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Wernicke (1900, as cited in G. H. Eggert, 1977) suggested that semantic knowledge arises from the

interaction of perceptual representations of objects and words. The authors present a parallel distributed

processing implementation of this theory, in which semantic representations emerge from mechanisms

that acquire the mappings between visual representations of objects and their verbal descriptions. To test

the theory, they trained the model to associate names, verbal descriptions, and visual representations of

objects. When its inputs and outputs are constructed to capture aspects of structure apparent in

attribute-norming experiments, the model provides an intuitive account of semantic task performance.

The authors then used the model to understand the structure of impaired performance in patients with

selective and progressive impairments of conceptual knowledge. Data from 4 well-known semantic tasks

revealed consistent patterns that find a ready explanation in the model. The relationship between the

model and related theories of semantic representation is discussed.

Human beings live in a world infused with meaning. This

capacity is so fundamental that it seems to reside near the core of

what we intend when we speak of human cognition. Small wonder,

then, that scientists and philosophers have concerned themselves

with questions about the nature of semantic knowledge for centu-

ries. How is meaning stored, represented, and retrieved in the mind

and brain? How is it acquired in development, and how might it be

disturbed by pathology?

Neuropsychology has long been used as one tool for answering

these kinds of questions. More than 100 years ago, the German

neurologist Carl Wernicke sketched out a theory of semantic

memory based on his study of neuroanatomy and disorders of

language. Wernicke (1900, as cited in G. H. Eggert, 1977) pro-

posed that semantic knowledge arises from the interactions among

modality-specific perceptual representations of objects and of the

words we use to describe these objects. He suggested that these

interactions are mediated by transcortical or association areas of

cortex, which have anatomical links to perceptual and language

areas.

The concept of a rose is composed of a “tactile memory image”—“an

image of touch”—in the central projection field of the somesthetic

cortex. It is also composed of a visual memory image located in the

visual projection field of the cortex. The continuous repetition of

similar sensory impressions results in such a firm association between

those different memory images that the mere stimulation of one

sensory avenue by means of the object is adequate to call up the

concept of the object. In some cases, many memory images of

different sensory areas and in others only a few correspond to a single

concept. However, by the very nature of the object, a firmly associated

constellation of such memory images which form the anatomic sub-

strate of each concept is established. This sum total of closely asso-

ciated memory images must “be aroused into consciousness” for
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perception not merely of sounds of the corresponding words but also

for comprehension of their meaning. Following our anatomic mode of

interpretation, we also postulate for this process the existence of

anatomic tracts, fibers, connections, or association tracts between the

sensory speech center of word-sound-comprehension and those pro-

jection fields which participate in the formation of the concept.

(Wernicke, 1900, as cited in Eggert, 1977, p. 237)

This framework allowed Wernicke (1900, as cited in Eggert,

1977) to account for the range of language disorders observed in

his clinical experience and to predict the occurrence of generalized

semantic disorders arising from damage to the hypothesized

transcortical areas, which were thought to mediate interactions

between peripheral sensory zones. Such generalized impairments

have now been documented, as the result of a variety of etiologies

including dementia of the Alzheimer’s type (DAT), herpes simplex

virus encephalitis (HSVE), cerebral vascular accident (CVA), and

head injury. In this article, we focus on a neurodegenerative

disorder that, in many respects, provides the clearest patient model

of semantic disruption—semantic dementia (Hodges, Patterson,

Oxbury, & Funnell, 1992; Snowden, Goulding, & Neary, 1989).

Patients with semantic dementia exhibit a profound and progres-

sive impairment of semantic knowledge in a variety of tasks,

including picture naming, word-to-picture matching, sorting,

drawing and copying, and category matching (Hodges, Graham, &

Patterson, 1995; Schwartz, Marin, & Saffran, 1979; Warrington,

1975). Despite these difficulties, their remaining cognitive facul-

ties seem remarkably spared. They show little difficulty on tests of

spatial memory such as the Rey Complex Figure, are well oriented

in space and time, and have good recognition memory, normal

visual perception, and unimpaired digit spans (Patterson &

Hodges, 2000; Snowden, Neary, & Mann, 1996). Their speech,

though marked with severe word-finding difficulties, is otherwise

grammatical and fluent.

The cognitive impairments witnessed in semantic dementia arise

from progressive focal atrophy of the anterior and inferolateral

aspects of the temporal cortex bilaterally (Lambon Ralph, McClel-

land, Patterson, Galton, & Hodges, 2001; Mummery et al., 2000).

The affected region is a plausible anatomical locus for Wernicke’s

(1900, as cited in Eggert, 1977) proposed “transcortical association

area,” in that these areas are known to receive convergent input

from and send output to all sensory and motor systems (Gainotti,

Silveri, Daniele, & Giustolisi, 1995; Gloor, 1997; Grey & Bannis-

ter, 1995). For example, the temporal pole, the region almost

invariably affected in the earliest stages of semantic dementia, has

extensive connections with all three temporal gyri, which in turn

receive projections from earlier sensory processing centers. Spe-

cifically, the anterior part of the inferior temporal gyrus is thought

to be the terminus of the ventral visual processing stream; the

middle temporal gyrus is generally thought to integrate input from

somatosensory, visual, and auditory processing streams; and the

superior temporal gyrus as well as the superior temporal sulcus

play important roles in auditory and speech perception. The cortex

of the temporal pole and the anterior portion of the inferior

temporal gyrus send projections to orbitofrontal and prefrontal

cortex as well (Grey & Bannister, 1995).

The syndrome of semantic dementia provides the clearest evi-

dence of a relatively pure semantic impairment that affects all

modalities of testing and all conceptual domains, which suggests

that semantic memory may be largely subserved by a unitary and

relatively homogeneous neural system in the anterior and lateral

aspects of the temporal cortices bilaterally (Bozeat, Lambon

Ralph, Patterson, Garrard, & Hodges, 2000; Lambon Ralph, Gra-

ham, Patterson, & Hodges, 1999). Although the observed deficits

are typically neither category nor modality specific, the dissolution

of semantic knowledge is nevertheless structured. For example,

patients with semantic impairment consistently show more robust

memory for the general properties of objects than for their more

specific features (Done & Gale, 1997; Hodges et al., 1995; War-

rington, 1975) and frequently overextend familiar or typical labels

to semantically related objects in tests of confrontation naming

(Hodges et al., 1995). It seems reasonable to suppose that such

patterns reflect representational structure in the semantic system.

But where does such structure come from?

In this article, in agreement with Wernicke (1900, as cited in

Eggert, 1977) and many others (e.g., A. R. Damasio, 1989; Kellen-

bach, Brett, & Patterson, 2001; Martin & Chao, 2001; McClelland

& Rogers, 2003; Warrington & Shallice, 1984), we suggest that the

representations and processes underlying semantic memory are

best understood within a theory in which semantic knowledge

emerges from the interactive activation of modality-specific per-

ceptual representations of objects and statements about objects. In

contrast to some contemporary approaches, we argue that semantic

representations do not need to extract, store, and retrieve attributes,

facts, or propositions about objects to fulfill this role; they need

only to allow such information to be produced as overt responses

in particular task contexts.

We further argue that abstract semantic representations emerge

as a product of statistical learning mechanisms in a region of

cortex suited to performing cross-modal mappings by virtue of its

many interconnections with different perceptual-motor areas. In

this view, modality-specific perceptual representations provide the

input to semantics, and modality-specific response systems permit

the expression of semantic knowledge. The content of semantic

memory is represented in the same regions of cortex that directly

encode modality-specific regularities in the environment during

perception and action. Domain-general learning mechanisms op-

erate to allow the semantic system, when presented with informa-

tion about an object in some perceptual modality, to make correct

inferences about the object’s unspecified attributes. As a conse-

quence, the system acquires abstract representations whose simi-

larity relations are not tied to any individual modality but capture

the deep structure across modalities.

To support these arguments, we consider a simple computa-

tional implementation of the theory, in which visual representa-

tions of objects and perceptual representations of verbal statements

about these objects interact with one another by means of an

intermediating semantic system. In this model, mediating semantic

representations are not prespecified but emerge as the network

learns to map between verbal descriptions, names, and visual

appearances of objects. These acquired representations do not code

explicit semantic content, but they are structured in ways that

facilitate the system’s ability to generate appropriate responses

when given perceptual inputs. When the inputs and outputs capture

aspects of structure apparent from visual and verbal attribute

norms, the model acquires internal representations whose similar-

ity structure is not reflected in either modality independently.
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To evaluate the model, we investigate its ability to perform

analogs of semantic tasks as it is subjected to increasingly severe

simulated lesions. The particular representations discovered by the

model when trained with empirically motivated input patterns,

along with the processing assumptions embodied in the model,

provide an intuitive a posteriori account of many previously re-

ported findings in the study of semantic dementia. The model also

yields novel and counterintuitive predictions about patient perfor-

mance that are supported by the results of studies reported here for

the first time.

Parallel Distributed Processing (PDP) Implementation of

the Theory

The model implementation of our theory is shown in Figure 1.

It consists of sets of nonlinear processing units organized into

groups and connected, as shown in the illustration. Associated with

each unit is an activation state, which varies along a sigmoid

function bounded at 0 and 1. The state of a given unit at any point

in time is determined by the strength of its input. Each unit group

(or layer) represents an anatomically distinct region of cortex,

specialized to subserve a particular function by virtue of its con-

nectivity. For example, the layer labeled visual is specialized to

represent high-level visual information, as a result of receiving

input from earlier visual processing streams. In the model, these

perceptual signals are presented as external inputs to the units in

the visual layer—that is, the states of the units in the visual layer

can be set directly by visual stimuli in the environment. Similarly,

the verbal layer represents areas of cortex that subserve linguistic

processes; these unit states may be set directly by linguistic stimuli

in the environment, such as an object’s name or its verbal descrip-

tion. Because the visual and verbal units receive external inputs,

these are also referred to as visible units.

All of the units in the visual and verbal layers are bidirectionally

connected with the set of units in the layer labeled semantic. The

semantic units do not receive direct, external inputs from the

environment. Their states may be set only by the activity of the

units to which they are connected, as weighted by the strength of

the intervening connections. Consequently, these are referred to as

hidden units (Rumelhart, McClelland, & PDP Research Group,

1986).

The units in the visible layers each represent a particular, ex-

plicit property in the corresponding modality. For instance, each

unit in the verbal layer represents a verbal statement that describes

an object, such as a name (animal, bird, goose), a visual property

(has eyes, has wheels), a functional property (can fly, can roll), or

an encyclopedic property (lives in Africa, found in kitchen). Thus,

verbal descriptions of objects can be represented as patterns of

activity across these units, and objects to which similar predicates

apply receive similar representations in this layer. In the illustra-

tion, the verbal units are divided into four pools, corresponding to

four different kinds of information that may be expressed verbally

(i.e., perceptual, functional, encyclopedic, and name information).

We have arranged the units this way as a reminder that verbal

propositions can refer to any of several different kinds of infor-

mation. However, in our model, all verbal statements are construed

as first activating the same regions of cortex, regardless of the kind

of information to which they refer; and the arrangement of verbal

units into separate pools in Figure 1 has no functional consequence

in the model.

Each unit in the visual layer represents a unique visual property,

such as has limbs or is round. Visual representations of objects

correspond to patterns of activity across this assembly of visual

features, such that objects with similar visual appearances give rise

to similar visual representations. Note that the units standing for

visual properties are quite separate from the units that stand for

verbal propositions about visual properties in the model.

A stimulus is presented to the network by directly setting (or

clamping) the states of the visible units that correspond to the

features apparent in the stimulus item. For example, to present a

picture of a canary to the network, we turn on the units in the visual

layer that represent the visual attributes of canaries and turn the

remaining visual units off. While these units are clamped, their

states are not affected by the activation of the other units in the

model. To perform correctly, the network must then activate the

Figure 1. Architecture of the model. Verbal descriptor and visual feature units receive input directly from the

environment.
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verbal proposition units that describe the canary (including its

name). Alternately, we might present the name canary to the

network by turning on the corresponding unit in the verbal layer

and turning off all of the other name units. In this case, the network

must activate the other verbal propositions that describe the canary

and the visual attributes that correspond to the canary’s appear-

ance. We might give the network a verbal description as input by

clamping on the appropriate proposition units and requiring it to

produce the corresponding name or visual pattern as output. Thus,

in its trained state, the model is capable of carrying out analogs of

semantic tasks such as picture naming, naming to definition, verbal

description, drawing and copying, category and property verifica-

tion, and so on.

Information is processed in the model through the successive

updating of unit activation states over time. When a verbal or

visual stimulus item is presented to the network, the states of the

units throughout the network change gradually in response to this

input. On a given time step, all the units calculate their new states

once by summing the activation of the units from which they

receive projections, weighted by the magnitude of the intervening

connection, and passing the result through a sigmoidal squashing

function. The unit activations are then updated simultaneously, and

the algorithm begins again, with each unit calculating a new

activation state in response to the changes from the last pass. This

process is reiterated until the unit states stop changing, at which

point the network is said to have settled into a steady state

(Rumelhart et al., 1986).

The steady state (or attractor) into which the network settles

when given a particular input depends on the values of the inter-

connecting weights. When these weights are configured to allow

the network to perform correctly, the model can be said to “know”

the domain; hence, the model’s semantic knowledge is stored in its

weights (McClelland, Rumelhart, & PDP Research Group, 1986).

To find an appropriate set of weights, the model is exposed to

visual and verbal patterns that are associated with the different

objects in its virtual environment and is trained with a variant of

the backpropagation learning algorithm suited to learning in a

recurrent network (Rumelhart, Hinton, & Williams, 1986). In each

training instance, an input is presented to the model for a fixed

period of time, and the activity is allowed to spread through the

network. The inputs are then removed, and the network is permit-

ted to cycle for several more time steps. Finally, the actual states

of the visible units (the visual and verbal units) are compared with

their desired states, and all the weights throughout the network are

adjusted by a small amount to reduce the discrepancy between the

observed and target states.

The application of inputs and targets to the network can be

considered analogous to natural semantic tasks imposed by the

environment. For example, when a child learns to name an object,

we might assume that the child is first directed to look at it and

then is told its name. In the model, we simulate this process by

clamping a visual input pattern that corresponds to the object’s

appearance, allowing the network to cycle, and then removing the

inputs and applying the target pattern to the name units. Similarly,

we might imagine a mother and child looking at a picture book.

The mother asks, “Can you show me the piggie?” The child must

activate some of his or her knowledge about the visual features of

a pig and use this to direct the choice of animals in the book.

Feedback from the mother allows the child to know whether the

choice was correct. In the model, we simulate this kind of activity

by clamping the name input unit, allowing the network to settle,

and comparing the states of the visual units to the desired target

states provided by the environment. Thus, on any given trial, any

of the visible units (visual features, verbal propositions, or names)

may serve either as input or output units. We assume the environ-

ment provides both the input and the target states (see Rogers &

McClelland, in press, for further discussion).

As it learns the associations among names, appearances, and

descriptions, the model assigns to each input a stable pattern of

activity across its hidden units. These patterns are not directly

constrained to represent the presence or absence of particular

features in the environment. The model is free to use whatever

representations emerge from the learning algorithm. However, the

representations acquired by the model are influenced by the sim-

ilarity structure of representations in visual and verbal modalities

(Plaut, 2002; Rogers & McClelland, in press). In the next subsec-

tion, we consider the extent to which different objects tend to share

the same verbal descriptors and visual attributes, according to

recent attribute norming and drawing studies. We then derive a

simple model training environment that captures the important

aspects of structure apparent from these data, and we examine the

representations that arise across hidden units in the model when

trained with these patterns. The structure of these representations,

together with the processing assumptions embodied in the model,

form the basis of our account of data from semantic dementia in

the Understanding the Structured Deterioration of Conceptual

Knowledge in Semantic Dementia section, below.

Assessing Verbal and Visual Structure in the Environment

Many different efforts to assess the attribute structure of con-

cepts have appeared in the literature (e.g., McRae & Cree, 2002;

Devlin, Gonnerman, Andersen, & Seidenberg, 1998; Garrard,

Lambon Ralph, Hodges, & Patterson, 2001; McRae, De Sa, &

Seidenberg, 1997; Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976; Tyler, Moss, Durrant-Peatfield, & Levy, 2000), and

they typically use verbal attribute-listing methods. Participants are

given a series of object names, and for each object they are asked

to list all the properties they can think of that are characteristic of

the object. The results are often interpreted as providing a useful

proxy measure of the attribute structure of semantic representa-

tions themselves. Some researchers, however, have rightly pointed

out a number of difficulties encountered by this interpretation (e.g.,

Murphy & Medin, 1985; Sloman & Rips, 1998):

1. The number and type of attributes generated in the task

can vary substantially as a function of the amount of time

devoted to each exemplar and whether the listing task is

largely instruction-free or is accompanied by specific

prompts from the experimenter.

2. There are many degrees of freedom in the way that

responses are coded and analyzed. For example, the same

attribute may be described by different words (e.g., a

horse may whinny or neigh); most researchers choose,

but to varying degrees, to collapse such responses into a

single feature.
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3. Some features common to all or almost all members of a

category are simply not the kinds of attributes that spring

readily to mind in this task. For example, when asked to

list the properties of a duck, participants may be unlikely

to say that it “has DNA,” “has blood,” or “has eyes”; but

these attributes are presumably an important part of the

concept duck and link it strongly to the domain of

animals.

4. The names and propositions that are used to describe

objects may fail to capture aspects of structure in the

environment that are more directly apparent through

other modes of perception. For example, although people

may seldom use the proposition has eyes when describing

a duck, they may directly observe that a duck has eyes

(and that in this respect it is similar to other animals)

whenever they encounter one in the environment. Simi-

larly, objects with similar visual appearances are often

described with different verbal labels (e.g., sharks and

dolphins), whereas objects or object parts described by

the same verbal label may differ substantially in appear-

ance (e.g., the handle on a hammer and the handle on a

teacup).

We argue, however, that these difficulties are substantially less

vexing if one conceives of the feature-listing task differently.

Specifically, we construe the task as a verbal act that is driven by

abstract semantic representations that do not themselves encode

explicit content. Hence, the data from such tasks do not provide a

window on underlying feature-based semantic representations;

they simply indicate the words that people are likely to use when

referring to objects in speech. In this view, there is no way to probe

directly the compositional structure of conceptual knowledge, al-

though the properties given in attribute-listing tasks do provide a

useful measure of one source of such information about similarity

available from the environment, namely language. Other sources

of similarity information are available through other perceptual

channels: in the sounds produced by objects, the actions they

afford, the behaviors they exhibit, and in their visual appearances.

A comprehensive assessment of the claim that representational

structure in semantics can be derived from the perceptual structure

of the environment would require measurement of the perceptual

similarities that exist among a wide range of objects for all relevant

modalities. Here, we provide a more modest consideration of

measures of two different sources of information about similarity:

what people say about objects in verbal attribute-listing studies and

what visual features of objects people depict when drawing them.

These analyses allow us to discover whether the similarities cap-

tured in verbal descriptions and visual reproductions are congruent

with one another and provide an empirical basis for generating

patterns for use in the simulation work.

Verbal Attribute Structure

The verbal attribute-listing data that form the primary basis for

our analysis were described in detail by Garrard et al. (2001). In

this study, norms were collected for 62 object concepts drawn from

six semantic categories. These items also form the basis for the

battery of neuropsychological tasks developed by our group to

assess semantic memory. Half of the items are living things (land

animals, birds, and fruits) and half are nonliving (household ob-

jects, vehicles, and tools). Garrard et al. (2001) asked the partici-

pants to list as many properties as they could that were true of each

item and provided them with prompting questions to help them

think of attributes that might not otherwise spring to mind. Lists

for all items were collected from 20 participants. The responses

from each participant were concatenated into a single list. Prop-

erties that were listed by fewer than 2 participants for a given item

were discarded; property names that referred to the same under-

lying semantic attribute (e.g., is big and is large) were collapsed

into a single feature. This yielded a total of 618 different properties

across all the 62 items. From these data, Garrard et al. (2001)

derived many interesting observations, but we focus on three

questions of special interest for our theory.

First, to what extent do the items in the battery seem similar to

one another, considering only their propensity to share verbal

descriptors? Under the PDP theory, the similarity structure of the

hidden semantic representations depends on the similarities appar-

ent in the input and output across different modalities (Plaut,

2002), including similarities apparent in spoken references to

objects. It is important, therefore, to determine what similarities

may be discerned among the verbal descriptions of objects cap-

tured in the norms.

To accomplish this, we performed a hierarchical cluster analysis

of items from Garrard et al.’s (2001) data. The similarity between

every pair of items in the set was calculated by taking the total

number of attributes held in common by both items as a proportion

of the total number of unique attributes listed across the pair of

items, a measure known as Jaccard’s distance. The similarity

matrix was entered into a hierarchical clustering algorithm (Ever-

itt, 1974) to yield the results shown in Figure 2A. In this plot, each

node (indicated by a horizontal branch) joins two subordinate

nodes, with the bottom-most nodes joining two individual items.

The vertical height of each node indicates the mean similarity

between the two joined subordinate nodes, with distal nodes joined

near the top and proximal nodes joined near the bottom.

Three aspects of the data are of interest. First, a substantial

degree of semantic structure was recovered: the clustering algo-

rithm found three broad groups, corresponding well to the seman-

tic categories animal, artifact, and fruits. Second, there are con-

siderable differences in the degree of subordinate structure

apparent within these broader groups. Among the animals, the

subcategories of birds and land animals are well differentiated

from one another, whereas subcategories in the domain of fruits

and artifacts are less well differentiated. Third, the man-made

objects are much less similar to one another as a group than are the

various animals or the set of fruits, which suggests that, consider-

ing verbal descriptions alone, artifacts form a much less cohesive

grouping.

Next, we inquired to what degree items within each of the three

broad domains identified previously tended to share the same

verbal descriptors. To accomplish this, we adopted a method

described by Garrard et al. (2001) and McRae et al. (1997). For

each attribute listed for a given item, we calculated the proportion

of items in the same general category (animals, artifacts, or fruits)

that also share the property. This measure produces a rating on a
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Figure 2. A: Hierarchical cluster analysis of the feature vectors for 62 items described by Garrard et al. (2001).

B: Mean number of features per item across the shared–distinctive continuum from verbal attribute lists from

Garrard et al. C: Distribution across the shared–distinctive continuum from the visual attributes that appear in

drawings of animals, fruits, and artifacts. D: Hierarchical cluster analysis of the visual similarities among

drawings of the same items.
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distinctive-to-shared continuum. Low values indicate properties

that apply only to a small number of category exemplars, and high

values indicate properties that tend to be shared by many items in

the same category. For the three broad categories, we examined the

average distribution of properties by distinctiveness by dividing

the distinctive–shared range (0–1) into five bins and assigning

each of the properties of each item to the appropriate bin. Finally,

we counted the number of properties in each bin for each individ-

ual item and averaged these figures across all items in each of the

three broad categories.

Figure 2B shows the average number of features per bin for

animals, fruits, and artifacts. It is clear that items in the three

domains show considerably different propensities to share verbal

descriptors. The artifacts show a strong positive skew, with most

properties falling in the distinctive end of the distribution and with

few shared properties. By contrast, the animal and fruit distribu-

tions are strongly bimodal, with almost as many features falling in

the shared half of the range as in the distinctive half.

From these simple observations, the Garrard et al. (2001) data

suggest that five important aspects of structure are apparent from

verbal descriptions.

1. The general semantic categories, animals, fruits, and

man-made objects, are easily discriminable from one

another.

2. Fruits constitute a cluster that is distinct both from man-

made objects and from animals. There is little similarity

in verbal descriptions of fruits and those of animals, even

though items in both categories are, in a sense, living

things (or at least natural kinds).

3. Within the domain of animals, the subcategories birds

and land animals are readily discriminable, whereas no

very obvious subgroupings are apparent within either the

artifacts or the fruits.

4. As a group, the artifacts are much less similar to one

another than are the various animals or the fruits.

5. A comparatively high proportion of the verbal descriptors

applied to a given animal are common to other animals,

whereas few verbal descriptors are shared by the majority

of artifacts.

Finally, if we are to base our model training environment on

these observations, it is important to determine to what degree the

data from Garrard et al. (2001) are robust to variations in the

testing and scoring methods and to what extent the observations

drawn from these data are representative of the object categories of

interest. A full assessment of these issues would require analysis

beyond the remit of this article, but evidence from the literature

suggests that the observations from Garrard et al. (2001) are indeed

reliable. All five points are consistent with other recent attribute-

listing experiments, including a study of 93 object concepts de-

scribed by Moss, Tyler, and Devlin (2002); an analysis of 60

concepts reported by Devlin et al. (1998); and a large norming

study of 549 object concepts conducted by McRae and Cree

(2002). All groups found that broad semantic domains are discrim-

inable from verbal attribute lists, and all reported a higher degree

of similarity among animals than among man-made objects, more

distinct subclusters within the animal domain than within the

artifact domain, and many more properties shared by animals than

by artifacts. Neither Moss et al. (2002) nor Devlin et al. (1998)

indicated whether fruits cluster with animals or artifacts, but

McRae and Cree (2002) reported that these items (along with

man-made foods, plants, and roots) tend to form a tight cluster that,

as in Garrard et al. (2001), is quite distinct from animals and

artifacts (although ultimately patterning with artifacts rather than

animals). This consistency across studies suggests that the patterns

observed in the aforementioned data will be apparent across a

larger corpus of items and from different data collection methods.

Hence, these are the aspects of structure we have captured in the

verbal descriptions that appear in our simplified model-training

environment.

Assessment of Visual Attribute Structure

To assess the degree of visual similarity that exists among

various objects, we considered data that may be viewed as a

visuospatial version of the attribute-listing task. Instead of verbally

listing object properties, participants were asked to draw them. We

then investigated the tendency for the 64 items from our semantic

battery (all 62 items from Garrard et al., 2001, plus two additional

vegetables) to share visual attributes with the drawings.

The method used to score the drawings was originally designed

to assess the content of drawings produced by semantically im-

paired patients, and it is described in detail by Bozeat et al. (2003).

Briefly, drawings of all 64 items were collected from 8 control

participants. Two independent raters who were blind to the pur-

pose of the study examined the drawings and decomposed them

into lists of visual attributes. For example, in a drawing of a zebra,

the raters might list the properties of body, neck, mane, head, ears,

eyes, tail, legs, hooves, stripes. For each item, properties that were

drawn by only a single control were dropped from the set, and the

remaining properties were concatenated into a single list. Because

we wanted to assess the visual similarities that exist among items

in the battery independent of the words used to describe their parts,

we examined the visual feature lists side-by-side with the original

drawings. Visual features that had been labeled with different

words but that were judged to be similar in appearance were

classified as instances of the same feature, whereas those that had

received the same label but were judged to be visually dissimilar

were classified as distinct features.

From this large set of visual properties, we constructed a score

sheet of the features appearing across all 64 items. Each individual

drawing was then scored by ticking off the visual features that

could be identified within it, yielding a vector of visual features for

each drawing. The visual similarity between each pair of items was

then calculated from the visual feature overlap, just as was done

for the verbal attribute lists described previously.

Figure 2C shows the mean distribution of visual features across

the shared–distinctive continuum for animal, artifact, and fruit

categories. For animals, the majority of features were shared by

category members, and there are relatively few distinctive prop-

erties on average. By comparison, artifacts and fruits are visually

less complex, both having far fewer visual properties overall; and
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both groups have far fewer properties shared by members of the

same domain.

A hierarchical clustering analysis of these data is shown in

Figure 2D. There are three points to note. First, the algorithm

successfully discriminated animate from inanimate objects (i.e.,

artifacts and fruits), which suggests that these broad groupings are

apparent from the visual appearance of the items alone. Second, in

contrast to the verbal attribute-listing results, fruits were not well

differentiated from the artifacts in this dataset. Third, animal

subgroups are again well differentiated, whereas artifact subgroups

are not: The individual birds are quite distinct from the individual

land animals. In the domain of artifacts, the clustering algorithm

identified several poorly differentiated clusters that do not corre-

spond well to intuitive semantic categories.

The analysis suggests that, for the items we have examined,

visual resemblances largely recapitulate information about simi-

larity relations apparent from verbal attribute-listing studies: Man-

made objects can be reliably discriminated from animals, more

specific subcategories may be reliably discriminated within the

domain of animals but not artifacts, more visual features are shared

across animals than artifacts or fruits, and artifacts are less similar

to one another as a group than are animals or fruits and vegetables.

However, an important difference was found in the case of fruits

and vegetables: Rather than comprising a distinct cluster well-

separated from animals and artifacts, these items were not well

differentiated from the man-made objects on the basis of visual

features. The results thus suggest that, although visual appearances

and verbal descriptions may provide useful sources of information

about semantic similarity relations, the two channels can yield

somewhat incongruent information for certain kinds of objects. In

the simulation work, we see how this incongruity can lead the

semantic system to acquire internal representations for such ob-

jects whose similarity relations differ from those expressed in

either modality independently.

Constructing a Model Environment

On the basis of these analyses, we constructed a simple virtual

environment to train the model, which captured the important

aspects of structure apparent in visual appearances and verbal

statements for the categories of animals, artifacts, and fruits. The

environment consisted of 48 objects, half corresponding to living

things and half to artifacts. These broad domains were further

subdivided into the categories birds, mammals, fruits, vehicles,

household objects, and tools. Associated with each item was a set

of visual attributes, a name, and a verbal description, which were

generated as follows.

Visual Representations

To create visual representations, we began with prototype pat-

terns1 for each of the six categories in the model’s environment,

shown in Figure 3. The prototypes were created to capture the

finding from the norming data that some visual properties are

likely to be shared by most items in a semantic domain, some are

likely to be shared by items in the same subcategory within a

domain, and others are likely to be idiosyncratic to individual

items. The plus-marks in Figure 3 indicate visual properties that

are likely to be observed in members of the category. Among the

animal properties, some units are common to all animals, some are

1 Our use of the word prototype is intended to refer only to the general

pattern from which individual instance patterns were generated for the

model and not to a supposed representational construct.

Figure 3. Prototype feature vectors used to generate visual (top) and verbal (bottom) representation patterns for

the model. Plus signs indicate units likely to be active for items in the category (turned on with p � .8), zeros

indicate idiosyncratic units that are less likely to be active for items in the category ( p � .2), and dashes indicate

units that are never active for items in the category. hh � household.
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common only to the bird or the mammal categories, and others are

idiosyncratic to individual items. Among the artifact properties,

two are common to all artifacts, four are common to the vehicles,

two are common to the tools, and the remaining properties are

assigned as idiosyncratic. No property is held in common between

animal and artifact items. Finally, the prototype for fruit items

indicates that the fruits are likely to share five properties with one

another, to share one visual property with artifacts generally, and

to share one visual property with the tools.

To generate unique patterns to represent individual items in each

category, we applied a mild distortion to the category prototype:

Taking each feature in turn, we altered its state with likelihood 0.2.

Thus, it was possible for a property typically shared by animals to

be turned off for a particular animal (corresponding, for instance,

to an animal with no legs, such as a snake) or for a property shared

by birds (such as wings) to be turned on for a particular nonbird

animal (e.g., a bat). This distortion was also applied to the idio-

syncratic units: Each idiosyncratic unit appropriate to the domain

was turned on with probability 0.2 to give each instance some

unique identifying features. Eight exemplars were generated in this

way for each of the six categories, with the added constraint that

no two objects could have identical visual or verbal representa-

tions. For the category of fruits, the distortion of the prototype was

applied solely across the artifact–fruit properties, to ensure that

individual fruits were visually more similar to the artifacts than to

the animals.

Verbal Representations

Verbal descriptions were created in the same manner as visual

representations but with different prototype patterns shown in

Figure 3. The prototypes are divided into different pools for visual,

functional, and encyclopedic verbal descriptors. As noted previ-

ously, these distinctions have no functional consequence in the

model. We arranged them this way to indicate that all verbal

descriptors, regardless of the kind of information they refer to, are

coded in the same manner. In contrast to the visual prototype, the

verbal prototype for the fruits shares some properties with each of

the other categories including the birds and the mammals. To

generate individual fruit items, all properties in this prototype were

distorted with likelihood 0.2, so that individual fruits could share

idiosyncratic properties with both artifacts and animals. Both of

these measures served to render fruits somewhat distinct from both

animals and artifacts.

Finally, we ensured that there existed one verbal attribute that

uniquely identified each of the categories (bird, mammal, vehicle,

household object, tool) and domain (animal, artifact, fruit). These

were intended as analogs of predicates that describe groupings of

objects at different levels of specificity (e.g., is living, is man-

made, lives on land, etc.), which would allow us to simulate

sorting tasks as described in the next section.

This procedure provided us with a simple means of capturing

the various aspects of similarity structure identified from the

norming data reviewed in the previous section. Hierarchical cluster

plots of the visual and verbal input representations are shown in

the top and bottom parts of Figure 4, and the distribution of visual

and verbal properties by distinctiveness is shown in the middle of

this figure. For purposes of comparison to the norms discussed

previously, note the following:

1. On the basis of property overlap, animals are distinct

from artifacts in both input modalities.

2. Subcategories are distinct from one another within the

domain of animals, but are less so within the domain of

artifacts, in both modalities.

3. Animals are more similar to one another as a group than

are artifacts.

4. Animals have a greater proportion of shared properties

than do artifacts in both modalities.

5. The category of fruits forms a distinct cluster in the

verbal-feature inputs, separate from both animals and

artifacts, but is integrated with the artifact items in the

visual-feature inputs.

Naming in the Model

In addition to visual attributes and verbal descriptors, each item

was also given a name. In assigning names to objects in the

model’s environment, we considered two issues. First, although a

given item may be named at any of several levels of specificity,

participants in free-naming experiments are typically fairly con-

sistent with respect to the level of specificity they choose for a

particular item (e.g., they are likely to choose “dog” instead of

“animal” or “collie”; see Brown, 1958). Second, the level of

specificity at which participants prefer to name can vary across

items. For example, robins, sparrows, and blue-jays are usually

named as birds in confrontation-naming tasks with nonexperts

(Rosch et al., 1976), whereas atypical but familiar category exem-

plars (like ducks, penguins, and ostriches) are usually named at

this more specific level (Jolicoeur, Gluck, & Kosslyn, 1984) and

completely unfamiliar objects may be named at a more superor-

dinate level (e.g., wildebeests, ocelots, and marmosets may simply

be named as animals).

To capture both of these aspects of naming behavior in the

model, we assigned each item a single label, corresponding to the

name it would be given in a free picture-naming task. However,

across instances, the level at which an object was named could

vary. For example, among the birds, three were given the same

basic name (bird), and five were given a more specific name

(chicken, raven, swan, ostrich, and penguin). Similarly among the

mammals, five were assigned unique basic names (cat, dog,

mouse, goat, and pig) and three were given the same superordinate

label (animal); among the tools, five were given unique basic

names (hammer, screwdriver, wrench, saw, drill), and three were

given the superordinate name tool; and among the vehicles, five

were given specific names (car, lorry, boat, sledge, train), and

three were given the general name vehicle. Household objects and

fruits were given a unique basic name and no more general name.

When required to name an item from verbal description or visual

input, the network was trained to activate a single name unit

corresponding to the verbal label the item was assigned.
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Second, the network was required to produce either a verbal de-

scription or a visual representation when given a name as input.

Although most names uniquely identify a particular object in the

network’s environment, the four general labels (bird, animal, vehicle,

tool) included in the training set do not. When one of these more

general names was used as input, we trained the model by presenting

it with a target pattern selected at random on each trial from among

the set of items to which the name applied. For example, whenever the

model was given the word animal as input, an individual animal was

selected at random from among the 16 birds and mammals, and its

target values were applied to visual and verbal units. As a conse-

quence, the model learned to generate visual and verbal properties

common to most animals when given the name animal as input. The

names bird, tool, and vehicle were treated the same way.

Figure 4. A: Similarities revealed by a hierarchical cluster analysis on the verbal input patterns constructed for

the model. B: Mean distribution of features by distinctiveness for the verbal patterns. C: Mean distribution of

features by distinctiveness for the visual patterns in the model. D: Hierarchical cluster analysis of the visual input

patterns.
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Learning, Processing, and Representation in the Intact

Model

Training Details

All units in the network were assigned a fixed, untrainable bias of

�2, a parameter that has the effect of deducting 2 from each unit’s net

input. Thus, in the absence of input, each unit’s activation settles to

the low end of its activation range (approximately 0.19).

In each training trial, the model was presented with either a

single name, a visual pattern, or a verbal pattern as input. Units in

the corresponding input layer were hard-clamped to their input

values, and the network was permitted to cycle for three time steps

(in each time step, all units update their states four times). Inputs

were then removed, and the model was permitted to cycle for two

more time steps, at which time target values were applied across all

visual and verbal units in the model, including the units acting as

input during the trial. The model was permitted to cycle for two

more time steps, recording the error on the relevant target units, at

which point the error derivatives for all the weights in the network

were calculated and the weights adjusted by a small amount to

improve performance.

Every training pattern appeared once in each epoch, with the

order randomized within epochs. The model was trained with a

learning rate of 0.005, without momentum, and with a decay

parameter set to 0.001 to prevent individual weights from growing

disproportionately large. Training proceeded for 400 epochs, at

which point the model had learned to generate a steady state for all

inputs in which all verbal and visual units were within 0.05 of their

target states.

Semantic Representation and Performance in the Intact

Model

When the model has finished learning, it can take an input

representation in any surface form (name, description, or image)

and settle into a steady state in which all of the visible units are in

the appropriate states. Associated with each input is a unique

attractor state, corresponding to the appropriate pattern of activity

across all visual and verbal units and some abstract pattern of

activity across hidden units. Although the network is not trained to

produce any particular pattern of activity across its hidden units,

the representations it derives from the learning algorithm are

structured in interesting and useful ways.

Figure 5 shows the results of a hierarchical clustering analysis

performed on the network’s internal representations for all of the

name inputs. The four general names are printed in uppercase

letters. There are three points of interest to note. First, aspects of

similarity structure apparent in both verbal and visual modalities

are recapitulated in the model’s internal representations: Animal

and artifact domains are well separated from one another, and

subcategories within the domain of animals are also well differ-

entiated, whereas subcategories of artifacts are less so. Second, the

model has learned representations of general words that are similar

to the individual item representations to which the general word

applies. For example, its representation of bird is similar to its

representations of chicken, raven, and so on. Third, the model has

discovered representations for the fruit items that capture similar-

ity relations not expressed in either the visual or verbal modality

independently. Recall that, on the basis of verbal descriptions,

fruits appear to constitute a separate cluster that is well separated

both from artifacts and animals (although slightly more similar to

animals; see Figure 4). On the basis of visual appearance, fruits are

integrated with the cluster of artifacts. The model has learned

representations of fruits informed by both of these structures. In

Figure 5, the fruits form a cluster that is well separated from both

artifact and animal items but that is considerably more similar to

the artifacts than to the animals. Although not shown, visual inputs

give rise to similarly structured internal representations.

Why are the model’s learned internal representations structured

in this way? The reason is that the information about similarity

Figure 5. Hierarchical clustering analysis of the model’s learned internal representations, with Euclidean

distance as the measure of similarity. General names, which apply to more than one individual item in the

training environment, are indicated with uppercase letters.
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available to the semantic units, in its inputs and in the target signals

that drive learning, is always filtered through the visual and verbal

perceptual channels. Objects that have overlapping visual at-

tributes, and that are described with overlapping sets of proposi-

tions, contribute similar inputs and targets to the semantic system

throughout training. Such items produce similar weight changes

throughout the network, with the consequence that they continue to

generate similar internal states during training. Items that share

few verbal descriptors and have different visual appearances con-

tribute different inputs and targets to the system, and they generate

differing internal representations (Rumelhart & Todd, 1993; Plaut,

2002; McClelland & Rogers, 2003; Rogers & McClelland, in

press). When the model has learned, its representations recapitu-

late in abstract form the similarities among objects that are appar-

ent across both domains. When different input modalities capture

somewhat discrepant similarities among the same set of items (as

is the case for the fruits), the structure apparent across the two

modalities can differ from that expressed in either modality alone.

The ability of connectionist networks to extract and represent

the similarity relations latent in their inputs and outputs has been

treated extensively elsewhere (Hinton, 1986; Rumelhart & Todd,

1993; Rogers & McClelland, in press). The application of these

ideas to the domain of semantics in the current simulation is of

interest for the following reasons.

First, the simulation demonstrates that information about simi-

larity that is apparent from verbal descriptions and drawings of

objects is sufficient to support the acquisition of representations

that capture intuitions about semantic similarity relations for ani-

mal and artifact categories. This is not particularly surprising,

because the visual and verbal representations constructed for the

model directly encoded these similarities. Indeed, several investi-

gators have used attribute lists as the basis for constructing seman-

tic representations in similar models (Cree, McRae, & McNorgan,

1999; Tyler et al., 2000). In our model, however, the semantic

representations do not code these features explicitly. The activa-

tion of a given hidden unit does not directly correspond to an

attribute such as has eyes or can reproduce, for instance. Instead,

the hidden units may be understood as semantic units solely by

virtue of the function they subserve: intermediating between visual

representations and verbal statements and/or names. There is no

explicit semantic store, except insofar as the configuration of

weights permits the system to produce the appropriate response

when probed with a particular input (see also Rogers & McClel-

land, in press). To determine what the model “knows,” it is

necessary to determine what visual or verbal responses it generates

when given particular inputs; and we believe the same is true for

the human semantic system. Thus, we propose that semantic

representations are defined with reference to the function that they

perform and not the content that they encode.

We believe that this approach represents an advance over

feature-based models for two reasons. First, it circumvents certain

difficulties of interpretation that are raised whenever semantic

features are invoked. Which of an object’s properties count as

semantic and which are merely perceptual? Which are sufficiently

useful or important to be included in a feature-based semantic

representation? Should the dog’s bark and the cat’s meow count as

different semantic features or as different instances of the same

feature (e.g., makes a distinctive sound)? Such questions are crit-

ical to feature-based theories, but they are rendered moot when the

representation units are not themselves construed as encoding

interpretable information. Second, abstract semantic models are

constrained to be somewhat more explicit about how particular

semantic tasks are carried out. Because the activation of semantic

units is not itself interpretable, the model must incorporate addi-

tional representations and processes designed to explain how se-

mantic representations receive input and generate output. In prin-

ciple, such constraints can allow the approach to address empirical

phenomena from particular tasks in somewhat more specific detail,

as we show in the next section.

The second point of interest raised by the model is the demon-

stration that the extraction of structure across modalities can lead

to the discovery of new representational structure not reflected in

either modality independently. The demonstration is important

because it addresses the common-sense objection to association-

based theories of semantic knowledge acquisition—semantic sim-

ilarity relations are not always evident for all classes of objects

from their visual appearances or from other perceptual informa-

tion. Indeed, the utility of representational structure in semantics

(under any theory) seems to lie precisely in the fact that semanti-

cally related items may be treated as similar, even when they have

few directly perceptible properties in common. We believe that

such useful similarity relations do consist in overlapping percep-

tual inputs, provided that these similarities are assessed across all

modes of perceptual experience including language and across a

broad range of episodes and events. Taking this perspective, the

simulation illustrates how simple perceptual-learning mechanisms

can give rise to representations whose structure differs from that

apparent in any individual modality.

Finally, the particular representations discovered by the net-

work, because they derive from training patterns modeled on the

norming data described earlier, provide a basis for interpreting and

predicting behavior in semantic tasks that use stimulus items from

animal, artifact, and fruit categories. In the following section, we

consider how the model can account for a range of phenomena in

the study of disturbed semantic cognition by focusing on three

aspects of the model’s behavior that depend on the structure of the

internal representations it acquires: (a) the high degree of similar-

ity structure within the domain of animals relative to artifacts and

the influence of such structure on the behavior of the model as the

knowledge stored in its weights is degraded; (b) the mappings

acquired by the model between its internal states and particular

visual and verbal attributes, with an emphasis on understanding

how the interactions between semantic and peripheral representa-

tions affect the model’s behavior under damage; and (c) the

implications of the counterintuitive suggestion that fruits are rep-

resented as similar to artifacts, despite sharing some important

properties with animals.

Understanding the Structured Deterioration of Conceptual

Knowledge in Semantic Dementia

In this section, we consider the behavior of patients with se-

mantic dementia on each of four common tests of semantic mem-

ory: confrontation naming, word and picture sorting, word-to-

picture matching, and drawing. A comparison of performance

across the four tasks reveals remarkably consistent patterns in
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patient performance, which we take to reflect representational

structure and processing mechanisms similar to those embodied in

our model. To illustrate why, we also examine the model’s per-

formance on analogs of the same tasks, under simulated lesions of

varying severity. In each case, we see that the model allows us to

explain the patterns apparent in the patient data and that the

explanation proffered by the model leads to new predictions about

patient behavior.

Confrontation Naming

The most pervasive and self-evident impairment observed in

semantic dementia is a marked anomia that grows increasingly

severe as the disease progresses. Patients exhibit profound word-

finding difficulties, and the patients’ confrontation naming is dom-

inated by two types of production errors. First, patients often

produce a name that is correct but is more general than the label

usually given by age-matched controls for the same object (e.g.,

animal instead of dog), which suggests that superordinate category

names are more robust than are more specific labels (Hodges et al.,

1995; Warrington, 1975). Second, highly familiar or typical names

are often inappropriately extended to semantically related objects

(e.g., dog for pig, goat, and sheep; Hodges et al., 1995).

These patterns have been well documented in longitudinal case

studies and cross-sectional group studies (Lambon Ralph, Graham,

Ellis, & Hodges, 1998; Lambon Ralph et al., 2001; Schwartz et al.,

1979; Snowden et al., 1989; Warrington, 1975). In the first exper-

iment of the current work, we analyzed the longitudinal naming

performance of 15 patients with semantic dementia to determine

how the distribution of observed naming errors varies as a function

of the severity of semantic impairment.

Patient Method

Except where noted, all patients in this and subsequent experiments were

identified at the Memory and Cognitive Disorders Clinic at Addenbrooke’s

Hospital, Cambridge, United Kingdom, and were diagnosed according to

criteria described previously (Hodges et al., 1992, 1995). Specifically, all

patients presented with anomia, impairment in single word comprehension,

and impoverished semantic knowledge, with relative preservation of pho-

nology, syntax, visuospatial abilities, and day-to-day memory. Structural

brain imaging by magnetic resonance imaging showed focal atrophy that

involved the polar and inferolateral regions of one or both of the temporal

lobes in all cases.

Naming was assessed using the 48 line drawing from the original

Hodges semantic battery (see Hodges, Salmon, & Butters, 1992), which

depicts items drawn from three categories of animate objects (birds, water

creatures, and land animals) and three categories of artifacts (household

objects, vehicles, and musical instruments). Patients were shown each

drawing in a random order and were asked to name it. Responses were

classified as (a) correct when the patient gave the same response typically

provided by controls, (b) a superordinate error when the patient gave a

correct but more general response than that provided by controls, (c) a

semantic error when the patient gave an incorrect response from the same

semantic domain as the correct response, (d) a cross-domain error when the

patient gave an incorrect response from the wrong semantic domain, and

(e) an omission error for all remaining errors.

The vast majority of omission errors were cases in which the patient was

unable to provide any name for the objects (although sometimes they

would attempt to describe it). A very small number of visual errors were

also grouped into this category.

Each patient was tested at least once, and in most cases patients were

tested several times over a span of several years. On average, each patient

participated in 3.8 testing sessions; the greatest number of testing sessions

with a single patient was 10. The total number of sessions across patients

was 57.

Model Method

To simulate the cortical atrophy underlying semantic dementia, we

simply removed an increasing proportion of all the weights in the model,

a choice motivated by the fact that all weights are either intrinsic to the

semantic layer or project into or out of this layer. To simulate confrontation

naming, we presented the model with the visual input pattern correspond-

ing to one of the items in the model’s environment, allowed the model to

cycle for three time steps, then removed the inputs and let the model settle

to a steady state. We chose as the model’s response whichever name unit

was most active above a threshold of 0.5. If no unit exceeded this threshold

by the time the network settled, it was considered to have given no

response. Under this procedure, the trained, undamaged network always

yielded the correct response.

The model was tested only with those items in its environment that had

been assigned a unique specific name, excluding the fruits (which were not

included in the patient testing materials). The model’s and the patients’

responses were classified in the same way. The trained model was lesioned

100 times at each of five levels of increasing severity, and the data were

averaged across the runs at each level to ensure that the results did not

depend on a chance lesioning of particularly informative weights (see

Plaut, 1995, for discussion).

Results: Naming Errors for All Items

To examine how response patterns varied with severity of

impairment on average, we tabulated the patient data in the fol-

lowing way. The results from a given patient in a single testing

session were treated as an independent observation, and all such

observations were divided into quartiles on the basis of the pa-

tient’s overall naming accuracy during that testing session. Fifty-

seven total observations were collected from 15 individual pa-

tients; hence, each quartile contained 14 observations, except for

the lowest, which contained 15. Within each quartile, the total

number of responses of each type (correct, superordinate error,

semantic error, cross-category error, or omission error) was cal-

culated across all items and patients. We then converted these

sums to proportions by dividing them by the total number of

naming responses made by all patients within the quartile.

The left side of Figure 6 shows proportions of each of the four

error types plotted against overall naming accuracy (by quartiles)

for the patients. The right side shows the same data for the model,

also plotted against accuracy at the points where the model’s total

proportion correct most closely matched that of the patients in each

quartile (with 10%, 20%, 25%, and 35% of connections lesioned,

respectively).

The patients and the model show a qualitatively similar pattern

of behavior: As the degree of impairment increases, so do the

observed proportions of omission errors and to a lesser degree

superordinate errors. By contrast, semantic errors initially rise with

severity but then decline, with patients in the fourth quartile

making fewer semantic errors on average than patients in the third.

Relatively few cross-domain errors are observed at all.

The increasing proportion of omissions observed in the model’s

naming behavior results from the mappings the model has learned
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between its internal representations and the various name units. To

name correctly, the model must activate a single unambiguous

name unit when its internal state is proximal to a given item’s

representation, but it must refrain from activating this unit in

response to other items in the immediate representational neigh-

borhood. For example, the name zebra applies to the zebra, but not

to other animals that receive similar representations in the model.

Hence, the trained model activates this name only when its internal

state is very similar to the learned representations of zebra. When

the model’s internal representations degrade as a consequence of

lesioning some of its connections, the attractor into which it settles

when given a visual input may drift out of the limited region of

representation space from which it has learned to produce the

correct naming response, and the model fails to activate the correct

name unit or indeed any other.

Errors of commission result in the model as a consequence of an

asymmetry in the vulnerability of idiosyncratic relative to general

semantic information, coupled with the recurrent processing dy-

namics assumed by the theory. As the system’s internal state drifts

away from the circumscribed region to which an idiosyncratic

property applies, the attractor corresponding to the item’s repre-

sentation may collapse, and the model can fall into a neighboring

attractor. For example, to maintain stable internal states that dis-

tinguish zebra and horse representations, the semantic system must

engage interactions with peripheral layers in which the visual

features and verbal descriptors that differentiate zebras from

horses are activated (e.g., has stripes). However, the features that

are specific to the zebra, and not shared by the horse, are only

active when the model’s internal state is proximal to its learned

representation of zebra. If, as a result of damage, the model moves

away from this state when given the input for zebra, it generates

patterns across visual and verbal layers that are indistinguishable

from the patterns appropriate to the horse, and recurrent processing

pushes the model’s internal state toward its representation of horse

instead of zebra. As a consequence, under moderate amounts of

damage, the model occasionally produces an incorrect but seman-

tically related name.

This account explains not only the increasing proportion of

omissions and semantic errors with moderate semantic impairment

but also the observed drop-off in semantic naming errors with

severe impairment. With increasing damage, the model becomes

unable to generate any information that individuates items from

the same broad domain, and representations within a given domain

collapse into a single general attractor from which the model

produces only those properties common to the majority of items in

the domain. From this degraded state, the model is unable to

generate any individual name. However, the state is similar to that

produced in the intact network by very general category names

(e.g., animal, bird, tool, vehicle), and so even under severe

amounts of damage the network is occasionally capable of pro-

ducing these labels as output. The model never names an object

with a completely unrelated label, because such names apply only

to objects with very distal internal representations.

We should note that the naming performance of patients with

semantic dementia is strongly influenced by concept familiarity

and word frequency. We did not manipulate these parameters in

the simulation, because we were primarily concerned with dem-

onstrating effects of representational structure on naming in the

model. Much past research, however, has shown that neural-

network models that acquire internal representations are also

strongly sensitive to frequency information, and in general we

Figure 6. Picture-naming responses from averaged patient data and from the model, plotted against overall

accuracy. Model responses were obtained with 10%, 20%, 25%, and 35% of connections lesioned. Semantic errs.

� semantic errors; Superord. errs. � superordinate errors; Crossdom. errs. � cross-domain errors.
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would expect such effects in the model to parallel those observed

in patient data (see e.g., Rogers & McClelland, in press).

Prediction: Naming Errors Should Vary in Different

Domains

The explanation of naming errors offered by the model relies on

the similarity structure of the representations acquired by seman-

tics and the ability of the recurrent processing dynamics to gener-

ate output responses from different regions of the semantic repre-

sentation space. One prediction offered by this explanation is that

error types should vary depending on the density of the semantic

neighborhood. Specifically, domains with a high degree of simi-

larity structure offer more opportunities for the semantic system to

be “captured” by incorrect attractors and, hence, more opportuni-

ties to make errors of commission. Unstructured domains offer

fewer such opportunities, and consequently we would expect to see

a greater proportion of omission errors in such domains.

Results: Naming Errors by Domain

To test this prediction, we tabulated the proportion of errors of

each type separately for animal and artifact items in the model and

in the patient data. Both are shown in Figure 7. The model data

confirm the intuitions articulated earlier: As damage increases,

errors of omission are more likely to occur in the domain of

artifacts at all levels of severity, whereas errors of commission

Figure 7. Picture-naming errors split by domain (animals and artifacts) for the model and for the patient data,

which show qualitatively similar patterns of errors.
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occur relatively more frequently for animal items. The results from

the patient analysis closely match the predictions of the model.

Sorting Words and Pictures

According to the model, errors of commission in naming occur

when the semantic system has difficulty maintaining distinct in-

ternal representations for semantically related items. This expla-

nation is consistent with studies of sorting, which typically find

that semantically impaired patients perform better when sorting

items into more general relative to more specific semantic catego-

ries (Hodges et al., 1995; Warrington, 1975). This suggests that

they have more robust access to information that distinguishes

broad semantic domains than to information that individuates more

specific groupings. As in naming, these results have been reported

in longitudinal case studies and in cross-sectional group studies.

We examine word and picture sorting data collected longitudinally

from a group of patients with semantic dementia to determine how

sorting performance varies with the magnitude of semantic impair-

ment, the level of specificity of the sorting criteria, and the mo-

dality of testing (i.e., words or pictures).

Patient Method

Twelve patients with semantic dementia participated in the picture-

sorting task, and 8 participated in the word-sorting task. As in the

confrontation-naming task, multiple observations were collected from each

patient, but these were treated as independent in the data analysis. Forty-

one total observations were collected across patients in the picture-sorting

task, with a maximum of 10 observations from a single patient. In the

word-sorting study, 23 observations were collected, with a maximum of 7

from a single patient.

Stimuli for the sorting task consisted of the same 48 items used in

confrontation naming, half animals and half man-made objects. Line draw-

ings of the objects were used in picture sorting, and cards with the objects’

names printed on them were used in word sorting. Both tasks used the same

procedure, which included two testing conditions: a general sorting and a

specific sorting condition. In the general sorting condition, patients were

asked to sort all 48 items into the categories living thing and man-made

object. In the specific condition, they first sorted the animals into the

categories air creature, land animal, or water creature, and next sorted the

artifacts into the categories vehicle, household object, and musical instru-

ment. In each case, written category labels were placed in view of the

participants and on every trial the experimenter verbally stated the category

name and simultaneously pointed to the corresponding label on the table

top. If the patient was unable or unwilling to make a response, the

experimenter provided a prompt, such as “Do you think this is something

that lives in the water, in the air, or on land?” We scored performance on

each test by calculating the proportion of items that were placed in the

correct category.

Model Method

When we constructed the verbal-description patterns for the model, we

ensured that there was one verbal descriptor that uniquely identified each

semantic domain (living or man-made) and category (bird, mammal, fruit,

vehicle, household object, or tool). These units were intended to stand as

proxies for the verbal category labels provided by the experimenter in the

sorting task. For convenience, we refer to them as domain and category

units, respectively. To simulate sorting, we presented the model with an

input pattern (either a visual image or a name), allowed it to settle, and

inspected the states of the domain and category units to determine to which

group the network assigned the item. For example, to simulate general

picture sorting, the network was presented with a visual input pattern, and

the stimulus was categorized as living or man-made depending on which of

the corresponding domain units was most active. The same procedure was

used to simulate specific sorting, but activation was assessed across the

more specific category units rather than the domain units. Because the

patient experiment did not use fruit items, we excluded these from con-

sideration in the first simulation; however, we consider how the network

sorts fruits in the next simulation. Hence, we assessed sorting in the model

for 16 animals and 24 artifacts at general and specific levels for both words

and pictures under increasingly severe simulated lesions. Fifty damage

trials were conducted, and the results we report are averaged across these

runs.

Results: Sorting at Different Levels

Each patient-testing session was treated as an independent ob-

servation, which yielded a separate score for sorting at general and

specific levels. Patients were ordered according to the degree of

their semantic impairment at the time their sorting behavior was

assessed, as measured by the patients’ word-to-picture matching

score during the same testing session. To examine the central

tendencies of the data across the spectrum of severity, we then

averaged together every four such observations at each level of

specificity, as well as the corresponding word-to-picture matching

score. Thus, each data point shown in the results corresponds to the

average of four individual observations, each having comparably

severe semantic impairment.

The results for both the patients and the model are shown in

Figure 8. The right column shows smoothed patient data plotted

against severity of impairment for sorting both words and pictures

at the general and more specific level of granularity.

There are four aspects of the data to note. First, overall perfor-

mance deteriorates with the severity of impairment. Second, in

both the word- and picture-sorting tasks, patient performance is

less impaired for general relative to specific sorting at all degrees

of severity. Third, picture sorting is more robust than word sorting

at all levels of severity, especially for the general level. Fourth, the

degree of discrepancy between general and specific levels is

greater in the picture-sorting task than the word-sorting task. These

patterns also characterize the simulation data.

The patient data show that the robust preservation of more

general knowledge about objects reported in past studies may be

observed across the spectrum of disease severity in semantic

dementia. The model links the phenomenon to the same factors

that contribute to production errors in naming. The expression and

comprehension of general facts about broad semantic categories

(such as whether an object is living or man-made) is relatively

robust, because the intact system has learned to generate such

information from a broad range of contiguous internal states.

Hence, the effect of damage must be quite severe before the system

begins to generate incorrect verbal information about such prop-

erties. Properties that reliably discriminate narrower categories by

definition span a more restricted range of the representation space

and are more vulnerable to damage, as are specific names.

The model also explains why sorting performance is better for

pictures than for words at all degrees of impairment. Relative to a

picture, a single word provides less constraint on the representa-
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tions that arise in semantics. Whereas individual visual features in

an image can independently provide some information to the

system about an object’s identity, the subcomponents of an indi-

vidual name (such as its constituent letters or phonemes) are not

systematically related to the identity of the object the word denotes

and thus do not provide such constraints. In the model, this

difference is implemented by representing individual words with

single units and representing images with distributed patterns of

activity across visual feature units.2 As a consequence, the rela-

tionship between visual and semantic representations is partially

systematic, in that items with similar sets of visual attributes are

also likely to have similar semantic representations. This systema-

ticity arises in the model because its learned internal representa-

tions derive from the similarities expressed across visual and

verbal inputs: For animals and artifacts, visual images and verbal

descriptions capture the same similarity relations, which are sim-

ply recapitulated in the model’s internal representations. The re-

lationship between individual names and semantic representations,

however, is arbitrary, because single names are represented with

single units in the model. Hence any two individual names are

represented with perfectly nonoverlapping inputs and capture no

degree of similarity. It is this difference in the nature of the

mapping between surface form and conceptual representations that

underpins the difference in performance for word and picture

sorting. Arbitrary mappings are more vulnerable to damage than

are systematic mappings, as has been demonstrated in many other

domains (Lambon Ralph & Howard, 2000; McGuire & Plaut,

1997; Plaut, McClelland, Seidenberg, & Patterson, 1996).

Prediction: Fruits Are Sorted With Artifacts

The explanation of sorting data proffered by the model suggests

that knowledge about the more general semantic properties of

objects may not be more robustly preserved for unusual groups of

objects whose semantic neighbors do not share the property in

question. The category of fruits constitutes one example of such a

group. Although fruits share some general properties with animals

(e.g., they are living, or at least natural kinds, and not man-made),

our model suggests that, by virtue of having visual attributes in

common with simple man-made objects, they may be represented

as more similar to artifacts than to animals by the semantic system.

This suggestion has counterintuitive implications for sorting of

fruits at different levels of specificity. Under damage, representa-

tions of individual fruits may migrate toward artifact representa-

tions and away from representations of other living things such as

animals. If this happens, the system may incorrectly generate

verbal descriptors that are generally true of artifacts when given a

fruit as input, but should rarely generate descriptors appropriate to

animals. In other words, the usual finding that patients are better at

2 In reality, we believe that the arbitrary mapping between individual

words and semantic representations arises from the lack of systematicity

between phonological (or orthographic) surface representations of words

and semantics and not from the local representation of individual lexemes

(e.g., Plaut et al., 1996). However, the use of local word representations in

the model provides a useful proxy for capturing this arbitrary mapping.

Figure 8. Average patient and model data for sorting pictures (top) or words (bottom) at two levels of

granularity, general and specific. WP � word-to-picture.
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sorting into general rather than specific categories should be re-

versed for the category of fruits.

We tested this prediction in the model and in the patients by

replicating the previous sorting experiment with the 64-item se-

mantic battery used by Garrard et al. (2001) that, in addition to

categories of animals and artifacts, includes a category of fruit and

vegetable items. As before, patients were first asked to sort all 64

items into living and man-made categories, and then were asked to

sort items from each domain into more specific categories (land

animals, air creatures, or fruits and vegetables or vehicles, house-

hold objects, and tools). We then tabulated accuracy separately for

fruit items and for animal and artifact items.

Results: Sorting With Fruits Included

Data from the model and from the patients are shown in Fig-

ure 9. As predicted, the model shows a reversal in the tendency for

general information to be more robust than specific information for

the fruit items, both in word and picture sorting. At all levels of

severity, the model performs better at specific relative to general

sorting. For animal and artifact items, the reverse is true, that is,

the usual advantage for the general level applies.

This pattern is also strongly evident in the patient picture-sorting

data. Indeed, the predicted effect is much stronger in the patients

than in the model, with the most severe participants scoring at or

below chance when categorizing pictures of fruits as living or

man-made but at ceiling when categorizing them as land animals,

air creatures, or fruits and vegetables. The predicted pattern is less

clearly apparent in the word-sorting data, although this may be due

partly to the paucity of the data from severely impaired patients.

With only two and three observations in the lowest two quartiles,

there is little power to detect differences in accuracy between

sorting levels. The difference between general and specific levels

was in the predicted direction for the 2 patients in the third quartile

but was not in the most severe quartile.

The magnitude of the effect in the picture-sorting data may

reflect the influence of other perceptual factors that contribute to

representational structure in semantics, which are not implemented

in the model. For example, the actions afforded by fruits, and the

contexts in which they are encountered, may contribute structure to

acquired semantic representations that render them even more

similar to small manipulable artifacts than is captured by our

model (see McRae & Cree, 2002, for evidence supporting this

idea). Nevertheless, the data clearly support the prediction that the

typical pattern of spared sorting for more general semantic cate-

gories may be reversed when the sorting criterion does not map

systematically onto the similarity structure of the domain (as

assessed across multiple modalities).

Word-to-Picture Matching

A third common measure of semantic impairment is the word–

picture matching task, in which patients are presented with a

spoken word and an array of pictures and are asked to choose the

picture that matches the word. Word–picture matching deteriorates

with the disease progression in semantic dementia and correlates

strongly with performance on many other tasks that tap semantic

memory (Patterson & Hodges, 2000; Bozeat et al., 2000). In our

work, and following many other researchers, we have frequently

taken word–picture matching performance as a general measure of

word comprehension under semantic impairment (e.g., Rogers,

Lambon Ralph, Hodges, & Patterson, in press b).

We have suggested that impairments in sorting and naming arise

because patients have difficulty maintaining the distinctions be-

tween items represented as similar in the semantic system. It is

easy to see that this explanation extends to word–picture matching

as well. In this view, both words and pictures give rise to some

internal state in semantics, even when semantic knowledge is

severely degraded. Deficits in word–picture matching arise when

the target word and some or all of the pictures in the array produce

indistinguishable internal states. This explanation supports the

prediction that the comprehension of a given word as assessed by

Figure 9. Model and patient data showing mean proportion correct across

animals and artifacts (An./Art.) or across fruits, with sorting at general

(living/man-made) and more specific (for living things: land animal, air

creature, or fruit–vegetable; for artifacts: vehicle, household object, or tool)

levels for pictures (top) and words (bottom). The dashed lines indicate

chance performance for the general sorting condition. WP � word-to-

picture; Q � quartile.

222 ROGERS ET AL.



word–picture matching may appear to be greatly compromised

when items in the picture array are semantically related to the

target, but it may seem relatively spared when distractor items are

semantically distal to the target. Funnell (1996) has described

results consistent with this prediction: Patient E.P. performed

better at a word–picture matching test when distractors were

unrelated to the target word than when they were drawn from the

same category. In the current work, we tested the prediction using

a two-alternative forced-choice word-to-picture matching para-

digm in which we systematically varied the semantic distance

between the target and distractor items.

Patient Method

Two patients with severe semantic impairments were selected for testing

(M.S. and D.C., described previously by Graham, Lambon Ralph, &

Hodges, 1997, and Lambon Ralph, Ellis, & Franklin, 1995, respectively).

Eighty target stimuli (e.g., duck) were presented to each patient on four

separate occasions, with a close (e.g., penguin), a dissimilar (e.g., frog), a

distant (e.g., goat), or an unrelated (e.g., trumpet) foil. For comparison to

the model data, we report performance in the close, distant, and unrelated

conditions.

On each trial, patients were shown one written word and two line

drawings (selected from a variety of corpora), including the target and one

foil. The experimenter read the word aloud and asked the patient to decide

which of the two pictures matched the word. We scored each trial as correct

or incorrect, and we calculated the mean proportion correct in each distance

condition (close, dissimilar, distant, or unrelated) for both patients. In a

given session, patients saw each target item only once, and the foils in each

semantic distance condition were counterbalanced across sessions. At least

1week elapsed between testing sessions.

Model Method

The task was simulated by presenting the model with a target name as

input and then with a series of visual inputs corresponding to the target and

distractor pictures in the task. In each case, we recorded the states of the

semantic units after the model had settled. We chose as the network’s

response the visual input that generated an internal representation most

similar to that produced by the name (using Euclidean distance as the

measure of similarity).

The model was tested with visual distractors that varied in their degree

of contrast with the target item. In the close condition, the target and

distractor items were drawn from the same category (e.g., both birds). In

the distant condition, the distractor was selected from an alternate category

in the same domain. In the unrelated condition, the target and distractor

were selected from different domains. We tested only those items that were

given a unique name in the network’s environment, and we also excluded

fruit items as these did not appear in the patient-testing materials. In all

conditions, we tested every possible pairing of target and distractor and

calculated the proportion of trials on which the model performed correctly.

Because there are a larger number of artifacts than animals that have a

uniquely identifying name (18 instead of 10), we first calculated the mean

proportion correct within these domains, and then averaged these propor-

tions (to balance the influence of animal and artifact items). We again

performed the simulation 50 times at each level of damage and report the

model’s average behavior across these trials.

Results

The left panel of Figure 10 shows the model’s performance

longitudinally, when semantic distractors are chosen from the

close condition (as is typically the case in word–picture matching

tests). Its performance deteriorates with increasingly severe le-

sions. The middle panel shows the model’s performance in all

three conditions when 20% of its connections have been lesioned,

and the right panel shows the mean accuracy in each trial condition

for M.S. and D.C. Both patients and the model performed the

worst for trials that required them to differentiate objects at a

specific grain, they were best when required to differentiate unre-

lated objects, and they were somewhere in between in the inter-

mediate condition.

The patient data suggest that word comprehension under seman-

tic impairment is not an all-or-none phenomenon, with particular

words losing all meaning as the concepts to which they refer

Figure 10. Word-to-picture matching data for model and patients in a two-alternative forced-choice paradigm

in which the distractor varied in its semantic relatedness to the target. The left panel shows longitudinal

performance of the model in the close condition; the middle panel shows performance of the model in all three

conditions when 20% of its connections are lesioned; and the right panel shows cross-sectional data from patients

M.S. and D.C. in all three distance conditions. The dashed vertical line in the left panel indicates the point at

which the cross-sectional data in the middle panel were taken.
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degrade, but is somewhat more graded in nature. The distributed

representations that inhere in the model provide a natural way of

thinking about this phenomenon. All verbal and visual inputs give

rise to some internal state in semantics. When knowledge de-

grades, this state may deviate strongly from the correct represen-

tation, but it still carries with it information that may be used in

comprehension. Although the recurrent dynamics familiar from

previous simulations lead the degraded system to generate similar

internal states for semantically related objects, items from very

different semantic domains continue to produce discriminable rep-

resentations in semantics until very late in the disease progression.

In this sense, words and pictures continue to generate “meanings”

even when knowledge is severely degraded, but the meanings

derived for semantically related objects grow increasingly indis-

tinguishable from one another.

Drawing and Delayed Copying

Thus far, we have considered tasks that tax verbal production

and verbal and visual comprehension. In the final set of experi-

ments, we consider a semantic task that requires the production of

visual information, namely drawing and copying of line drawings

of objects. Drawing is widely used as a clinical assessment tool for

investigating such disorders as constructional apraxia or neglect,

but it has been rarely used to test semantic memory. A few studies

have revealed that patients with semantic dementia can have great

difficulty producing drawings of meaningful objects when given

their name or when required to copy them under conditions of

delay (Lambon Ralph & Howard, 2000; Lambon Ralph, Howard,

Nightingale, & Ellis, 1998). A full assessment of drawing was not

the primary aim of these experiments, and the data they report

were not analyzed quantitatively. In this section, we describe one

attempt at such an assessment and consider whether the patterns of

behavior we have seen in naming, sorting, and word–picture

matching may also be found in drawing.

1. Are the rates of omission and commission errors different

for items in different semantic domains, as has been

shown in naming?

2. Is specific visual information more vulnerable than in-

formation about visual properties shared by items in the

same domain, as found in naming, sorting, and word–

picture matching?

3. Are intrusions in drawing more likely to occur for visual

properties shared among an item’s semantic neighbors, as

suggested by our account of production errors in naming?

Patient Method

Data were collected in conjunction with another drawing study con-

ducted simultaneously, which is described in detail in Bozeat et al. (2003).

Drawings were solicited from 4 control participants and 3 semantic de-

mentia patients under three task conditions: immediate copy, in which the

participant was permitted to look at the stimulus while drawing it; delayed

copy, in which the participant was asked to reproduce the drawing from

memory after counting from 1 to 15; and drawing to name. Control

participants were 4 volunteers recruited at the Medical Research Council,

Cognition and Brain Sciences Unit in Cambridge, who were matched in

age to the patients. The 3 patients, (D.S., D.C.,3 and I.F.) were selected as

representative of the early, middle, and late stages of the progressive

disorder, respectively. Drawings were collected in several sessions over the

course of a year. We assessed both the patients’ and the control partici-

pants’ ability to draw 56 items taken from two animal categories (16 land

animals and 8 birds) and 3 artifact categories (16 household objects, 8

vehicles, and 8 tools). These were the same items used to test sorting,

excluding the fruits (see Bozeat et al., 2003, for further detail).

Both patient and control data were scored using the same visual feature

score sheets used to assess visual feature overlap in the Assessing Verbal

and Visual Structure in the Environment section, above. Any visual feature

on the score sheet that could be identified in a given drawing was checked

off on the score sheet. Features that appeared in a drawing but that could

not be identified were noted separately, but such features were rare both in

the control and patient data and are not considered further. Thus, the visual

features that appeared in each individual drawing were coded in a vector of

length 279, with each element indicating whether a particular feature was

evident in the drawing.

The patients’ performance was assessed relative to the control data in the

following way. For each item, we examined the four control drawings and

discarded any features that were included in some control drawings and not

others. The remaining features were designated as targets if all four

controls included the feature in their drawings and as nontarget features if

the feature was omitted by all four controls. For example, the feature eye

was designated as a target feature for drawings of individual animals and

as a nontarget feature for drawings of individual artifacts.

The features appearing in each patient drawing were then classified in

the following way: (a) as correct if it was a target feature that the patient

included (e.g., drawing wings on a swan), (b) as an omission if it was a

target feature that the patient failed to include (e.g., drawing a swan without

wings), and (c) as an intrusion if it was a nontarget feature that the patient

included (e.g., drawing four legs on a swan).

Model Method

To simulate drawing from long-term memory in response to an object’s

name and delayed copying in the model, we gave the network an input

(either a name or a visual pattern), allowed it to cycle for three time steps,

and then removed the inputs and allowed the model to settle to a steady

state. We then examined the pattern of activity across visual units and

considered the network to have “drawn” those attributes whose activity

exceeded a threshold of 0.5. The model’s performance was scored in a

manner analogous to the patients’ performance. Target features were

defined as those visual units activated by the intact network for a given

item, and the remaining visual units were considered nontarget features.

For each stimulus, features were classified as correct, an omission, or an

intrusion, exactly as was done for the patient data. In the drawing task, the

model was only assessed on those name inputs that uniquely identified a

given item.

In the model, the presentation of a stimulus is simulated by hard-

clamping the corresponding input units. The analog of the immediate copy

task in the model, then, would be to look at the states of the visual units

while they are hard-clamped in the damaged model and to compare them

to the hard-clamped states of the same units in the intact model. However,

because the model is always given the correct input, it would always be

right in this case. For this reason, we report the model’s performance on

just the drawing and delayed copy tasks.

3 The patient D.C. reported here is not the same patient D.C. reported in

the word-to-picture matching study in the Word-to-Picture Matching sec-

tion, above.
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We tested the model’s drawing and delayed copy performance 50 times

at each of three levels of damage. The data reported here are averaged

across these runs.

Results

Overall accuracy by task. To assess overall accuracy, we

calculated the total number of errors (omissions and intrusions) for

each picture, for both the model and the patients. The results are

shown in Figure 11. The patients made comparatively few errors in

the immediate copy task, which demonstrates that they have visuo-

spatial and executive resources sufficient to the task. All patients

made considerably more errors in the delayed copy and drawing-

to-name tasks.

The data were assessed with a univariate analysis of variance

(ANOVA) in which each picture was treated as a single data

record, with the total number of errors per picture as the dependent

variable and with task (immediate copy, delayed copy, or drawing)

and patient (D.S., D.C., or I.F.) as fixed, independent between-case

factors. There was a strong main effect of drawing condition, F(2,

425) � 96.4, p � .001, with all 3 patients making the fewest errors

in the immediate copy condition, significantly more errors in the

delayed copy condition (post hoc contrast of marginal means, p �

.001), and the most errors for the drawing-to-name condition ( p �

.001, compared with the delayed copy condition). There was also

a strong main effect of patient, F(2, 425) � 49.5, p � .001, with

best performance for the least severe patient (D.S.) and worst

performance for the most severe case (I.F.). This effect of severity

interacted significantly with task condition, F(4, 425) � 8.5, p �

.001, with all patients performing relatively well in the immediate

copy condition but differently from one another in the other two

tasks. The model shows a qualitatively similar pattern of results.

Omissions and intrusions by domain. Our earlier consider-

ation of naming revealed that semantic dementia patients were

more likely to make errors of commission when naming animals

and errors of omission when naming artifacts. The model suggests

that this behavior arises when the semantic representations gener-

ated by a visual stimulus drift from the correct state into neigh-

boring attractors, from which the system has learned to produce

information that is inappropriate to this stimulus. If this explana-

tion is correct, we should expect to see similar domain differences

in the production of visual information in drawing: more omissions

for artifacts and more intrusions for animals.

To test this prediction, we tabulated the proportion of features

that were omitted in each model “drawing” and in each actual

patient drawing, as a proportion of the total number of target

features present in the item drawn. Figure 12 shows this proportion

averaged separately for animal and artifact items, across 50 trials

of damage at each level of severity for the model and for each

patient.

Both the model and the patients show an increasing tendency to

omit visual properties as knowledge degrades. A greater propor-

tion of attributes are omitted in the drawing task than the delayed

copy task at all degrees of severity. As expected, the model

omitted a greater proportion of features on average for artifacts

than for animals in both conditions, but the same was not true of

the patients, a point that we consider in the following discussion.

We assessed the model’s propensity to add inappropriate fea-

tures to a drawing by taking the total number of intrusions as a

proportion of the total number of nontarget features for each item.

We then averaged this statistic separately for animal and artifact

items across 50 damage trials at each of four levels of damage.

Analogous data were also tabulated for each patient.

Nontarget features are defined as those that should not be

produced in a given drawing. For any particular item, this consti-

tutes the majority of the visual features. Consequently, the pro-

portion of intrusions for each item is relatively small. Neverthe-

less, interesting patterns are observed in the data. Figure 13 shows

the mean proportion of intrusions made by the model at three

levels of damage and by the 3 patients for animal and artifact

items. For both domains, both the model and the patient data show

a general rise in the proportion of intrusions with lesion severity.

Domain differences are apparent in both the delayed copy and

drawing conditions, with the model and the patients committing

fewer intrusions for artifacts than for animals.

The patient results were analyzed using an ANOVA in which

each drawing constitutes a separate observation, with proportion of

Figure 11. Average number of errors by task and severity for the patients (D.S., D.C., and I.F.; left) and the

model (right). Error bars indicate standard error of the mean. Conn. les. � connections lesioned.
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intrusions as the dependent measure and with patient, domain, and

task as fixed, between-case factors. A strong main effect of task

was apparent, F(2, 415) � 55.0, p � .001, with contrasts showing

that both delayed copy and drawing-to-name yielded a greater

proportion of intrusions than immediate copy ( p � .001, in both

cases), but with no significant difference between them (ns). There

was also a reliable main effect of patient severity, F(2, 415) �

31.0, p � .001, with contrasts revealing that I.F. made more errors

than D.C. ( p � .002) and D.C. made more errors than D.S. ( p �

.002). A significant interaction between patient and task was

observed, F(4, 415) � 7.0, p � .001, which is not surprising given

that all patients were virtually at ceiling in the immediately copy

condition. The effect of severity is evident only in the drawing and

delayed copy condition. There was also a strong main effect of

Figure 12. Proportion of features omitted per drawing in the model (top row) and for each patient (D.S., D.C.,

and I.F.; bottom row) plotted against lesion severity for animal and artifact domains in each task. Error bars

indicate standard error of the mean. Prop. � proportion.

Figure 13. Proportion of intrusions made per drawing in the model (top row) and for each patient (D.S., D.C.,

and I.F.; bottom row) plotted against lesion severity for animal and artifact domains in each task. Error bars

indicate standard error of the mean. Prop. � proportion.
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domain, F(1, 415) � 56.0, p � .001, with patients making a higher

proportion of intrusion errors for animals than for artifacts.

Error patterns by feature type. We have suggested that the

semantic system has difficulty producing information about idio-

syncratic or differentiating features under damage but that knowl-

edge about properties shared across items with similar semantic

representations is likely to be preserved. To address this claim in

the context of drawing, we investigated the likelihood with which

features were omitted or incorrectly activated in the model, given

their propensity to be shared by other items in the same domain,

shared by items in the same category, or idiosyncratic to the item.

On the basis of the visual feature norms described in the As-

sessing Verbal and Visual Structure in the Environment section,

above, each visual attribute for every item was classified as fol-

lows: (a) as shared-across-domain if the property was true of more

than half of the items in the same category and by more than half

of the items in the contrasting category from the same domain

(e.g., if the property was shared by more than half of the birds and

more than half of the mammals), (b) as shared-by-category if the

property was true of more than half of the items in the same

category but not more than half of the items in the contrasting

category from the same domain (e.g., if the property was shared by

birds but not by mammals), and (c) as distinctive if the property

was neither shared-across-domain nor shared-by-category.

In the model, each visual feature unit was classified the same

way. This classification is item-specific—both in the model and in

the world. A given feature might count as shared-by-category for

some items and as idiosyncratic for others. For example, a property

such as wings is shared across the category of birds, but it is

idiosyncratic to particular mammals (such as the bat). Attributes

that are shared-by-domain or shared-by-category are not necessar-

ily true of every item in the corresponding domain or category. For

example, an attribute such as has legs is generally true of most

animals and, hence, would be considered shared-by-domain for

individual animals. Nevertheless, there are some animals (such as

the seal) that do not have legs. Such irregular properties are also to

be found both in the model’s training patterns and in the visual

features that appear in the control drawings.

We calculated the proportion of the shared-by-domain, shared-

by-category, and idiosyncratic target features omitted by the model

and by each patient for every item. In the model, these figures were

averaged over 50 damage trials at each level of lesion severity.

The means across all items tested for the patients and the model

are shown in Figure 14. Here, each level of severity is plotted as

a separate bar, and feature type is plotted along the abscissa. The

most immediately apparent effect is that of feature type: In both

the drawing and delayed copy tasks, both the model and the

patients almost never omitted shared-across-domain properties and

were much more likely to omit distinctive properties. As seen

previously, more features were omitted in the drawing-to-name

task than in the delayed copy task for all feature types at all levels

of severity, by both the model and the patients.

The patient effects were again tested with a repeated-measures

ANOVA in which, as previously, each picture was treated as a

separate case. Feature type (shared-across-domain, shared-by-

category, or distinctive) was treated as a within-case factor, and the

proportion of features omitted for each type was the dependent

measure. Patient, task, and domain were treated as fixed, indepen-

dent between-case factors. The within-case main effect of feature

type was reliable, F(2, 432) � 203.0, p � .001, with contrasts

showing that participants omitted a smaller proportion of shared-

by-domain features than shared-by-category features ( p � .001)

Figure 14. Proportion of shared-across-domain (SDom), shared-by-category (SCat), or distinctive (Dist)

features omitted from drawings produced by each patient (D.S., D.C., and I.F.; bottom row) and by the model

(top row) under increasingly severe simulated lesions. Error bars indicate standard error of the mean. Conn. les.

� connections lesioned.
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and a smaller proportion of shared-by-category than distinctive

features ( p � .001). Feature type also interacted reliably with

patient, F(4, 432) � 3.0, p � .02; task, F(4, 432) � 16.0, p � .001;

and domain, F(2, 432) � 4.0, p � .04. The first two of these

interactions are easy to interpret from the plot of the factor means.

The difference between shared-by-domain, shared-by-category,

and distinctive features was greater for more severe patients, who

omitted a larger proportion of features overall. Few features of any

kind were omitted in the immediate copy condition. The interac-

tion between feature type and domain is less straightforward to

interpret. Patients appear to have omitted equivalent proportions of

shared-by-domain properties (i.e., almost none) in both animal and

artifact domains, but they have a slightly greater proportion of

shared-by-category and distinctive properties for animals relative

to artifacts. No third-order interaction was significant.

Tests of between-subjects factors showed reliable main effects

of task, F(2, 222) � 35.0, p � .001, and patient, F(2, 222) � 14.0,

p � .001, as expected. Task also interacted reliably with the other

factors, which again reflects the patients’ relatively good perfor-

mance in the immediate copy condition. The effect of domain was

not significant.

Finally, we assessed the likelihood of intrusions for the three

different feature types. By definition, features that are shared-by-

domain constitute target features for more than half of the items in

a given domain, and hence, there are comparatively few shared-

by-domain features that can intrude. In contrast, idiosyncratic

features are shared by few items in a given domain; hence, for a

given stimulus, there are many potential idiosyncratic features that

could be wrongly included. For this reason, we normalized the data

by calculating the total number of intruding features per item as a

proportion of the total number of nontarget features for shared-

by-domain, shared-by-category, and distinctive properties sepa-

rately. Again, the model data were averaged across 50 damage

trials at each level of severity.

The mean proportion of intrusions for each feature type in the

model is shown in the top of Figure 15 and is averaged across all

items and damage trials. Different degrees of severity are plotted

as separate bars. For the model, shared-by-domain features are the

most likely to be incorrectly added to a drawing, distinctive fea-

tures are least likely to be incorrectly added, and shared-by-

category features are somewhere in between, at all levels of

severity.

The same effects are also apparent in the patient data on the

bottom of Figure 15. The patient outcomes were assessed using a

repeated-measures ANOVA with feature type as the within-case

factor; proportion of intrusions as the dependent measure; and

patient, task, and domain as fixed, independent between-case fac-

tors. Tests of the within-case factor revealed a strong main effect

of feature type, F(2, 66) � 28.0, p � .001, with contrasts showing

that shared-by-domain features were more often incorrectly added

than shared-by-category features ( p � .001) and that shared-by-

category features were more often intruded than were distinctive

features ( p � .001). This effect did not interact reliably with any

other factor except task, F(4, 66) � 3.0, p � .05.

It is interesting to note that domain did not yield a statistically

reliable effect on intrusions, F(1, 33) � 0.1, ns. Our previous

analysis of domain differences showed that the patients’ drawings

of animals contained a greater proportion of intrusions when

feature type was not considered in the analysis. The current anal-

ysis shows that when feature type is included in the ANOVA

model this effect is eliminated. In other words, the observed

difference between domains in the first analysis was not due to

semantic domain, per se. Rather, shared properties are incorrectly

added to drawings in both animal and artifact domains. Animals

Figure 15. Proportion of intruded features in the model (top row) and for each patient (D.S., D.C., and I.F.;

bottom row) for features that were shared-by-domain (SDom), shared-by-category (SCat), or distinctive (Dist).

Error bars indicate standard error of the mean. Conn. les. � connections lesioned.

228 ROGERS ET AL.



appear to invite more intrusions overall because there are more

shared features per item in the animal domain, as shown in our

analysis of control drawings in the Assessing Verbal and Visual

Structure in the Environment section, above, and shared features

are more likely to yield intrusions. No other between-case factors

yielded reliable effects, except for task, F(2, 33) � 5.0, p � .02.

The data show that in both semantic domains, distinctive prop-

erties are likely to be omitted, and shared properties are likely to

intrude in drawings of objects that do not participate in the regu-

larities of the domain. Apparent domain differences in rates of

omission and intrusion result from different tendencies for prop-

erties to be shared or distinctive in different semantic domains. In

the model, these differences are sufficiently strong that we ob-

served more intrusions for animals and more omissions for arti-

facts. In the patient data, the latter pattern was not observed, which

possibly indicates that the proportion of distinctive visual features

for the artifact items in the model was too high relative to animal

items (in comparison to the true distribution in the environment).

More important, the simulation demonstrates that the ultimate

origin of intrusions and omissions in drawing is the same in the

model and in the patients: Both derive from the propensity for a

property to be shared among semantic neighbors.

Discussion

The architecture of the model has allowed us to simulate a range

of semantic tasks of the sort commonly used to assess semantic

memory, and the model’s behavior under increasingly severe sim-

ulated lesions clearly provides a good qualitative match to the

behavior of patients with semantic dementia. The model also

makes several interesting predictions that have been borne out in

the patient studies. Specifically, we observed (a) a greater propor-

tion of omission errors for naming of artifacts and a greater

proportion of commission errors for naming of animals, (b) better

sorting at the specific relative to the general level for the category

of fruits, (c) improved word-picture matching when distractor

pictures are semantically distal to targets, (d) a greater likelihood

of omitting idiosyncratic relative to shared visual properties of

objects in drawing, and (e) a greater likelihood of incorrectly

adding shared relative to idiosyncratic properties of objects in

drawing. Thus, we suggest that the theory embodied by the model

provides a useful way of thinking about semantic task performance

and its disruption under general semantic impairment.

We have emphasized that the model’s behavior under damage

depends to a great extent on the structure of the semantic repre-

sentations that mediate between visual and verbal representations

and on the learned mappings between these representations and the

expression and reception of visual and verbal information. Both of

these factors depend ultimately on the structure of the visual and

verbal training patterns provided to the model, which in this study

incorporated aspects of structure apparent from visual and verbal

attribute norms. The close match between model and patient per-

formance across the spectrum of disease severity suggests that the

representations and processes in the model may provide a good

analog to those in the human semantic system and, hence, that

human semantic representations may be acquired through learning

about the similarity structure of the environment as experienced

across different modalities, just as were the model’s.

Finally, the model allows us to see that the patterns of impaired

performance across naming, sorting, word–picture matching, and

drawing tasks may all result from the same underlying factor,

specifically, the dynamics of processing in a distributed and re-

current system as knowledge degrades. Verbal descriptors and

visual features common to items that span a relatively broad and

contiguous region of the model’s representation space are more

robust to semantic impairment, because the semantic system can

generate accurate information about such properties whenever its

representation state falls within this region. By contrast, distinctive

properties of individual items are not shared by their neighbors;

hence, as the model’s representations degrade, the model grows

increasingly unable to produce information about the distinguish-

ing visual and verbal properties of individual objects. When this

happens, recurrent interactions with representations in the periph-

ery and within semantics itself can cause the system’s representa-

tions to drift or become unstable. Small amounts of drift may lead

the network into an inappropriate proximal attractor, from which it

cannot produce information specific to a stimulus item, and the

network may in fact produce incorrect responses appropriate to a

semantically related object. However, properties that apply across

a broad region of the representation space are robust even to

relatively large amounts of damage, because the system’s internal

representations must be severely distorted before they drift out of

the region to which such properties apply (Rogers & McClelland,

in press).

This dynamic can account for all of the phenomena we have

observed in the experiments described in this article, including (a)

an inability to produce distinguishing information about objects,

observed both in the increasing proportion of omission errors in

naming, and in the omission of distinctive visual features in

drawing; (b) a tendency to commit semantic errors in naming and

intrusion errors in drawing, which both occur when the system’s

internal state is “captured” by an incorrect but proximal attractor;

(c) robust preservation of information that differentiates broad

semantic domains, observed in the increasing proportion of super-

ordinate errors in naming, the relative preservation of sorting into

general but not specific categories, and better accuracy in word-

picture matching when distractors are semantically distal to tar-

gets; (d) a greater tendency to make errors of commission for

animals relative to artifacts, observed in drawing and in naming,

which derives from the structure of semantic representations that

emerge in the model; and (e) worse performance on tasks that

involve words as stimuli relative to those that involve pictures,

which derives from the more systematic mapping between visual

representations of objects and semantics.

A concise way of summarizing these observations is to submit

that semantic dementia patients undergo an increasing overregu-

larization of their conceptual knowledge. As damage accumulates

and the system becomes increasingly unable to retrieve idiosyn-

cratic and distinguishing information about objects, attractor dy-

namics cause the representations of less typical items to migrate

toward the center of mass in the immediate neighborhood, which

effectively renders them more typical. The system becomes unable

to maintain distinctions between closely related items and misat-

tributes the common properties of similar objects to related items

that do not participate in the regularities of the domain. Initially,

this collapse affects items within small, well-separated clusters
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(such as the category of birds). As damage mounts and the system

is unable to maintain access to the properties that differentiate

these clusters from neighboring clusters, these attractors collapse

into even more general states, which reflect the central tendency of

an even broader set of items. The result is that we witness a

fine-to-coarse deterioration of concept knowledge, both in the

system’s ability to discriminate objects and in the set of properties

attributed to individual items in different modes of expression.

Moreover, the magnitude of these effects depend on the density

of the learned representations in different regions of the space.

Domains with a high degree of structure, in which attractor states

are packed into well-separated clusters, show a greater degree of

overregularization—a greater likelihood of labeling items with

general names, or with the names of familiar and typical neigh-

bors, and a greater likelihood of incorrectly “adding in” common

or typical properties to irregular items. Domains with a lesser

degree of structure show a progressive loss of knowledge for

individual properties, with a lesser tendency to overextend or

misattribute names and properties to incorrect items.

In passing, we note that these factors—the density of the im-

mediate neighborhood in the representation space and the degree

to which neighbors consistently map to a common output—have

also been useful for understanding overregularization errors by

patients with semantic dementia in the pronunciation of written

words (Patterson & Hodges, 1992; Plaut et al., 1996), in the

formation of past-tense English verbs (Joanisse & Seidenberg,

1999; Patterson, Lambon Ralph, Hodges, & McClelland, 2001),

and in lexical and object decision (Rogers et al., in press b; Rogers,

Lambon Ralph, Hodges, & Patterson, in press a). Our account of

the data from semantic tasks is closely related to connectionist

accounts of the analogous phenomena in these domains. Indeed,

we believe that a strength of the framework we have described is

that it makes apparent the underlying similarity between patterns

of impairment in conceptual knowledge and in these other domains

of performance.

General Discussion

A century ago, Wernicke (1900, as cited in G. H. Eggert, 1977)

put forward a theory of semantic memory that enabled him to

make sense of the range of neuropsychological syndromes with

which he was acquainted in his clinical practice. We have offered

a parallel distributed processing implementation of this theory in

the form of a neural network that acquires the ability to perform

model analogs of semantic tasks through domain-general learning

mechanisms. Under this theory, perceptual representations more-

or-less directly encode modality-specific similarity structure in the

environment. By virtue of learning the mappings between percep-

tual representations in different modalities, plus the further inter-

action of these with representations of words that refer to or

describe such objects, the semantic system acquires abstract, dis-

tributed representations that encode the semantic similarity rela-

tions among different items. On this view, it is no coincidence that

lesions to the anterior temporal cortex bilaterally result in the kind

of general semantic impairment witnessed in semantic dementia.

By virtue of their dense interconnections with association cortices

in the more posterior part of the temporal lobes, these regions

receive input from all sensory modalities (Gloor, 1997). It seems

reasonable to suppose that they form the neural substrate within

which amodal semantic representations emerge. These representa-

tions, in turn, subserve a key function of semantic memory in the

intact system, namely, the generalization of stored information to

novel items in the world and of newly acquired information to

familiar items (see Rogers & McClelland, in press, for discussion).

We have seen that when the inputs and outputs of our model

capture aspects of the similarity structure of the environment,

namely, similarities apparent in drawings of objects and in the

words and phrases people use to describe these objects, the model

provides an intuitive means of understanding patterns of impaired

semantic task performance in semantic dementia.

Implications for Theories of Category-Specific Deficits

We have been silent on one contentious issue of import to

theories of semantic memory, the extent to which the semantic

system is organized by modality or semantic domain. Our reti-

cence is partly due to the particular body of empirical data on

which we have focused in this article. As noted in the introduction,

semantic dementia provides the best evidence that there exists in

the brain a single, amodal semantic store. Patients with semantic

dementia are impaired on semantic tasks regardless of the modality

of testing (Hodges et al., 1995; Bozeat et al., 2000; Hodges,

Bozeat, Lambon Ralph, Patterson, & Spatt, 2000) and typically do

not show preservation of knowledge for one domain relative to

another (Lambon Ralph et al., 2001). It was our goal to understand

how such global and amodal semantic deficits might arise as a

consequence of the progressive deterioration of the anterior tem-

poral cortex. Hence, we have not built into the model anything

more than was necessary to explain the relevant phenomena.

However, other neuropsychological syndromes would seem to

challenge the view of an amodal, homogeneous semantic store.

Reports of patients with apparent category-specific deficits,

modality-specific deficits, or Category � Modality interactions

have led many researchers to suggest that semantic knowledge is

mediated by an array of independent category- and modality-

specific modules (e.g., Coltheart, Inglis, Michie, Bates, & Budd,

1998; Warrington & McCarthy, 1987). How might our theory be

reconciled with these other cases? A comprehensive answer to this

question is beyond the scope of this discussion. However, there are

some aspects of the current work that have implications for the

study of putative category-specific deficits and are worth noting.

First, we have identified three factors that (in addition to psy-

cholinguistic factors such as familiarity and word frequency) may

affect the likelihood that a given property will be retrieved in the

context of a given semantic task:

1. The density of the semantic neighborhood, that is, the

number of immediately proximal semantic representa-

tions. Errors of commission are more likely to occur in

densely populated regions of the space.

2. The regularity of the property, that is, the degree to which

the property is consistently shared among the item’s

semantic neighbors. If the property is not true of the test

item, but is true of most of its neighbors, it is more likely

to be incorrectly attributed to the test item.
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3. The breadth of the semantic representation space spanned

by the property. Properties that tend to be true of a broad

set of semantically related items (like the shared proper-

ties of animals) are more robust to damage than proper-

ties that are true of a relatively narrow set of items (such

as the properties shared by all canaries, but not other

kinds of birds).

Animal and artifact domains likely differ on all three of these

factors. We have seen that animals tend to share a greater number

of properties with their semantic neighbors than do artifacts. In our

model, artifact representations are more sparsely distributed across

a broader region of the space. These factors lead to different

patterns of errors in animal and artifact domains of the kind we

have witnessed in the model and in the patient data. Hence, they

must be added to the long list of potential confounding factors in

experiments that purport to reveal true category-specific deficits.

Second, it is interesting to note that different semantic tasks

revealed different aspects of structure in the patients’ impaired

performance. For example, the drawing tasks reported in this

article reveal a somewhat richer structure to the pattern of impair-

ment than has been heretofore elicited by such tasks as naming and

word-to-picture matching. Specifically, we were able to identify

from these data those bits of information that are lost to semantic

dementia and also the ways in which regular properties are inap-

propriately added to items to which they do not belong. Similarly,

our comparison of sorting with words or with pictures indicated

that the overall level of performance can vary depending on the

modality of testing. These observations suggest that the particular

patterns observed in the data depend (perhaps to a greater degree

than previously suspected) on the particular testing paradigm one

adopts.

Third, our model implements a single, amodal and homoge-

neous system to mediate the interactions among perceptual repre-

sentations in different modalities. In this sense, it is a unitary

semantic system. However, the maintenance of stable semantic

representations in our model depends to some extent on preserved

connectivity between the semantic system and the perceptual rep-

resentations with which it is connected. For example, if we were to

lesion the connections between the semantic and visual layers on

our model, we would not expect the model to perform perfectly

even on purely verbal tasks such as naming to description. Because

the entire model is interactive, disruptions in visuosemantic pro-

cessing may have consequences for the system’s ability to hold on

to its semantic representations; as a result, the system may be

impaired at semantic tasks that do not directly involve vision

(Farah & McClelland, 1991; Humphreys & Forde, 2001).

Finally, because different perceptual modalities may capture

different kinds of similarity relations among a group of items, we

might expect different kinds of deficits to emerge in the system

depending on which perceptual–semantic connections are dis-

rupted. In our simple model, we have only implemented two

perceptual modalities. However, we might suppose that the repre-

sentations subserving our ability to act on objects capture a degree

of richness or similarity structure among artifacts that are not

mirrored in visual or verbal representations. Objects that afford

similar actions may induce similar representations in areas of

cortex that subserve action, and this structure may also constrain

the similarity relations acquired by the semantic system as it learns

the mappings between object appearances and appropriate actions.

We might also assume that artifacts and living things differ in the

amount of structure they share across the actions with which they

are associated (Moss, Tyler, Durrant-Peatfield, & Bunn, 1998).

Just as living things share a high degree of visual structure,

whereas artifacts do not, artifacts may share a higher degree of

structure across action representations than do living things (Plaut,

2002).

Lesions to the connections between semantics and either visual

or action areas could result in different kinds of category-specific

semantic deficits (a view that is similar in some respects to that

described in Warrington & Shallice, 1984). Damage to the con-

nections between semantics and action representations may lead

the system to confuse artifacts, because such objects share struc-

ture in the action modality. By contrast, damage to the connections

between vision and semantics may lead the network to confuse

various animals with one another, because of the high degree of

visual structure that is apparent in that domain. Deficits particu-

larly affecting language may manifest when the links between

verbal and semantic areas are disrupted, and generalized semantics

deficits of the kind we have described in this article may arise from

damage to the semantic units themselves (Rogers & Plaut, 2002).

Of course, it remains to be determined whether such an account

can explain the range of data reported in the literature; this is a

course we will pursue in future work.

Relationship to Other Theories

Our network maps between surface forms by using distributed

semantic representations with the following characteristics:

1. The conceptual representations are acquired by the net-

work during learning and are not assigned by the com-

putational modeler.

2. The learned representations are not feature based but are

instantiated as points in a high-dimensional space.

3. There is no functional specialization of the units (e.g.,

perceptual vs. functional representations) within the se-

mantic layer.

4. Modality-specific surface representations provide input

to and encode output from semantics.

Other researchers have described connectionist models that

adopt some but not all of these properties. Neuropsychological

models based on Farah and McClelland’s (1991) influential frame-

work incorporate abstract semantic representations that map be-

tween visual and verbal representations but use hard-wired repre-

sentations specified by the experimenter and assume functional

specialization within semantics (e.g., Devlin et al., 1998; Lambon

Ralph et al., 2001; Lambon Ralph & Howard, 2000). The interac-

tive activation model of visual object recognition described by

Humphreys and colleagues (e.g., Humphreys & Forde, 2001;

Humphreys, Lamote, & Lloyd-Jones, 1995) uses a similar three-

layer architecture, with visual representations of objects engaging

semantic representations that in turn activate lexico-phonological
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representations of words. In this case, the model uses prespecified

localist representations at each level. We believe that this body of

work has established the utility of implementing theories of se-

mantic representation in an explicit computational framework but

that the use of prespecified semantic representations raises impor-

tant questions about knowledge acquisition. The specification of

representations by fiat allows the investigator to explore how

different choices of representation influence the behavior of the

model, but it also compromises any appeal to external validity. The

theorist may demonstrate that, with a certain choice of represen-

tation, the model provides a good match to the data; without an

account of where the useful structure came from in the first place,

the choice of representation is constrained only by the data to be

explained, and the theory has in some sense assumed what it is

trying to explain. The capacity of connectionist networks to ac-

quire abstract, distributed concept representations has been

explored by several researchers (Elman, 1990; Hinton, 1986;

Miikkulainen & Dyer, 1991; Rumelhart & Todd, 1993; Schyns,

1991), but this work has tended to be somewhat too abstract to

provide a basis for understanding empirical data from neuropsy-

chological studies.

Alternative approaches have attempted to address this issue by

using models that learn the mappings among vectors of semantic

attributes, which are derived from attribute norms as in our study.

For example, Tyler et al. (2000) have described an autoassociator

network that, like our model, derives a semantic space across an

intermediate hidden layer and uses training patterns that incorpo-

rate aspects of structure apparent in verbal attribute norms. Tyler

et al. have used the model to make predictions about patterns of

impairment across different semantic domains in disturbed seman-

tic cognition. However, in this case, the inputs and outputs incor-

porated in the model are construed as vectors of semantic features,

and there is no distinction made between the information provided

to semantics through vision from that provided through language

or through other modes of perception. The same is true of the

network described by McRae et al. (1997), which learns mappings

among a large set of semantic feature vectors derived from an

impressive corpus of verbal attribute-listing norms. McRae et al.

used their network to simulate the pattern of semantic priming

found in normal participants for varying types of semantic at-

tributes. Both cases demonstrate that useful information about

conceptual structure can be gleaned by considering the similarities

yielded by feature-norming studies, and both bolster the argument

that representational structure in semantics may derive from the

attribute structure of the environment. However, the ultimate

promise of this idea remains untested in both models, because the

attributes from which semantic knowledge is comprised are di-

vorced from the perceptual representations and processes that

mediate our experience of the environment. That is, the attributes

themselves are construed as constituents of semantic representa-

tions, but neither model suggests how these constituents might be

derived from visual appearances, verbal statements, and other

information available from the environment through perception.

Moreover, because such models do not implement perceptual

inputs or outputs, they raise questions about many of the tasks we

have described in this article, which seem to require the activation

of surface representations (e.g., naming, sorting, drawing, etc.).

We view our model as a useful synthesis of these different

approaches. Like semantic feature based theories, our theory sug-

gests that representational structure in semantics depends on the

perceived structure of the environment and provides a means of

assessing the external validity of any particular assumption about

the nature of this structure. However, in concert with models that

assume more abstract semantic representations, the representations

that emerge in our model do not code explicit semantic content.

Instead, they are structured in ways that facilitate the system’s

ability to generate appropriate responses when given perceptual

inputs. This approach is most similar to recent work described by

Plaut to explain patterns of category- and modality-specific se-

mantic deficits (e.g., Plaut, 2002) and to the approach laid out by

Rogers and McClelland (in press) in their general theory of se-

mantic cognition. In neither of these cases, however, were model-

training patterns derived from normative data such as the propo-

sitional norms and drawing features used in the present study.

The use of high-dimensional spaces to capture semantic repre-

sentations is not specific to computational models. Statistical anal-

yses such as principal component analysis and multidimensional

scaling, used in this study and elsewhere (e.g., Garrard et al., 2001;

Medin, Lynch, & Coley, 1997), are two better known examples.

Other techniques such as latent semantic analysis (LSA; Landauer

& Dumais, 1997) and hyperspace analogue to language (HAL;

Burgess & Lund, 1997) are able to extract semantic representations

relatively efficiently from large corpora of text (e.g., encyclope-

dias). Like our network, these techniques extract high-order co-

occurrence statistics across stimulus events in the environment.

However, to our knowledge, there has been no attempt to link

these processes to neuroanatomical or computational factors in the

brain. Also, LSA and HAL are entirely reliant on verbal input. This

has two implications. First, like a number of the computational

models noted previously, it is impossible to simulate directly the

behavior of normal participants or neurologically impaired patients

because there is no implemented link between the high-

dimensional semantic representations and surface forms. Indeed, if

one is to accept the (rather abstract) notion that concepts are points

in a high-dimensional semantic space that cannot be probed di-

rectly, then it seems imperative to understand both the semantic

space and its connection with receptive and expressive domains,

which can be studied directly. Second, our interactions with the

world are obviously not limited to the verbal modality; however, in

these theories there is no influence of nonverbal experience on the

semantic representations. Like the proponents of LSA and HAL,

we assume that verbal experience is one contributor to our con-

ceptual knowledge. We have, however, demonstrated that samples

of the verbal domain—in this case, a feature-listing database—

tend to obscure information that is readily available in other

modalities (such as the visual similarities existing between fruits

and small, manipulable artifacts); furthermore, we believe that

preverbal learning contributes a great deal to early knowledge

acquisition (e.g., Mandler, 2000; Mareschal, 2000). It is our work-

ing hypothesis that all perceptual modalities contribute to our

conceptual knowledge, although the contribution of each may vary

considerably.

From a neuropsychological point of view, we are not the first to

suggest that semantic memory is supported by a unitary, amodal

system. The organized unitary content hypothesis (OUCH; Car-
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amazza, Hillis, Rapp, & Romani, 1990) assumes that concepts are

represented in some form of space such that similar concepts are

close neighbors. The same conceptual representations are accessed

from different input modalities (e.g., for comprehending spoken

words, pictures, objects, etc.) and drive expressive abilities such as

speaking and writing. That is, semantic representations are as-

sumed to be amodal. OUCH also assumes nonequivalence of the

relationship or mapping between various surface representations

and amodal semantic representations. In this view, the picture–

object to semantic mapping benefits from a quasi-systematic map-

ping (encapsulated by the two assumptions termed the assumption

of privileged access and the assumption of privileged relation-

ships; Caramazza et al., 1990). By encapsulating these and other

ideas into an implemented computational model, we are able to be

much more explicit about these issues. We can explain how the

representations are acquired and how they are engaged in partic-

ular tasks; we can investigate the nature of the otherwise hidden

semantic system and study its relationship with surface represen-

tations; and we can be explicit about the behavioral consequences

of damage to the semantic system.

Finally, we opened this article by reviewing a classical neuro-

logical view of semantic memory endorsed by Wernicke (1900, as

cited in G. H. Eggert, 1977) and other neurologists at the end of the

19th century, which is captured in a formal way by the computa-

tional model. We also noted that proposals similar to this have

reappeared in more contemporary accounts (e.g., Allport, 1985).

Perhaps the best known example is the work of Damasio and

colleagues (H. Damasio, Grabowski, Tranel, & Hichwa, 1996;

Tranel, Damasio, & Damasio, 1997), who have suggested that

areas in the temporal cortex act as “convergence zones” for infor-

mation projecting to and from the sensory association areas. This

theory capitalizes on one of the insights described so elegantly in

Wernicke’s writings: Semantic knowledge may be construed as a

process that mediates the interactions among content-bearing per-

ceptual representations, rather than as a repository of propositional

facts about objects. This idea is echoed in the work of many

contemporary researchers (Chao, Haxby, & Martin, 1999; Kellen-

bach et al., 2001; Mummery, Patterson, Hodges, & Price, 1998;

Pulvermueller, 1999). However, Damasio’s convergence zones are

not assumed to encode semantic representations themselves, but

they act as a kind of relay-station through which information in

different sensory-motor domains can be linked. It is the latter

aspect that changes in our account. Our assumption is that the

anterior regions of the temporal lobes, like the hidden layer in the

computational model, actually derive amodal semantic represen-

tations that encode the semantic similarity relations among objects

regardless of their surface similarities (see also McClelland &

Rogers, 2003). As we have seen, the extraction of similarity

structure across multiple modalities can lead to the emergence of

structure that is not apparent in any modality individually. We take

this re-representational capacity to be one of the fundamental

functions of the semantic system.
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