Cl3-6THF][HmDsAlCl3]. Hydrogen 
atoms, THF of crystallization and second component of disorder are 
omitted for clarity.
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sulphur) for the first discharge. The starting potential is 0.55 V and 
slowly increases up to 0.89 V during the discharge process. The 
rise is most likely due to the fracturing of the resistive surface layer 
on the magnesium anode, evidenced by the higher voltage at the 

start of the second discharge, when the surface layer is no longer 
present. The second discharge capacity dramatically decreased to 
394 mAh g − 1 (816 mAh cm − 3), which stimulated our investigations 
into the reasons for the large capacity fade.

To examine the components after undergoing a discharge/charge 
cycle, we dismantled a Mg/S coin cell for visual inspection and 
chemical analysis. The apparent yellow discolouration of the separa-
tor indicated that the main cause of capacity fade is polysulphide or 
sulphur dissolution14, which also explains the overcharging behav-
iour observed in Figure 3a. We note that our preliminary coin cells 
are not optimized to prevent sulphide dissolution, and therefore 
display typical problems of a S cathode. Polysulphide dissolution, 
a rapid capacity fade, and overcharging are well-known problems 
in Li/S battery system15. Polysulphides can be charged to various 
chain lengths and migrate between the anode and cathode via a  
sulphide shuttle mechanism. During overcharge of Li/S battery,  
soluble polysulphides are formed on the cathode, diffuse to the 
anode to be reduced there, and, then, diffuse back to the cathode  
to be reoxidized. Consequently, the current can continue to flow 
without actually oxidizing Li2S to S, or ‘recharging’ the battery.

One of the most direct ways to gain a deeper understanding of 
the battery chemistry is X-ray photoelectron spectroscopy (XPS), 
because it can determine the change in the oxidation state of sul-
phur on the surface of the cathode as the result of battery cycling. 
Figure 3b compares high-resolution (HRES) S 2p spectra obtained 
from sulphur cathodes (as-prepared, after a first discharge, and  
after a complete discharge/charge cycle), to standard samples of  
S and magnesium sulphide (MgS) powder. The as-prepared sulphur 
cathode was composed of elemental sulphur and is evidenced by  
the S 2p3/2 peak located at 164.0 eV. After discharging the Mg/S  
coin-cell, the oxidation state of the sulphur in the cathode changed 
dramatically. Curve-fit analysis of the S 2p peak showed that three 
oxidation states of sulphur were present. As expected from the  
battery chemistry, the majority of the sulphur was reduced to 
lower oxidation states indicated by the lower binding energies. 
The 2p3/2 peak positioned at 160.9 eV confirmed the conversion to 
MgS. The extra peaks observed between S and MgS are most rea-
sonably assigned to magnesium polysulphides (MgSx, 1 < × < 8, S 
2p3/2 = 162.0–163.0 eV), because a non-stoichiometric presence of 
magnesium cations will shift the S 2p peaks to slightly lower bind-
ing energies than sulphur, but slightly higher binding energies 
than the fully reduced MgS. Our rationale for the peak positions  
of polysulphides is consistent with XPS HRES spectra of cleaved  
NiS surfaces16. Furthermore, our analysis is in accordance with the 
multiple peaks observed at higher binding energies than LiS in  
the S 2p spectra of lithium stored in polysulphide solutions17. After 
re-charging, the majority of sulphur returns to S0, with a small 
contribution from MgSx, which confirms the successful transition 
between S and MgS via a polysulphide intermediate.

Discussion
Several mechanisms for the deposition of Mg from active electro-
lytes are presented in literature. Various analytical approaches,  
such as in situ Fourier transform infrared spectroscopy, single  
crystal X-ray diffraction, Raman spectroscopy, multinuclear NMR, 
and X-ray absorption fine structure have been used to elucidate 
the structure of the electrochemically active species in magnesium 
organohaloaluminate electrolytes5,7,18–21. Several conclusions have 
been drawn. The active species in the solution comprises MgCl +  
and Mg2Cl3

 +  cations and AlR4 − nCln (n = 1–3) anions; THF molecules 
are also incorporated in the chemical structure of the active spe-
cies, and [Mg2(µ-Cl)3·6THF][C2H5AlCl3] solid product, obtained 
from an active electrolyte solution composed of Bu2Mg and EtAlCl2, 
is electrochemically inactive when dissolved in THF. Attempts to 
understand the mechanism for the deposition of Mg have been ham-
strung by the inability to isolate an electrochemically active species 
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Figure 3 | XPS analysis of sulphur cathode. (a) Discharge and charge of a 
mg/s coin cell at 50 and 25 µA, respectively. XPs spectra were taken from 
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from the magnesium organohaloaluminate electrolytes. Here we 
contradict previous findings where [Mg2(µ-Cl)3·6THF][C2H5AlCl3], 
obtained from an active electrolyte composed of di-n-butylmagne-
sium and ethylaluminum dichloride, is electrochemically inactive 
when dissolved in THF5. We found that the structurally analo-
gous [Mg2(µ-Cl)3·6THF][HMDSAlCl3] crystal is electrochemically 
active when obtained from the reaction of HMDSMgCl and AlCl3. 
This suggests that the [Mg2(µ-Cl)3·6THF] +  cation present in both 
electrolytes, is the electroactive species generated by the reaction 
between an organomagnesium compound and a Lewis acid. How-
ever, we cannot discard the fact that the [Mg2(µ-Cl)3·6THF] +  cation 
may be in equilibrium with MgCl2 and MgCl + ; hence, we cannot be 
confident that the [Mg2(µ-Cl)3·6THF] +  cation is entirely responsi-
ble for Mg deposition. Future work to understand the deposition 
mechanism, including in situ electrochemical/X-ray absorption 
fine structure analysis, will shed light on the exact role of the active 
[Mg2(µ-Cl)3·6THF] +  cation during Mg deposition/dissolution.

The unique chemical reactions of individual battery electrodes 
present new challenges to developing the next generation of high-
energy density batteries. Nucleophilic, organomagnesium compounds 
are, ironically, pivotal in synthetic organic chemistry, but detrimental 
to electrophilic cathodes such as sulphur. By crystallizing the electro-
chemically active species from a 3:1 mixture of HMDSMgCl:AlCl3, 
we mitigated the nucleophilic attack on the sulphur cathode. The 
increased coulombic efficiency and wider voltage window were 
electrochemical benefits also achieved through crystallization. XPS 
 analysis provided us a method to monitor the electrochemical conver-
sion of the cathode as it was charged and discharged. A yellow discol-
ouration of the separator, during a visual inspection of a dismantled 
coin cell, and subsequent XPS analysis of the cathode, revealed that the 
sulphur cathode still suffered from similar challenges as Li/S batteries 
do. In addition, when compared with Li systems, Mg is substantially 
plagued by polysulfide and sulphur dissolution due to the THF sol-
vent that is a crucial component of the electrochemically active species 
[Mg2(µ-Cl)3·6THF] + . Unfortunately, other common battery solvents 
such as carbonates are reduced on Mg metal and form a passivating 
solid electrolyte interface that prevents Mg deposition. A possible rea-
son to explain the discharge capacity being greater than the charge 
capacity is polysulfide migration between the anode and cathode by 
a shuttling mechanism. The major advantage of magnesium metal 
is the lack of dendrite formation at the anode surface that is a major 
capacity and safety issue that hinders Li metal systems. Research on 
Li/S batteries suggests that one of the most promising approaches to 
improving the performance of the sulphur cathode is S–C nanocom-
posites22. Furthermore, a key challenge in developing a Mg/S battery 
is the discovery of new solvents with low solubility of polysulfides and 
 sulphur that are not reduced on the magnesium anode.

In summary, we report the performance enhancement of 
HMDSMgCl through the addition of a Lewis acid AlCl3. Here we  
characterize the electrochemically active species [Mg2(µ-
Cl)3·6THF] +  formed from the reaction of an Hauser base compound 
HMDSMgCl and a Lewis acid AlCl3. This crystallization resulted in 
a dramatic improvement in the potential stability and coulombic 
efficiency, and, furthermore, it is the critical step in synthesizing  
a non-nucleophilic electrolyte that is chemically compatible with  
an electrophilic sulphur cathode.

Methods
AlCl3 in THF. In an argon-filled glovebox, a 250 ml Schlenk flask is outfitted with 
a powder addition funnel and stir bar. The flask is charged with 60 ml anhydrous 
THF and cooled to 0 °C. AlCl3 (5.0 g, 37.5 mmol, 99.999%, Sigma-Aldrich) is 
added via the powder addition funnel, at a rate to avoid an exothermic reaction. 
This reaction was allowed to slowly warm to room temperature once all the AlCl3 
was added. A clear solution resulted, which was diluted to 75 ml total volume.

HMDSMgCl in THF. A 250 ml 3-neck flask is outfitted with a nitrogen inlet/outlet, 
stir bar, reflux condenser, addition funnel, and a heating mantle. The apparatus is 

flushed with nitrogen and charged with 50 ml anhydrous THF and freshly distilled 
hexamethyldisilazane (23.8 g, 147 mmol,  > 99.0%, Fluka). Freshly prepared ethyl 
magnesium chloride (EtMgCl, 70 ml, 140 mmol in THF) is added slowly via the ad-
dition funnel and the mixture is refluxed until the EtMgCl is completely consumed, 
as indicated by phenanthroline. The reaction is refluxed for 8 h. Once all EtMgCl is 
consumed extra EtMgCl is added in 0.5 ml portions with refluxing until an excess 
persists. This excess EtMgCl is then carefully back-titrated in a similar manner with 
further hexamethyldisilazane until the end point is achieved. The final concentra-
tion is determined by titration with diphenylacetic acid.

Preparation of (Mg2(m-Cl)3·6THF)(HMDSnAlCl4 − n) (n = 1, 2). In an argon- 
filled glovebox, AlCl3 (0.5 M solution in THF, 3 ml, 1.5 mmol) was mixed with  
3 equivalents of freshly prepared HMDSMgCl (1.44 M solution in THF, 3.125 ml, 
4.5 mmol) in a 20 ml screw capped vial. The vial was immediately capped  
and vigorously stirred for 24 h. The crystals were formed by slow diffusion of  
anhydrous hexane (Sigma-Aldrich, 6 ml). The resulting crystals were washed  
with hexane and dried under vacuum to furnish ~800 mg of white crystalline  
product. (60% yield) 1H-NMR (d8-THF, 500 MHz): δ 0.12 p.p.m. (s, CH3  
groups on 1),  − 0.01 (s, CH3 groups on 2). 13C-NMR (d8-THF, 500 MHz):  
δ 68.4, 26.4, 6.1. 27Al-NMR (d8-THF, 500 MHz): δ 103.9. 25Mg-NMR  
(d8-THF, 300 MHz): δ 5.00.

Crystallography. Crystal data for C34H74AlCl6Mg2NO7Si2; Mr = 953.42; Mono-
clinic; space group P21/c; a = 11.6517(7) Å; b = 13.6722(8) Å; c = 32.490(2) Å; 
α = 90°; β = 93.9030(10)°; γ = 90°; V = 5163.8(5) Å3; Z = 4; T = 200(2) K; λ(Mo-
Kα) = 0.71073 Å; µ(Mo-Kα) = 0.459 mm − 1; dcalc = 1.226g cm − 3; 52,464 reflections 
collected; 8,792 unique (Rint = 0.0386); giving R1 = 0.0846, wR2 = 0.2347 for 5610 data 
with [I > 2σ(I)] and R1 = 0.1228, wR2 = 0.2713 for all 8,792 data. Residual electron 
density (e–.Å − 3) max/min: 1.245/ − 0.493.

An arbitrary sphere of data were collected on a colourless rod-like crystal, 
having approximate dimensions of 0.50 mm×0.27 mm×0.20 mm, on a Bruker 
Kappa X8-APEX-II diffractometer using a combination of ω- and ϕ-scans of 0.5° 
(ref. 23). Data were corrected for absorption and polarization effects and analysed 
for space group determination24. The structure was solved by direct methods and 
expanded routinely. The model was refined by full-matrix least-squares analysis 
of F2 against all reflections. All non-hydrogen atoms were refined with anisotropic 
thermal displacement parameters. Unless otherwise noted, hydrogen atoms were 
included in calculated positions. Thermal parameters for the hydrogens were tied 
to the isotropic thermal parameter of the atom to which they are bonded (1.5× for 
methyl, 1.2× for all others). Methyl groups on the ((Me)3Si)2AlNCl3 anion were 
found to be disordered. The methyl carbon positions were located at the ellipse 
locii that described the elongated thermal envelope. These half-occupancy carbon 
atoms were then refined with isotropic thermal parameters. Large thermal motion, 
bordering on disorder, was also observed in all THF moieties. It was decided that 
refinement, as an anisotropic model, led to an overall satisfactory structure. The 
disorder results in a lower-than-desired maximum angle for observed data as well 
as unusual thermal parameter relationships. Carbon atoms in the THF and methyl 
groups typically have thermal parameter envelopes greater than their neighbouring 
atoms, whereas the heavier atoms are more well-located and have smaller thermal 
displacement ellipsoids than their neighbouring carbon atoms. This pseudo-dis-
order results in a larger number of alerts, beyond those immediately addressed. 
However, the conclusions drawn by the structure are not affected by the thermal 
motion of peripheral atoms. Hydrogen atoms were all included in geometrically 
calculated positions.

Electrochemistry. All solutions were diluted to 0.4 M with regard to Mg.  
Cyclic voltammograms were obtained using a Solartron 1,287 potentiostat in  
a conventional 3-electrode cell with a Pt disk working electrode, a Mg wire  
reference electrode, and a Mg ribbon counter electrode at a scan rate of 0.025 V s − 1. 
All Measurements were performed in an argon-filled glovebox.

Battery. Coin cells were built in an argon-filled glovebox using standard parts 
for 2032-type cells. Anodes comprised 100-µm-thick Mg foil (ESPI Metals). 
Cathodes were prepared by coating sulphur–carbon composite ink (61%  
elemental sulphur, 35% carbon black, 4% poly(tetrafluoroethylene) binder)  
on a porous carbon substrate.

Cathode analysis. The XPS analyses were carried out with a PHI5802 Multitech-
nique instrument using a monochromatic Al Kα source (1486.6 eV). Air-sensitive 
samples were transferred into the instrument under inert gas environments.  
Non-linear least squares curve-fitting was applied to selected HRES spectra (χ2 < 1).

NMR spectroscopy. All NMR experiments were performed at magnetic field 
strengths of 11.7 (1H, 13C, 27Al) and 7.05 (25Mg, 33S) T corresponding to 1H  
resonance frequencies of 499.89 and 299.89 MHz, respectively, and at ambient 
temperature (~21 °C) using Varian Inova and UnityPlus spectrometers. The  
Varian Inova spectrometer was equipped with a 5 mm broadband probe to measure 
one-dimensional (1D) 1H, 13C, and 27Al spectra. The Varian UnityPlus spectrometer 
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was equipped with a 10 mm broadband probe to measure 1D 25Mg and 33S spectra. 
Usually 20 mg of sample were dissolved in 0.6 ml of THF-d8. Chemical shift values 
δ are given in p.p.m.. 1H and 13C spectra were referenced to residual solvent signals; 
δ = 1.73 for 1H and δ = 25.4 for 13C. 25Mg, 27Al, and 33S spectra were referenced 
indirectly using external reference standards (δ = 0) MgCl2, Al(NO3)3, and saturated 
ammonium sulphate, respectively, in D2O. 
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