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Abstract

Background: Protein effectors of pathogenicity are instrumental in modulating host immunity and disease

resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases

of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress

or avoid host immunity if it is to survive and cause disease.

Results: Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted

Effector Proteins (CSEPs) in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes

encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72

families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called

haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass

spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins

(100–150 amino acids), with a high relative expression level in the haustoria and evidence of extensive diversifying

selection between paralogs; the second type consists of longer proteins (300–400 amino acids), with lower levels of

differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein

structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural

affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the

same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-

transposons.

Conclusions: We employed the full complement of genomic, transcriptomic and proteomic analyses as well as

structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f.sp.

hordei. Based on relative intron position and the distribution of CSEPs with a ribonuclease-like domain in the

phylogenetic tree we hypothesize that the associated genes originated from an ancestral gene, encoding a

secreted ribonuclease, duplicated successively by repetitive DNA-driven processes and diversified during the

evolution of the grass and cereal powdery mildew lineage.
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Background
The powdery mildew fungus Blumeria graminis is an

obligate biotrophic pathogen of cereals. It has significant

impact on cereal crops that are central for food security

such as wheat (Triticum aestivum) and barley (Hordeum

vulgare) and is an experimental model for powdery

mildew fungi in general as well as for other obligate

biotrophic plant pathogens [1]. Here we research the

barley pathogen B. graminis f. sp. hordei. Its infection

process starts when a spore lands on a leaf, germinates,

forms an appressorium and attempts plant cell penetra-

tion. The penetrating hypha produces a specialized feed-

ing organ, the haustorium, in the host epidermal cell.

The haustorium remains surrounded by a plant-derived

extra-haustorial membrane. Between the haustorium

and the extra-haustorial membrane there is an extra-

haustorial matrix, which is the interface between the two

organisms. Both the plant and the fungus are dedicated

to secretory warfare and the extra-haustorial matrix is

believed to represent a major battleground [2]. Effector

proteins are defined as molecules that alter host cell

structure or function, and thereby facilitate infection

and/or trigger defence responses [3]. Effectors are there-

fore assumed to be secreted by the pathogen. In plant

pathogenic fungi, they are broadly divided into apoplas-

tic and cytoplasmic effectors depending on their final

destination in the host. Apoplastic effectors often exhibit

inhibitory activity against extracellular host hydrolytic

enzymes (e.g. proteases) and are typically small and highly

cysteine-rich secreted proteins [4]. Most cytoplasmic ef-

fector proteins have been identified through their avi-

rulence functions, i.e. based on their genotype-specific

recognition by matching plant resistance (R) proteins. Lit-

tle is known about their direct host targets; some have a

functional nuclear localization signal (NLS) suggesting a

nuclear target [5]. Godfrey and co-workers recently identi-

fied 107 effector candidates based on a cDNA library pre-

pared from barley epidermis containing haustoria [6]. All

these effector candidates share an N-terminal amino acid

motif named YxC, consisting of a conserved aromatic

amino acid (Y, F or W) followed by any amino acid and

then a cysteine. Seventy-one of these B. graminis effector

candidates were verified experimentally in the haustorial

proteome present specifically in the epidermis of infected

plants, of which 51 contain the YxC motif [7,8]. The ob-

servation that only three candidate effector proteins were

found in the proteome of isolated haustoria, in the pre-

paration of which secreted proteins are mostly likely

to be washed away [9], provides indirect evidence that

these candidate effectors are indeed secreted by the

fungus. As one outcome of the recent sequencing of the

B. graminis genome, we reported the annotation of 248

Candidates for Secreted Effector Proteins (CSEPs), de-

fined as proteins with a predicted signal peptide, but no

transmembrane domain and no homology to proteins out-

side the Erysiphales (powdery mildews) [10]. Here we pro-

vide a global survey of the CSEPs in the B. graminis genome,

transcriptome and proteome. We studied their predicted

structures and putative functions, and explored evidence for

selection acting on their diversification. Based on the results

of these analyses we discuss how these key proteins may

have evolved in the interplay with the host systems.

Results
Genome annotation and family clustering of CSEP paralogs

Initially, we aimed at determining a comprehensive set

of all B. graminis CSEPs. To achieve this, we followed

two complementary strategies: We first mined the B.

graminis genome by iterative BLAST searches using pre-

viously identified CSEPs as query sequences [10]. We

then performed open reading frame (ORF) prediction in

combination with SignalP analysis based on whole tran-

scriptome shotgun sequencing (RNAseq) data (Figure 1).

After three rounds of iteration we identified 491 ma-

nually annotated CSEPs including the 248 predicted

previously [10] (Additional file 1). Based on Markov

Clustering (MCL) analysis, 407 of the predicted 491

CSEPs were grouped into 72 families (BLASTP thresh-

old e<10-10; Table 1, Additional files 2 and 3). Approxi-

mately 50% of the families have two to ten members

(including a total of 242 CSEPs), and seven families are

comprised of eleven or more members (representing 165

CSEPs). CSEPs make up a considerable proportion of

the large protein families in B. graminis, as this fungus

only has a total of 25 protein families of ten or more

members estimated by MCL-based clustering of the en-

tire theoretically determined B. graminis proteome [10].

Most families harboring CSEPs are nearly exclusively

comprised of effector candidates, but the largest CSEP-

containing family encompasses only ~50% CSEPs. The

remaining members of the latter family lack a significant

SignalP score for a canonical N-terminal signal peptide,

suggesting either false-negative predictions or functional

diversification within this protein family. In addition to

the MCL-based family grouping, we conducted neigh-

bor-joining phylogenetic analysis of the 491 CSEPs and

established a CIRCOS plot [11] (Figure 2), which il-

lustrates their relatedness as a dendrogram. Owing to

the high sequence diversity amongst the CSEPs this ap-

proach does not accurately resolve their phylogenetic

relationships, but rather visualizes clusters of similar

sequences within the CSEP superfamily. Bootstrap ana-

lysis indicates largely reliable family classification, while

the relatedness of the families amongst each other is less

well determined (Additional files 4, 5 and 6). The clades

resolved by two independent methods (MCL clustering

and phylogenetic classification) are largely congruent, in-

dicating robustness of the overall family groupings. Even
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though, by the definition used in the context of this study,

the CSEPs do not have evident homologs outside powdery

mildew fungi, we inspected their amino acid sequences for

signatures of known protein domains. InterProScan ana-

lysis combined with gene ontology (GO) categorization

revealed that 54 CSEPs are similar to proteins with RNA

binding and/or ribonuclease activity (see below), while

nine have predicted coiled coil domains (Additional file 1).

Such similarities to RNA binding/ribonuclease activity

were found in 27 of the 32 members of MCL family 2 and

in 11 of the 20 members of MCL family 3. The remaining

16 of these CSEPs are scattered across eleven other families

(Additional files 5 and 7). We then searched for CSEP

homologs within the Erysiphales by examining the pro-

teomes derived from sequenced genomes of Golovinomyces

orontii and Erysiphe pisi representing two other genera in

this order [10]. This revealed that 16 of the B. graminis

CSEPs are similar (TBLASTN, e<10-05) to proteins encoded

by Golovinomyces orontii (two), Erysiphe pisi (four) or both

(ten). Interspecies amino acid sequence identities of these

ranged from 31% to 73% with an average of 48%. These 16

B. graminis CSEPs are mainly unrelated singletons, widely

distributed across the phylogenetic tree (Additional file 6).

This result is consistent with the previous analysis of 248

CSEPs [10], and it further underscores rapid evolution and

diversification of CSEPs in powdery mildew genomes.

Most CSEPs are predominantly expressed in haustoria

Many (51%) of the CSEPs are represented in Expressed

Sequence Tag (EST) collections available in databases

(Additional files 1 and 8). The EST sets with the highest

proportion of CSEP transcripts are derived from cDNAs

from haustoria-containing epidermis [6] and 162 CSEPs

(33% of the 491) were found in these EST collections

(Additional file 1, column W and Z). In order to further

characterize the CSEP expression patterns and validate

their annotation, we analyzed RNAseq data obtained from

two separate B. graminis tissues isolated at 5 d after inocula-

tion: (1) haustoria-containing plant epidermis and (2) epi-

phytic structures [10]. Ninety-seven percent (477/491) of the

Protein diversification analysis 

• Signal peptide (SignalP) 

• No Transmembrane-domain (TMHMM) 

• No similarity to other proteins (BlastP) 

Identification of CSEPs and families 

Expression analysis 

Haustorial tissue 

Epiphytic tissue 

Definition of CSEP 

Genome mining to identify novel CSEPs 

Sequence based clustering 

Protein analyses 

Identified CSEPs  
BLAST to 

genome  
3 rounds 

Annotate candidate 

regions 

Identify ORFs with evidence for 

transcription & signal peptide 

• Cluster CSEPs and Blumeria proteome into  

 protein families (Markov clustering) 

• Phylogenetic analysis (Clustalw) 

Protein structure analyses 

Protein motif predictions 

• IntFOLD-analysis:  

• Fold recognition 

• Domain- and disorder prediction 

• Binding site residue prediction 

• 3D model quality assessment

• YxC-motifs: YxC, FxC and WxC 

• Conserved cysteines and  disulfide bond 

 predictions

• z-tests for positive and purifying selection: 

• Pair-wise and within group tests 

• Bayesian inference approach: Model M8 

versus  model M8a 

• Ka/Ks calculations on each branch-point of the 

 phylogenetic tree

Evidence 

• ESTs: ~ 52000 ESTs from different 

 tissues, stages and timepoints 

• RNA-seq (SOLiD-data) of epiphytic 

 tissue versus haustorial tissue 

•  Proteomics: Sporulatiing hyphae and 

 epidermis containing haustoria:  

Stages 

Figure 1 Summary of bioinformatics and expression analysis of CSEPs. Identification of CSEPs and family assignment. Workflow used to find

and annotate CSEPs in the genome of B. graminis f.sp. hordei. After three iterative rounds of BLAST and annotation, genes were clustered into

families as described in Methods. Protein analyses. The proteins predicted to be translated from the CSEP ORFs were analyzed to infer their 3D

structure and presence of conserved motifs. These were then used to investigate evidence of different selection pressures during the course of

evolution of the CSEP families. Expression analysis. Evidence to support the existence of CSEP genes was obtained from ESTs in the public

databases, from RNAseq surveys and from the analysis of the proteomes of B. graminis and B. graminis-infected barley tissues by mass-spectrometry.
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Table 1 Summary of the 35 largest CSEP families

Family Number of
members

Motif1) C-term.
cysteine2)

Conserved
cysteines3)

Average
peptide
length4)

Haustoria/
Epiphytic
exp-ratio5)

Preference
for haustoria
expression6)

Positive
selection:
Pairwise z-test7)

Positive selection:
Average Ka/
Ks-values8)

1 59 no 3 326 15 5 18 / 1711 0.68

2 32 FxC no 4 396 6 0 3 / 496 0.73

3 20 F/YxC no 10 384 6 0 0 / 190 0.70

4 19 FxC yes (4–14) 2 153 58 16 8 / 171 1.20

5 15 F/Y/(H)xC no 2 107 94 13 9 / 105 1.41

6 10 YxC yes (1–9) 4 311 21 50 1 / 45 1.04

7 10 no none 131 3 0 1 / 45 0.62

8 8 YxC yes (4) 2 118 25 0 11 / 28 1.80

9 8 no none 178 16 0 0 / 21 0.52

10 7 FxC no 2 160 37 57 1 / 21 1.31

11 7 no 2 164 0 0 0 / 21 0.92

12 7 F/YxC yes (10) 2 125 207 0 5 / 21 1.19

13 7 F/Y/(H)xC yes (4) 2 123 30 14 9 / 21 1.69

14 7 YxC no 2 127 0 0 0 / 21 0.50

15 7 YxC no 4 310 3 0 1 / 21 0.82

16 6 FxC no 2 144 55 0 2 / 15 1.59

17 6 F/YxC no 5 395 11 0 0 / 15 0.56

18 6 no 2 153 74 50 0 / 15 0.97

19 5 F/YxC yes (4) 2 115 87 0 1 / 10 0.93

20 5 FxC yes (4) 2 128 168 0 0 / 10 0.92

21 5 WxC yes (6) 2 118 156 20 9 / 10 2.76

22 5 YxC yes (4) 2 105 31 20 2 / 10 2.00

23 5 YxC yes (4) 2 107 197 20 8 / 10 2.61

24 4 F/YxC yes (1–2) 2 125 403 50 1 / 6 0.80

25 4 YxC yes (3–9) 2 132 168 25 3 / 6 1.56

26 4 YxC yes (6) 8 392 6 0 0 / 6 0.68

27 4 F/YxC no 3 162 10 0 0 / 6 0.90

28 4 FxC no 5 373 5 0 0 / 6 0.83

29 4 FxC yes (5–7) 2 115 67 0 3 / 6 2.09

30 4 YxC yes (4) 3 121 101 75 4 / 6 2.45

31 4 YxC yes (4–7) 2 119 141 25 0 / 6 1.37

32 4 F/YxC yes (4) 2 112 168 0 2 / 6 1.35

33 4 YxC no 2 150 0 0 0 / 6 1.03

34 4 no none 122 369 25 1 / 6 1.68

35 4 no 4 126 not calculated 25 0 / 6 1.07

The 35 CSEP families with four or more members. The table summarizes data from gene- and protein expression as well as protein length, conserved cysteines,

YxC-motif and detection of positive selection within each family. Data of families showing positive selection in the overall z-test are indicated in bold fonts. A

table with more extensive details of the CSEP family analysis is provided in the Additional Files (Additional file 1). 1) Indicates the type motif in the N-terminus of

the mature protein 2) The presence of a cysteine close to the C-terminus and the distance to the C-terminus is indicated in brackets 3) Number of conserved

cysteines in the mature protein. 4) Length of proteins (number of amino acid residues): The average lengths of the proteins were calculated for each family. 5)

Gene expression ratio in haustorial samples versus epiphytic samples, calculated as averages for each family. 6) Percentages of CSEPs in each family found only in

haustoria-samples by proteome analysis. 7) Numbers of pairs with significant positive selection (z-tests at 5% level) compared to the total number of pairs within

each family. 8) Family averages of mean Ka/Ks-values calculated on the mature proteins.
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CSEP show clear evidence of expression in one or both of

these structures (Figure 2). Expression ratios in haustoria ver-

sus epiphytic structures revealed that most CSEP RNAs were

significantly more abundant in the haustorial samples

(Figure 2 and Additional file 9), including 216 out of 349

CSEP RNAs that were at least 10-times more abundant in

haustoria (e.g. the CSEP RNAs in families 1 and family 2,

Figure 2). By contrast, in families 7, 11, 57 and 68 the major-

ity of genes showed similar transcript levels in both fungal

tissues. Interestingly, the CSEP RNAs not assigned to specific

families (singletons) were also expressed at similar levels in

the two samples. A large-scale mass spectrometry-based pro-

teomics approach allowed us to map peptides derived from

expressed proteins on the B. graminis genome, validating

ORF models through the experimental evidence of protein

accumulation [8-10]. Moreover, revisiting the previously ana-

lyzed proteomes of haustoria-containing epidermis and

epiphytic structures [8], using updated genomic informa-

tion, revealed the existence of 97 CSEPs at the protein level

(Figure 2 and Additional file 1). Of these, 62 CSEPs (64%)

were only detected in the haustoria-containing epidermis.

Selection for diversity has operated in the evolution of

B. graminis CSEPs

We analysed nucleotide sequence diversity in coding and

non-coding sequences of CSEP paralogs. Unexpectedly,

we observed that many CSEPs diverged more markedly in

the coding regions. For example, we noticed that the

sequences in families 8 and 30 are strikingly more differ-

ent in the two exons than in the intron and the up- and

down-stream non-coding regions (Additional file 10). We

then used three different approaches to test whether posi-

tive diversifying or purifying selection has operated during

the evolution of related CSEPs (Table 1, Figure 3B and 3C,

Figure 2 CIRCOS plot of the CSEP superfamily with expression and proteome data. From the perimeter to the centre: The outer ring

identifies the CSEPs. The rectangles in the circle immediately below the identifiers are colour-coded: CSEPs of the same families have the same

colour. The small circles below the family identifiers indicate the proteins identified by mass spectrometry in infected epidermis only (green) or in

both infected epidermis and epiphytic hyphae (yellow). The first and second data histogram circles shows the expression values of the haustorial

samples (blue) and of the epiphytic samples (red) of each CSEP gene on a log2 scale. The third data histogram (black) represents the ratio of the

expression values in the two stages plotted on a log2 scale. The fourth data circle indicate the statistical significance of the ratios (red, significant/

black non-significant). At the centre is a dendrogram based on the neighbour-joining dendrogram of all CSEP paralogs.
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Additional files 3 and 11, 12 and 13; see also Methods for

experimental details). This analysis assessed which amino

acids in a family varied by random drift from those that

have been subjected to purifying or diversifying selection.

We expected purifying selection in the N-terminal signal

peptide domains based on the need to maintain secretion

and considered this as a positive control in our analyses.

In general, there was good agreement between the three

types of approaches. However, in some cases, we only

found substantial evidence of positive diversifying selec-

tion for a small number of codons, and this was often not

sufficient to make the z-test based on the entire ORFs

significant. Overall, we found strongest evidence for di-

versifying selection in families 21, 23, 25, 29, 30, 50, but

also statistically significant diversification in families 5, 8,

12, 13, 16, 22, 32, 34, 42, 44, 46 and 49 (Table 1 and
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CSEP0090
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D

Signal peptide

0
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0,4
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CSEP0081
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C

Figure 3 Protein structure and positive selection in CSEP family 12. A: Amino acid alignment of the seven members obtained with CLC

main workbench (see Methods). B: Evidence for selection on the paralog members of family 12 was estimated using the Selecton server ([49,50];

http://selecton.tau.ac.il/). Codon sites under positive diversifying (red) or purifying (purple and yellow) selection and conserved cysteines (yellow)

are indicated by coloured circles. C: Cladogram with Ka/Ks-values indicated for the individual branches calculated using the on-line server at

http://services.cbu.uib.no/tools/kaks. Branches in red indicate a significant positive selection. D: 3D protein models of two family 12 members are

shown and the amino acids under positive diversifying selection are highlighted in red.
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Additional file 3). In these 18 families, representing 93

members, diversifying selection was a general trend. How-

ever, even in the three largest families, where purifying se-

lection was dominant, there are individual residues that

seem to have been under diversifying selection. Especially

in family 1, there is a stretch of 20 amino acids showing

signs of positive selection, while family 2 has 16 codons in

several domains with diversifying selection scattered along

the protein (Additional files 12 and 14). We then analyzed

the relationships between CSEP length, the degree of in-

ferred positive diversifying selection and transcript accu-

mulation in haustoria based on the respective average for

each family. We found that the CSEP families form two

clearly separated groups: one group contains shorter pro-

teins with a preference for haustorial expression and with

most families showing strong evidence of positive diversi-

fying selection. The second group includes longer proteins

with less evidence of differential expression and less over-

all positive diversifying selection (Figure 4). The analyses

also demonstrate that there has been purifying selection

in all families. This is expected especially in the region en-

coding the predicted signal peptides and in some con-

served motifs or specific amino acids (Additional files 12

and 13). In some families (7, 9, 14, 17 and 26) we detected

only purifying selection. In other examples (e.g. family 6),

the N-terminal part of the mature proteins is highly con-

served and has been under strong purifying selection, while

the C-terminal region appears to have been under posi-

tive diversifying selection. The most conserved amino acids

are generally proline, glycine and cysteine (Figure 3A,

Additional files 12, 13 and 14). These amino acids confer

structural properties to proteins by providing fixed angle

bends, sharp angle bends and opportunity for disulphide

bonds, respectively.

Protein structural analyses

Since by selection the CSEPs had little sequence similar-

ity (BLASTP, e<10-05) to any protein previously struc-

turally or functionally characterized, we carried out

structural annotation using protein fold recognition

methods [11], to search for potential relationships based

on predicted structure (Additional file 15). The results

of this structural annotation indicate that all CSEPs had

comparatively low values for mean lengths, mean pro-

portion disorder, mean maximum length of disorder,

mean model quality and mean number of domains

(Additional file 16). For example, compared with a ran-

dom set of 71 proteins only detected in the epiphytic hy-

phae, all values are significantly lower in the CSEPs.

When we control for length, all values are lower except

Figure 4 The relationship between the length of CSEPs, the degree of positive selection and the ratio of expression in haustoria

compared to expression in epiphytic hyphae. Ratio of the non-synonymous to synonymous substitutions (Ka/Ks) within CSEP families is

plotted against the length of the proteins. The values of the parameters for the axes were calculated as family averages; the family numbers are

indicated in the circles. The ratios of CSEP expression in haustoria and epiphytic hyphae are as indicated in the colour bar. The diameter of the

circles indicates the relative size of the families.

Pedersen et al. BMC Genomics 2012, 13:694 Page 7 of 20

http://www.biomedcentral.com/1471-2164/13/694

http://MOESM13


for length and number of domains. Overall there are no

statistically significant differences (apart from three-

dimensional (3D) model quality) between CSEPs, proteins

found in haustoria and infected epidermis and known fun-

gal effector proteins. Ribonuclease template assignments

are significantly overrepresented in CSEPs compared with

all other sets apart from proteins found in haustoria and

infected epidermis (i.e. sets known to include CSEPs) and

in a set of 71 proteins selected at random from yeast,

where there is no significant difference with this data

(Additional file 17). Furthermore, assignments to hydro-

lase templates are significantly overrepresented in CSEPs

compared with proteins from hyphae and a random set of

yeast proteins (Additional file 17). We mapped the pos-

ition of the residues predicted to be under statistically sig-

nificant positive diversifying selection pressure onto the

predicted 3D models of the proteins. We observed a var-

iety of scenarios exemplified by the following case studies.

The highest quality 3D models generated for CSEP family

12 (Figure 3 and Additional file 11) are all predicted to

have approximately similar folds and were generated using

ribonucleases as the top identified structural templates.

The positions of the residues calculated to be under posi-

tive diversifying selection mostly occupy the surface of the

globular structures (Figure 3 and Additional file 18A, right

hand side images). Furthermore, these amino acids are

located mostly within the loop regions of the structures,

whilst the α-helix and β-strand secondary structural

elements (Additional file 18A, left hand side images) are

more conserved and contain residues under purifying

selection. In other cases (for example family 21; Additional

file 18B), the more variable regions are located in

α-helices and β-strands and residues under diversifying

selection are buried in regions more likely to lead to

changes in folding (Additional files 11 and 18B). The mod-

els generated for other families are shown in Additional

files 18C-E (see also http://www.reading.ac.uk/bioinf/

CSEPs/).

Most CSEPs harbor conserved cysteines, including

N-terminal YxC-motifs, and most of these are predicted

to form disulphide bonds

We compared the CSEPs against the known fungal ef-

fectors and B. graminis proteins that were found only

in haustoria and infected epidermis, as well as the yeast

and hyphae controls sets. The parameters measured were:

length (as a control), amino acid frequency (A-Y), coiled-

coil composition, transmembrane (TM) helix composition

(as a control), low complexity regions, frequency of helical

residues, frequency of strand residues and frequency of

loop residues. We found that particular amino acids (C, F,

H, I, N, S, and Y) and loop residues are significantly

overrepresented in CSEPs, while several other amino acids

(A, D, E, G, and K) are significantly underrepresented

(Additional files 19 and 20). The similarity between

CSEPs, known fungal effectors and B. graminis proteins

found only in haustoria and infected epidermis is par-

ticularly striking with regard to the significantly higher

frequency of cysteine residues. Manual inspection of mul-

tiple amino acid alignments of the CSEP families revealed

that the cysteines are generally conserved and most fam-

ilies (27 out of the 35 largest) had an even number of

cysteines (Table 1).

Many CSEPs (307; 63% of the 491) contain the previ-

ously described YxC-motif within the first 30 amino

acids of the mature protein sequence (i.e., from which

the N-terminal signal peptide was removed; Additional

file 21) [6]. The frequencies of the three variants of this

motif, YxC, FxC and WxC, are 47%, 49% and 4%, res-

pectively. Of the 184 CSEPs without an N-terminal YxC-

motif, there are 34 without any cysteine in the mature

protein. In the remaining 150 CSEPs, 44 have a YxC-

motif further towards the C-terminus. The latter is ty-

pical of the longer CSEPs (Additional file 21). Most

CSEPs contain a cysteine close to the C-terminus. For

example, 83% of the 307 CSEPs with an N-terminal YxC

motif also have a cysteine within the last 30 C-terminal

amino acids. In 65% of those, the cysteine occurred

within ten amino acids from the C-terminus, preferably

in positions four to seven (Additional files 14 and 22).

Of the non-YxC CSEPs, only 26% have a cysteine within

ten amino acids from the C-terminus. The majority

(90%) of all CSEPs have at least two cysteines and thus

in principle they have the capacity to form a minimum

of one disulphide bond. This overrepresentation of cys-

teines and their conserved pattern prompted us to pre-

dict disulphide bonds using the tool Disulfide Bonding

State and Connectivity Predictor “Disulfind” [12], which

previously has been used for prediction of disulphide

bonds in effector candidates [13]. We found that 69% of

all possible disulfide bonds are predicted to be formed

(Additional file 22).

Many CSEPs show relatedness to ribonucleases

The InterProScan analysis revealed that 54 CSEPs

(57 proteins in the entire B. graminis proteome) show af-

finity to ribonucleases/ribotoxins (see above, IPR016191).

Also the IntFOLD structural analysis (see above) indicated

that many CSEPs matched ribonuclease structural tem-

plates, particularly those of two well-characterized ribo-

nucleases: T1 from Aspergillus oryzae (11-times) and U2

from Ustilago sphaerogena (16-times; Additional file 7).

Thirty-seven CSEPs from many different families have top

models of medium or high score in this category. Thus,

two fundamentally different but complementary methods

(InterProScan and IntFOLD) indicate the relatedness of a

considerable subset of the CSEPs to ribonucleases. Based

on the two procedures, we found that, across the
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phylogenetic tree, a total of 72 CSEPs, representing 15 dif-

ferent families and seven CSEPs not assigned to families,

show similarity to ribonucleases, of which 35 were pre-

dicted by InterProScan, 18 by IntFOLD and 19 by both

approaches (Additional file 7). We aligned consensus

sequences obtained from nine of these CSEP families with

the well-described Aspergillus T1 ribonuclease and a con-

sensus sequence generated from several other ribonu-

cleases. In this multiple sequence alignment, we observed

considerable similarity between CSEPs and ribonucleases

at the level of the primary amino acid sequence, and we

identified approximately eight to nine positions that are

highly conserved (Figure 5A). Moreover, the intron be-

tween the first and second exon of the ten CSEP families

is at the same relative position. The predicted folds of

some of the CSEPs are highly similar to that of ribonucle-

ase T1 (Figure 5B) showing that, even though their amino

acid identities are only about 20%, their predicted 3D

structures are well conserved. It is also noteworthy that

the native ribonuclease fold includes a disulphide bond as

predicted in many of the CSEPs (see above), further

strengthening the degree of similarity between these pro-

teins. Overall, this suggests that these families may have a

common origin. Despite the similarities, it seems likely

that the ribonuclease activity was lost in these CSEPs,

since well-known active site residues are absent

(Figure 5A).

CSEP family members cluster in the B. graminis genome

The existence of discernible CSEP families suggests fre-

quent gene duplication events during evolution of the B.

graminis genome. To obtain clues about the underlying

molecular mechanisms, we studied how CSEPs are orga-

nized in the genome. We analyzed in detail the distribution

of 252 CSEPs belonging to 22 families, including the 16

largest families. We found that 207 genes (82%) are clus-

tered family-wise on individual genomic sequence scaffolds

(Additional file 23). In some families most or all genes re-

side on a single scaffold. For example, six out of the seven

genes in family 9 cluster on one scaffold, and in family 2

we found that 18 out of the 32 genes cluster on one scaf-

fold within 1429 kb (Additional file 24). The clusters with

2–18 members are on average 434 kb long and the mean

distance between clustered CSEPs is 129 kb. In 13 cases

gene-pairs are direct neighbors, separated by only 2–6 kb.

Surprisingly, however, the most closely positioned gene

pairs do not always encode the most closely related CSEPs.

A comprehensive analysis of the distribution of all CSEPs

showed that they are spread throughout the genome

(Additional file 25), but two thirds of the 455 CSEPs

located on 43 major sequence scaffolds were clustered

family-wise (Additional file 25). The B. graminis genome

is very rich in repetitive DNA sequences [10,14] and two

very frequent and widespread retro-transposons, Egh24

and Eg-R1, were previously characterized [15,16]. During

genome annotation, we often noticed that CSEPs are em-

bedded in regions flagged as repetitive DNA [10]. We fur-

ther studied the three CSEP families already found to have

highly similar 500 bp regions upstream and downstream

of their exons in order to investigate how far the sequence

similarities extend (Figure 6 and Additional file 26). Six of

the ten family 7 members cluster on the same sequence

scaffold as three pairs with more than 99% identity within

the pairs, indicating recent gene-duplications. The very

high sequence similarity extended only 1 kb or less up-

and downstream of the coding region. Further away, most

of the genes were flanked by one of the two SINE-type

retro-transposons, Egh24 or Eg-R1, but here the similarity

is much lower than in the CSEP coding region and their

up- and downstream regions (Figure 6). There is an ab-

rupt change in the level of identity from approximately

97–99.5% to 90% or below at the point where the se-

quence of the two retro-transposons starts. This pattern

indicated that local duplication events between the retro-

transposons are likely to have taken place by unequal

crossover, possibly mediated by the repetitive DNA se-

quences including a high-copy repeat previously identified

in the wheat powdery mildew fungus (AJ002007.1). In

addition to this case, four highly similar CSEP gene pairs

from families 8 and 30 were analyzed for the content of

the flanking genomic regions and again repetitive DNA

sequences were present close to the CSEP genes and the

patterns are to some extent conserved between the para-

logs. However, in these instances it was not possible to

identify an exact breakpoint using the level of sequence

similarity as it was for family 7 (Additional file 26). The

flanking genomic regions of several other highly similar

CSEP pairs were analyzed. In general they are surrounded

by repetitive DNA sequences and regions of high sequence

similarity only extended ~1 kb or less up- and downstream

of the exons.

Discussion
Here we report the identification of 491 CSEPs in the

B. graminis genome, nearly doubling the number previ-

ously described [10]. We explored systematically the evi-

dence that the proteins encoded by these genes have

effector-like properties using bioinformatics tools and

expression studies. This work will facilitate the future in-

vestigation of their functional relevance in the inter-

action between the fungus and its host barley [17]. The

typically short ORFs, the unrelatedness of their gene

products to known proteins and the tight association of

CSEPs with retro-transposons (see below) render the

identification of CSEPs in the large and highly repetitive

B. graminis f.sp. hordei genome a challenging task. Al-

though our bioinformatics pipeline converged after three

rounds of iteration on a set of 491 CSEPs, suggesting
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Figure 5 Multiple sequence alignment and 3D models of ribonucleases and CSEPs. A: Multiple sequence alignment of ribonuclease T1 from

Aspergillus oryzae, a ribonuclease consensus sequence and selected CSEP family consensus sequences. The ribonuclease consensus was derived by aligning

ribonucleases from Aspergillus phoenicis (P00653, Penicillium brevicompactum (P07446), Grosmannia clavigera (EFX05096), Phaeosphaeria nodorum

(XP_001800520) and Mycosphaerella graminicola (EGP89360). The alignments were manually edited based on MultAlin-alignments (http://multalin.toulouse.inra.

fr/multalin/multalin.html). The CSEP families included are primarily those showing most ribonucleases identified by InterProScan or by the structural annotation.

The secondary structures (α-helix, β-sheets and loops) of ribonuclease T1 from Aspergillus shown on top are according to Pace et al. [54]. Catalytic active site

residues in ribonucleases are indicated in red. Intron position is indicated by a red vertical dashed line; there is one exception, one member of family 56 does

not have this intron. Amino acid numberings are the ranges for each family. Upper case letters indicate highly conserved positions, while lower case letters

indicate that the positions are present in some of the family members only. Omega (Ω) is used for aromatic amino acids (F, Y and W), and psi (Ψ) is used for V,

L and I. Letters in bold indicate that the positions are under purifying selection. Dots indicate non-conserved positions and dashes are gaps. B: 3D models of

ribonuclease T1 and three CSEPs and their superposition. Arrows indicate the predicted disulphide bonds between the N- and C-terminal cysteines.
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saturation, we cannot exclude the possibility that some

CSEPs escaped our attention and are missing in the pre-

sent analysis. Since we deliberately focussed our CSEP

prediction on genes coding for proteins with no recog-

nizable counterparts outside the powdery mildews, we

also cannot exclude that some proteins with N-terminal

secretion signal and identifiable sequence similarity to

polypeptides in other species (e.g. secreted proteases)

exert an effector function during B. graminis pathoge-

nesis. The clustering of CSEPs into families of paralogs

(Figure 2, Additional file 4) suggests that CSEPs have

gone through iterated rounds of gene duplications du-

ring evolution, and some of them are now amongst

the largest gene families in B. graminis; in fact, overall

CSEPs represent >7% of the protein coding genes in the

B. graminis genome. This is a remarkable testimony to

the importance of CSEPs in the powdery mildew fungi,

particularly when taken together with the loss of a large

number of conventional ascomycete genes and reduction

in gene family size observed in this fungus [10]. Since very

few CSEPs have recognizable orthologs in the genomes of

the two powdery mildew fungi, Golovinomyces orontii and

Erysiphe pisi, representing other genera, we conclude that

proliferation of CSEPs occurred after the separation of

B. graminis from the dicotyledonous plant-infecting

mildew lineage some 75 million years ago [18]. CSEPs have

since undergone rapid evolution and diversification. It will

be interesting to correlate the CSEPs to orthologs in other

B. graminis “formae speciales”, for example the wheat

mildew fungus B. graminis f.sp. tritici, to relate CSEP dif-

ferentiation with the evolution of host specificity and ana-

lyse the variation between CSEPs of extant isolates [17].

Expression of effectors in the interaction between the

obligate biotroph B. graminis and its host is expected to

occur either in the appressorium and penetration peg or

in the haustorium to be able to manipulate the plant.

Figure 6 Genome clustering of eight CSEP paralogs from family 7 on two sequence scaffolds. A: Correlations between the phylogenetic

relationships based on nucleotide sequences of CSEP paralogs from family 7 and their locations on the genomic sequence scaffolds 005496 (red)

and 005502 (blue) indicated with dotted lines. Only the relevant parts of the sequence scaffolds (scale bar) are shown. The colour code of the

CSEPs refers to the genomic organization shown in panel B. B: Schematic illustration of the genomic organization (encompassing about 5 kb) of

the eight CSEP paralogs with the retro-transposable elements Egh24 and Eg-R1 [15,16]. The percentages of nucleotide sequence identity in

pairwise comparisons are indicated and abrupt changes in sequence similarity are indicated with vertical dashed lines in red. The colour code of

the CSEPs refers to the phylogenetic tree shown in panel A. Scale bars represent lenghts of DNA in base pairs.
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Indeed, we found that a large fraction of the CSEPs

showed a significantly higher expression in haustoria

compared to the epiphytic tissue isolated at five days

after inoculation (Figure 2). This was further corrobo-

rated by the observation that expression of more than

two thirds of the 97 CSEPs identified as proteins by mass

spectrometry was only detected in haustorium-containing

epidermis (Figure 2). In general, there was a clear con-

gruence between the EST, the RNAseq expression and

proteome data. Haustorium-specific effector expression is

expected in order to suppress defence throughout the fun-

gal life cycle [19]. On the other hand, we also predict that

some CSEPs may be expressed very early during penetra-

tion and these might already be present in the germinating

conidia and exert their function before haustoria are for-

med. Unfortunately, there is only limited transcript data

available from conidia at the stage of penetration, but

maybe the larger CSEPs (300–400 amino acids), belonging

to the three largest families and in general showing low

transcript levels (Figure 4) have functions at the earlier

stages during infection. Here a low relative abundance

may suffice due to the narrowly focussed area at the tip of

the penetration hypha where the protein needs to act.

Diversification through positive selection for amino

acid changes has occurred in many of the families of

paralogs and points to adaptive modifications (Figure 3

and Figure 4, Additional files 11, 12 and 13). These may

have resulted in increased virulence and/or avoidance of

R-protein mediated recognition. Measuring positive di-

versifying selection is only possible in families where the

coding sequences can be aligned with sufficient confi-

dence and many of the CSEPs have diverged so much

that they are too different for a reliable analysis. We may

therefore have underestimated the degree of positive se-

lection across the CSEP superfamily. In any case, the in-

cidence of diversifying selection found here shows that it

is a widespread and fundamental process in the evolu-

tion of B. graminis CSEPs as also demonstrated in other

plant pathogenic plant pathogens [20,21]. However, we

also find families (e.g. families 7, 9, 14, 17 and 26)

showing only purifying selection. In these cases, CSEP

evolution evidently favoured conserved structures to

exert their functions. The CSEP families can be grouped

in two main categories based on a number of character-

istics (Figure 4). One group includes approximately 180

short CSEPs. These: 1) are typically 100 to 150 amino

acids long; 2) have the strongest preferential transcript

and protein accumulation in haustoria; 3) often have

codons that show evidence of diversifying-selection, per-

haps because they may be functioning in close inter-

action with plant targets and the R-protein surveillance

system; 4) usually have only two or three cysteines and

are thus not cysteine-rich as many apoplastic effectors

suggesting that they may act inside the host cells. The

other group of families comprises about 140 CSEPs, in-

cluding those in the three largest families (1, 2 and 3)

and several smaller families, and shares the following fea-

tures: 1) they are relatively long CSEPs (300–400 amino

acids); 2) they do not show high preferential expression in

haustoria; 3) they have few codons subjected to positive

diversifying selection, but in contrast they have many

codons that have experienced pronounced purifying se-

lection; 4) they often have several conserved cysteines

predicted to form disulphide bonds in an oxidizing en-

vironment. The latter characteristic might indicate that their

host targets are localized in the apoplast or extra-haustorial

matrix [4]. The structure prediction studies and 3D model-

ling showed that CSEPs generally have similar characteris-

tics as known effectors described in other fungi [4] and the

proteins are detected preferentially in B. graminis haustoria

in infected epidermis [8]. On average, the global model qual-

ity scores for the generated 3D models were in most cases

poor or low (p>0.05), which is expected since most CSEPs

had distant or no detectable homology to known template

structures. However, a number of the structural models

were of medium (p<0.05) and high (p<0.01) confidence, and

when the amino acid residues under positive selection were

mapped on these models, they are often in the loop

regions predicted to be exposed and thus possibly avail-

able for interactions with other proteins as part of their

effector functions (Figure 3D and Additional file 18). It

will be interesting to discover whether experimental de-

termination of the 3D structure of these proteins con-

firms these predictions, particularly regarding the relative

position of the residues under diversifying-selection.

The cysteine frequency is higher in CSEPs than in

average B. graminis proteins. However, it is much lower

than that found among the cysteine-rich secreted pro-

teins from Melampsora larici-populina [22] and apoplas-

tic cysteine-rich effectors from Cladosporium fulvum

[4]. The highest conserved cysteine frequency in B. gra-

minis CSEPs, found in family 3, is only 2.9% and the

presence of the cysteine in the YxC motif contributes

significantly to the higher frequency of this amino acid

in the CSEPs compared to other B. graminis proteins. It

has been suggested that the many cysteines of the

M. larici-populina effectors are important for the overall

fold topology rather than for resistance towards degrad-

ation in the apoplast [22]. However, given the conserva-

tion of the disulphide bond in the ribonuclease fold, it is

most likely that this motif is important for protein stabil-

ity [23]. Our analysis shows a similar picture although in

the CSEPs it is not only cysteines, but also other com-

monly conserved amino acids (e.g. glycine and proline)

that are predicted to contribute to structural properties.

The YxC-motif, first found in B. graminis CSEPs [6],

is a common motif among effector candidates also in

rust fungi, such as Puccinia graminis f.sp. tritici [6,24],
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P. striiformis f.sp. tritici [25] and Melampsora larici-

populina [13,22]. Here we showed that the B. graminis

CSEPs have mostly an N-terminal YxC-motif, but in the

longer CSEPs it can occur over the whole length of the

protein. The functional significance of this motif remains

elusive. However, a conserved host cell targeting sequence

(RXLR-DEER) followed by C-terminal functional regions

has been found in other plant pathogens, for example in

the oomycete Phytophthora infestans [21].

Using two different approaches (InterProScan and

IntFOLD) we found that 72 of the 491 CSEPs have recog-

nizable relationships to ribonucleases (Additional file 7).

This is possibly an underestimation as sequence variation

in residues that are critical for the assignment to this po-

lypeptide category will probably lead to false-negative

predictions. It is interesting to note that the vast majority

(54 of 57) of proteins in the B. graminis genome with

domain IPR016191 (ribonuclease/ribotoxin) are CSEPs.

There are numerous additional proteins encoded by the B.

graminis genome that have a relationship to RNA meta-

bolism/turnover. These include for example proteins with

InterProScan domains IPR000504 (RNA recognition motif

domain, 60-times present), IPR012337 (ribonuclease H-

like domain, 35-times present) and IPR001247 (exoribo-

nuclease phosphorolytic domain 1, 6-times present), but

none of them is found in the CSEP set. The IPR016191

(ribonuclease/ribotoxin) domain thus seems to be a hall-

mark of the CSEP family, suggesting that it might be im-

portant for effector structure or activity, while other RNA

binding or modifying proteins encoded by the B. graminis

genome might have housekeeping functions.

A secreted fungal ribonuclease appears to be the com-

mon origin of many CSEPs in different families, as an

alignment suggests that 10–20 spaced and moderately

preserved amino acids are conserved between ribonu-

cleases and these CSEPs (Figure 5). These amino acids

are likely to play important structural roles in scaffolding

the CSEPs, being located typically in the β-sheets or at

the border between a β-sheet and a loop region. Mean-

while, we found that the regions with amino acids under

diversifying selection are located in the loops and pre-

dicted to be exposed on the surface of the proteins. Al-

though the ribonuclease-like proteins are unlikely to be

functional as RNA-degrading enzymes since they lack

critical active site residues (Figure 5A), we speculate that

some of these effectors could still be involved in interac-

tions with host RNAs and modulate host immunity via

this route. Alternatively, as extracellular ribonucleases

are very stable molecules, highly resistant to proteolytic

degradation, they may have had a rigid structure that

could have been an ideal starting scaffold for evolving an

effector arsenal, in which the loop regions were sub-

jected to positive selection allowing the CSEPs to diver-

sify and avoid recognition by host surveillance factors

(R-proteins). A similar example of structural conserva-

tion among effector candidates has recently been found

by Win et al. [26], who showed that RXLR effectors of

the Peronosporales (oomycetes) often share a WY-domain

that is structurally conserved despite high sequence diver-

gence between different plant pathogenic species. The

genes encoding the CSEPs shown in Figure 5A have a

common relative intron location, further corroborating a

common ancestor. Moreover, since this intron location is

also shared in many other CSEP genes, it may be that a

large proportion of the CSEPs have evolved from an an-

cestral microbial ribonuclease similar to ribonuclease T1.

A model for CSEP gene amplification was suggested based

on the observation that CSEPs belonging to the same fam-

ily are very often clustered in the genome and in several

cases separated by less than 10 kb (Figure 6). This hinted

that they evolved by gene duplication events due to un-

equal crossovers [27,28]. Also in another biotrophic phy-

topathogenic fungus, Ustilago maydis, genes encoding

small secreted proteins with unknown function were found

in clusters [29], even though the spacing between those

effectors was much shorter, possibly reflecting the general

compactness of that genome compared to that found in B.

graminis. Illegitimate recombination was found to be the

major driving force in gene duplications in plants, for in-

stance in the evolution of multi-locus resistance genes

[30,31]. This clustering is in contrast to the situation for

the family of EKA genes, encoding another type of putative

B. graminis effectors that have spread across the entire

genome by means of a transposable element [32]. We

found that CSEP genes often are closely associated with

two well-described SINE-type retro-transposons, Egh24,

Eg-R1 and another high copy repeat (AJ002007.1) origi-

nally found in the wheat powdery mildew B. graminis f.

sp. tritici, which are all very abundant in the genome.

The genomic regions adjacent to CSEPs in most cases

are flanked by these repetitive DNA elements and the

pattern is conserved between the closest paralogs. Un-

equal crossover is mediated by highly similar sequences

and therefore the retro-transposable elements are very

good candidates for facilitating such events. In M. larici-

populina tandem repeats of AvrM-paralogs are also

flanked by transposable elements [22]. Powdery mildews

including B. graminis have lost the repeat-induced point

mutation (RIP) pathway [10] and this may have allowed

extensive amplification of transposable elements in the

genome. Our findings here suggest transposable elements

have helped CSEPs to multiply and proliferate as

described for the EKA effector gene candidates [32]. If

this is true, then the loss of the RIP pathway and result-

ing retro-transposon driven genome expansion could

have conferred a selective advantage and facilitated evo-

lution of powdery mildew fungi by potentiating prolifera-

tion of effector proteins.
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Here we have shown that many CSEPs are likely to

have evolved from (an) ancestral extracellular ribonu-

clease(s) through a series of gene duplications followed

by diversifying positive selection. A number of different

models for the evolution of gene duplications have been

proposed and they can be classified depending on how

gene duplications affect fitness, whether there is positive

diversifying or purifying selection and whether there is

pre-existing allelic variation [33]. Our observation that

the transcript level of many CSEPs was high in planta is

consistent with the view that the expression level is im-

portant for their function. For example, many effectors

work by interacting with proteins where it matters to be

present in abundance to inactivate their targets. Many

effectors are also exposed to proteases leading to a fast

degradation, so a high transcript level will be an advan-

tage. A gene duplication resulting in two copies will of-

ten lead to a further increase in expression through a

gene dosage effect and thereby increased fitness. Once

duplicated, the genes can be subject to diversifying

selection: indeed we have detected pronounced diversify-

ing selection in some families. Overall this fits with

the “diversifying selection model”, described by Innan

and Kondrashov [33], explaining how gene families can

evolve and result in new functions for the individ-

ual members. Our work is a further illustration of

how a stable structural fold may act as a template for

diversification [34].

Conclusions
This comprehensive analysis indicates that CSEPs in B.

graminis belong to a super-family of proteins, and it has

validated the view that they are candidates for important

effectors of pathogenicity. The findings from this work

provide a solid foundation for proceeding with a system-

atic functional genomics analysis [17]. Furthermore, we

propose a model of how these proteins evolved from a

gene coding for a secreted ribonuclease by gene duplica-

tion associated with repetitive elements generated by

retro-transposon activity. Subsequent diversification

yielded a diverse palette of effector functions. We specu-

late that powdery mildew fungi benefit from an efficient

repertoire of secreted effector proteins able to suppress

host defence for the benefit of the fungus.

Methods
Identification and MCL clustering of effector candidates

CSEP genes were identified by the same criteria as des-

cribed previously [10], except that predicted transmem-

brane domains overlapping with the predicted N-terminal

secretion signal were discarded due to the similarity in

amino acid patterns between the two signals. New CSEP

candidates were found by identifying and annotating gen-

omic candidate regions based on self-BLASTs or ORF

predictions. We first performed BLAST searches against

the genome (TBLASTN, e<10-05) using the previously

identified 248 CSEPs (excluding two CSEPs with high

similarity to transposable elements) as a query to identify

candidate regions encoding other CSEPs. These candidate

regions were then manually annotated using the protocol

described [10]. The above procedure was repeated with

the newly identified genes until no new candidate regions

without annotated genes could be found. In parallel, all

predicted ORFs with an N-terminal secretion signal and

transcriptional evidence were taken as candidate regions

and manually annotated.

In summary, the CSEPs have to fulfil all of the follow-

ing criteria:

a) Contain a secretion signal as predicted by SignalP

V3.0 (D-cutoff values > 0.5).

b)Contain no predicted transmembrane domains

(after removal of the first 20 amino acids)

c) Have no similarity to other proteins in the NCBI NR

database (BLASTP, e<10-05) except for hits to

powdery mildews

Gene family prediction

The Markov Cluster Algorithm (MCL) was used to identify

clusters of similar proteins based on a graph constructed

by a self-BLAST of the entire proteome or the CSEPs

(BLASTP, e<10-10). The protocol as described by Enright

et al. [35] was followed with I = 2.

Phylogenetic analysis

For the CIRCOS plot shown in Figure 2 a multiple se-

quence alignment of the conceptual CSEP amino acid

sequences was established using ClustalW (http://www.

ebi.ac.uk/Tools/msa/clustalw2/) [36]. The alignment file

was used for phylogenetic analysis via the phylogeny op-

tion of ClustalW (http://www.ebi.ac.uk/Tools/phylogeny/

clustalw2_phylogeny/). The neighbour-joining algorithm

was chosen to generate a tree file that was subsequently

fed into MEGA4 (www.megasoftware.net/) [37] for visua-

lization. For generation of a bootstrap consensus tree,

ClustalW alignment and neighbour-joining analysis (100

replicates) were performed with MEGA5.

EST evidence for CSEPs

CSEPs were BLAST-searched against the B. graminis

EST resources available at COGEME, the phytopatho-

genic fungi and oomycete EST database [38], where most

B. graminis sequences are from conidia [39] and the data-

set previously published [6,10] (Additional file 8).

Expression analysis of CSEP genes

The abundance of CSEP RNA was determined at two

stages of B. graminis development: haustoria in infected
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barley epidermis and in the epiphytic structures (e.g. sur-

face runner hyphae, conidiophore foot cells, conidio-

phores, conidia) isolated at five days after inoculation of

two week-old barley primary leaves. The samples were

equivalent to those used in our previous publication [10]

and the analysis was carried out as follows. Three inde-

pendent biological replicates were used for each stage.

Total RNA was extracted and partially depleted of the

ribosomal RNA (RiboMinus™ Eukaryote, Life Techno-

logies, Carlsbad, CA, USA). Whole transcriptome libraries

were prepared from each sample (SOLiD Whole Trans-

criptome Analysis Kit, Life Technologies). Libraries were

barcoded and pooled together before emulsion PCR

amplification. One flow-cell was loaded with 316 million

beads, and 50 bp fragments were sequenced with a SOLiD

version 3 instrument (Life Technologies).

Sequence mapping

Bowtie (version 0.12.7) was used for the mapping

of sequence reads to the B. graminis genome, using

the .cfasta .qual as the input files and output piped to a

Binary Alignment/Map file (BAM). Due to the highly

repetitive nature of the genome, the Bowtie mapping

settings were restricted to allow one mismatch and

uniquely aligned reads only. The SortSam module of the

Picard sequencing tools (version 1.56) was used to order

the reads in the BAM files according to their genomic

position. The CoverageBed utility from the BedTools

(version 2.11.2) collection was used to determine the

number of read counts per gene, using the B. graminis

gene annotation in a BED format.

Data normalization and differential expression analysis

The read counts for each of the six biological samples

were imported into R statistical software (http://www.

r-project.org/) and pre-processed and analyzed with the

R package EdgeR. EdgeR transforms the gene expression

count data to pseudo count values using a quantile-to-

quantile normalization, followed by an exact test for a

negative binomial distribution to determine differentially

expressed genes. The p-value was corrected for multiple

testing using the False Discovery Rate (FDR) using the

Stats R package. Using this approach, 2110 genes out of

a total of 6865 genes were found to be differentially

expressed at the 1% FDR level.

Protein sequences databases for protein identification

The genome assembly of Blumeria graminis f.sp. hordei

strain DH14 [10] (http://www.blugen.org/) was used

to generate a protein open reading frame (ORF) data-

base based on the gene annotations submitted to NCBI

(http://www.ncbi.nlm.nih.gov/bioproject/28821).

Protein identification by mass spectrometry

The mass spectrometry data used for this work was ac-

quired from in-solution tryptic digest preparations of

protein extracts from two different tissues, sporulating

B. graminis hyphae and infected barley epidermis con-

taining B. graminis haustoria [8]. The data are deposited

in the PRIDE database (accession numbers 26886 to

26889; http://www.ebi.ac.uk/pride/). In order to identify

the occurrence of CSEPs in the relevant datasets, we re-

searched Mascot generic files (*mgf) of these datasets

with the Mascot search engine vs. 2.3.02 (Matrix Scien-

ce, London, UK). This was done simultaneously against

the following three databases: B. graminis protein da-

tabase, B. graminis CSEP database, and contaminants

database as described in [8], with the exception that oxi-

dation of methionine and proline was selected as vari-

able modification. Peptide scores and estimation of the

FDR were assigned using the Percolator algorithm [40]

within the Mascot software [41]. For identification, a

protein required two or more unique peptides with a

score above the identity score threshold (p <0.05) as

calculated by Percolator. Following manual inspection,

it was observed that with the exception of an actin and

a glucose-6-phosphate isomerase protein, B. graminis

proteins did not share any identified peptide sequences

with proteins from the contaminants database. In the

case of the actin protein, it was deduced that the pro-

tein was of B. graminis origin rather than from con-

tamination since the total protein score was higher for

the B. graminis actin than for the putative human actin

contaminant.

Protein structure and function prediction

The FASTA formatted sequence files for the CSEPs

were submitted to the IntFOLD server [42], which

combines a suite of advanced tools for the prediction

of protein structure and function from amino acid se-

quence. The IntFOLD server comprises automated

methods for fold recognition (IntFOLD-TS), domain

prediction (DomFOLD), disorder prediction (DISO-

clust), binding site residue predictions (FunFOLD) and

3D model quality assessment (ModFOLD) [11,43,44].

For each protein, the PDB header files of the top

structural templates were scanned for keywords refer-

ring to functions, such as RNAse, ribonuclease and

hydrolase, and their frequencies were recorded. Finally,

the best 3D models for the CSEP families with

confident (medium to certain) structure predictions

(families 5, 12, 21, 22 and 23) were downloaded from

the IntFOLD server. Each model was then visually

inspected and the residues that were found to be

under positive selection were highlighted using PyMol

(http://www.pymol.org).
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Amino acid frequencies and different sequence/structural

features

The individual amino acid frequencies and their occur-

rence within different sequence/structural features were

calculated. The PSIPRED secondary structure prediction

method [45,46] was used to calculate the frequencies of

residues in each of the secondary structure elements

(helices, strands or loops). The pfilt method [47] was used

to calculate the frequencies of residues in coiled-coils, the

frequencies of residues in transmembrane helices and the

frequencies of residues in low complexity regions.

Functional annotation

InterProScan analysis was conducted to identify func-

tional domains [48].

Disulphide bond predictions

Disulphide bonds were predicted with the tool Cysteines

Disulfide Bonding State and Connectivity Predictor

Disulfind (http://disulfind.dsi.unifi.it/) [12].

Comparison of CSEP prediction data with those for other

protein sets

In a previous study, the IntFOLD server was used to struc-

turally and functionally annotate proteins found in specific

tissue types of B. graminis: the haustoria (the feeding and

effector-delivery organs of the pathogen) and the sporulat-

ing hyphae. The B. graminis data were then compared with

sample sequence data sets obtained from Saccharomyces

cerevisiae [8]. In the present study, we compared the CSEP

predictions with the data obtained from our previous study,

as well as with a data set of known fungal effectors obtained

from the literature [4]. Thus, the following sequence data

sets were compared with the CSEP data: Haustoria_only,

71 B. graminis proteins that were found to be exclusively

expressed in haustoria; Hyphae_only_random, a random

sub set of 71 B. graminis proteins that were found to be ex-

clusively expressed in hyphae; Hyphae_only_length_

dist, a sample of 71 proteins exclusively found in hyphae

with the same distribution of lengths as the Haustoria

_only proteins; Yeast_random and Yeast_length_dist, as

above but for subsets of proteins from yeast; Hyphae_

plus_Haustoria, the subset of 194 B. graminis proteins

found in both hyphae and haustoria tissue, Known_Funga-

l_Effectors, the set of 39 verified fungal effectors identified

from the literature; proteome_minus_CSEPs, the B. grami-

nis proteins excluding the CSEP set. The length distribu-

tions of the proteins in each subset were also visually

inspected to ensure that the sampling was representative

with regard to protein size. Wilcoxon signed rank sum tests

and Fisher’s exact tests were carried out using R (http://

www.r-project.org) in order to measure the statistical sig-

nificance of differences between the CSEP prediction data

and those from each of the comparison sets.

Tests for positive and purifying selection

Amino acid alignments of CSEPs were carried out with the

CLC main workbench (Aarhus, Denmark). Positive selec-

tion was studied within the families of paralogs by three

methods. Codon-based z-tests of selection both as a pair-

wise analysis and as an overall analysis were done in MEGA

version 5 [37] using the modified Nei-Gojobori method

with the transition/transversion ratio set to 1. To identify

which codon sites were under positive or purifying selection

we used a Bayesian inference approach and employed the

Selecton server ([49], [50]; http://selecton.tau.ac.il/) to run

model M8 [51] and when positive selection was detected to

run the model M8a versus model M8 as a statistical test of

significant positive selection. Finally, we used the method 7

described by Liberles [52] to calculate the ratio of non-

synonymous (Ka) to synonymous (Ks) nucleotide substitu-

tion rates of pairwise combinations of genes or branches of

gene phylogenetic trees, which is available on-line at http://

services.cbu.uib.no/tools/kaks. This method is incorporat-

ing codon bias and focusing on the branch-points reflecting

the evolution of the individual paralogs in the families, pin-

pointing the events of positive selection to specific branch

points of the phylogenetic tree. A codon usage table for B.

graminis was employed (http://www.kazusa.or.jp/codon/,

[53]). The sequence identities in the coding and non-coding

sequences of close paralogs of family 7, 8 and 30 were cal-

culated by comparing the genomic regions 500 bp up-

stream to the start codon, the exons and the intron and

then 500 bp after the stop-codon.

Endnotes
The B. graminis f.sp. hordei genome sequence has

been submitted to GenBank under genome project ID

28221. Submission of a revised assembly and annotations

is in progress, and will be accessible under the same pro-

ject ID. Pending the completion of the submission process,

the updated sequences and annotations can be accessed at

http://www.blugen.org/index.php?page=data. The RNASeq

analysis is available from ArrayExpress (http://www.ebi.ac.

uk/arrayexpress/) under accession E-MTAB-682. The full

structural annotation data relative to CSEPs is available

at http://www.reading.ac.uk/bioinf/CSEPs/. Mass spectra,

MASCOT and associated metadata can be retrieved from

the PRIDEdatabase; http://www.ebi.ac.uk/pride/.

Additional files

Additional file 1: Summary of all CSEPs. The table includes for all 491

CSEPs various types of protein and gene expression data. The table is sorted

according to the MCL family of paralogs to improve the overview of the

properties of the different families. Footnotes: 1) The CSEPs described

previously [10] are in light blue cells and the new CSEPs are in light red

cells. 2) The gene Ids are as published [10] and in Blugen database

(www.blugen.org) 3) Signal peptide predicted with SignalP 4) BLASTP

homologies to genomic sequence data [10] 5) InterProScan gene
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ontologies (http://www.ebi.ac.uk/Tools/pfa/iprscan/) 6) Only those having

structural models belonging to RNases are included 7) IntFOLD model

scores 8) Position for the first YxC-motif in the mature protein 9) Disulphide

bonds predicted using Disulfind (http://disulfind.dsi.unifi.it/). The positions

are for the bond-forming cysteine pairs in the mature protein 10) The ratio

of expression in haustorial epidermal strips versus epiphytic material 5 dpi

determined by RNA-sequencing 11) The columns Q to Z show the

presence of the CSEPs in the EST libraries described in Additional file 8.

Additional file 2: Size distribution histogram of MCL families. A:

Number of families with a given family size. B: Number of CSEPs in

families with a given family size.

Additional file 3: Analysis of selection on CSEPs. The table shows the

full data set from the analyses of positive and purifying selection for all

72 CSEP families. Footnotes: 1) Indicates whether the family has the YxC-

motif in the N-terminus of the mature protein. The symbol ½ indicates

that some members have and others do not have the motif. 2) The

presence of a cysteine close to the C-terminus and the distance to the C-

terminus 3) Conserved cysteines are in the mature protein. In some cases

there are a few members which are truncated and therefore lacking the

terminal cysteine, but in the table it is counted anyway 4) Length of

proteins: The average lengths of the proteins were calculated for each

family. If the average length was below 150 amino acids, it was coloured

light green, if the average length was more than 300 it was coloured

grey 5) Gene expression ratio in haustorial samples versus epiphytic

samples and calculated as averages for each family. Colour codes:

Orange: >100x, yellow: 50-100x, light yellow: 10-50x 6) Percentages of

CSEPs in each family found only in haustoria samples by proteome

analysis 7) Codon-based test of positive and purifying selection. The two

left columns show the numbers of pairs with significant positive selection

(z-tests at 5% level) compared to the total number of pairs within each

family. The two right columns show the values of P less than 0.05 that

are considered significant at the 5% level (modified Nei-Gojobori

(assumed transition/transversion bias = 1)). The test statistic (dN - dS) and

(dS - dN) are shown for positive and purifying selection respectively. dS

and dN are the numbers of synonymous and nonsynonymous

substitutions per site, respectively. 8) Codon-based calculations of

positive and purifying selection using the Selecton-server and based on a

Bayesian inference approach [49]. The left column indicate the number of

codons under positive or purifying selection. The middle column shows

the significant levels of model M8a versus model M8. The right column

shows the average Ka/Ks-values calculated on the mature proteins. Pink:

Purifying selection Ka/Ks<0,75, yellow - orange: Positive selection,

stronger colour means stronger positive selection 9) Ka/Ks-value based

on method 7 of Liberles [52] and calculated by service at the Bergen

Center for Computational Science (http://services.cbu.uib.no/tools/kaks).

The Ka/Ks-values are calculated on each branch point on a calculated

binary cladogram.

Additional file 4: CSEP bootstrap consensus tree showing CSEPs

present in the eight largest MCL families visualized by colour codes.

Yellow - Family 1; red - Family 2; blue - Family 3; green - Family 4; purple

- Family 5; light blue - Family 6; grey - Family 7; green-blue - Family 8.

Numbers at branches indicate bootstrap support on the basis of 100

replicates. The scale denotes the number of amino acid substitutions

per site.

Additional file 5: CSEP bootstrap consensus tree showing CSEPs with

Blast2Go hits. Light blue: Ribonucleases: red - coiled coil; yellow, pink and

light green are other types of (uncharacterized) domains. Numbers at

branches indicate bootstrap support on the basis of 100 replicates. The

scale denotes the number of amino acid substitutions per site.

Additional file 6: CSEP bootstrap consensus tree showing CSEPs

conserved in E. pisi and G. orontii. Highlighted are CSEPs with a

recognizable hit (TBLASTN, e< 10-05) in the E. pisi and/or G. orontii

genome. Colour code: blue - G. orontii, yellow - E. pisi, green - both G.

orontii and E. pisi. Numbers at branches indicate bootstrap support on

the basis of 100 replicates. The scale denotes the number of amino acid

substitutions per site.

Additional file 7: CSEPs with relationships to ribonucleases.

Seventy-one CSEPs showing relationship to ribonucleases were identified

by either InterProScan analysis for the identification of functional

domains or by structural annotation through analysis of structural

templates from IntFOLD predictions. CSEPs are sorted according to

family number.

Additional file 8: The B. graminis EST sources that provide evidence

for expression of the CSEPs. A total of almost 52000 EST sequences

were searched, but some of the libraries were mixed with barley

transcripts and the total number of fungal transcript therein is unknown.

The number of CSEP in the table indicates how many of the CSEPs we

found represented in the different EST projects. However, in many cases

there were several hits, so the number of CSEP ESTs is much larger. The

EST library with most CSEP hits is the epidermal EST made from

epidermal cells containing many haustoria but no other fungal material

[6], and here we found 151 different CSEPs, but the total number of CSEP

ESTs was 1299, which was 20% of the total number of fungal transcripts.

Additional file 9: CSEP expression plot. Plot of sorted haustorial versus

epiphytic expression ratios of the 349 CSEPs with a ratio above 2 or

below 0.5 and where the expression levels are high enough to calculate

a reliable ratio. The plot shows that 216 CSEPs are expressed ≥10-times

more in haustoria than in epiphytic tissues. The y-axis is log10-scaled.

Additional file 10: Level of diversity at the nucleotide level in pair-

wise comparisons between members of three CSEP families.

Diversity was calculated as percentage of different nucleotides for the

two exons, the intron and the 500 bp up- and downstream to the

coding region. In case there is no homology in parts of the up- and

downstream regions only the homologous region was used for the

calculation.

Additional file 11: Protein structure and positive selection in CSEP

family 21. A: Amino acid alignment of the seven members obtained

with CLC main workbench (see Methods). B: Evidence for selection on

the paralog members of family 21 was estimated using the Selecton

server ([49,50]; http://selecton.tau.ac.il/). Codon sites under positive

diversifying (red) or purifying (purple and yellow) selection and

conserved cysteines (yellow) are indicated by coloured circles. C:

Cladogram with Ka/Ks-values indicated for the individual branches

calculated using the on-line server at http://services.cbu.uib.no/tools/kaks.

D: 3D protein models of two family 21 members are shown and the

amino acids under positive diversifying selection are highlighted in red.

Additional file 12: Distribution of codons under selection in

selected CSEP families. Protein sequences and distribution of the amino

acids under positive and purifying selection in families 1–35. The residues

are coloured according to their calculated Ka/Ks-values, estimated using

the Selecton server ([49,50] http://selecton.tau.ac.il/). Codon sites under

positive diversifying (red) or purifying (purple and yellow) selection are

highlighted. The conserved cysteines are shown in yellow.

Additional file 13: Graphs of the distribution of codons under

selection. Thirteen CSEP families with amino acid sites under positive

selection (orange) are represented. The most conserved positions are

shown in pink with the conserved cysteines in yellow. The y-axis is the Ka/

Ks-value and the x-axis is the position in the protein including the signal

peptide, which is mainly under purifying selection. The Ka/Ks-values were

calculated using the Selecton server ([49], http://selecton.tau.ac.il/).

Additional file 14: CSEP amino acid alignments of families 1–35. The

proteins are aligned using CLC main workbench, as described in Methods.

Additional file 15: Summary of data obtained for Blumeria and

yeast data sets. This compilation is based on previously published data

shown in grey [8] with the new sets and measures added. The CSEPs,

Known_Fungal_Effectors and Haustoria_only sets have the lowest values

in terms of: mean lengths, mean proportion disorder, mean maximum

length of disorder, mean model quality and mean number of domains. In

addition these sets have a higher proportion of top hits to ribonuclease

and hydrolase structural templates.

Additional file 16: Calculated p-values for unpaired Wilcoxon

signed rank sum tests for the CSEP data set. The table shows the

p-values for Wilcoxon signed rank sum significant tests for the CSEP set

versus all other sets according to each data type (p<0.05 highlighted

green). Footnote: The null hypothesis is that the data from each
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comparison set is equal to or lower in value than that from the CSEP set.

The alternative hypothesis is that the data in the comparison set is

greater in value. Significant p-values (p<0.05) are shown in bold.

Additional file 17: Calculated p-values for Fisher's exact tests for

the CSEP data set compared against data from all other sets. Shown

are the categorical data regarding the proportion of ribonucleases and

hydrolases analysed using a Fisher’s exact test (again, p<0.05 highlighted

green). Footnote: p-values (p<0.05) are shown in bold, indicating

significant over representation of the data type in the CSEP set.

Additional file 18: IntFOLD 3D models for selected CSEP families. A:

IntFOLD 3D models for CSEPs from family 12. Positively selected residues

are highlighted in red. Left, cartoon view showing secondary structure

types. Right, surface view showing globular structure. Images were

rendered using PyMol. B: IntFOLD 3D models for CSEPs from family 22.

Positively selected residues are highlighted in red. Left, cartoon view

showing secondary structure types. Right, surface view showing globular

structure. Images were rendered using PyMol. C: IntFOLD 3D models for

CSEPs from family 5. Positively selected residues are highlighted in red.

Left, cartoon view showing secondary structure types. Right, surface view

showing globular structure. Images were rendered using PyMol. D:

IntFOLD 3D models for CSEPs from family 21. Positively selected residues

are highlighted in red. Left, cartoon view showing secondary structure

types. Right, surface view showing globular structure. Images were

rendered using PyMol. E: IntFOLD 3D models for CSEPs from family 23.

Positively selected residues are highlighted in red. Left, cartoon view

showing secondary structure types. Right, surface view showing globular

structure. Images were rendered using PyMol.A.

Additional file 19: CSEPs show significant differences in amino acid

frequencies and secondary structure (part 1). The CSEP set compared

with other sets according to: length (as a control), amino acid frequency

(A-Y), coiled-coil composition, TM helix composition (as a control), low

complexity regions, frequency of helical residues, frequency of strand

residues, frequency of loop residues. The Haustoria_only set is

compared with other sets according to: length (as a control), amino

acid frequency (A-Y), coiled-coil composition, TM helix composition, low

complexity regions, frequency of helical residues, frequency of strand

residues, frequency of loop residues. The null hypothesis is that the

Haustoria_set has greater frequencies of that in each column than the

set.

Additional file 20: CSEPs show significant differences in amino acid

frequencies and secondary structure (part 2). The CSEP set compared

with other sets according to: length (as a control), amino acid

frequency (A-Y), coiled-coil composition, TM helix composition, low

complexity regions, frequency of helical residues, frequency of strand

residues, frequency of loop residues. The table contains the same

information as Additional file 19 but with the reverse null hypothesis

(or 1-p).

Additional file 21: Distribution of the YxC motifs. A: Distribution of

the YxC motifs among the 307 CSEPs having this motif within the first 50

amino acids. The cumulative number of the YxC, WxC and FxC versions

of the YxC-motif is plotted versus the distance of the first amino acid of

the motif from the signal peptide cleavage site. B: Distribution of the YxC

motifs among the 352 CSEPs having one or more versions of this motif.

The cumulative number of the YxC, WxC and FxC versions of the YxC-

motif is plotted versus the distance of the first amino acid of the motif

from the signal peptide cleavage site.

Additional file 22: Cysteines and prediction of disulphide bonds

in CSEPs. A: The histogram shows the number of CSEPs versus the

position of the last cysteine from the C-terminus of the protein. B:

Distribution of CSEPs containing 0 – 16 cysteines. C: The histogram

shows the prediction of disulfide bonds in the CSEPs using Disulfind [12].

Additional file 23: Clustering of CSEPs on sequence scaffolds.

The Table shows for each of the studied families how many

members are clustered and the length of the scaffold region

containing the members. The scaffold length includes both the

sum of the sequence contigs and the calculated distances between

the contigs. The average distance is the distance between two

CSEPs on the scaffold if they were distributed evenly.

Additional file 24: The relationship between CSEP clustering on

genome sequence scaffolds and their sequence homology. The

Figure shows families 2–13, 15, 16, 25, 30 and 33. The scaffolds are drawn

as vertical, solid bars (colours indicate separate contigs) with a scale bar

in the right bottom corner. The phylogenetic tree is based on nucleotide

sequences and calculated using the UPGMA algorithm with CLC Main

Workbench. Bootstrap values on the basis of 100 replicates are shown at

the nodes, the scale bar at the left bottom corner indicates the number

of nucleotide substitutions per site. The CSEPs not connected to any

scaffold with a dotted line are not found to be clustered.

Additional file 25: Clustering of CSEP genes. A: The 68 genomic

sequence scaffolds of more than 100 kb are expressed in % of their sum

(92 Mb, blue line) and ordered according to their length. The 463 CSEPs

found on each scaffold of more than 100 kb are expressed in % of their

total number (green line). B: The family-wise distribution of 455 CSEPs on

the 43 scaffolds harboring at least two CSEPs. Families with at least three

clustered members are colour-coded so that the coloured histograms

show the number of clustered members from each family on each

scaffold.

Additional file 26: Clustering of selected CSEP family members.

Genome clustering of four CSEP paralogs from family 8 and four CSEP

paralogs from family 30 on their respective sequence scaffolds. The

schematic illustration of the genome organizations with repetitive

elements is shown below each dendrogram with indications of the

sequence homologies in pair-wise comparisons (note that the colour

coding in the dendrogram matches the colour coding in the scaffolds).

The element Egh24 is a SINE [15], the Bgt repeat is an un-characterized

repeat (GenBank AJ002007.1) from B. graminis f.sp. tritici, the EKA paralog

is an AvrA10/K1-paralog [32] . Vertical dotted red lines indicate abrupt

breaks in sequence homology. The scale bars next to the dendrograms

refer to the genomic scaffolds.
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