UV–visible diffuse reflectance spectroscopy was used to probe the electronic structure and domain size of tungsten oxide species in crystalline isopolytungstates, monoclinic WO₃, and dispersed WOₓ species on ZrO₂ surfaces. UV–visible absorption edge analysis, CO₂ chemisorption, and Raman spectroscopic results show that three distinct regions of WOₓ coverage on ZrO₂ supports appear with increasing WOₓ surface density: submonolayer region (0–4 W nm⁻²), polytungstate growth region (4–8 W nm⁻²), and polytungstate/crystalline WO₃ coexistence region (>8 W nm⁻²). The structure and catalytic activity of WOₓ species on ZrO₂ is controlled only by WOₓ surface density (W nm⁻²), irrespective of the WOₓ concentration, oxidation temperature, and ZrO₂ surface area used to obtain a particular density. The submonolayer region is characterized by distorted octahedral WOₓ species that are well dispersed on the ZrO₂ surface. These species show a constant absorption edge energy, they are difficult to reduce, and contain few acid sites where o-xylene isomerization can occur at 523 K. At intermediate WOₓ surface densities, the absorption edge energy decreases, WOₓ domain size increases, WOₓ species become easier to reduce, and o-xylene isomerization turnover rates (per W atom) increase with increasing WOₓ surface density. At high WOₓ surface densities, a polytungstate monolayer coexists with monoclinic WO₃ crystallites. The growth of monoclinic WO₃ crystallites results in lower o-xylene isomerization turnover rates because WOₓ species become inaccessible to reactants. In the presence of H₂ at typical catalytic reaction temperatures (~523 K), strong acid sites form on WOₓ−ZrO₂ catalysts with polytungstate domains by a slight reduction of the cluster and delocalization of an electron from an H atom resulting in H⁺.4 (Brønsted acid site).

1. Introduction

Strong solid acids based on supported transition-metal oxides are potential replacements for liquid acids and halide-containing solids.1,2 Acid site strengths and densities similar to those in sulfuric acid, halides, or oxoamides remain elusive. Brønsted acid sites form on oxide-based solid acids when protons balance lower valence charge3 or by partial reduction of neutral oxide species. Strong solid acids based on supported transition-metal oxides provide a compromise between reducibility and accessibility environments for a wide range of WOₓ domains (5−15 W nm⁻²).4 WOₓ domains of intermediate size appear to provide a compromise between reducibility and accessibility of WOₓ centers. These WOₓ domains delocalize a net negative charge caused by the slight reduction of W⁶⁺ centers leading to the in situ formation of Brønsted acid centers (WOₓ)ₙتقليوس {W⁶⁻δ−Oₙ}{H⁺δ} in reactant environments containing H₂ or hydrocarbons.17
UV–visible diffuse reflectance spectroscopy is a useful spectroscopic technique that probes the electronic structure and domain size of transition-metal oxides. The position of the absorption edge is sensitive to the bonding between metal oxide polyhedra, and it has been used to characterize the average particle size of nano-crystalline insulators and semiconductors.

In our study, UV–visible absorption edge energies of WO$_x$ species on ZrO$_2$ supports are compared with the edge energies of several crystalline standards with known WO$_x$ coordination symmetry and domain size in order to determine how acid-catalyzed reaction rates depend on bonding between WO$_x$ species and WO$_3$ domain size. In addition, color changes associated with the reduction of these WO$_x$ domains in H$_2$ at o-xylene reaction temperatures (523 K) are measured by the appearance of absorption bands at energies below the absorption edge. The rate of reduction of these neutral WO$_3$ domains may be related to the ability of these materials to form Brønsted acid sites under reaction conditions.

Raman spectroscopy is a valuable tool for the characterization of dispersed metal oxides. It detects vibrational modes of surface and bulk structures, which can be related to molecular structures by comparison with standard compound spectra or with theoretical calculations. The accuracy, reliability, and interpretation of the Raman spectra of metal oxide catalysts have been discussed recently. Supported tungsten oxide catalysts have been widely studied, with emphasis on samples with low WO$_x$ surface densities on γ-Al$_2$O$_3$ supports. Some recent studies of WO$_x$–ZrO$_2$ samples have detected polytungstate and crystalline WO$_x$ species at relative concentrations that depend on WO$_x$ concentration and oxidation temperature. In this study, Raman spectroscopy is used to determine how the intensity of bands corresponding to the internal W=O stretch in bulk WO$_x$ crystallites and the terminal W=O stretch are related to the dispersion of WO$_x$ species for dehydrated WO$_x$–ZrO$_2$ samples with a wide range of WO$_x$ concentrations (3–26 wt % WO$_3$) and oxidation temperatures (933–1283 K).

2. Experimental Section

2.1 Synthesis. ZrO$_2$ (OH)$_{2-3}$ supports (295 m2 g$^{-1}$) were prepared by the hydrolysis of 0.5 M ZrOCl$_2$ (Aldrich Chemicals, >98%) aqueous solutions fed at 500 cm3 h$^{-1}$ into a well-stirred vessel with a pH of 10 held constant by the controlled addition of NH$_2$OH (14 N). The precipitate was dried at 423 K overnight after residual Cl$^-$ ions were removed (<10 ppm) by thorough washing. The dry ZrO$_2$ (OH)$_{2-3}$ solids were impregnated to the point of incipient wetness with ammonium metatungstate ((NH$_4$)$_6$H$_2$W$_{12}$O$_{40}$, Strem Chemical, 99.9%) aqueous solutions. These samples were placed in shallow quartz boats (5 g each), heated at 0.167 K s$^{-1}$ to the final oxidation temperature (773–1283 K), and held isothermal for 3 h in dry air flowing through a 25 mm quartz tube (4 cm3 s$^{-1}$). Tungsten oxide loadings are reported as a percent by weight of WO$_3$ (0–26 wt % WO$_3$) in the oxidized (dehydrated) samples. Several samples were analyzed by atomic absorption to confirm the accuracy of these nominal WO$_3$ loadings (±0.3 wt % WO$_3$) and to show that WO$_3$ does not sublime even at the highest oxidation temperatures of our study.

2.2 UV–Visible Diffuse Reflectance Spectroscopy. Ultraviolet–visible (UV–vis) diffuse reflectance spectra of WO$_x$–ZrO$_2$ samples and standard WO$_3$ compounds were obtained using a Varian (Cary 4) spectrophotometer with a Harrick-Scientific Praying-Mantis diffuse reflectance accessory and in situ cell (DRA-2CR). Samples were lightly ground using an agate mortar and pestle to form agglomerates smaller than 0.1 mm and dehydrated in the reflectance accessory at 723 K for 2 h in flowing dry air (Matheson, Ultra Zero Grade, 2.0 cm3 s$^{-1}$) purified with a 13X molecular sieve in order to remove residual water and hydrocarbons. The Kubelka–Munk function ($F(R_{\infty})$, eq 2) for infinitely thick samples was used to convert reflectance measurements (R_{sample}) into equivalent absorption spectra using the reflectance of MgO as a reference (R_{MgO}).

$$R_{\infty} = \frac{R_{\text{sample}}}{R_{\text{MgO}}}$$

$$F(R_{\infty}) = \frac{(1 - R_{\infty})^2}{2R_{\infty}} = \alpha(\text{absorption coefficient})$$

3. Results/Discussion

3.1 Analysis of UV–Visible Absorption Edge Energy. The optical absorption edge energies of crystalline and amorphous WO$_3$ species were obtained from diffuse reflectance UV–vis absorption spectra. The optical absorption edge energy is defined as the minimum photon energy required to excite an electron from the highest occupied molecular orbital (HOMO, at the top of the valence band in semiconductor domains) to the lowest unoccupied molecular orbital (LUMO, at the bottom of the conduction band). There are two basic types of electronic transitions, direct and indirect. Direct transitions require only that photons excite electrons, while indirect transitions also require concerted vibrations and energy from the crystal lattice (phonons). The energy dependence of the absorption coefficient (α) for semiconductors in the region near the absorption edge is given by

$$\alpha \propto \frac{(h\nu - E_0)^n}{h\nu}$$
where \(h \) is the energy of the incident photon and \(E_o \) is the optical absorption edge energy; the exponent \(\eta \) depends on the type of optical transition caused by photon absorption.\(^{26}\) In crystalline semiconductors, where crystal momentum is conserved and electron transitions obey well-defined selection rules, \(\eta \) is 1/2, 3/2, 2, and 3 when the transitions are direct-allowed, direct-forbidden, indirect-allowed, and indirect-forbidden, respectively. In general, transitions that are forbidden by symmetry selection rules have a lower probability of occurring \([P_i \propto (h\nu - E_o)^{3/2}]\) and transitions that require phonons have an additional \((h\nu - E_o)^{1/2}\) factor that arises from the dependence of the absorption coefficient on phonon energy.\(^{27}\) In amorphous, homogeneous semiconductors, the value of \(\eta \) is 2 irrespective of the type of transition found in crystalline materials of the same composition.\(^{27}\) The momentum vector is not conserved in amorphous materials; therefore, an integration has to be performed over the density of states, resulting in an energy dependence similar to that for indirect transitions.

With an appropriate choice of \(\eta \), a plot of \((\alpha h\nu)^{1/\eta}\) vs \(h\nu \) is linear near the edge and the intercept of the line on the abscissa \((at (\alpha h\nu)^{1/\eta} = 0)\) gives the optical absorption edge energy \(E_o \). Previous studies have shown that the fundamental absorption edge of WO\(_3\) crystallites is caused by indirect electron transitions\(^ {28}\) and that a plot of \((\alpha h\nu)^{1/\eta}\) vs \(h\nu \) is linear near the edge for amorphous WO\(_3\) films.\(^ {29}\) We find a similar linear dependence for small WO\(_3\) domains, for which band theory does not strictly apply. A large density of available 5d states and static disorder in W–O bond lengths and angles leads to a broad distribution of states that can be analyzed using methods applicable to bands of energy levels. Therefore, a value of \(\eta = 2 \) was used in this study in order to define the absorption edge for WO\(_3\)–ZrO\(_2\) samples containing crystalline WO\(_3\) or amorphous WO\(_3\) species in isolated or polytungstate domains.

In the diffuse reflectance experiments, UV–vis reflectance data cannot be used directly to measure absorption coefficients \((\alpha) \) because of scattering contributions to the reflectance spectra. Scattering coefficients, however, depend weakly on energy and \(F(R_o) \) can be assumed to be proportional to the absorption coefficient within the narrow range of energy containing the absorption edge features. Then, a plot of \((F(R_o)h\nu)^{1/\eta}\) vs \(h\nu \) can be used to determine the absorption edge energy. An excellent fit was obtained using this method \((\eta = 2)\) for amorphous WO\(_3\) domains on ZrO\(_2\) and for a crystalline monoclinic WO\(_3\) sample (Figure 1), which confirms that this method gives a precise value of the absorption edge energy \((\pm 0.03 \text{ eV})\). Most absorption spectra in this study, including those of molecular WO\(_3\) clusters, are also described accurately in this manner as determined by the linearity of the plot when \(\eta = 2 \). WO\(_3\)–ZrO\(_2\) samples containing two or more distinct WO\(_3\) structures, however, require deconvolution to separate the multiple absorption edges. The nonlinear region found at energies lower than \(E_o \) is known as the Urbach tail,\(^ {30}\) it is related to low-frequency acoustic modes that lead to fluctuations in the band gap. It is often represented by an empirical relation valid for \(h\nu < E_o \):

\[
\alpha \propto \exp[\rho(h\nu - E_o)/kT] \tag{4}
\]

where \(\rho \) is a constant.

It is interesting to note that the other crystalline d\(^0\) transition metal oxides (MoO\(_3\), V\(_2\)O\(_5\), and TiO\(_2\)) also show an indirect absorption edge and can be analyzed by the method outlined above \((\eta = 2)\).\(^ {31}\) Several studies, however, have described UV–vis spectra using the formalism for direct-allowed transitions \((\eta = 1/2)\)\(^ {18,32}\) or the position of the first absorption

![Figure 1. Absorption edge energies are determined by the intercept of a linear fit to the absorption edge.](image1)

![Figure 2. Diffuse reflectance UV–vis absorption spectra of crystalline tungsten oxide reference compounds: (A) monoclinic WO\(_3\); (B) tetragonal, (NH\(_4\))\(_6\)H\(_2\)W\(_7\)O\(_{24}\); (C) rutile, (NH\(_4\))\(_6\)H\(_2\)W\(_7\)O\(_{24}\); and (D) Na\(_2\)WO\(_4\).](image2)
samples examined. Six-coordinate W6+ in monoclinic WO\textsubscript{3} (Aldrich Chemicals, 99.995\%), which contains WO\textsubscript{3} species in an extended three-dimensional crystalline network of distorted octahedra bonded to six neighboring octahedra (distorted ReO\textsubscript{3} structure37), gave the lowest absorption edge energies (2.59 eV). WO\textsubscript{3} domains of intermediate size, such as those found in iso-polytungstate clusters containing octahedra bonded through corners and edges, showed intermediate values of the absorption edge energies. For example, absorption edge energies for W\textsubscript{12} clusters in ammonium metatungstate [(NH\textsubscript{4})\textsubscript{6}H\textsubscript{2}W\textsubscript{12}O\textsubscript{42}, Strem Chemicals, 99.9+/-%] and ammonium paratungstate [(NH\textsubscript{4})\textsubscript{10}H\textsubscript{2}W\textsubscript{12}O\textsubscript{42}, K&K Laboratories 99.9%] were 3.23 and 3.54 eV, respectively.

The absorption edge energy for these crystalline WO\textsubscript{3} standards is strongly influenced by the number of WO\textsubscript{3} polyhedra bonded through W−O−W bonds and by the number of bonds between each polyhedra. Quasi-infinite WO\textsubscript{3} domains in monoclinic WO\textsubscript{3} contain WO\textsubscript{6} octahedra with six WO\textsubscript{6} neighbors and have an edge energy that is 2.3 eV lower than that found for isolated WO\textsubscript{3} species. The smaller difference in the absorption edge energies between the two polytungstate clusters, both of which contain WO\textsubscript{6} octahedra with four WO\textsubscript{6} neighbors, reflects differences in bonding between the WO\textsubscript{3} octahedra. Metatungstate contains a larger fraction of edge-sharing octahedra relative to corner-sharing octahedra and therefore has greater molecular orbital overlap between octahedra and a narrower HOMO−LUMO gap because of the more extensive “communication” of electrons between octahedra.

Weber18 reported an apparent linear correlation between the number of nearest MoO\textsubscript{3} neighbors in crystalline MoO\textsubscript{3} standards and the absorption edge energy calculated using the formalism for direct-allowed electronic transitions (\(\eta = 1/2\)). Detailed analysis, however, suggests that the fundamental absorption edge for crystalline MoO\textsubscript{3} arises from indirect-allowed electron transitions,38 although analysis based on direct transitions leads to similar qualitative trends with domain size. This analysis based solely on the number of nearest neighbors provides a useful directional relationship, but it neglects smaller shifts in the absorption edge energy as a result of differences in bonding configuration (edge- or corner-shared polyhedra) and of bonding between the polyhedra and the support. In this manner, the number of nearest neighbors in amorphous samples may be approximated using the absorption edge energy of crystalline standards if the details in bonding between polyhedra and support effects are also considered.

The absorption edge energy has also been shown to depend on crystallite size for small semiconductor nanocrystals (\(<100 nm\) for which bonding geometry remains the same.39 The energy of an electronic transition is well defined for any crystallite size. The momentum of the excited electron, however, becomes less accurately defined as the position is restricted by placing it within smaller crystallites. As a result, the separation among energy levels or bands increases as the crystallite size is reduced, as in the “particle-in-a-box” construct of elementary quantum mechanics. These quantum confinement effects have been described accurately by an analytical expression (eq 5) that can be used to calculate experimental shifts of absorption energies (\(\Delta E\)) with crystallite size for crystallites larger than 2 nm:19

\[
\Delta E = \frac{\hbar^2 \pi^2}{2 R^2} \left(\frac{1}{m_e} + \frac{1}{m_0} \right) - \frac{1.8 e^2}{\epsilon R} + \text{polarization term} \quad (5)
\]

This expression becomes inaccurate for domains smaller than 2 nm, because the periodic lattice and effective mass approximations required in its derivation become inappropriate. For these small domains (\(<2 nm\)), extended Hückel calculations have been used to predict the separation between energy levels.40,41 Calculations for MoO\textsubscript{3} clusters have confirmed that the separation between energy levels continues to increase for crystalline domains smaller than 2 nm.41 These calculations have also confirmed that the HOMO−LUMO gap strongly depends on the number of nearest polyhedral neighbors and the number of bonds between each of those neighbors (corner- or edge-shared polyhedra).41 In addition, these studies have shown that absorption energies are influenced less by the local symmetry around Mo6+ centers (tetrahedral or octahedral) and by the metal−oxygen bond lengths.

3.3 UV−Visible Absorption Spectra of WO\textsubscript{3}−ZrO\textsubscript{2} Samples. UV−vis diffuse reflectance absorption spectra of WO\textsubscript{3}−ZrO\textsubscript{2} with varying WO\textsubscript{3} concentrations and oxidation temperatures are shown in Figures 3−5. A sharp rise in absorption occurs between 2.6 and 3.6 eV as a result of ligand-to-metal charge transfer (O\textsubscript{2p} → W\textsubscript{5d}−O\textsubscript{2p}). The energy required for this transition depends strongly on WO\textsubscript{3} concentration and oxidation temperature. UV−vis absorption spectra for a 26% WO\textsubscript{3}−ZrO\textsubscript{2} sample oxidized at temperatures between 773 and 1073 K are shown in Figure 3. The absorption spectra shift to lower energies with increasing oxidation temperature and a second edge appears, at an energy similar to that in bulk monoclinic WO\textsubscript{3} crystals, when oxidation is carried out above 1073 K. On the latter samples, the presence of crystalline WO\textsubscript{3} has been confirmed by X-ray diffraction.17 Increasing oxidation temperature leads to increased ZrO\textsubscript{2} sintering rates and loss of support surface area.4 As a result, the average distance between dispersed WO\textsubscript{3} octahedra on the ZrO\textsubscript{2} surface decreases and WO\textsubscript{3} surface density increases with increasing oxidation temperature. As the coverage of the ZrO\textsubscript{2} support by WO\textsubscript{3} species increases, the dispersed WO\textsubscript{3} species eventually form W−O−W bridging bonds between neighboring WO\textsubscript{3} groups, resulting in the formation two-dimensional polytungstates and three-dimensional WO\textsubscript{3} crystallites. The formation of these W−O−W bonds between WO\textsubscript{3} octahedra leads to larger domains and to a narrowing of the HOMO−LUMO gap, as predicted by Masure et al.41 and confirmed by the data in Figure 3.
Absorption spectra for several \(\text{WO}_x \)–\(\text{ZrO}_2 \) samples containing 3–26 wt % \(\text{WO}_3 \) oxidized at 973 K or at 1073 K are compared in Figures 4 and 5 with spectra for \(\text{ZrO}_2 \) (oxidized at 873 K). The absorption spectra for various crystalline \(\text{ZrO}_2 \) samples (not shown) are nearly independent of crystallite size and type (monoclinic or tetragonal); therefore, only a single \(\text{ZrO}_2 \) spectrum is included as reference. Clearly, a second absorption edge corresponding to \(\text{ZrO}_2 \) appears in all \(\text{WO}_x \)–\(\text{ZrO}_2 \) samples with \(\text{WO}_x \) concentrations less than 20% \(\text{WO}_3 \). The intensity of the \(\text{WO}_x \) absorption edge increases and shifts to lower energies with increasing \(\text{WO}_x \) concentration as expected from the growth of \(\text{WO}_x \) domains by formation of corner- and edge-shared \(\text{WO}_x \) octahedra at higher \(\text{WO}_x \) surface densities. This increase in \(\text{WO}_x \) concentration has an effect similar to that of increasing the \(\text{WO}_x \) surface density and domain size.

3.4 UV–Visible Optical Absorption Edge Energies. 3.4.1 \(\text{WO}_x \) Surface Density and Domain Size. Optical absorption edge energies were calculated from UV–vis diffuse reflectance spectra for the \(\text{WO}_x \)–\(\text{ZrO}_2 \) samples from Figures 3–5 and several other \(\text{WO}_x \)–\(\text{ZrO}_2 \) samples at other \(\text{WO}_x \) concentrations and oxidation temperatures using the formalism for indirect transitions given by eq 3 \((\eta = 2)\). Absorption edge energies fall into a single curve for all samples when plotted against \(\text{WO}_x \) surface density (\(\text{W nm}^{-2} \), from BET surface area measurements and \(\text{WO}_x \) concentration), irrespective of whether \(\text{WO}_x \) surface density changed because of varying \(\text{WO}_x \) concentration or oxidation temperature (Figure 6). Therefore, the electronic structure and the domain size of \(\text{WO}_x \) species on \(\text{ZrO}_2 \) surfaces depend only on \(\text{WO}_x \) surface density. In a previous study, we have also shown that the rate of \(o \)-\text{xylene} isomerization (per \(\text{W} \) atom) on these samples also depends only on \(\text{WO}_x \) surface density, and not the method used to achieve it.\(^{15} \) The dashed “volcano curve” in Figure 6 shows the previously reported dependence of isomerization rate on \(\text{WO}_x \) surface density for comparison.

The data in Figure 6 suggest that absorption edge energies can be grouped into three distinct regions with characteristic surface density ranges of 0–4 \(\text{W nm}^{-2} \), 4–8 \(\text{W nm}^{-2} \), and >8 \(\text{W nm}^{-2} \). Within the first region, the absorption edge energy is 3.49 ± 0.02 eV and it is not affected by \(\text{WO}_3 \) surface density. In the second region, the absorption edge shifts linearly from 3.49 to 3.16 eV, and it maintains a constant value of 3.16 ± 0.05 eV above 8 \(\text{W nm}^{-2} \) in the third region. In this latter region, a second absorption edge appears at 2.6 eV, the absorption intensity of which increases monotonically with increasing \(\text{WO}_x \) surface density.

The density of acid sites (per \(\text{W} \) atom) detected by acid-catalyzed isomerization reactions reaches a maximum (reflected in the isomerization rate per \(\text{W} \) atom) at \(\text{WO}_x \) densities of about 8–9 \(\text{W nm}^{-2} \) (dashed curve in Figure 6). The data in this volcano-shaped curve also contain three distinct regions that can be grouped within ranges of \(\text{WO}_x \) surface densities (0–4, 4–9, and >9 \(\text{W nm}^{-2} \)) similar to those used for UV–visible edge energies. At low \(\text{WO}_x \) surface densities (<4 \(\text{W nm}^{-2} \)),
reaction rates are too low to measure. Isomerization rates increase with increasing WO$_x$ density for values between 4 and 9 W nm$^{-2}$, and then decrease for densities higher than 9 W nm$^{-2}$. Near-edge X-ray absorption spectra of dehydrated WO$_x$-ZrO$_2$ with a wide range of WO$_x$ surface density (3–15 W nm$^{-2}$) has shown that W$^{6+}$ centers are present in distorted octahedra similar to each other and similar to those in crystalline WO$_3$ throughout the entire range of WO$_x$ surface density. Thus, the observed changes in o-xylene isomerization rates cannot be attributed to the evolution of less-active tetrahedral WO$_x$ into more active W species with octahedral structure as WO$_x$ surface density increases, a process detected for WO$_x$ species on WO$_x$-Al$_2$O$_3$ samples. At low WO$_x$ surface densities, tetrahedral WO$_x$ species form on Al$_2$O$_3$ because stable Al$_2$(WO$_4$)$_3$-like species can form, whereas there are no tetrahedral WO$_x$ species found on ZrO$_2$, because none of the known Zr(WO$_4$)$_2$ structures exhibit tetrahedral WO$_x$ centers.

3.4.2 Low WO$_x$ Surface Densities. WO$_x$-ZrO$_2$ samples with low WO$_x$ surface densities (0–4 W nm$^{-2}$) show a constant absorption edge energy (3.49 eV) and contain very few acid sites capable of o-xylene isomerization at 523 K. The constant absorption edge energy suggests that the connectivity between WO$_x$ groups is not influenced by surface density at low, sub-monolayer coverages. Extended Huček calculations predict that the formation of metal oxide dimers and oligomers from isolated oxide species would shift absorption edge energies to lower values. Apparently, WO$_x$ groups do not interact with each other to form bridging W–O–W bonds until surface densities are greater than 4 W nm$^{-2}$. Below 4 W nm$^{-2}$, the ZrO$_2$ surface stabilizes dispersed WO$_x$ species that are electronically isolated from each other (Scheme 1a). Near-edge X-ray absorption spectra show that these isolated WO$_x$ species exist in distorted octahedral symmetry, and temperature-programmed reduction studies indicate that these species reduce in H$_2$ at significantly higher temperatures than polytungstate species or WO$_x$ crystallites. The absorption edge energy for these dispersed WO$_x$ octahedra on ZrO$_2$ (3.49 eV) is significantly lower than the edge energy for truly isolated WO$_x$ tetrahedra in Na$_3$W$_4$O$_9$ (4.89 eV), and resemble more closely the dispersed WO$_x$ tetrahedra present on Al$_2$O$_3$ (3.95 eV). It is likely that the large distortions to the WO$_x$ polyhedra caused by covalent bonds with ZrO$_2$ or Al$_2$O$_3$ increase the effective domain size of the dispersed WO$_x$ polyhedra by allowing the delocalization of electrons within the Zr or Al next nearest neighbors, but to a lesser extent than when the next nearest neighbor is W.

Carbon dioxide chemisorption uptakes were used to measure the fraction of the ZrO$_2$ support covered by WO$_x$ species. Carbon dioxide selectively binds to basic sites on ZrO$_2$ and therefore was used to determine the fraction of exposed ZrO$_2$. This method has been shown to accurately determine the coverage of TiO$_2$ supports by WO$_x$ species. The average value of CO$_2$ chemisorption uptake at 313 K on several pure ZrO$_2$ samples oxidized at various temperatures (373–1073 K, 2.17 CO$_2$-molecules nm$^{-2}$) was used to determine the fraction of the ZrO$_2$ surface covered by WO$_x$. Carbon dioxide chemisorption uptakes on bulk WO$_3$ crystallites were negligible (0.01 CO$_2$-molecules nm$^{-2}$). The calculated WO$_x$ coverage on ZrO$_2$ increases linearly as WO$_x$ surface density increases within the submonolayer region (0–4 W nm$^{-2}$). WO$_x$ coverages reach a constant value of about 90% at 4.0 W nm$^{-2}$ and do not increase further as WO$_x$ surface density increases, suggesting that a small fraction of basic sites on ZrO$_2$ remains exposed even at WO$_x$ densities for which the condensation of WO$_6$ octahedra and formation of three-dimensional clusters occurs.

The linear increase in coverage with increasing WO$_x$ surface density between 0 and 4 W nm$^{-2}$ is consistent with well-dispersed WO$_x$ species (Scheme 1a) that titrate CO$_2$ binding sites on ZrO$_2$ with 1:1 stoichiometry. Apparently, these isolated WO$_x$ species are stabilized through multiple W–O–W bonds between each WO$_x$ octahedra and the ZrO$_2$ surface. These isolated WO$_x$ octahedra reach saturation coverage (4 W nm$^{-2}$) at about half of the theoretical polytungstate monolayer (7.8 W nm$^{-2}$), which was estimated by the density of WO$_x$ species in a two-dimensional plane of corner-shared WO$_6$ octahedra with W–O bond distances corresponding to those in low-index planes of monoclinic WO$_3$ crystallites. This saturation coverage of isolated monotungstate species on ZrO$_2$ agrees well with previous estimates from Raman spectroscopic data (4.0 W nm$^{-2}$). At WO$_x$ surface densities within the submonolayer region (0–4 W nm$^{-2}$), optical absorption spectra, CO$_2$ chemisorption uptakes, and X-ray absorption spectra are all consistent with the existence of isolated monotungstate WO$_6$ octahedra that are difficult to reduce and are not able to promote the isomerization of o-xylene at 523 K.

3.4.3 Intermediate WO$_x$ Surface Densities. At intermediate WO$_x$ surface densities (4–8 W nm$^{-2}$), absorption edge energies decrease and o-xylene isomerization rates per W atom increase markedly as WO$_x$ surface density increases. The decrease in edge energy shows that electrons become delocalized in larger domains through bridging W–O–W bonds that are found within polytungstate two-dimensional structures (Scheme 1b) and small (WO$_x$)$_n$ clusters. Initial W–O–W bonds form by condensation of isolated WO$_x$ species as the surface area of the ZrO$_2$ support decreases and the WO$_x$ surface density increases during oxidation treatments. Increasing the surface density of WO$_x$ species within this region (4–8 W nm$^{-2}$) leads to a monotonic increase in WO$_x$ domain size until a constant domain size is reached corresponding to a polytungstate monolayer at about 8 W nm$^{-2}$. The density of WO$_x$ species within this polytungstate monolayer is very similar to the theoretical polytungstate monolayer (7.8 W nm$^{-2}$).

The edge energies of these two-dimensional polytungstate structures (3.16–3.49 eV) are very similar to those in isopolytungstates (e.g., ammonium metatungstate, (NH$_4$)$_6$H$_2$W$_{12}$O$_{40}$, 3.25 eV) (Figure 6). Temperature-programmed reduction studies of WO$_x$–ZrO$_2$ samples with intermediate WO$_x$ surface densities
show that these polytungstate species begin to reduce at temperatures that are quite similar to a heteropolytungstate (12-
tungstophosphoric acid) and at significantly lower temperatures
than isolated WO$_x$ species. WO$_x$ octahedra in these three-
dimensional heteropolytungstates are connected within the
wrapped surface and not through the center insulating atom; therefore, their domain size and reducibility is close to that of
a two-dimensional polytungstate. Maximum o-xylene isomer-
ization rates and therefore highest acid site densities are also
found on WO$_x$-ZrO$_2$ catalysts near polytungstate saturation
coverages because of an apparent compromise between WO$_x$
accessibility to reactants and the ease of reduction of WO$_x$
domains; the latter appears to be required in order to form
Bønsted acid sites from neutral WO$_x$ species (Scheme 2).
Hydrogen chemisorption and reduction measurements confirm-
ing this proposal are reported as a function of WO$_x$ surface
density in the last section of this paper. These measurements
provide strong evidence for Bønsted acid site generation via
the mechanism in Scheme 2.

3.4.4 High WO$_x$ Surface Densities. At high WO$_x$ surface
densities (>8 W nm$^{-2}$), absorption edge energies remain
constant at 3.19 eV and a second absorption edge appears at
lower energies (2.61 eV) for surface densities above 12 W nm$^{-2}$
(Figure 6). The intensity of this new absorption feature increases
with increasing WO$_x$ surface density and occurs at an energy
similar to that in monoclinic WO$_3$ crystallites. X-ray diffraction
detects the incipient formation of WO$_3$ crystallites at surface
densities above 10 W nm$^{-2}$. WO$_3$ crystallites on the latter
WO$_x$-ZrO$_2$ samples are also apparent from their yellow color,
their Raman spectra (Figure 8), and from the appearance of a
distinct WO$_2.9$ to WO$_3$ reduction feature in temperature-
programmed reduction profiles. We have previously suggested
that the decrease in o-xylene isomerization rates per W atom
observed in these samples with increasing surface density is
caused, in part, by a decrease in WO$_3$ dispersion, which leads
to inaccessible WO$_x$ species within WO$_3$ crystallites.

The absorption edge energy for polytungstate structures in
samples containing WO$_3$-like absorption features is difficult to
extract from experimental spectra because of significant overlap
between WO$_3$ and polytungstate features. For these samples, a
scaled spectrum for bulk WO$_3$ was subtracted from WO$_x$-ZrO$_2$
spectra in order to resolve the polytungstate absorption edge.
Nonlinearities in the Kubelka–Munk function at high absorber
concentrations resulted in imperfect fits when these pseudo-
absorption spectra were used to describe the spectra for physical
mixtures of pure crystalline WO$_3$ and ZrO$_2$. The absolute error
in edge energies for these mixtures, however, was only 0.1
eV, and the method was used to obtain the edge energy values
for samples with surface densities above 12 W nm$^{-2}$ (Figure
6). These extracted edge energies are very similar to those
measured for polytungstate species that lead to maximum
o-xylene isomerization rates. This bimodal distribution of edge
energies suggests that polytungstate monolayers on ZrO$_2$
are very stable and that WO$_x$ species in excess of those required to
form this monolayer bind weakly to it and tend to agglomerate
into WO$_3$ crystallites during oxidation [Scheme 1c]. The stability
of polytungstate monolayers on ZrO$_2$ is related to the strong
W–O–Zr bonds between the WO$_x$ octahedra and the ZrO$_2$
surface as suggested by high reduction temperatures of isolated
WO$_x$ species and by their stabilization of ZrO$_2$ surface area. Crystallites of bulk WO$_3$ grow from the excess WO$_x$ species
because the W–O–W bonds that bind these octahedra to the
polytungstate layer are weaker than the W–O–Zr bonds, and
at the high oxidation temperatures used these octahedra can migrate on the surface and agglomerate into crystals of WO$_3$ that minimize surface free energy.

An attempt to quantify the amount of crystalline WO$_3$ in WO$_x$–ZrO$_2$ samples based on the WO$_3$ absorption spectrum scaling factor gave inaccurate results. Samples containing similar amounts of bulk WO$_3$ but with different crystallite sizes resulted in a WO$_3$ scaling factor that varied with crystallite size. The penetration depth of photons in WO$_3$ species is expected to be quite small at energies above the absorption edge energy; therefore, only a small fraction of the WO$_3$ absorbers in a large WO$_3$ crystallite are probed by incoming photons. As a result, large WO$_3$ crystallites that consist primarily of internal WO$_3$ species have a much smaller effective absorption cross sections than smaller WO$_3$ crystallites, making calculations of the amount of crystalline WO$_3$ from UV–vis absorption measurements inaccurate.

3.5 Raman Spectra of WO$_x$–ZrO$_2$ Samples. Raman spectra of several dehydrated WO$_x$–ZrO$_2$ samples and of crystalline WO$_3$ are shown in Figure 8. Polytungstate structures, with a Raman band at 880 cm$^{-1}$, are observed in the WO$_x$–ZrO$_2$ sample with the lowest WO$_3$ surface density (4.5 W nm$^{-2}$; Figure 8(E)). The strong Raman feature at 1019 cm$^{-1}$ in this sample has been assigned to the symmetric stretch mode of internal WO$_3$ bands, which are present in monotonstange and polytungstate species and at the surface of WO$_3$ crystals. WO$_3$ species also show Raman bands below 680 cm$^{-1}$, but these features overlap with those of tetragonal and monoclinic ZrO$_2$. The incipient formation of crystalline WO$_3$ appears at WO$_3$ surface densities above 4.5 W nm$^{-2}$. Raman bands corresponding to crystalline WO$_3$ (Figure 8(A)) appear at 808, 720, and 275 cm$^{-1}$; these bands correspond to W–O stretching, W–O bending, and W=O–W deformation modes, respectively. Raman scattering cross sections for crystalline WO$_3$ are much greater than for surface polytungstate species; as a result, WO$_3$ bands tend to dominate the spectra and prevent the detection of polytungstate species, even when the latter are the most abundant surface structures. At intermediate WO$_3$ surface densities (5–9 W nm$^{-2}$), the small WO$_3$ crystals detected by Raman are below the detection limit of X-ray diffraction and UV–vis absorption measurements. Their detection in Raman spectra suggest that the same mechanism that leads to polytungstate species occasionally leads to a very small fraction of weakly bound WO$_3$ species that agglomerate into small WO$_3$ crystals. As WO$_3$ surface density increases further, the bands at 807, 720, and 270 cm$^{-1}$ become more intense, while the intensity of the 1019 cm$^{-1}$ band remains almost constant.

In spectrum B (Figure 8(B); 6% WO$_3$, 1223 K oxidation, 11.2 W nm$^{-2}$), W–O bands for WO$_3$ clusters (270, 720, and 807 cm$^{-1}$) and terminal W=O bands (1019 cm$^{-1}$) are similar in intensity to those of samples with similar surface density (spectrum D; 15% WO$_3$, 1123 K oxidation, 10.8 W nm$^{-2}$) but with different WO$_3$ concentration and oxidation temperature. These data confirm that WO$_3$ structures depend only on WO$_3$ surface density and not on WO$_3$ concentration or oxidation temperature independently, a conclusion reached from the UV–vis data in the previous section.

The ratio of integrated peak areas of the W–O stretch (807 cm$^{-1}$) in microcrystalline WO$_3$ and the symmetric stretch of terminal (surface) W=O (1019 cm$^{-1}$) is shown in Figure 9 for dehydrated WO$_x$–ZrO$_2$ samples with various WO$_3$ surface densities (3–28 W nm$^{-2}$). The intensity ratio increases from a value of zero for monotonstange species lacking W–O–W bonds (< 5 W nm$^{-2}$) to very large values as the spectrum of large WO$_3$ crystallites becomes dominated by bulk W–O–W features. As WO$_3$ surface density increases, the relative number of W–O bonds within microcrystalline WO$_3$ and polytungstate structures increases as WO$_3$ domains grow in size, while the number of surface (terminal) W=O remains almost constant. The observed increase in the ratio of intensities for these two bands shows that the concentration of WO$_3$ species in WO$_3$ clusters increases as WO$_3$ density increases. This is consistent with the UV–vis absorption edge results at > 8 W nm$^{-2}$, which suggest that upon formation of a stable polytungstate monolayer on ZrO$_2$ excess weakly bound WO$_3$ species readily agglomerate into WO$_3$ crystallites. The accessibility of WO$_3$ species to reactants and their catalytic effectiveness decrease as WO$_3$ clusters grow with increasing surface density.

3.6 Reduction of WO$_3$ Species and the Formation of Brønsted Acid Sites and Color Centers in H$_2$. We have shown that o-xylene isomerization rates and acid site densities for WO$_3$ species on ZrO$_2$ supports reach a maximum value at intermediate WO$_3$ surface densities, for which a large fraction of the WO$_3$ species reside on the surface of polytungstate clusters and Brønsted acid sites form by delocalization of an electron from an H atom resulting in H$^{+}$ species. H$_2$ has a promoting effect on the rate of acid catalysis on WO$_3$–ZrO$_2$, and appears to be required for the formation on Brønsted acid sites in neutral WO$_3$ structures.

WO$_x$–ZrO$_2$ samples with >4 W nm$^{-2}$ acquire absorption bands in the visible region of the spectra in the presence of H$_2$ at a typical reaction temperatures (523 K). The appearance of absorption bands in the visible region can be visually detected by a change in color from white or light yellow to blue. In a similar manner, crystalline WO$_3$, yellow in color, forms a blue hydrogen bronze (H$_2$WO$_3$) in the presence of H$_2$ at 523 K. Figure 10. These color centers form in WO$_x$–ZrO$_2$ samples without any changes in the absorption edge energy, suggesting that their formation does not reflect changes in WO$_3$ domain size, but instead changes caused by placement of H atoms at the surface and in the bulk of WO$_3$ domains. Absorption of visible light at energies lower than the absorption edge occurs because electrons from the H atoms are inserted into the WO$_3$.

![Figure 9](image-url) Relative increase in internal W–O bonds (807 cm$^{-1}$) with respect to terminal W=O bonds (1019 cm$^{-1}$).
LUMO and can be optically excited into unoccupied states available at slightly higher energies. Similar processes appear to account for the appearance of Brønsted acidity; they require the presence of H₂ at temperatures sufficient for its dissociation and WO₃ structures capable of stabilizing the resulting H atoms as H⁺⁻ by the mechanism in Scheme 2.

The rate of formation of these color centers, which is related to the relative ability of the WO₃ clusters to accommodate an H atom with its corresponding electron, was measured for several WO₃−ZrO₂ samples (26 wt % WO₃, 773−1073 K oxidation) with a wide range of WO₃ surface densities (4−16 W nm⁻²), Figure 11. Initial rates of formation were determined by integration of the Kubelka−Munk function ((F(R∞)) across the broad absorption band that appears during exposure to H₂ at 523 K in the visible region (1.8−2.2 eV). The rate of formation of color centers is very low for the WO₃−ZrO₂ sample with the lowest WO₃ surface density (4.1 W nm⁻²). These rates increase with increasing WO₃ surface density, and they approach those measured on bulk WO₃ crystallites. This suggests that dispersed WO₃ species cannot accommodate the negative charge required to stabilize H⁺⁻, whereas polytungstate and crystalline WO₃ structures stabilize H⁺⁻ with greater ease as WO₃ domain size increases. The H atoms are stabilized by donation of an electron to electronegative WO₃ domains (polytungstate or WO₃ clusters), which delocalize the negative charge with increasing effectiveness as the size of these WO₃ domains increases. Apparently, as absorption edge energies decrease, WO₃ domains accept electrons with greater ease because electrons are placed in unoccupied molecular orbitals available at lower energies. Effective WO₃−ZrO₂ solid acids require that WO₃ domains must be large enough to stabilize negative charge and charge-compensating H⁺⁻ species, but small enough to ensure that a large fraction of the WO₃/H⁺⁻ remains accessible to reactants.

Hydrogen chemisorption uptakes were measured for several of these samples in order to determine the number of H atoms that reversibly bind to the WO₃ species at typical o-xylene isomerization reaction temperatures (523 K) after hydrogen pretreatment and evacuation at the same temperature, Table 1. Maximum hydrogen uptakes were recorded on the WO₃−ZrO₂ sample showing maximum isomerization rates (0.026 H/W, 8.5 W nm⁻²), suggesting that the formation of these reduced centers is indeed related to the stabilization of carboxatonic intermediates. When the o-xylene isomerization rate on this WO₃−ZrO₂ sample is normalized to the hydrogen uptake the apparent Brønsted acid site turnover rate (8.1 × 10⁻² (H atom)⁻¹ s⁻¹) is much higher than that reported for zeolites (H−ZSM5, Si/Al = 14.5, 0.17 × 10⁻² (Al atom)⁻¹ s⁻¹) under similar reaction conditions (0.66 kPa o-xylene, 100 kPa H₂, 523 K).⁴⁹

Hydrogen uptakes were very low on WO₃−ZrO₂ samples with low WO₃ surface densities (0.001 H/W, 4.1 W nm⁻²), because the isolated WO₃ species are unable to delocalize the negative charge required to stabilize high H⁺⁻ concentrations. Extended WO₃ domains that form at higher WO₃ surface densities can delocalize the negative charge throughout several WO₃ neighbors. This mechanism of delocalization of charge among several WO₃ groups and formation of Brønsted acid centers is similar to the generation of the strong acid sites on heteropolytungstate clusters, where the negative charge on the central anion is delocalized over the WO₃ shell and balanced by H atoms with a net positive charge (e.g., 12-tungstophosphoric acid).⁵⁰ A much smaller hydrogen uptake was recorded in samples that contain large WO₃ crystallites (0.010 H/W, 15.6 W nm⁻²) and show the highest rate of formation of color centers. The formation of color centers in WO₃ crystallites is known to occur by both the accommodation of H atoms in the lattice and by the thermal desorption of oxygen which leaves behind a more closely packed structure (WO₃₋) that has a reduced charge and is therefore unable to accommodate the additional charge to make H⁺⁻.

Table 1: Reversible H₂ Uptakes at 523 K and 27 KPa H₂ on WO₃−ZrO₂ Samples (26% WO₃, 773−1073 K Oxidation) after Reduction in H₂ at 523 K for 1 h

<table>
<thead>
<tr>
<th>WO₃ surface density (W nm⁻²)</th>
<th>reversible H₂ uptake (H atom/W atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>0.001</td>
</tr>
<tr>
<td>6.5</td>
<td>0.009</td>
</tr>
<tr>
<td>8.5</td>
<td>0.026</td>
</tr>
<tr>
<td>15.6</td>
<td>0.010</td>
</tr>
</tbody>
</table>
a result, the sharp decrease in catalytic activity at high WO₃ surface densities may reflect the inability of large WO₃ domains to stabilize the additional electron required to accommodate H atoms as H⁺, as well as a decrease in accessibility of the WO₃ species inside crystallites.

4. Conclusions

The domain size and structure of WO₃ species on ZrO₂ supports were determined for a wide range of WO₃ surface densities using UV–vis diffuse reflectance and Raman spectroscopies and CO₂ chemisorption. The WO₃ domain size is controlled only by WO₃ surface density and it is not influenced independently by WO₃ concentration, oxidation temperature, and ZrO₂ surface area. Three distinct regions of WO₃ coverage on ZrO₂ supports appear with increasing WO₃ surface density: a submonolayer region (0–4 W nm⁻²), a polytungstate growth region (4–8 W nm⁻²), and a polytungstate/crystalline WO₃ coexistence region (>8 W nm⁻²). At low WO₃ surface densities, WO₃ species strongly interact with ZrO₂ and they remain isolated; as a result, they are difficult to reduce and contain few acid sites that can isomerize o-xylene at 523 K. At intermediate WO₃ surface densities, polytungstate domains grow with increasing WO₃ surface density, WO₃ species become easier to reduce, and o-xylene isomerization rates increase. At high WO₃ surface densities, o-xylene isomerization rates decrease because a significant fraction of the WO₃ species are found in the bulk of monoclinic WO₃ crystals and are inaccessible to reactants.

The increase in o-xylene isomerization rates coincides with the growth of polytungstate species and a decrease in UV–vis absorption edge energy. This decrease in absorption edge energy reflects the condensation of WO₃ octahedra and the growth of WO₃ domains. Strong acid sites form on WO₃–ZrO₂ by the slight reduction of these polytungstate domains in the presence of H₂ at reaction temperatures (523 K). These H⁺ sites (Brønsted acid) sites form on larger WO₃ domains because the electron from the H-atom may be delocalized throughout several neighboring octahedra.

WO₃–ZrO₂ samples containing crystalline WO₃ domains are less active per W atom because a fraction of the H atoms are accommodated inside the WO₃ crystals where they are inaccessible to hydrocarbon reactant molecules. In addition, crystalline WO₃ domains may reduce by loss of oxygen from the lattice, which would decrease the ability of these material to accept additional electrons from H atoms and form Brønsted acid sites.

Acknowledgment. The authors acknowledge financial support for this work from the National Science Foundation (CTS-9510575). The authors also thank Prof. Gustavo A. Fuentes of Universidad Autonoma Metropolitana-Iztapalapa, Mexico, for introducing us to UV–vis spectroscopy and for useful discussions.

Nomenclature

α = absorption coefficient
ɛ = electron charge (C)
E₀ = optical absorption edge energy (eV)
ΔE = shift in edge energy (eV)
ε = dielectric constant
F(R_a) = Kubelka-Munk function
h = Plank’s constant
ℏ = h/2π
k = Boltzmann’s constant
m₀ = effective mass of electron (kg)

η = electron transition exponent
ν = wavenumber (cm⁻¹)
P₁ = transition probability
R = radius of crystallite (m)
Rᵣ = reflectivity ratio
S = scattering coefficient
σ = correlation parameter
T = temperature (K)

References and Notes

(1) Misono, M.; Okuhara, T. Chemtech. 1993, 23 (11), 23.

