
Structure and Dynamics of a Phase-Separating Active Colloidal Fluid

Gabriel S. Redner, Michael F. Hagan,∗ and Aparna Baskaran†

Martin Fisher School of Physics, Brandeis University, Waltham, MA, USA.

We examine a minimal model for an active colloidal fluid in the form of self-propelled Brownian
spheres that interact purely through excluded volume with no aligning interaction. Using simula-
tions and analytic modeling, we quantify the phase diagram and separation kinetics. We show that
this nonequilibrium active system undergoes an analog of an equilibrium continuous phase transi-
tion, with a binodal curve beneath which the system separates into dense and dilute phases whose
concentrations depend only on activity. The dense phase is a unique material that we call an active
solid, which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition
point, and anomalous dynamics including superdiffusive motion on intermediate timescales.

Active fluids composed of self-propelled units occur in
nature on many scales ranging from cytoskeletal fila-
ments and bacterial suspensions to macroscopic entities
such as insects, fish and birds [1]. These systems exhibit
strange and exciting phenomena such as dynamical self
regulation [2], clustering [3], anomalous density fluctua-
tions [4], unusual rheological behavior [5–7], and activity-
dependent phase boundary changes [8]. Motivated by
these findings, recent experiments have focused on real-
izing active fluids in nonliving systems, using chemically
propelled particles undergoing self-diffusophoresis [9–11],
Janus particles undergoing thermophoresis [12, 13], as
well as vibrated monolayers of granular particles [14–16].

In this letter we explore a minimal active fluid model:
a system of self-propelled smooth spheres interacting by
excluded volume alone and confined to two dimensions.
Unlike self-propelled rods [18–22], these particles can-
not interchange angular momentum and thus lack a mu-
tual alignment mechanism. Recent simulation and ex-
perimental studies have shown that this system exhibits
giant number fluctuations [23] and athermal phase sep-
aration [23, 24] that are characteristic of active fluids
[4, 25, 26]. Here we employ extensive Brownian dynam-
ics simulations to characterize the phase diagram of this
system and we develop an analytic model that captures
its essential features. We show that this nonequilib-
rium system undergoes a continuous phase transition,
analogous to that of equilibrium systems with attrac-
tive interactions, and that the phase separation kinetics
demonstrate equilibrium-like coarsening. These struc-
tural and dynamic signatures of phase separation and
coexistence enable an unequivocal definition of phases
in this nonequilibrium, active system. Finally, we find
that the dense phase is a dynamic new form of mate-
rial that we call an “active solid”. This material exhibits
structural properties consistent with a 2D colloidal crys-
tal near the crystal-hexatic transition point [27, 28], but
is characterized by such anomalous features as superdif-
fusive transport at intermediate timescales and a hetero-
geneous and dynamic stress distribution (see Fig. (1)).

Model and Simulation Method : Our system consists of
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FIG. 1. (color online) A visual summary of our results. Top
left: Beyond critical density and activity levels the active col-
loidal fluid separates into dense and dilute phases. The clus-
ters coarsen over time (see S1 in [17]). Top right: The static
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, restricted to the in-

teriors of large clusters. These signatures resemble those of
a high temperature colloidal crystal near the crystal-hexatic
phase transition. Bottom left: A heat map of the pressure
in the active solid material. It is heterogeneous and highly
dynamic, indicating that external stresses would produce a
complex response. Bottom right: Log-log plot of the mean
square displacement of a tagged particle in the active solid.
At intermediate time scales, it exhibits anomalous superdif-
fusive transport.

smooth spheres immersed in a solvent and confined to a
plane, similar to experimental systems of self-propelled
colloids sedimented at an interface [24]. Each particle
is self-propelled with a constant force, and interactions
between particles result from isotropic excluded-volume
repulsion only. We include no mechanism for explicit
alignment or transmission of torques between particles.
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The state of the system is represented by the positions
and self-propulsion directions {ri, θi}Ni=1 of all particles.
Their evolution is governed by the coupled overdamped
Langevin equations:

ṙi = Dβ [F ex({ri}) + Fpν̂i] +
√
2D ηT

i (1)

θ̇i =
√

2Dr η
R
i (2)

Here F ex is an excluded-volume repulsive force given by

the WCA potential Vex = 4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
]

+ǫ if r < 2
1
6 ,

and zero otherwise [29], with σ the nominal particle di-
ameter. We use ǫ = kBT , but our results should be insen-
sitive to the exact strength and form of the potential. Fp

is the magnitude of the self-propulsion force which in the
absence of interactions will move a particle with speed
vp = DβFp, ν̂i = (cos θi, sin θi), and β = 1

kBT
. D and

Dr are translational and rotational diffusion constants,
which in the low-Reynolds-number regime are related by
Dr =

3D
σ2 . The η are Gaussian white noise variables with

〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′).
We non-dimensionalized the equations of motion using

σ and kBT as basic units of length and energy, and τ = σ2

D

as the unit of time. Simulations employed the stochas-
tic Runge-Kutta method [30] with maximum timestep
2×10−5τ . Simulations mapping the phase diagram were
run with 15,000 particles until time 100τ , while larger
systems (up to 512,000 particles) were used to explore
kinetics and material properties. The simulation box was
square with periodic boundaries, with its size chosen to
achieve the desired density. The system is parametrized
by two dimensionless values, the packing fraction φ and
the Péclet number, which in our units is identical to the
non-dimensionalized velocity (Pe = vp

τ
σ
). In this work,

we varied φ from near-zero to the hard-sphere close-
packing value φcp = π

2
√
3
, and Pe from zero to 150.

Phase Separation: We first show that our results are
consistent with prior simulations [23] and confirm that
this system, despite the absence of aligning interactions,
shows the signature behaviors of an active fluid. In par-
ticular, the active spheres undergo nonequilibrium clus-
tering (Fig. (1)) similar to other model active systems
[3, 21, 22, 31].

We establish that this clustering is indeed athermal
phase separation by measuring the density in each phase
at different parameter values (Fig. (2a)). We observe a
binodal envelope beyond which the system separates into
two phases whose densities collapse onto a single coex-
istence curve which is a function of activity alone. The
phase diagram is thus analogous to that of an equilib-
rium system of mutually attracting particles undergoing
phase separation, with Pe (playing the role of an attrac-
tion strength) as the control parameter. This surprising
result contradicts the expectation that increased activity
will destabilize aggregates and suppress phase separation
(as seen in [32]) and indicates that the effects of activity
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FIG. 2. (color online) Left: Phase densities as a function of
Péclet number (Pe) for a range of overall φ. At low Pe the sys-
tem is single-phase, while at increased Pe it phase-separates.
The coexistence boundary is analogous to the binodal curve of
an equilibrium fluid, with Pe acting as an attraction strength.
Right: Observed density distributions for various Péclet num-
bers. In the single-phase region below Pe ≈ 50, P (φ) is peaked
about the overall system density (here φ = 0.65). It broadens
and flattens as the critical point is approached, and becomes
bimodal as the system phase separates.
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FIG. 3. (color online) Left: Contour map of cluster frac-
tion fc(Pe, φ) measured from simulations. The dashed curve
marks the approximate location of the binodal. Right: Clus-
ter fraction as predicted by our analytic theory (Eq. 3). These
plots have been restricted to packing fractions that are low
enough for the assumptions of our kinetic model to be valid,
and for cluster identification to be unambiguous.

cannot be described by an “effective temperature” in this
system.

Additionally, we identify a critical point at the apex
of the bimodal (near Pe = 50, φ = 0.7). In the vicinity
of this point, the system exhibits equilibrium-like critical
phenomena which will be detailed in a future publication.

The Phase-Separated Steady State: To characterize the
steady state, we measured the fraction of particles in the
dense phase at time 100τ (Fig. (3)). In contrast with re-
cent work [23] which placed the phase transition bound-
ary at a constant density, we observe that this cluster
fraction is a nontrivial function of the system parameters
fc(Pe, φ). To understand this relationship we developed
a minimal model in which this function can be found
analytically. Let us assume the steady state contains a
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macroscopic cluster which we take to be close-packed.
Particles in the cluster are stationary in space but their
θi continue to evolve diffusively. We treat the gas as ho-
mogeneous and isotropic, and assume that a particle col-
liding with the cluster surface is immediately absorbed.
Within this model, we can write the rate of absorp-

tion of particles of orientation θ from the gas phase as
kin(θ) = 1

2πρgvp cos θ, where ρg is the gas number den-
sity. Integrating yields the total incoming flux per unit
length: kin =

ρgvp

π
. To estimate the rate of evaporation,

note that a particle on the cluster surface will remain
there so long as its self-propulsion direction remains “be-
low the horizon”, i.e., n̂ · ν̂ < 0, where n̂ is normal to
the surface. When its direction moves above the horizon,
it immediately escapes and joins the gas. This rate can
be calculated by solving the diffusion equation in angu-
lar space with absorbing boundaries (for clusters large
enough to treat the interface as flat, at ±π

2 ) and ini-
tial condition given by the distribution of incident par-
ticles: ∂tP (θ, t) = Dr∂

2
θP (θ, t), with P (±π

2 , t) = 0 and
P (θ, 0) = 1

2 cos θ. Further, the departure of a surface
particle creates a hole through which subsurface parti-
cles (whose ν̂i may point outwards) can escape. With κ

we denote the average total number of particles lost per
escape event, which we treat as a fitting parameter. The
total outgoing rate is then kout =

κDr

σ
.

Equating kin and kout yields a steady-state condition
for the gas density: ρg = πκDr

σvp
. ρg can be eliminated

in favor of fc, yielding (in terms of our dimensionless
parameters):

fc =
4φPe− 3π2κ

4φPe− 6
√
3πκφ

(3)

This function is plotted in Fig. (3) with κ = 4.5, in good
accord with our simulation results. Further, the condi-
tion fc = 0 allows us to deduce a criterion for the onset
of clustering. Restoring dimensional quantities, this con-
dition gives φσvp ∼ Dr. Note that φσvp is a collision
frequency; thus the system begins to cluster at param-
eters for which the collision time becomes shorter than
the rotational diffusion time.
The mechanism we have presented here is purely ki-

netic and requires only an intuitive picture of local dy-
namics at the interface. An alternative view has been
described by Tailleur and Cates [33, 34] who subsume all
interactions into a density-dependent propulsion velocity
v(ρ) which decreases with density as collisions become
more frequent. From this they construct an effective free
energy which shows an instability in the homogeneous
phase if v(ρ) falls quickly enough. In a sense our kinetic
model represents an extreme case of this picture in which
v(ρ) contains a step function such that free particles are
noninteracting, and particles in a cluster are completely
trapped (see Fig. S7 in [17]).
Structure of the Dense Phase: Since the system is com-
posed of monodisperse spheres, the dense phase is sus-
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FIG. 4. (color online) Left: Defect structures in a large
cluster. Regions of high crystalline order (white) coexist
with isolated and linear defects (dark). The color of each
particle indicates its |q6|. Inset shows pairs of 5/7 defects
(red/blue). Right: Log-log plot of the correlation function
〈q∗6(r)q6(r

′)〉 for clusters at various Péclet numbers in sys-
tems with N = 128,000, showing a transition from liquid-like
exponential to hexatic-like power-law decay as activity is in-
creased. For systems with N = 512,000 (black dashed line),
a crystal-like plateau is also observed.

ceptible to crystallization [35]. As shown in Fig. (1)
the static structure factor of the cluster interior shows
a liquid-like isotropy at low Pe, but develops strong six-
fold symmetry as activity is increased. Further, the
radial distribution function shows clear peaks at the
sites of a hexagonal lattice (see Fig. S6 in [17]) which
sharpen and increase in number as Pe is raised. We
also measured the bond-orientational order parameter
q6(i) = 1

|N (i)|
∑

j∈N (i) e
i6θij , where N (i) runs over the

neighbors of particle i (defined as being closer than a
threshold distance), and θij is the angle between the i-j
bond and an arbitrary axis (Fig. (4)). We find a structure
characterized by large regions of high order with embed-
ded defects that are predominantly 5-7 pairs (Fig. (4a)
inset and S4 in [17]). Next, we examined the correlation
function 〈q∗6(r)q6(r′)〉 (Fig. 4) which exhibits a liquid-
like exponential decay for systems of low activity, while
at higher activity the decay slows to a power law which
is indicative of a hexatic [36]. A further transition to a
crystal-like plateau is observable in larger systems (see
Fig. (4) and S9 and S10 in [17]). In all cases, this mate-
rial is unique in that it is held together by active forces
alone, and that the arrest of motion is due to frustration.
In this sense it is similar to amorphous materials such as
granular packs as reflected by the highly heterogeneous
stress distribution (Fig. (1)) [37].

Dynamics in the Dense Phase: Within the active solid
material, self-propulsion forces continuously evolve by ro-
tational diffusion, breaking local force balance and lead-
ing to defect formation and migration (see S4 in [17]).
A compelling way to view the motion produced by this
athermal process is a simulated FRAP experiment [38],
in which particles within a contiguous region are tagged,
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FIG. 5. (color online) Examples of phase separation kinetics.
Left: A system with Pe = 100, φ = 0.45 in which a delayed
nucleation event leads quickly to steady-state. For shallowly-
quenched systems, the nucleation time can be long enough
that artificial seeding is needed to make nucleation computa-
tionally accessible. Right: A system with Pe = 80, φ = 0.6
where spinodal decomposition leads to a coarsening regime
which slowly evolves towards steady-state. Inset shows mean

cluster size scaling approximately as t
1
2 . (see S1 and S8 in

[17]).

making subsequent mingling of tagged and untagged par-
ticles visible (see S3 in [17]). To quantify this behavior,
we measured the mean square displacement (MSD) of
particles in the cluster interior. As shown in Fig. (1), we
observe subdiffusive motion on short timescales, followed
by a superdiffusive regime, returning to diffusive motion
on long timescales. The exponents of the subdiffusive and
superdiffusive motion ( 12 and 3

2 , respectively) are well-
conserved across a wide range of propulsion strengths.
Note that an isolated self-propelled particle will exhibit
diffusive, ballistic and diffusive behavior on time scales
t < 4D

v2
p
, 4D

v2
p

< t < 1
Dr

and t > 1
Dr

respectively (see

Fig. S5 in [17]). These dynamical regimes are modified
by the active solid environment; in particular, the bal-
listic regime is modulated by “sticking” events as the
particle is localized in crystal domains, resulting in the
observed Lévy-flight-like behavior [39, 40].
Kinetics of Phase Separation: Despite the athermal
origins of phase separation in this system, simulations
quenched to parameters within the binodal experience
familiar phase separation kinetics (Fig. (5)). Systems
quenched close to the binodal exhibit a nucleation delay
which can be long enough that artificial seeding is nec-
essary for phase separation to be computationally acces-
sible. Systems quenched more deeply undergo spinodal
decomposition, leading to a coarsening regime in which
the mean cluster size scales surprisingly as t

1
2 , with a cor-

responding length scale L(t) ∼ t
1
4 (Fig. (5) inset, also see

S8 in [17]). This differs from the standard 2D coarsen-
ing exponents, but matches recent simulation results for
the Vicsek model and related active systems [41]. This
result should be viewed as preliminary due to the lim-
ited range of our data, but nevertheless this unexpected
similarity between the coarsening of point-particles with

polar alignment and that of spheres with no alignment
suggests a deep relationship between these very different
types of systems. Future work is needed to uncover the
origins of these scaling exponents and their implications
for universality in active fluids.

Summary : A fluid of self-propelled colloidal spheres ex-
hibits the athermal phase separation that is intrinsic to
active fluids and is a primary mechanism leading to emer-
gent structures in diverse systems [2, 26]. We have shown
that the physics underlying this phase behavior can be
understood in terms of microscopic parameters. From
a practical perspective, our simulations show that the
active solid dense phase exhibits a combination of struc-
tural and transport properties not achievable in a tra-
ditional passive material. Further development of ex-
perimental realizations of this system (e.g. Ref. [24])
will advance the development of materials whose phase
behavior, rheology, and transport properties can be pre-
cisely controlled by activity level.
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