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Abstract of the Dissertation

Structure and evolution of scientific
collaboration networks in a modern

research collaboratory

by

Alberto Pepe

Doctor of Philosophy in Information Studies

University of California, Los Angeles, 2010

Professor Christine L. Borgman, Chair

This dissertation is a study of scientific collaboration at the Center for Embedded

Networked Sensing (CENS), a modern, multi-disciplinary, distributed laboratory

involved in sensor network research. By use of survey research and network anal-

ysis, this dissertation examines the collaborative ecology of CENS in terms of

three networks of interaction: coauthorship of scholarly publications, communi-

cation activity on mailing lists, and interpersonal acquaintanceship. This study

exposes the topology, structure, and evolution of these networks in relation with

the disciplinary and institutional arrangements of CENS. Findings indicate that

CENS collaboration networks have fluid, non-cliquish, small-world topologies,

and are free of prestige-based mechanisms. Further analysis reveals that struc-

tural communities in the coauthorship and acquaintanceship networks overlap

considerably. They also exhibit little disciplinary and institutional diversity lo-

cally, although CENS becomes more inter-disciplinary over time. Overall, results

of the structural and evolutionary analyses point to the importance of interper-

sonal relationships for accomplishing scientific work in distributed environments.
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CHAPTER 1

Introduction

1.1 Making science

In a 1918 Nature article on the making of science, British-American physicist

Charles E. Kenneth Mees identified three stages of scientific knowledge produc-

tion:

“The increase of scientific knowledge can be divided into three steps:

first, the production of new knowledge by means of laboratory re-

search; secondly, the publication of this knowledge in the form of

papers and abstracts of papers; thirdly, the digestion of the new

knowledge and its absorption into the general mass of information

by critical comparison with other experiments on the same or similar

subjects.” [1, p. 355].

How is scientific knowledge produced nowadays? Nearly a century later, Mees’

distillation seems remarkably accurate and fairly up to date. The general mecha-

nisms by which science is conducted have remained fairly stable over time. What

has changed considerably in the past one hundred years is the level of academic

and popular interest in these mechanisms. Domains as diverse as philosophy,

history of science, logic, sociology, psychology and cognitive science have increas-

ingly become interested in the study of scientific knowledge and its production
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mechanisms. Different disciplines have brought forward different perspectives,

theories, and methods. Studies of science grounded in sociology, for example,

analyze the processes of scientific activity in the social, cultural and political

context in which science takes place [2, for a review]. Cognitive scientists focus

on the study of the scientific mind and the mental processes underlying scientific

reasoning [3, for a review]. Information science contributes to this body of re-

search by studying scientific practices and the artifacts generated in the process of

scientific knowledge production. Information scientists employ digital collections

of scholarly papers and bibliographic repositories in order to model and analyze

networks of scientific collaboration. Although theoretically grounded in their own

domains, these approaches to the study of science do not exist in isolation; they

have often borrowed principles and concepts from each other.

An example of this disciplinary cross-fertilization is the sub-domain of psy-

chology that deals with scientific creativity and problem solving. Traditional

studies of scientific reasoning were concerned mostly with the study of the sci-

entific mind as an individual entity and as the sole source of new ideas, insights

and discoveries. The process of knowledge generation was studied in terms of

cognitive capability, such as scientists’ ability to generate and test hypotheses

[4], and the ability to use analogical reasoning to construct novel links between

known and unknown scientific facts [5]. Recently, these approaches have been

implemented by new research trends, oftentimes grounded in sociology and an-

thropology, that locate the process of knowledge production in the social and

cultural context in which it takes place. In a review of the history of scientific

creativity, Dean K. Simonton [6] refers to an internal zeitgeist, defined by the

subjective individual capability of scientific thinking, and an external zeitgeist,

defined by the context in which scientific thinking takes place shaped by broader

social, temporal, cultural and political dimensions. He notes that
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“Galileo became a great scientist only because he had the fortune

of being born in Italy during the time when it became the center of

scientific creativity. Similarly, Newton’s creative genius could appear

only because he lived in Great Britain when the center had shifted

there from Italy. If Galileo and Newton had switched birth years

without changing national origins, then neither would have secured a

place in the annals of science.” [6, p. 134].

This example, although specifically grounded in the field of psychology, illus-

trates a broader academic trend — that a theoretical framework for the study of

scientific knowledge production has been reformulated in terms of the collective

dimension in which science takes place. Studies of science and its knowledge

production mechanisms focused on the individual have been progressively been

implemented with studies that account for the collective. For these latter investi-

gations, science making is not only an individual endeavor; it is also a collective,

distributed process, involving the close interaction among a number of social,

cultural, technological, economical, and political dimensions. This “collective”

component of scientific knowledge production — the ensemble of collaborative

processes and practices that take place in science making — is the focus of this

dissertation.

By conceptualizing modern scientific research as a collective, distributed,

collaborative activity, I study its advancement in a multi-disciplinary, multi-

institutional research enterprise focused on the development and application of

wireless sensing systems. My investigation relies on quantitative analyses of coau-

thorship, communication and acquaintanceship patterns among scientists with

relation to the social and academic context in which those scientists are embed-

ded.
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1.2 From laboratory science to collaboratory science

In Laboratory Life, one of the earliest and most notable ethnographic studies of

science, sociologists Bruno Latour and Steve Woolgar explored the construction

of scientific facts in a biological research laboratory [7]. The aim of that investiga-

tion was to capture the latent minutiae of scientific activity by in situ monitoring

of the scientists, working in their most natural working environment: the scien-

tific laboratory. This “anthropology of science” took place in the late seventies

when the scientific laboratory, in the traditional sense, was certainly the most

obvious environment in which to study the production and the dissemination of

scientific knowledge. Much collaboration in the traditional laboratory was driven

by physical proximity and physical exchange of paper literature: books, journals,

preprints, and articles.

With the advent of digital collaborative platforms in the past two decades,

scientific research has changed considerably. Some modern scientific and engi-

neering centers, for example, operate in a very distributed fashion by heavily re-

lying on electronic communication and on distributed computing resources. The

laboratory, as a collaborative research environment, has extended beyond the tra-

ditional laboratory walls: the intellectual space in which scientific collaboration

takes place no longer corresponds to a single physical working environment. In

turn, the laboratory, in the traditional sense, ceases to pose a reliable framework

for the study of modern scientific activity.

The term “collaboratory” was coined in the early nineties from a blend of the

words “collaboration” and “laboratory”, to mark the importance of computer-

supported collaboration work in science. The earliest definition of collaboratory

described it as:
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“a center without walls in which the nation’s researchers can perform

their research without regard to geographical location — interacting

with colleagues, accessing instrumentation, sharing data and compu-

tational resources, and accessing information in digital libraries” [8,

p. 854].

In this definition, the requirement of physical and geographical proximity of the

researchers ceases to exist in favor of a novel organization of scientific activity.

The use of computer-based communication technologies relaxes the constraints

of distance and time imposed by traditional paper-based laboratory work. Nowa-

days, both large-scale and smaller collaboratories represent a substantial portion

of the ecology in which scientific knowledge production takes place. Modern

collaboratory research extends beyond national, institutional, and disciplinary

boundaries to make up dedicated networks of people, information, artifacts, tech-

nologies, and ideas dispersed around worldwide locations and institutions. More

recent definitions of “collaboratory” stress the needs to solve problems simulta-

neously and remotely, to access and distribute datasets, and to provide flexible,

informal interaction among colleagues [9].

Contemporary research on collaboratories tends to frame them in the con-

text of scholarly and scientific cyberinfrastructure initiatives [10]. The National

Science Foundation’s cyberinfrastructure program promises to build a human-

centered, comprehensive infrastructure “needed to capitalize on dramatic ad-

vances in information technology” [11, p. 4] via a wide range of initiatives

aimed at integrating “high performance computing; data, data analysis and vi-

sualization; collaboratories, observatories and virtual organizations; and, edu-

cation and workforce development” [11, p. 6]. This definition of cyberinfras-

tructure places collaboratories among other types of working environments, such
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as large-scale observatories and virtual organizations. These working environ-

ments may vary in size, arrangement, resources, and aims. It is beyond the

scope of this dissertation to provide a taxonomy of these emerging organiza-

tional arrangements. Yet, it is important to stress that their heterogeneity re-

flects the need to accommodate the range of national, institutional and disci-

plinary requirements for collaboration, computer-supported communication plat-

forms, and ever increasing computational power. The result is an ecology of

working environments, from large-scale observatories, such as the Virtual Ob-

servatory (http://www.ivoa.net), providing and managing astronomical data

from archives and observatories worldwide, to virtual organizations, such as the

Geosciences Network (GEON, http://www.geongrid.org/), grouping a dozen

projects and institutions to enhance and integrate geoscience research.

Cyberinfrastructure initiatives in the form of collaboratories and virtual or-

ganizations are relatively recent and novel types of scientific organization. Being

founded upon the notions of multi-disciplinary research, and modern multi-sited

collaboration, these initiatives have attracted investments from major funding

bodies, both at the national and international level. The function of collabo-

ratories and cyberinfrastructure centers have received particular attention from

sociologists of science and scholars interested in computer-supported collabora-

tive work. Much of this research is especially concerned with the social, human,

and organizational arrangements of these working environments. The pioneer-

ing work of Star and Ruhleder [12] has paved the way in this direction. Using

the notion of “infrastructural inversion,” initially introduced by Bowker [13], they

propose to study infrastructural complexity with a focus on relations, rather than

things. Recent research in this field, has built around this and similar notions.

Overall, scholars are finding that the social organization of cyberinfrastruc-
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ture initiatives is in disarray. For example, Lee, Dourish and Mark [14] perform

an ethnographic study of a large-scale cyberinfrastructure effort to uncover its

human infrastructure— the people, organizations, networks, and social practices

that support the technical enterprise. They find a hybrid human organization

that mixes the old and new: traditional organizational forms and work practices

embedded in new social and technological contexts. In other work, Cummings

and Kiesler [15] analyze the multi-disciplinary and multi-university components

of research collaborations finding that scientific coordination and reporting pat-

terns are hindered not by the presence of multiple disciplines, but by the phys-

ical distance between collaborating institutions. This last finding points to a

tensional disconnect between the underlying mission of many cyberinfrastructure

initiatives—to foster interdisciplinary and multi-sited research—and their factual

organization. This dissertation explores this tension in the context of a specific

research collaboratory.

The collaboratory under study is the Center for Embedded Networked Sensing

(CENS), a multi-disciplinary1, multi-institutional research enterprise involved in

wireless sensing research. CENS is presented in much detail in the next chapter.

At this point, it is sufficient to note that the modus operandi of CENS fits very

well within the general notion of collaboratory research presented above. More

specifically, one can regard CENS as a collaboratory embedded within a larger

and emerging cyberinfrastructure initiative. In order to investigate such a multi-

1A note about terminology. Specialized literature often conflates the termsmulti-disciplinary
and inter-disciplinary. For the purpose of this dissertation, multi-disciplinary refers to work
“combining or involving several separate academic disciplines”, i.e., work that involves the
presence of different disciplines. By contrast, inter-disciplinary refers to work “of or pertaining
to two or more disciplines or branches of learning; contributing to or benefiting from two or more
disciplines”, i.e., work that involves both the presence of and the interaction among different
disciplines. The term transdisciplinary, not used in this dissertation, is often used to refer to
work that is developed within one discipline but is then borrowed by others. The definitions
above are taken from The Oxford English Dictionary. 2nd ed. 1989. OED Online. Oxford
University Press.
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faceted research environment I transcend the traditional study of the laboratory

— the laboratory as a physical space — and analyze the distributed, highly

collaborative nature of scientific research, via a network analysis. In this context,

I formulate a definition of collaboratory that I employ throughout the rest of this

dissertation, as follows:

A collaboratory is an array of inter-related physical and virtual en-

vironments in which researchers — possibly from different locations,

affiliations and disciplines — use computer-supported technologies to

produce scientific knowledge interacting formally and informally, solv-

ing problems, exchanging data, computing resources, and ideas.

1.3 The scientific collaboratory as a complex system

The notion of collaboratory introduced in the previous section emphasizes two

key factors related to the process of knowledge production in modern scientific

research. First, scientific knowledge production takes place in a heterogeneous

array of inter-related, distributed physical and virtual environments. Second, it

is a collective, highly-collaborative endeavor that heavily relies on technological

infrastructure in the form of computer-supported information and communica-

tion technologies (ICTs). These elements reveal that scientific research does

not necessarily happen in a well-delimited physical space, suitable for in-depth,

location-based investigations. Rather, scientific research permeates an array of

physical and virtual collaborative environments. In these environments, inter-

actions take place among a number of heterogeneous components. Even such

a high level description of the prototypical scientific collaboratory reveals this

underlying notion: that collaboratories can be regarded, essentially, as systems.
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Collaboratories, as systems, are environments consisting of heterogeneous com-

ponents — people (scientists, engineers, students, staff), artifacts (articles, data),

technologies (communication technologies, technical equipment, analytical tools),

ideas, and power structures.

Scientific activity in a collaboratory is marked by myriad small-scale inter-

actions among these components. For example, scientists interact with other

scientists, exchanging ideas, producing data and tools, writing new articles, and

so on. This layer of small-scale interactions constitutes the fabric of social, cul-

tural, technological, economical, and political activities that drive and define

scientific knowledge production in a collaboratory. When analyzed at a broader

level, a typical collaboratory also exhibits large-scale phenomena; for example,

its mission and research agenda might change over time. The combination of

a number of small-scale interactions might account for such phenomenon. For

example, a large number of scientists might have been exposed to a new trend of

literature; or a prestigious faculty member might have joined the collaboratory,

influencing the research aims of a circle of collaborating scientists.

The scenario presented here suggests that the collaboratory described thus

far is a type of complex system. A complex system is a system made up of

a large number of components that interact in such a way that their collective

behavior is not a simple combination of their individual behaviors [16]. As such, a

complex system is one whose behavior is neither regular, nor random. Describing

complexity in the realm of social systems, Niklas Luhmann places complex social

systems at the intersection between systems in which every element can be related

to every other element (regular) and those in which this is not the case (random)

[17]. Other descriptions of social complexity frame it in terms of agency (acting at

the microscopic level) and structure (emerging at the macroscopic level). Agency
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is the level of interactions between individual agents. The regular, recurrent

interplay of interactions at the microscopic level produces stable relations that

become structure: rules, values, ethics and morals which both constrain and

enable agency. Research on social complexity is aimed at understanding the

dialectic between agency and structure [18]. As explained in the next chapter, this

dissertation explores this dialectic by investigating the interdependence between

small-scale interactions of scholarly, social, and communication activity and the

overarching disciplinary and institutional arrangement of the collaboratory.

The study of complex systems is an academic discipline of its own. Complex-

ity science is a necessarily interdisciplinary endeavor, focused on understanding

the consequences of combining many small- and large-scale system-environment

dynamics [19, 20, 21, for a review]. Complex systems manifest themselves in

many biological, social, technological and organizational settings, but resist a

single, universal definition. They are best described by exploring their defining

characteristics. Since the subject of study of this dissertation is a collaboratory

conceptualized as a complex system, and because this dissertation employs a

number of analytical methods for the study of complex networks, it is opportune

to delineate some key notions that are central to the organization and function

of many complex systems. I discuss the theoretical underpinnings of emergence

and boundary flexibility, and how they apply to studies of collaboratory research.

Emergence. Emergence is a core defining characteristic of complex systems.

The first definition of emergence dates back to the nineteenth century with En-

glish philosopher G.H. Lewes, but many trace its roots to Aristotle [22, for a

historical review]. In layman terms, the emergence paradigm can be explained

as: the whole is different from the sum of its parts. In more technical terms,

emergence happens when novel and coherent structures, patterns, and properties
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arise during the process of self-organization in complex systems. In particular,

complex systems exhibit large-scale patterns that cannot necessarily be deduced

from the intrinsic properties of the individual components and their small-scale

interactions [23, for a review].

The emergent nature of collaboratories is evident from the multitude of small-

scale interacting components that constitute them and their repercussion on their

large-scale configuration [24]. Collaboratories are inherently social systems and

their function is solidly built around relations: between people, artifacts, tech-

nologies, etc. In a collaboratory, an example of small-scale interaction is the

intensification of scholarly collaborations between researchers from different dis-

ciplines, while an example of large-scale phenomenon could be a shift of its re-

search agenda towards new disciplines. Reflecting on the emergent component

of cyberinfrastructure initiatives, Finholt notes that the development of collab-

oratories into their present conceptual and functional arrangement has not been

guided by a master plan, but rather by emerging, adaptive mechanisms: “systems

have emerged through a combination of prodding by visionaries, appropriation

of technology designed for other purposes, and the marketing of low-cost high-

performance personal computers” [9, p. 78]. The result is an infrastructure that

functions at multiple scales of action: technological, socio-organizational, and

institutional [25]. It is via continuous rearrangements, transfers, and interactions

across and among these scales that a scientific collaboratory exhibits its emergent

nature.

Boundary flexibility. Computing the range, population, configuration and

boundaries of a system is never a trivial endeavor. As philosopher Cilliers reminds

us:

“In order to be recognisable as such, a system must be bounded in
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some way. However, as soon as one tries to be specific about the

boundaries of a system, a number of difficulties become apparent”

[26, p. 139].

Specifying what belongs inside a system and what belongs outside can be an

arduous task. This difficulty has to do with the inherently open and dynamic

nature of complex systems. Biological complex systems provide a convenient

example to describe this boundary problem. A cell, for example, is delimited by

a membrane which discriminates between what’s inside (life) and what’s outside

(the living environment). Although the membrane is a salient and defining feature

of the cell as a complex system, it is not a rigid boundary: it is active, “opening

and closing continually, keeping certain substances out and letting others in” [27,

p. 7]. Cilliers emphasizes that the boundary of a complex system resists the

traditional notion of physical, rigid, system-independent agent of closure. He

notes two peculiar aspects of boundaries in complex systems. The first is related

to the very nature of the boundary:

“We often fall into the trap of thinking of a boundary as something

that separates one thing from another. We should rather think of a

boundary as something that constitutes that which is bounded” [26,

p. 140].

The second aspect relates to the spatiality of the boundary:

“The propensity we have towards visual metaphors inclines us to think

in spatial terms. A system is therefore often visualised as something

contiguous in space. [...] Social systems are obviously not limited

in the same way. Parts of the system may exist in totally different

spatial locations” [26, p. 141].
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This conceptualization of “boundary” applies particularly well to the notion

of collaboratory. Unlike other types of organizational arrangements that enforce,

or at least attempt to enforce, the existence of clear boundaries (e.g., institu-

tions, departments, governmental centers), collaboratories are systems with flex-

ible delimiters. In collaboratory research, there is a continuous, adaptive flow of

interactions between heterogeneous actors — people, artifacts, ideas, etc. It is

the “inside” activities—the processes—that determine the existence of a collabo-

ratory as a distinct entity, regardless of its latent structure. Moreover, collabora-

tory systems consist of an array of physical and virtual environments, thus their

boundaries are perforce untraceable in a solely physical space. Reflecting on the

heterogeneity of domains, artifacts, spaces, and people that characterize modern

scientific work, Star and Griesemer posited the idea of boundary objects—abstract

or concrete objects that are “both plastic enough to adapt to local needs and the

constraints of the several parties employing them, yet robust enough to maintain

a common identity across sites” [28, p. 393]. Boundary objects may “inhabit

several communities of practice and satisfy the informational requirements of

each of them” [29]. The notion of boundary object is useful in this context as it

poses a useful means to study the intersection among different domains, commu-

nities, and understandings. In more recent research, Charlotte Lee proposes to

employ boundary objects to delineate, move across and push the boundaries of

the communities of practices that adopt them [30]. As discussed more in detail in

the methodology chapter of this dissertation (§ 3.2.1), the boundary problem—

the impossibility to unequivocally specify the boundaries of a scientific research

environment—has repercussions on the results and outcomes of investigations of

this kind.

With these notions in mind, I regard collaboratories as dynamic, open, and

emergent ecologies in which modern scientific research takes place in a highly
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collaborative and distributed manner in an array of physical and virtual environ-

ments.

1.4 A network approach

Complex ecologies, including collaboratories and other scholarly and scientific

collaboration endeavors, are frequently studied by the use of network analysis.

Network analysis, also known as graph theory2, is a specific branch of discrete

mathematics that deals with the description and analysis of networks. But the

conceptual notions underlying a way of thinking in network terms are widely

applicable beyond mathematics and have been repeatedly used as a frame of

reference in a number of different contexts: in the social and cognitive sciences,

and in the humanities, for example. This dissertation employs a network approach

to study scientific collaboration.

Why networks? Networks are the most convenient structure to represent

and analyze interactions among the components of a system. Networks provide

an abstract representation of a system, and allow researchers to study its func-

tion and organization. Network analysis is especially advantageous when dealing

with complex ecologies, such as real-world social, biological and technological net-

works. The networks that represent these systems are inherently complex, i.e.,

they exhibit non-trivial topologies with characteristics that are neither random

nor regular.

From a mathematical point of view, a network can be simply described as a set

of nodes (also called vertices) with connections between them, called edges. This

simple mathematical scheme can be used to represent many systems in the form

2Networks are oftentimes referred to as graphs, especially in mathematical literature. This
dissertation uses these terms interchangeably.
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of networks. In the real world, there are innumerable examples of networks: the

Internet, social circles of friends (both online and offline), scholarly collaborations,

food webs, postal delivery routes, aviation routes, metabolic networks, cellular

networks, genetic networks, and neural networks, to name a few. Networks are

ubiquitous. As Fritjof Capra reminds us, “wherever we see life, we see networks”

[27, p. 8].

Network approaches have been advanced in domains as diverse as biology

[31], economics [32], science studies [33], organization science [34], and cognitive

science and artificial intelligence [35]. Of particular interest, and central to the

topic of this dissertation, are social networks—networks that depict interactions

among people. Social networks have been approached not only from a quantita-

tive perspective [36, for a review of social network analysis], but also with respect

to the broader cultural and sociological implications that become apparent when

investigating a social phenomenon from a network perspective. Examples that

fit within the latter body of literature include the work of Manuel Castells on the

globalization of a network society and its effect on the economy, labor, and urban-

ism [37], that of Wellman and Haythornthwaite on the impact of the Internet and

networked information on everyday life [38], and that of Mark Granovetter on

the sociological significance of interpersonal ties [39]. The computational study

of social networks (commonly known as social network analysis, or SNA) involves

the construction and analysis of networks in which human agents represent the

vertices and specific types of interaction represent the edges between them. These

networks are utilized to perform a number of sociological investigations. For ex-

ample, one can calculate the degree of a node in a network—the number of edges

connecting to it—to measure the relative importance and centrality of an indi-

vidual in a social network. Degree centrality and other foundational concepts of

social network analysis are introduced and discussed in Chapter 3.
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1.5 Organization of this dissertation

This dissertation is organized as follows: In the next chapter, I present in detail

the subject of study of this dissertation, the Center for Embedded Networked

Sensing (CENS), I lay out my problem statement, and discuss the contribution

of this dissertation in relation to related literature. A general overview of the

research methods and data sources employed throughout this dissertation is in-

cluded in Chapter 3. These data sources are used to construct three networks

of collaboration depicting coauthorship, communication, and acquaintanceship

patterns at CENS. The mechanisms by which these networks are constructed,

as well as their topological and socio-academic configurations are discussed in

Chapter 4. In Chapters 5 and 6, I present the results of the structural and evolu-

tionary analyses of these networks, respectively. These findings are summarized

and discussed in Chapter 7. Chapter 8 concludes this dissertation by providing

an analysis of the limitations and assets of this research, and delineating possible

avenues for future work.
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CHAPTER 2

Studying scientific collaboration

This dissertation examines scientific collaboration in the context of a specific

research environment: the Center for Embedded Networked Sensing (CENS).

In this chapter, I introduce CENS and outline my problem statement, discussing

the contribution of this dissertation with respect to related literature on scientific

collaboration.

2.1 CENS: Center for Embedded Networked Sensing

The Center for Embedded Networked Sensing (CENS) is a National Science Foun-

dation Science and Technology Center established in 2002, involved in the devel-

opment and application of wireless sensing systems to critical scientific and so-

cietal pursuits. CENS is a multi-institution venture which includes five member

universities in California: University of California, Los Angeles (UCLA); Uni-

versity of Southern California (USC); University of California, Riverside (UCR);

California Institute of Technology (Caltech); and University of California, Merced

(UCM). CENS supports multi-disciplinary collaborations among faculty, stu-

dents, and staff across disciplines ranging from computer science to biology, with

additional partners in arts, architecture, and public health. More than 300 stu-

dents, faculty, and research staff are associated with CENS. The Center’s goals are

to develop and implement wireless sensing systems and to apply this technology

17



to address questions in four scientific areas: habitat ecology, marine microbiology,

environmental contaminant transport, and seismology. CENS also has projects

concerned with social science issues, ethics and privacy, and citizen science.

CENS features a headquarter base located at UCLA, yet CENS-related work

is conducted at all five member institutions, and at remote field-based locations,

e.g., the James San Jacinto Mountains Reserve in Southern California. These

institutions (and sometimes even departments) are sufficiently distant from one

another to prevent continuous physical interactions among scientists: computer-

supported communication is at the basis of their collaborative work. The type of

research conducted at CENS spans a wide spectrum of disciplines and applica-

tions requiring continuous cooperation among individuals that, otherwise, would

probably not interact beyond the walls of traditional university departments and

faculties. In such a scholarly and scientific environment, distributed collaboration

on multi-disciplinary subjects is a defining characteristic of scientific research.

The research work presented in this dissertation builds on a series of previous

studies of scientific practice that address questions about the nature of CENS

data and how these data are produced and managed. These studies, which in-

corporate both quantitative and ethnographic techniques, have documented the

scientific practices and lifecycle of CENS research [40, 41, 42] and led to the

construction of tools and services to assist in scientific data collection, analysis,

preservation and sharing [43, 44]. It is through these investigations that I came to

realize the complexity of scientific activities performed at CENS and subsequently

conceptualize CENS as complex ecology.

From the above description, it is clear that CENS is similar in function and

organization to the arrangement of a scientific collaboratory, presented in the

previous chapter. It comprises an array of distributed physical and virtual envi-
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ronments: physical, such as its headquarter laboratory at UCLA, faculty offices

at member institutions, and sensor deployments in the field; and virtual, such as

its mailing lists, wikis, digital fori, and other computer-supported communication

platforms. Also, CENS research involves collaboration among researchers from

different affiliations and disciplines; given the physical distance among member

institutions, much research is conducted via computer-supported ICTs.

2.2 A scenario of scientific collaboration at CENS

Scientific activity in a collaboratory is governed by a rich array of interactions.

In order to throw some light on such manifold combination of interactions, let us

consider a realistic case scenario of CENS research. In sensor network research, a

deployment is a research activity in which sensors, sensor delivery platforms, or

wireless communication systems are taken out into the field to study phenomena

of scientific interest. CENS deployments have taken place at numerous locations

in California (at various national reserves, lakes, streams, and mountains) and

around the world (including Bangladesh, Central and South America). One such

deployment, currently carried out at the James San Jacinto Mountains Reserve

in Southern California, involves the observation of bird breeding behavior via

imaging sensors in a nestbox.

Avian research of this kind focuses on species of birds that nest in tree cavi-

ties. For this reason, CENS researchers have constructed wooden nestboxes and

supplied them with imaging sensors (cameras). These sensors are located inside

the nestbox, pointing downwards. The camera records still images documenting

bird behavior during the breeding cycle. A number of other environmental data

are recorded alongside images, in the vicinity of the nestbox, such as tempera-

ture, humidity, dew point, light intensity and soil moisture. A typical nestbox is
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displayed in Figure 2.1; the image include labels for the nestbox’s power supply

(1), the mote, the sensor node (2) and the antenna (3). Two exemplary pictures

produced by this camera are displayed in Figure 2.2.

Figure 2.1: A CENS nestbox

This scenario of scientific collaboration resembles a typical sensor network

application in environmental field research. In fact, there are certain research

activities that are common to all kinds of applications in environmental sensing:

the design and construction of the sensor device, the capture and cleaning of

the data, its analysis and the publication of the experimental results [44]. How-

ever, one can also perform an in-depth investigation of a deployment’s narrative

structure — a description of all the events related to a specific deployment and

scientific project. One could analyze, for example, whether researchers identi-
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Images from a nestbox: a Western Bluebird on the left, and four laid eggs on the
right.

Figure 2.2: Images obtained from the imaging sensor in the nestbox.

fied a research problem in the field or in the laboratory, how they located field

sites in which hypotheses were tested, how they assessed field sites for appro-

priate positioning of data collection equipment and sample acquisition, and the

ways in which they calibrated equipment in the laboratory and the field. More-

over, what is crucial to the current discussion is the fact that all the described

research activities necessarily involve human agency. In particular, the website

of the aforementioned avian research project (http://research.cens.ucla.edu/

projects/2007/Terrestrial/AnimalCam) lists the following people:

• Faculty: Deborah Estrin (UCLA), Michael Hamilton (UCR), John Roten-

berry (UCR)

• Staff: Kevin Browne (UC Natural Reserve System), John Hicks (CENS),

Jamie King (James Reserve), Mohammed Rahimi (UCLA), Michael Tag-

gart (James Reserve), Tom Unwin (James Reserve)

• Graduate Students: Shaun Ahmadian (UCLA), Sean Askay (UCR), Sharon

Coe (UCR)
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Moreover, there is a mention of an external collaboration with Cornell Univer-

sity’s Laboratory of Ornithology. The configuration for this specific project points

to the geographically-distributed nature of CENS as a collaboratory. It follows

that all the activities related to this specific deployment involve different config-

urations of researchers that might be physically based at remote locations and

who might not know each other in person. All interactions between them might

happen via face-to-face meetings or via computer-supported technologies of var-

ious kinds, e.g., email, dedicated electronic mailing lists, and social networking

sites.

The researchers listed above were involved in various stages of the deployment.

The deployment started with the formulation of the initial research hypothesis by

avian researchers who may have documented them in grant proposals and other

requests for financial support. These researchers, who may not be affiliated with

CENS at all, may have identified in their proposal the use of wireless sensing as

a possible solution for the study of bird breeding behavior. The design of the

project and system development followed, with the construction of 13 nestboxes

and associated micro-climate sensor systems and video cameras. A number of re-

searchers and graduate students were involved in the initial device development

and the exploratory data collection. As real data began to be collected, statis-

ticians and computer scientists took part in this project to analyze and refine

collected data. For example, computer scientists became involved in the project

to develop an image recognition algorithm capable of detecting the bird’s presence

and the number of eggs present in the nestbox. This specific aspect of the project

was documented as a case study in an article that was presented at a specialized

conference on distributed smart cameras and imaging sensors [45]. Results of

this deployment were also analyzed and summarized in another research paper,

recently published, that discusses the use of imagers as biological sensors [46].
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The author lists of the two articles written for this project overlap fairly well

with the list of individuals presented above, but there are some discrepancies. For

example, staffmember Michael Taggart of James Reserve and Sean Askay of UCR

are listed as collaborators of this project, but do not appear in the author list. The

opposite case is also present. For example, Stefano Soatto of UCLA’s Computer

Vision Lab, involved in the image recognition work for this project, appears in

the author list, but not as official member of this project. It follows that, in

order to study collaboration patterns of this project, a bibliometric analysis of

published articles alone would fail to reveal some important social interactions

between graduate students, staff and faculty. CENS collaboration is carried out

and manifested in many ways and is best studied by “triangulation” methods

that rely on several types of data collected about a single phenomenon [47].

Many aspects relative to this methodology and its use in this dissertation are

discussed more in detail in Chapter 3. At this stage, it is sufficient to note that

this scenario demonstrates that collaboration at CENS does not necessarily reside

in a single physical environment (e.g., the laboratory) or in a single procedure

(e.g., the writing of scientific articles).

2.3 Problem statement

This dissertation analyzes scientific collaboration at CENS via manifestations of

coauthorship, communication, and acquaintanceship. Why focus on these inter-

actions? Although they are apparent from the scenario presented above, there are

also other artifacts and collaborative interactions that encompass CENS research

deployments: deployment plans, field notes, contextual data, software code, and

raw sensor data, to name a few. Not only are collaborative interactions numerous
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and heterogeneous, they are also potentially very different across different deploy-

ments, given the multi-disciplinary nature of CENS work. Gathering information

about these collaborative interactions, the artifacts generated, and the narrative

in which they are situated, would require an in-depth, longitudinal ethnographic

study in the form of interviews and participant observation.

For the purpose of this dissertation, however, I limit myself to quantitative

techniques of data collection, for two reasons. The first reason has to do with the

breadth of my research, which is not limited to exploring in depth collaborative

processes in a specific deployment or project. My intent is to capture collabora-

tion patterns at a broader scale, i.e., collaborative interactions that are embedded

within the modus operandi of the CENS collaboratory, as a whole. The second

reason has to do with my choice of method. As I use a network analytic approach,

I am specifically interested in manifestations of collaboration that encompass a

form of interaction among people and that can be operationalized in a network

format.

The preliminary portion of my dissertation research involved studying the

CENS environment to identify collaborative interactions that are not unique to

specific projects or work groups, but that are common within the community

at large. In other words, I was interested in the aspects of the CENS col-

laborative culture that permeate single projects, disciplines, institutions, and

sites. My preliminary exploratory research questions were: what kind of arti-

facts are being produced by CENS researchers? Where are they stored? Can

I use them to extract information about collaboration? In the early stages of

my research, I conducted an audit of CENS data repositories, finding that three

categories of artifacts generated across the sensor network lifecycle were stored

in specialized databases: contextual data, raw sensor data, and scholarly arti-
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cles [43]. All these artifacts have the potential to provide information about

collaborative interactions. The contextual data, hosted by the CENS Deploy-

ment Center (http://censdc.cens.ucla.edu), offer information about deploy-

ment teams, i.e., the individuals that participate in different deployments. The

raw sensor data, hosted by SensorBase (http://sensorbase.org/), contain infor-

mation about what data are produced and by whom. The bibliographic data,

hosted by the eScholarship Repository (http://escholarship.org/uc/cens), pro-

vide author lists of academic papers. It is worth noting that all these repositories

are still in their infancy: they are the result of recent initiatives to make CENS

data public and openly accessible. As such, their information may be incomplete

and inaccurate. A large portion of the data in SensorBase, for example, is stored

for tests and demonstrative purposes only and lacks rich metadata about data

authorship. Similarly, contextual data in the CENS Deployment Center does not

cover the entire spectrum of CENS deployments. Of these three data repositories,

only the scholarly database is updated regularly and is based on information that

is directly extracted from official documentation—the CENS Annual Reports.

For these reasons, I choose bibliographic information contained in the official

CENS scholarly record as the initial source of data to document collaborative in-

teractions. Despite the variegated nature of artifacts generated across the CENS

scientific lifecycle, many projects tend to culminate in some form of intellectual

product that is published in the scholarly record: journal articles, conference pa-

pers, books, book chapters, posters, and technical reports. Scholarly publication

is a crucial vehicle of scientific communication, dissemination, and recognition for

researchers across CENS projects. It is also the official means by which CENS

reports its accomplishments to funding agencies. As such, the collection of publi-

cations authored by CENS researchers represent the collaboratory’s most accred-

ited record of collaboration. In this dissertation, I use these bibliographic data to
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construct a coauthorship network in which the nodes represent researchers and

the edges denote the extent of coauthorship activity between them.

The second interaction analyzed in this study reflects the distributed nature

of the CENS collaboratory. I have mentioned that because of the physical dis-

tance that separates researchers from different regions, institutions, departments,

and workplaces, scientific work at CENS is often carried out via communication

technologies. For example, the project discussed in the scenario above—the ob-

servation of bird breeding behavior by imaging sensors—involves researchers from

institutions and field sites within and outside of Southern California. This set-up

implies that research is partially carried out via various means of interpersonal

electronic communication, e.g., personal email, dedicated mailing lists, and social

networking messaging. Private forms of communication, however, are arduous to

obtain because of their privacy and confidentiality. In this dissertation, I collect

and analyze mailing list communication. Mailing lists are the principal mode

of open communication among researchers at CENS. As the CENS wiki puts it:

“CENS lives on mailing lists. This is perhaps the single most important form of

communication within CENS”1. Using mailing list data logs, I construct a net-

work in which the nodes represent researchers and the edges denote the extent

of discussion activity between them on mailing lists.

All the scientific activities discussed thus far involve some form of social inter-

action between individuals. These interactions, however, may or may not involve

physical interpersonal acquaintanceship. For example, researchers from different

institutions and departments may have collaborated on several projects, software

code, and scholarly papers, never having met in person. As scientific research

moves to new organizational paradigms, predicated upon distributed collabora-

1From the CENS 3551 wiki, http://lecs.cs.ucla.edu/wiki/index.php/3551
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tion, it becomes extremely important to investigate the forms of social agency

that are at the basis of scholarly coauthorship and electronic communication.

For this reason, I supplement my study with information about the role of inter-

personal, offline relationships in the accomplishment of scientific work. I run a

social survey to collect acquaintanceship data, and I use responses to the survey

to construct a network in which the nodes represent researchers and the edges

denote the extent of personal acquaintanceship between them.

Clearly, these three interactions do not exhaustively cover the entire spec-

trum of collaborative dynamics that take place at CENS, as explained more in

detail in later chapters. Yet, they are prevalent among researchers of this col-

laboratory: scholarly coauthorship, communication on mailing lists and personal

acquaintanceship are interactions that exist firmly within the modus operandi

of CENS engineers, natural scientists, statisticians, computer scientists, sociolo-

gists, and life scientists alike. As explained, these interactions can be represented

in the form of networks. In this dissertation I study how these networks evolve

and interface with each other. My research involves the use of network analysis

to study the structure and evolution of these networks with regard to specific

aspects of scientific collaboration.

The first part of this dissertation is an analysis of network structure. The net-

works of coauthorship, communication and acquaintanceship briefly introduced

above are essentially large structures that group individuals according to specific

patterns of interactions. With this portion of research, I study the formation of

patterns of activity in these networks, i.e., how the aggregation of individual in-

teractions results in the formation of high-level structures. Via network analytic

methods I explore the topology of these networks and their conceptual organiza-

tion into clusters. In this context, it is interesting to analyze how these detected
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cluster formations interface with each other. For example, a comparative analy-

sis between the structure of the coauthorship and acquaintanceship networks can

uncover clusters of individuals that, although not publishing articles together, are

informally connected via frequent interpersonal relationships. Besides looking at

the interactions in a comparative manner, I also record the context in which such

interaction takes place (e.g., Who are the authors? What is their affiliation?

Who do they know?). In other words, every individual in the networks studied

is associated with a social/academic profile that contains information such as

institutional and departmental affiliation, academic position, scholarly expertise,

and country of origin. A comparative analysis of the detected topological struc-

tures with this set of attributes reveals the relationship between collaboration

patterns and given organizational, disciplinary, and institutional arrangements

of CENS. For example, the level of multi-disciplinary and inter-disciplinary col-

laboration at CENS can be investigated by analyzing the disciplinary affiliation

within communities of frequent collaborators in the coauthorship network. With

these considerations in mind, my first research question can be summarized as

follows:

Research Question #1. What types of structural communities can

be detected in the coauthorship, communication, and acquaintance-

ship networks of CENS? How do these structures relate to each other

and to the disciplinary and institutional arrangements of CENS?

The second part of my research is an analysis of network evolution. With

this portion of research, I inquire into the scientific collaboration dynamics that

take place at CENS. The networks of collaboration studied here — coauthorship,

communication, and acquaintanceship — are not static structures: they are all

time-dependent. For example, the network of coauthorship represents the act of
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collaborative writing of an article. Coauthoring events take place during fixed

point in time, “time-stamped” by the date of publication. Similarly, mailing

list discussions recorded in the communication network are time-stamped by the

email protocol. Finally, acquaintanceship networks are also dynamic, for indi-

viduals get to know each other and relationships endure through time. With

these notions in mind, I can look at evolutionary patterns in the aforementioned

networks using a comparative approach. For example, I can uncover whether

specific collaboration patterns emerge in one environment (a mailing list discus-

sion, for example) and then spill into another (the coauthoring of a paper, for

example). As for the structural analysis introduced above, I extend my evolu-

tionary analysis to include information such as institutional and departmental

affiliation, academic position, and country of origin. This allows me to study the

researchers’ propensity to collaborate preferentially over time with others with

a similar social and academic profile. In turn, this provides an understanding

of the ways by which CENS scientific communities are formed and modeled in

relation to the social and academic contexts in which they are embedded. My

second research question can be summarized as follows:

Research Question #2. What collaboration dynamics can be

evinced from the coauthorship, communication, and acquaintanceship

networks of CENS? Can specific evolutionary features be explained

in terms of changes in the disciplinary and institutional arrangements

of collaboration?
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2.4 Review of related literature

In the previous section, I outline my problem statement and present my research

questions. In order to frame this dissertation in the existing body of literature, I

review here previous work which addresses similar research questions to the ones

set forth in this dissertation. I review specifically studies of collaboration that

analyze coauthorship, communication, and acquaintanceship patterns in science.

2.4.1 Literature on coauthorship and scholarly collaboration

The study of coauthorship falls within the broader research field known as biblio-

metrics, “the branch of library science concerned with the application of mathe-

matical and statistical analysis to bibliography; the statistical analysis of books,

articles, or other publications”2. In the context of this dissertation, scholarly

output in the form of bibliographic material is a tangible indicator of scientific

collaboration and can be conveniently analyzed by the use of bibliometrics. Coau-

thorship is a prominent indicator of collaboration in scholarship. Authorship, in

particular, is of considerable importance both for the public and for researchers.

The public is interested in knowing the exact source of novel ideas and research

work. In turn, public recognition functions as a lever for researchers who, in

publishing their work, become more visible in academic circles, to funding bodies

and on the academic market.

It is worth mentioning that bibliometric methods revolve around the study

of a number of other indicators of scholarly activity besides coauthorship; these

include broad categories of research in citation, co-citation and acknowledgment

networks [48, for a review]. Yet, coauthorship patterns are perhaps the most

2“bibliometrics, n. pl.” The Oxford English Dictionary. 2nd ed. 1989. OED Online.
Oxford University Press.
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studied scholarly and scientific phenomena. Notable studies of coauthorship have

analyzed the literature production within specific domains. Recent work of this

kind include investigations of the domains of high energy physics [49], genetic pro-

gramming [50], neuroscience [51], and nanoscience [52]. Bibliometric analyses are

not exclusive to the sciences: domain-specific studies have mined bibliographic

databases in fields as diverse as digital library research [53], economics [54], or-

ganizational science [55], and psychology and philosophy [56]. These kinds of

domain-oriented analyses are also comparative in nature. A noteworthy cross-

domain large-scale comparative analysis is presented by Mark Newman, who an-

alyzes large databases of papers in the fields of physics, biology, and mathematics

exploring social and normative domain differences of coauthorship behavior [57].

Relevant to this line of work are a number of studies that employ network anal-

ysis to study coauthorship patterns in academic and scientific circles. Börner,

for example, posits a weighted graph approach to identify the local and global

properties of a scientific coauthorship network to document the emergence of a

novel field of science [58]. All these network-based analyses have proved viable

for a number of visualization studies that employ graphical representations of

coauthorship networks to uncover macroscopic patterns that network analysis

alone might fail to reveal [59, 60]. Moreover, an increasing number of studies of

this kind have accounted for the evolving component of scientific collaboration

[61, 62, 63].

Coauthorship patterns have been widely and actively studied from a social

network analysis perspective for over two decades [47, 64, 65]. Most social net-

work research involved with coauthorship is based upon this underlying concept:

two (or more) individuals are regarded as coauthors if they appear together in

the author list of a publication. This study technique works reasonably well

to investigate coauthorship patterns in the traditional arrangement of scholarly
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publishing. However, authorship models — especially in the context of large

collaborations in the physical sciences — have been undergoing a drastic shift

marked by a substantial increase in the number of authors per publication—a

phenomenon known as “hyperauthorship” [66, 67]. Such increase, coupled with

inconsistent authorship practices, makes it impossible to discern the nature and

extent of individual contributions to a work or a publication; it is difficult to

distinguish between principal authors, research assistants, project advisers, and

honorary authors [68]. Hyperauthorship, although not visible in sensor network

research (as discussed more in detail in chapter 4) — is a natural consequence of

the fact that certain scientific endeavors often require use of large-scale instru-

mentation that could not be possibly fabricated and employed by few individuals

within a small research group. A striking example of this phenomenon is the

domain of high energy physics where author lists for a single publication often

comprehend tens or even hundreds of researchers [69, 70]. For this reason, a

number of recent studies of coauthorship in the physical sciences supplement

traditional analytic techniques (i.e., detecting coauthorship from author lists)

with more qualitative methods of survey research (i.e., directly asking authors to

indicate the real nature of their contributions to a publication) [71, 72].

By performing cross-domain comparative studies, research in bibliometrics

has progressively introduced indicators such as multi- and inter-disciplinarity in

its body of research. For example, the nature of multi-disciplinary work has

been investigated in the fields of information science [73], nanotechnology [52],

and the social sciences [69]. Highly interdisciplinary research centers have also

become interesting environments to study collaboration. The ensemble of so-

cial, academic and demographic characteristics found in these centers offers a

convenient platform to study indicators that can enrich the understanding of

collaboration patterns. Research interests [74], and academic domain [75] are
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examples of characteristics that have been analyzed in bibliometric studies in

relation to coauthorship behavior. Academic institution is an obvious indicator

to explore how coauthorship patterns are distributed across different affiliations

and geographical locations. In a large-scale analysis of coauthorship in physics,

Lorigo and Pellacini find that there is a steady growth of inter-institute and

cross-country collaborations over a period of three decades [76].

Some preliminary results obtained using earlier versions of the data and

methods employed in this dissertation have been published in specialized litera-

ture. In particular, I have published (jointly with Marko Rodriguez) a study of

inter-disciplinary and inter-institutional scientific collaboration, via a longitudi-

nal analysis of mixing patterns of the coauthorship network [77], and a structural

analysis of the same network to reveal the interdependence of structural commu-

nities and socio-academic characteristics of scientific collaboration circles [78].

Moreover, it is worth noting that, besides analyzing scientific collaboration as

measured by the extent of coauthorship activity, I have become interested in the

analysis of the content of the coauthored bibliographic material. In recent work,

I employed abstracts and manuscripts authored by researchers at CENS to con-

struct a network of intellectual exchange [79]. Networks of this kind—sometimes

referred to as co-word or epistemic networks—link individuals that employ the

same topics and knowledge constructs in their scholarly production. A num-

ber of studies, both quantitative and qualitative in nature, exist that employ

networks of intellectual exchange to mine scientific collaboration. An example

is the work of Callon, Law and Rip [80] that builds on the theoretical frame-

work advanced by the Actor Network Theory [33] to investigate the dynamics

of scientific and technical production analyzing the specific concepts contained

in articles in a qualitative manner. Another example is the work of Leydesdorff
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by which he illustrates a qualitative manual mechanism to deconstruct a scien-

tific article in sentences, paragraphs, sections and construct epistemic networks

at different levels of aggregation [81]. Qualitative methods of co-word analyses

have also been blended with quantitative co-citation techniques as well as sur-

vey research. Recently, constructs similar to those proposed by Leydesdorff and

Callon have been extracted and used for a number of ad-hoc analyses that often

involve semi-automated components. For example, semantic tags (user-assigned

keywords) have been employed to perform knowledge discovery and recommen-

dation in large database systems [82], co-citation and co-word analyses have been

combined to explore competing scientific paradigms in the real world [83], and

quantitative and qualitative bibliometric maps visualizing scientific knowledge

domains have been blended to provide new perspectives on science-policy related

problems [84]. Despite the recent proliferation of semi-automated techniques, the

bulk of research in this domain seeks to find efficient, fully automated procedures

of topic extraction from texts. Some methods are grounded in machine learning,

using very large corpora of data to train the extraction algorithm, while others

rely on basic textual parsing techniques matched with a controlled vocabulary.

A recent example is a study of interaction histories of personal email archives, in

which Viègas, Golder, and Donath [85] develop an extended version of Salton’s

term frequency-inverse document frequency algorithm3 of relative frequency [87].

2.4.2 Literature on online communication

Electronic communication can take place on a number of different online plat-

forms such as emails, wikis, blogs, mailing lists, web fori and newsgroups. Online

3The term frequency-inverse document frequency (TF/IDF) weighting algorithm was first
developed by Karen Spärck Jones [86]
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users contribute to conversations taking place on these digital, interactive envi-

ronments for a number of reasons: “for debate, to express appreciation or affil-

iation, to build a sense of community, to provide and receive social support, to

collect information, and to provide answers to questions” [88, Introduction]. As

anticipated above, my research on communication networks involves the study of

interpersonal communication that is performed among CENS individuals using

public mailing lists dedicated to CENS research work. Thus, in this section I

specifically review literature that investigates email-driven forms of communica-

tion, such as analyses of personal emails, mailing lists and newsgroups. Content

and network analyses of blogs and wikis are excluded from the current discussion.

With the ongoing proliferation of Internet and communication technologies,

electronic communication functions as a mirror of intricate patterns of interper-

sonal physical and virtual communication. For example, different patterns of

email interaction might correspond to different social structures: dense email

communication might represent strong, informal, personal ties and less frequent

communication might represent more formal connections [89]. Overall, recent re-

search about electronic communication has motivated investigations addressing

the formation and convergence of online and offline communities. Notable work in

this field includes a study of the impact of the Internet on the “social capital” of

virtual and physical communities [90], the shift from physical densely-knit net-

works of communication to sparsely-knit, geographically-unbound “individual”

networks [91], and the effects of informal communication on the productivity of

communities of practices in organizational settings [92].

An important characteristic common to all electronic communication data is

its threaded structure [88]. Since all these environments (emails, wikis, mailing

lists, newsgroups) represent essentially a conversation among different members,
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every conversation can be represented as a thread whose nodes are single conver-

sation events. In an email system, for example, a thread is the collection of emails

around a certain topic (e.g., same email subject) and the nodes are represented

by every email in the thread. Given the structure of the email protocol, it is

possible to deduce the characteristics of the node (e.g., the names of senders and

receivers from the to: and from: fields). This threaded structure is common to

all other aforementioned electronic environments, and thus enables a number of

network analytic studies of electronic communication traces.

A large number of early studies of communication activity on the web revolved

around Usenet, a general-purpose world-wide distributed Internet discussion sys-

tem established in the early 1980s and still in use today4. In a thorough review of

the social structure of Internet discussion platforms, Marc Smith describes Usenet

as “a quintessential Internet social phenomenon: it is huge, global, anarchic, and

rapidly growing” [93, p. 195]. Due to its distributed, heterogeneous, open nature,

the Usenet database has been mined in a number of different studies to reveal a

number of different facets of electronic communication. Communication research

centered around Usenet newsgroup data includes analyses of racial identity [94],

comparisons of behavioral metrics with users’ subjective evaluations [95], and

an early implementation of collaborative filtering algorithms on large datasets

[96]. More recent studies have analyzed social roles on online discussion groups

[88] and the variations in hierarchies, newsgroups, authors, and social networks

over time [97]. Very often, these analytical studies have been implemented with

mapping, visualization and browsing interfaces for Usenet [97, 98, 99].

Research on the communication activity of newsgroups, mailing lists and sim-

ilar online fori has fostered thanks to the wide availability of data: these data,

4The volume of posts on Usenet has increased steadily since its inception. altopia.com

reports an increase from 4.5 Gigabytes of posts in 1992 to 3.8 Terabytes in 2008 (estimated).
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both past and current, are often widely available to the public. Analyses of per-

sonal email and privately-owned mailing lists, instead, have been less prominent

both for the difficulty to obtain permission to analyze privately owned data and

for the ethical implications of performing research on purely personal data. Yet,

analyses of personal email logs can be tremendously revealing of social structure.

This is for a number of reasons: (i) nowadays, personal email is by far the pre-

dominant means of electronic communication, (ii) personal email conversations

can range from formal to informal, (iii) personal email data span the widest pos-

sible spectrum of topics (unlike dedicated mailing lists or newsgroups), and (iv)

email pervades business, social, technical and knowledge exchanges. Analyses

of email data have been performed in the context of health care to understand

the nature of communication between patients and medical providers [100], in

social contexts to identify relationships using the interaction histories [85], in

organizational settings to reveal demographic and occupational differences by

email signatures [101]. Email-driven communication has also been analyzed in

the context of scholarly and scientific environments (the focus of this disserta-

tion): Matzat [102], for example, performs a comparison between the nature of

knowledge transfer and social activity on academic Internet Discussion Groups

(IDGs), finding that IDGs better support formation of social contacts rather than

academic communication.

Particularly relevant to the topic of this dissertation is a study by Tyler,

Wilkinson and Huberman that mines the personal email logs of a corporate orga-

nization to detect communities of practice among its employees [103]. This study

intentionally neglects messages “sent to a list of more than 10 recipients, as these

emails were often lab-wide announcements (rather than personal communication),

which were not useful in identifying communities of practice” [103, p. 7]. Yet, the

study is methodologically similar to the work presented in this dissertation, for it
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constructs a network of communication (producing a vertex for every individual

and drawing edges between people who corresponded through email) and it iden-

tifies clusters of individuals from the network’s topological structure. Moreover,

this study matches the detected structural communities to a specific characteristic

of the network: the corporate hierarchical position of its constituent individuals.

This dissertation extends the study by Tyler and colleagues in two ways. First,

it seeks to detect coherent topological structures in large-scale discussion-based

mailing list logs, rather than purely personal communication traces. Second, it

extends the set of studied characteristics beyond hierarchical position (i.e., aca-

demic position) to a number of other characteristics, such as scholarly expertise,

and departmental and institutional affiliation.

2.4.3 Literature on acquaintanceship and social relationships

Studies that analyze the rules and structures of acquaintanceship patterns have

traditionally been found in domains such as sociology, anthropology, and or-

ganizational science and management. Acquaintance is the relationship among

individuals defined by personal knowledge that is “more than mere recognition,

and less than familiarity or intimacy”5. An acquaintanceship network is a type

of social network in which the vertices of the network represent individuals and

the edges represent varying degrees of acquaintanceship. In sum, an acquain-

tanceship network describes “who knows whom, and how” [104, p. 381] in the

environment under study.

In the field of computational sociology a number of social network studies have

analyzed the patterns and structure of acquaintance [36, for a review]. The nature

5“acquaintance, a” The Oxford English Dictionary. 2nd ed. 1989. OED Online. Oxford
University Press.
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of acquaintanceship has been studied using methods that range from ethnography

to questionnaires to semi-structured interviews; examples are business contacts

within and among companies [105], friendship [106], sexual relationships [107],

and reciprocal relationships [108] in social circles.

An experiment that marked a new trend of studies in sociology is the so-called

small-world experiment of Stanley Milgram [109, 110] in which individuals in se-

lected U.S. cities were asked to pass a letter to one of their close acquaintances

that they thought had the highest probability to pass it to an assigned target

individual. This experiment was groundbreaking for it demonstrated that the

letters that made it to the target destinations, did so in about six iterations —

demonstrating an average path length of six for social networks of people in the

United States. This idea is nowadays popularly known as six degrees of separa-

tion. Since the original experiment by Milgram, a large number of investigations

have appeared in the literature. Notable studies directed at the study of small-

world networks — networks in which most pairs of vertices are linked by a short

path — include analyses of the “trails to Paul Erdös” [111], searching global

networks [112], a reversal of the small-world experiment [113] and a critique of

the idea itself based on the social nature of acquaintanceship [114]. Watts and

Strogatz have found that many real networks, notably social and scientific collab-

oration networks exhibit small-world properties [115]. In the domain of complex

systems, small-world networks have been employed to investigate emergence [116]

and to test a typical problem of game theory known as the prisoner’s dilemma

[117].

With growing availability of online corpora containing social indicators, many

social network analyses concerned with acquaintanceship have relocated to the

web. Business and scientific contacts, friendship and romantic relationships de-
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picted by dedicated social networking sites have been increasingly used for large-

scale analyses. Examples include a comparison of online and offline friendship

ties [118], an analysis of online friendship in terms of social capital [119], and the

structural and temporal evolution of a dating website community [120].

A number of studies on acquaintanceship and interpersonal networks have

been carried out in scientific communities. Employing questionnaires and semi-

structured interviews, two early studies of this kind analyzed the consequences of

using a computer-based conferencing platform [121] and differences in task-based

workflow [122] on the structure of interpersonal ties among scientists in various

scientific domains. Another study has assessed the impact of scientific meetings

on the knowledge flow among scientific contacts [123]. More recent investiga-

tions include work on “virtual science” laboratories by Chin, Myers, and Hoyt

[124] who explore the central role of personal knowledge exchange, both formal

and informal, both work-related and not, in the context of evolving scientific

social networks. Hara, Solomon, Kim and Sonnenwald [125] adopt ethnographic

methods to capture perception regarding collaboration and work practices in a

multi-institutional interdisciplinary research center. Their methods include di-

rect interviews, observations of videoconferences and meetings, and sociometric

surveys. In other work, Stokols, Harvey, Gress, Fuqua, and Phillips [126] employ

in vivo techniques to observe collaboration factors such as personal compatibility,

work connections, prior projects, spatial proximity, and face-to-face interaction

to depict the extent and impact of interpersonal activity and acquaintanceship

on the process of large-scale scientific collaboration.

Relevant to the research presented in this dissertation is the work of Nardi,

Whittaker, and Schwarz on intensional networks [127]. Based on a qualitative

study of collaboration across organizational boundaries, Nardi et al. explore the
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importance of personal networks for labor management and coordination. They

find that collaborative synergies are more often the result of assemblages of peo-

ple found through personal networks rather than the outcome of organizational

planning and structuring. A similar line of work, emerging from site-specific

ethnographic observations, also points to the existence of loose arrangements of

individuals with given roles, known as knotworks, which span organizational and

institutional boundaries [128].

Another classic study that is particularly relevant to the work presented here

is a network analytic study of the field of biomedicine performed by Lievrouw,

Rogers, Lowe, and Nadel [47]. This study uses a methodological strategy known

as “triangulation,” which involves gathering and employing multiple data sources

about a single social phenomenon [129]. Employing quantitative analyses of co-

citation, co-word and co-authorship on a database of research grants awarded

by the National Institute of Health, Lievrouw et al. find that there exist a dis-

crepancy between the communication networks of scientists and the content of

the work in which they engage. The work of Lievrouw et al. ultimately aims to

explain “why and how scientific knowledge [grows] as a function of both formal

and informal communication networks” [47, p. 217]. In other words, its objective

is to identify large-scale, global structures of interpersonal intellectual exchange,

or “invisible colleges” [130, 131]. From a methodological and conceptual per-

spective, this dissertation draws extensively from this study: both approaches

involve the investigation of a scientific environment using different techniques as

well as a comparative analysis of the results to explain the growth and structure

of social and scholarly networks. My research, however, places the focus on local,

small-scale forms of organization within a specific workplace, rather than on the

looser global structures of scholarly collaboration.
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2.5 Contribution of this dissertation

The intellectual contribution of this dissertation falls within several rubrics. First,

as my research examines the topological and structural configuration of CENS

collaboration, it complements previous research focused on the topology of sci-

entific networks. As discussed in the previous section, much of this research has

found that scientific and social networks exhibit small-world topological proper-

ties [61, 132, 133, 115]. Research of this kind is often performed on large, but

homogeneous networks, constructed from domain-based bibliographic reposito-

ries and well-delimited social circles. The CENS collaboration ecology does not

fit these canons. Its research focus, which involves a mosaic of disciplines—from

electrical engineering to statistics, from biology to sociology—and its boundary

flexibility make it an interesting environment to explore how different scholarly

and social practices coalesce in multidisciplinary, multi-sited scientific ventures.

This study tests the small-world hypothesis and analyzes preferential attachment

rules in the context of such heterogeneous collaborative environment. This con-

tribution is discussed in much detail in the Discussion chapter of this dissertation

(§ 7.2).

The second aspect of the contribution has to do with my analysis of the

organization and function of CENS in relation to previous research on collabo-

ratories. To date, much research on collaboratories and cyberinfrastructure has

been qualitative in nature. The focus of these investigations has been on the

relations and interconnections that are at play in cyberinfrastructure [12, 13]. As

such, these studies have stressed the importance of relations by analyzing the

human infrastructure that supports and fuels these initiatives [14]. My research

is an attempt to provide a visual and empirical map of these relations by the

use of quantitative tools of network analysis. I use network analysis to describe
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the scholarly, communication, and social relationships that are at play within

the CENS collaboratory. In particular, via a structural analysis, this research

explores the local, small-scale organization of the collaboratory: how researchers

who perform similar or joint research work organize themselves in small groups.

With regard to this, my research explores and substantiates previous work that

draws attention to the importance of interpersonal networks and social cohesion

in cyberinfrastructure initiatives [127, 128]. This is further discussed in § 7.3.

Third, my research allows me to reflect on the benefits and usefulness of

using a complex network approach to study collaboratories. In this dissertation,

I conceptualize the CENS collaboratory as a complex system and employ methods

of network analysis to explore its collaborative configuration. I outline emergence

and boundary flexibility as two salient characteristics for the function of many

complex systems. How well do these characteristics become apparent from my

study of scientific collaboration? My research allows me to revisit these notions

in the light of the obtained results and my personal four-year-long experience

with CENS. My reflections on the choice of methods pose as recommendations

for researchers that intend to employ a complex system approach for the study

of science, as discussed in § 7.4.

Finally, my research brings about a methodological contribution to the field

of network analysis. Although my method is essentially quantitative, my re-

search questions, my analytical framework, and the interpretation of my results

are guided by considerations that are qualitative and sociological in nature. For

this reason, my method is enhanced with qualitative connotations that are nor-

mally neglected by studies of scientific networks. Many network-based studies of

scientific collaboration are based on large, domain-centric, bibliographic reposi-

tories. As a result, these studies rely on a wealth of bibliographic data but only
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examine a single manifestation of collaboration. My work puts into action the tri-

angulation strategy posited by Lievrouw et al. [47], to explore the multi-faceted

nature of scientific collaboration. Moreover, thanks to the manageable size of the

CENS network, I am able to collect a wealth of socio-academic information by

manually inspecting the personal web pages and biographies of each individual in

the network. I employ this information to frame my network analysis results in

the broader social and academic landscape in which collaboration takes place. I

speculate that the relatively limited size of the constructed network, my familiar-

ity with the underlying data, and my privileged position of information scientist

“embedded” in the network, allow me to provide more nuanced interpretations of

my results than those obtained in large-scale network analyses. These and other

considerations for network researchers and social scientists are discussed in § 7.5.
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CHAPTER 3

Research methods, data and instruments

This dissertation is a study of scientific collaboration at the Center for Embedded

Networked Sensing (CENS) via an analysis of its coauthorship, communication

and acquaintanceship patterns. The research methods, data and instruments

employed in this study are discussed in this chapter. In particular, this chapter

begins with an overview of the foundational concepts relative to network the-

ory, which is the the overarching methodological framework of this dissertation.

Concepts that are discussed in great detail include the community structure and

the assortative mixing of networks, which are at the foundation of my study of

network structure and evolution. In the following section, I present the data and

research instruments. In particular, I introduce the techniques by which coau-

thorship and communication data were collected and how they were employed

to delineate the range and composition of the population under study. In the

final section of this chapter, I introduce the social survey instrument that was

administered to the CENS population to gather data about personal knowledge

patterns and construct an acquaintanceship network.
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3.1 Foundations of network analysis

As anticipated in Chapter 1, the research presented here employs a network ap-

proach to study scientific collaboration. By representing interactions in a network

fashion, one can rely on a platform of well established tools and methods of net-

work analysis to depict and study in detail these interactions.

In a comprehensive review on complex networks, Mark Newman divides net-

works into four loose categories — social, information, technological, and bi-

ological networks — based on the general properties of the interactions they

represent [16]. Social networks represent patterns of social interactions among

people. Friendship, acquaintanceship, kinship, business relationships, and sexual

relationships are examples of interactions that can be represented by a social

network. Information networks depict information and knowledge exchange. An

example of information network is a scholarly citation network which represents

referencing patterns between academic papers. Similarly, the World Wide Web

is an information network for it represents linking patterns between web pages.

Technological networks are man-made networks developed for the distribution of

a commodity or resource. The electrical, road, railway, and postal networks are

examples of technological, infrastructure networks devised for the distribution of

electricity, vehicles, trains and mail, respectively. Biological networks represent

interactions within or between living organisms. Widely studied biological net-

works include food webs that depict preying patterns in an ecosystem, and neural

networks that depict the structure of the brain.

The networks discussed in this dissertation are all social networks, i.e., they

depict interactions between people. In particular, the three interactions covered

here are coauthorship of scholarly papers, communication on mailing lists, and

personal acquaintanceship. Using a network approach, these interactions can be
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described using the same underlying scheme: individuals are represented as nodes

in the network; nodes are connected to one another by an edge if a relationship

between them exists. This very simple scheme is depicted in Figure 3.1, for a

fictitious network with 10 nodes and 12 edges.

Node

Edge

0

1

3

2

4

5

6

7

8
9

Component #1 Component #2

This example network features 10 nodes and 12 edges (n = 10,m = 12) in two
separate connected components. Nodes 0 through 6 are part of the first component;
nodes 7, 8 and 9 are part of the second component. Line width is proportional to
edge weight, so that more prominent connections are depicted by wider lines.

Figure 3.1: A small example network.

3.1.1 Basic properties of networks

Directionality. The network of Figure 3.1 is undirected, for the edges connecting

nodes do not have directionality (i.e., arrows). Directionality is important in

many kinds of networks. A food web (who eats whom) is an example of network

in which the direction of the edges is fundamental. The networks employed in this

dissertation are all regarded as undirected graphs. Scholarly coauthorship and

mailing list communication are natively undirected interactions: coauthoring a

paper or participating in a discussion are actions that do not involve directionality.
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Acquaintanceship, however, is a directed activity: when someone claims to know

someone else, this interaction may or may not be reciprocated. For simplicity, and

in order to enable a comparative analysis, the acquaintanceship network studied

in this dissertation is however regarded as undirected. This matter is discussed

in much detail in Chapter 4.

Weight. The network of Figure 3.1 is weighted, for its edges are associated

with weights. The weight of an edge indicates the intensity or the extent of a given

interaction between two nodes. For example, in a communication network, a low-

weight edge indicates sporadic communication between two individuals, while a

high-weight edge indicates frequent communication. In network visualization,

weights are oftentimes represented by edge widths, whereby heavier weights have

wider and more marked lines. In Figure 3.1, three edges have higher weights than

the others (0—3, 3—4, and 3—6). All networks studied in this dissertation are

weighted. The mechanisms used to assign weights are explained in much detail

in Chapter 4.

Components. The network of Figure 3.1 has two connected components:

the one on the left is composed of 7 nodes, and one on the right is composed

of 3 nodes. A connected component is a set of nodes that can be reached by

paths running along edges of the network. It is normal for networks to have more

than one connected component, i.e., to be partitioned into disconnected groups

of nodes. However, many real and artificial networks feature a giant component,

i.e., a large connected component which is made up by the majority of the graph’s

nodes.

Diameter. Any two nodes can be connected by different paths running along

the edges of a network. A geodesic path is the shortest of these paths. The

diameter of a network is the length (in number of edges) of the longest geodesic
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path between any two nodes, i.e., the distance between the two most remote

nodes. As such, the diameter gives an immediate idea of the size and breadth

of a network. When a network features multiple components, the diameter is

always calculated on the giant (largest) component. In Figure 3.1, the diameter

of the graph is 2, since the longest geodesic path in component #1 is only made

up of two steps (e.g., the path to get from node 1 to node 5).

Average path length. The average path length of a network is obtained

by computing the average of the shortest path lengths between all possible node

pairs. Average path length is an indicator of the efficiency of information transfer

in a social network. In the network of Figure 3.1, the average path length (of

the giant component) is 1.57, calculated by averaging all shortest paths between

nodes 0 through 6.

Node degree and centrality. The degree of a node is the number of edges

that connect it to the rest of the network. For example, in Figure 3.1, node 3 has

a degree of 6, while node 8 has a degree of 2. Node degree is used to compute

the most basic form of network centrality, whereby nodes with the highest degree

are considered more central than others. In many network visualizations, the

diameter of depicted nodes is adjusted according to centrality scores.

Degree distribution and preferential attachment. A much studied

quantity in networks is their degree distribution, i.e., the frequency distribution

of degrees of individuals nodes in a network. A degree distribution is normally

displayed as a plot of node degrees on the x-axis and their cumulative frequency

on the y-axis. Random networks display Gaussian and centered degree distribu-

tions, since all connections between nodes are equally probable. Real and natural

networks, however, have highly skewed degree distributions, with a majority of

nodes of low degree and a small number of nodes with high degree. Many social
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networks have been observed to follow an exponentially decaying or a power-law

distribution. A network whose degree distribution follows a power-law is com-

monly known as scale-free [134]. Scale-free degree distributions have historically

been observed in many types of scholarly networks [135, 61, 132, 63]. It has

been widely argued that one of the predominant generative mechanisms behind

the formation of power-law degree distributions is preferential attachment, i.e.,

the notion that a network grows (i.e., nodes attach to each other) according to

specific preferential rules.

Cliques. Cliques are subsets of a network within which every possible edge

exists. For example, in a social network of acquaintanceship, a clique is a group

of people wherein all know each other. In a coauthorship network, a clique is a

group of authors all of whom collaborate with each other. A clique is maximal if

it cannot be extended to a larger clique. Figure 3.1 has two maximal cliques: a 4-

node clique in the first component (nodes 3, 4, 5, and 6), and a 3-node clique in the

second component (nodes 7, 8, and 9). Some other examples of maximal cliques

are shown in Figure 3.2. From a sociological perspective cliques are interesting

network structures because they represent tight-knit groups of interconnected

individuals who exclusively share specific characteristics and patterns of behavior.

A 5-node clique (left), a 4-node clique (center) and a 3-node clique (right).

Figure 3.2: Three examples of maximal cliques.
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Clustering coefficient. The clustering coefficient measures the density of

cliques in a network and indicates the extent to which nodes in a network tend to

cluster together. In other words, the clustering coefficient gives an indication of

how many closed triangles there are in a network. From a sociological perspective,

this notion is important since if A knows B and B knows C, there is a probability

that A also knows C (and thus a closed triangle is formed). For this reason,

network clustering is also knows as network transitivity [36]. The clustering

coefficient of a network, C, is computed by the following formula [16]:

C =
3× number of triangles in the network

number of connected triples of vertices
, (3.1)

which for the network of Figure 3.1 is C = 3× 3/18 = 0.5.

Small-world networks. High clustering coefficient coupled with short aver-

age path length indicates that a network exhibits small-world properties [16, 115].

A small-world is a network in which any two nodes are only a few steps apart,

regardless of network size. In a small-world network, individuals are not neces-

sarily all connected to each other, yet they are easily reachable from one another

via a short path.

3.1.2 Community structure

Much research in network theory revolves around the study of structure. As

discussed in Chapter 1, from a theoretical perspective, structure appears when

recurrent small-scale interactions among agents endure into large-scale proper-

ties. In network terms, structure refers to high-level topologies that are separate

from individual small-scale interactions. An immediate manifestation of struc-

ture in a network comes from its natural subdivision into clusters. Clusters are
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groups of nodes that are connected with one another to form a separate group.

In a social network, a cluster of this kind is a community of individuals related

to each other by a high level of interaction. The formation and advancement of

communities in the workplace has been studied for decades. In an exploration of

situated learning and knowledge acquisition, Lave and Wenger [136] introduced

the notion of community of practice to delineate groupings of individuals with

shared goals and sociocultural practices. More specific to knowledge activities

in the scientific workplace is the notion of epistemic community, which refers

to groups of scientists producing knowledge according to a common framework

of conceptual tools, representations, and expertise [137]. These notions have

been employed extensively in studies of scientific and non-scientific organization

rooted in sociology, information science, and knowledge management [92]. De-

spite some attempts to align social network topology with community of practice

and epistemic community theories [138, 139], most of these studies are qualita-

tive in nature, however. Yet, it is important to stress that both communities of

practices and epistemic communities denote an underlying structural component:

they imply that researchers coalesce and organize themselves to form a bounded

group [140]. For this reason, studying communities of scientific collaboration

from a structural perspective is of fundamental importance.

From a computational perspective, there are two broad sets of methods to

detect clusters in networks. For unweighted graphs, a widely accepted method

is the K-means algorithm that clusters network data in a number of given parti-

tions [141]. For weighted graphs, such as the ones discussed in this dissertation,

several techniques have appeared in specialized literature in the past two decades.

These techniques are based on algorithms that partition a network into structural

communities, i.e., they reveal the network’s community structure. Structural com-

munities are “cliquish” sub-graphs composed by groups of vertices that are highly
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connected between them, but poorly connected to other vertices [142]. The study

of community structure in networks is particularly important because communi-

ties might display local properties that differ greatly from the properties of the

network as a whole. Even a very detailed analysis of a network at a global level

might fail to uncover specific patterns and characteristics that only exist within

tight-knit communities and sub-partitions of the network. Figure 3.3 shows a

simple network partitioned into three structural communities. It is important

to stress the difference between Figures 3.2 and 3.3. While Figure 3.2 displays

three cliques, the structural communities of Figure 3.3 are not cliques per se:

they are cliquish clusters of nodes. It follows that structural communities are not

communities in a natural sense, i.e., the members of these communities are not

necessarily all connected to each other, as in a clique. Rather, membership to a

community is predicated by the overall topological features of the network.

Figure 3.3: A network partitioned into three structural communities.

The natural partitioning of the network of Figure 3.3 is clearly evident to the

eye. As Newman notes “the human eye is an analytic tool of remarkable power,

and eyeballing pictures of networks is an excellent way to gain an understanding

of their structure.” [16, p. 169]. As networks grow in size, however, visualization

becomes less and less useful as the eye cannot easily discern a network’s structure.

For this reason, a number of different algorithm to detect community structure
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in a computational fashion have been proposed in the literature; they include:

1. leading eigenvector, a fast algorithm, based on the definition of the modu-

larity function in terms of the eigenspectrum of matrices [143],

2. walktrap, a technique based on random walks [144],

3. edge betweenness, the earliest community detection technique, based on

vertex betweenness centrality [142]

4. spinglass, a technique based on a spin-glass model and simulated annealing

[145].

In general, the aim of clustering techniques is to maximize the degree of asso-

ciation between inter-related nodes to thus uncover clusters consisting of nodes

with similar features. In previous published work, I compared the performance

of these four algorithms to detect structural communities in the CENS coauthor-

ship network [78], finding that the leading eigenvector algorithm is both fast and

accurate for the scope of my work. The leading eigenvector method computes

the repartition of the network in structural communities based on the vertices’

eigenvector centrality [146]. In other words, the algorithm takes a weighted net-

work as an input (e.g., a coauthorship network), and partitions the given network

into subgroups (structural communities) based on the topology of the network

(e.g., the number of coauthorship connections among authors). This method has

been successfully applied to social networks to uncover, for example, the rela-

tionship between nationality and collaboration [147], latent communities in large

organizations [103], political and organizational structures [148], and to identify

communities in networks of collaborating musicians [149, 150].

For the purpose of this dissertation, I tested the efficiency of the four afore-

mentioned algorithms also on the communication and acquaintanceship network.
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While the leading eigenvector algorithm performed very well in partitioning the

communication network, its application on the acquaintanceship network did not

produce similarly accurate results. Only the spinglass algorithm provided valid

and accurate results, despite being considerably slower. This finding is very

much in line with recent in-depth comparative evaluations of community detec-

tion mechanisms that present the superiority of algorithms based on spin-glass

models and simulated annealing compared to the leading eigenvector algorithm

for both real and artificial networks of medium size and high mixing coefficient

[151]. For these reasons, the detection of community structures in all the net-

works studied in this dissertation was performed using the spinglass algorithm

[145].

3.1.3 Homophily and assortative mixing

The network concepts and methods presented thus far enable the study of the

topology and structure of networks. However, it is important to remember that

networks are not homogeneous entities. Not all nodes of a network are the same.

In a social network, for example, nodes may represent individuals of different

gender, nationality, race, income, etc.1 The study of node characteristics can

provide insights into the level of homophily in a social network, i.e., the ten-

dency of individuals to create ties with similar others [152, for a review]. The

homophily principle describes how homogeneous a network is in terms of specific

sociodemographic, behavioral, or interpersonal characteristics. For example, a

high level of homophily in a friendship network indicates that individuals with

1Similarly, not all edges of a network are the same. Besides weight, edges might represent
different levels, notions, and shades of interaction. For example, in a social network, acquain-
tanceship might mean different things to different people. This last point is covered in much
detail in Chapter 4.
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certain characteristics—such as race, ethnicity, political beliefs, and educational

background—tend to make friends with individuals with similar characteristics.

Many studies of homophily are grounded in sociology and investigate patterns of

homophily as well as their driving forces and their implications.

An established method to measure mathematically the level of homophily in

a network is by computing its assortative mixing, or assortativity, i.e., the ex-

tent of mixing between similar nodes in a network [153]. In a social network,

assortativity can be defined as the tendency for individuals to establish connec-

tions preferentially to other individuals with similar characteristics. While many

different components of similarity can be investigated, the vast majority of large-

scale studies of networks look at the mixing of node degree, i.e., how nodes with

similar degree preferentially attach to one another. In a coauthorship network,

for example, degree assortativity indicates the tendency for individuals to write

papers with others with a similar number of collaborators. In other words, a

high degree assortativity means that very productive authors collaborate with

other very productive authors, while low-degree authors (i.e., authors that do

not collaborate very much) collaborate with other low-degree authors. In this

dissertation degree assortativity is measured computing the Pearson correlation

coefficient of the node degrees found at the ends of every edge, using the following

formula [154]:
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where r is the degree assortativity coefficient, M is the total number of edges,

ji, ki are the degrees of the nodes at the ends of the ith edge, with i = 1 . . .M .

This formula returns a coefficient, r in the range −1 ≤ r ≤ 1, where r = 1

56



indicates perfect assortativity, r = 0 indicates no assortativity, and r = −1

indicates perfect disassortativity.

Mixing patterns, however, can also be calculated based on discrete node-

specific characteristics. In other words, one can study whether individuals with

certain characteristics associate preferentially with similar others. In studies of

scholarly and scientific collaboration networks, examples of characteristics that

have been investigated in this manner include: research interests [74], academic

domain [75], geographical location [76], age group [155], and country of origin

[78]. These studies offer insights into the mechanisms by which disciplinary,

institutional, and spatial arrangements shape, and are shaped by, collaboration

patterns. For nominal parameters, such as race, affiliation, gender, etc., the

discrete assortativity coefficient, r, can be computed using the following formula

[153]:

r =

�

i eii −
�

i aibi
1−

�

i aibi
(3.3)

where eij is the fraction of edges in a network that connect a node of type i to one

of type j, ai is the fraction of edges that have a node of type i on the head of the

edge, and bi is the fraction of edges that have a node of type i on the tail of the

edge. As for degree assortativity, r = 1 when there is perfect assortative mixing,

r = 0 when there is no assortative mixing, and r = −1 when there is perfect

disassortative mixing. In other words, the discrete assortativity coefficient, r,

indicates the level of homophily of the network for a certain parameter. For

example, if in a coauthorship network, r for academic affiliation is 1.0, this means

that individuals in the network only write papers with other individuals with same

institutional affiliation. In this kind of network, there are no multi-institutional

collaborations. On the other side of the spectrum, we can imagine a completely

disassortative network (r = −1) in which every single collaboration (i.e., paper)
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in the network is authored by individuals that belong to different institutions.

3.2 Data and instruments

In this dissertation, I employ a number of data sources to construct networks of

coauthorship, communication and acquaintanceship. I gather information about

scholarly coauthorship by inspection of bibliographic records available at the

CENS institutional repository; about electronic communication by analysis of

official CENS mailing list archives; and about acquaintanceship patterns by ad-

ministering an online social network survey instrument. The remainder of this

section discusses the collection techniques and instruments by which these data

are collected.

3.2.1 The CENS bibliographic record

In Chapter 2, I note that the set of scientific activities and practices of CENS

generate various scholarly artifacts, such as journal articles, conference papers,

technical reports, and posters. Building a collaboration network around coau-

thorship activity requires understanding what the CENS bibliographic record

consists of. The question at hand is: what scholarly publications are part of

the CENS bibliographic record? Clearly, answering this question has immediate

repercussions on the size, configuration and composition of the population under

study. As outlined in Chapter 1, one major obstacle that is often encountered

when studying modern science collaboratories is their inherent boundary flex-

ibility. CENS comprises researchers from multiple institutions and disciplines.

Researchers affiliated with CENS may also be affiliated with other laboratories

and perform interdisciplinary work on other projects and under different affili-
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ations. The comic of Figure 3.4 illustrates the boundary problem better than

any description. To add complexity to an already complex scenario, many CENS

collaborations include researchers that are not affiliated with CENS at all. In this

context, how do you discriminate between a CENS publication and a non-CENS

one?

Comic published 3/22/2010 on ”Piled Higher and Deeper” by Jorge Cham.
www.phdcomics.com. Reprinted with permission.

Figure 3.4: Comic: Interdisciplinary Madness

Previous environment-specific studies of coauthorship delineate the popula-

tion under study by relying on data contained in an institutional repository [55]

or domain-specific bibliographic databases [53] to mine patterns of coauthorship
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that take place within a given institution or academic domain, respectively. To

establish the population that constitutes CENS’ coauthorship network, I em-

ploy a similar mechanism. As alluded to in the previous chapter, I assemble the

scholarly items included in the CENS Annual Reports, the official documents

published by CENS every year to report its progress to the National Science

Foundation and other funding agencies.

At the time of writing, seven CENS annual reports are available (2003-2009),

describing the progress of the Center since its inception to date (http://research.

cens.ucla.edu/about/annual_reports/). The annual reports, published at the

end of every fiscal year, describe the Center’s state of affairs during its preced-

ing 12 months: its research goals and objectives, policies, organization charts,

budget summaries, faculty biographies, list of members, and list of scholarly con-

tributions. Annual reports are compiled by CENS administrative staff. Every

year, staff members ask project leaders to provide descriptions of their project

activities and a list of related publications. In turn, project leaders may ask

members of the projects they lead to provide description of their individual ac-

tivities and a list of their personal scholarly contributions. As such, the list of

publications is constructed incrementally, by aggregating individual scholarly ar-

ticles that researchers deem to be contributions to CENS research. Clearly, this

procedure is not without error. Some researchers might overlook their personal

bibliographic record and fail to submit important CENS publications. Others

might submit publications that are not entirely related to CENS research. Also,

over the years researchers might be asked to provide slightly different segments

of their work, and thus the annual reports might not be entirely consistent over

time. Despite these minor inconsistencies, by a mechanism of distributed self-

reporting, the Annual Report is the most comprehensive bibliographic record

of CENS activities. Every year, bibliographic metadata (authors, title, year,
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publication venue, etc.) for every publication in the annual report are also up-

loaded at a dedicated site of the California Digital Library eScholarship repository

(http://repositories.cdlib.org/cens).

It is important to note that the publication list contained in the Annual Re-

ports only lists books, book chapters, journal articles and papers published in

conference proceedings. It excludes other scholarly materials such as posters and

technical reports. In this dissertation, I choose not to include posters and tech-

nical reports in order to avoid repetition of material and because they are not

part of an official reporting mechanism. Although not documented in the annual

reports, posters and technical reports are listed and stored in dedicated sections

of the eScholarship repository. At the time of writing, the CENS eScholarship

repository contains 369 posters and 68 technical reports. Posters and technical

reports at CENS are important vehicles of scientific dissemination. Posters, es-

pecially, are an efficient and compact means to present the latest achievements

of a working group during CENS events. The contents, titles, and author lists of

posters often overlap with those of related journal and conference papers. Yet,

author lists of posters tend to be more inclusive than those of scholarly articles.

This has a disadvantage: posters do not always reflect the true arrangement of a

given collaboration; oftentimes, all members of a project or team are indicated as

authors of a poster. However, this also brings about an advantage: some posters

might include researchers such as software developers and technical staff who do

not appear as authors in published articles, but whose work is crucial to collab-

oration. This issue is discussed further among the limitations and future work of

this dissertation, in Chapter 8.

Using bibliographic information about books, book chapters, journal articles

and conference papers available in the Annual Reports, I assemble a publica-
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tion database, consisting of 608 papers published over a period of ten years

(2000–2009). Table 3.1 summarizes some important statistics relative to the

collected bibliographic data: paper distribution by publication type, publication

year, number of authors, and publication venue.

A quick analysis of Table 3.1 reveals some important properties relative to the

nature of publication practices at CENS. The distribution of papers by publica-

tion type, for example, shows that about two-thirds of publications are papers

in conference proceedings, while journal articles take up the other third of the

volume of publications. This is not a surprising result, given the fact that many

technical disciplines rely on conferences rather than journals for scientific commu-

nication and knowledge dissemination. In fact, it has been noted that in the field

of computer science, which is a core discipline at CENS, there is a strong publica-

tion culture that favors conference papers over journal articles [156]. The year of

publication of the articles in the bibliographic database shows that the number of

publications by CENS authors increased sharply a couple of years after the incep-

tion of the center in 2002 and then stabilized at a rate of about 80 publications

per year. The distribution of items per number of authors reveals that about

half of all publications are authored by two or three individuals. This is perfectly

in agreement with recent findings that report frequent coauthoring team sizes of

two to three members in the computer sciences [68]. Publications by four and

five authors are not rare at CENS, however, making up together about a quarter

of all publications. Author lists rarely exceed six authors and this is a confir-

mation of the hypothesis anticipated in § 2.4.1 — that hyperauthorship is not

common in CENS research. It is also worth noting that the publication database

includes 59 sole authored documents (roughly 10% of all publications). These

publications do not directly contribute to the construction of the coauthorship

network: they are not manifestation of collaboration and thus cannot be used to

62



Paper type n = 608

Conference proceedings 400
Journal article 189
Book chapter 18
Book 1

Year of publication n = 608

2000 6
2001 20
2002 41
2003 94
2004 116
2005 105
2006 71
2007 64
2008 68
2009 23

Number of authors n = 608

1 59
2 155
3 158
4 94
5 59
6 32
7 19
8 13
9 5
10+ (where 14 is the maximum number of authors found) 14

Venue of publication n = 608

International Conference on Robotics and Automation (ICRA) 32
International Conference on Information Processing in Sensor Networks (IPSN) 15
Conference on Embedded Networked Sensor Systems (Sensys) 11
International Conference on Intelligent RObots and Systems (IROS) 11
American Geophysical Union Meetings (AGU) 11
International Conference on Micro Electro Mechanical Systems (MEMS) 11
IEEE Transactions on Mobile Computing 6
European Conference on Computer Vision (EECV) 5
Applied Physics Letters 4
Earthquake Spectra 4

Bibliographic data statistics: paper distribution by publication type, publication
year, number of authors, and publication venue.

Table 3.1: Basic statistics for the collected bibliographic data.
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generate any edges between the nodes. Yet, they constitute important scholarly

output and are therefore used for the calculation of specific network metrics, e.g.,

authors’ centrality can be assessed summing coauthored and sole authored items.

Finally, the distribution by venue shows that the majority of publications appear

in technical conferences that specialize in sensor network and wireless sensing re-

search (e.g., ICRA, IPSN, Sensys, MEMS) with a smaller proportion appearing

in journals that cover CENS’ application domains (e.g., Applied Physics Letters

and Earthquake Spectra).

3.2.2 The CENS mailing list archive

As discussed throughout this dissertation, much of communication at CENS takes

place, as in most collaboratory research, via online electronic platforms. In this

dissertation, I specifically analyze communication activities traceable from a set

of electronic mailing lists maintained by CENS. I construct a communication net-

work measuring the extent of online communication among researchers extracted

from mailing list logs.

An electronic mailing list consists of a reflector, an email address that, when

used as email recipient, distributes a copy of the email to all subscribers of the

list. Mailing lists can be private or public. Administrators may decide to make

available the archive of past discussions and the list of subscribers to anyone or

to subscribers only. Administrators also decide how users subscribe to the list

(by email, by web interface, by invitation, etc.) and whether to allow message

moderation. To initiate a discussion, subscribers send an email to the list (the

reflector).

When replying to a topic of discussion, a thread is formed, i.e., emails are

grouped together according to email subjects to discriminate among different
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topics of discussions. I assume for the purpose of this dissertation that indi-

viduals involved in mailing list discussions do not modify the email subject of

the discussion. This assumption has its flaws. As for most email communica-

tion, people might, in fact, vary the email subject when replying to a mailing

list discussion that initially started under a different heading — the email with

the new subject is a false positive, which results from detecting a difference that

does not in fact exist (Type I error). In a similar vein, the discussion taking

place in a thread might diverge into new topics, but the email subject might stay

unvaried. In mailing list lingo, this is called hijacking a thread and is a case of

false negative, i.e., failing to observe a difference that is, in fact, true (Type II er-

ror). Based on this illustration, I consider communication activity the interaction

among individuals on an electronic mailing list around a certain topic.

CENS currently operates 100 different mailing lists (http://www.cens.ucla.

edu/mailman/listinfo). Many of them (87 out of 100) are unmoderated public

lists to which anyone can subscribe; the remaining 13 are private lists and are

thus excluded from this study. Subscription to CENS mailing lists is subject

to the approval of a technical administrator. Upon successful subscription, sub-

scribers can post to the mailing lists and browse the archive of past discussions.

CENS mailing lists vary in volume, subscribers and function. They are used for

a number of different purposes: to discuss past and ongoing sensor deployments,

to advertise events, or merely to organize social activities. Examples of mailing

lists currently in use at CENS are us-general, a general discussion mailing list

on topics concerning urban sensing projects; Integrity, a list dedicated to dis-

cussions around data integrity issues, and 3551, a low-volume, high-importance

list for occupants of Boelter Hall office 3551 - the CENS headquarters at UCLA.

CENS mailing lists are handled using Mailman, a Unix-based application dis-
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tributed under the GNU General Public License (http://www.gnu.org/software/

mailman). It is important to note that versions of the Mailman program prior to

2.1.5 (released in May 2004) did not log detailed information about threads. The

CENS mailing list system was updated to this version of Mailman in May 2005.

As a consequence, mailing list data prior to April 2005 could not be decoded in

a threaded format because not enough identification information and description

are provided in the system logs of CENS. Thus, the dataset analyzed in this dis-

sertation includes all emails sent on the 87 public mailing lists of CENS from May

2005 to April 2009. A total of 1454 threads were identified in this dataset. Follow-

ing the definition of communication activity (presented above) and drawing from

a number of previous investigations of communication activity [93, 95, 96, 103,

for a review], I exclude from this study threads that involve less than three indi-

viduals (i.e., threads with one or two discussants only). This is not only because

unreplied and one-to-one emails are uninteresting from a network perspective but

also because an exploratory analysis of these low-involvement messages revealed

that most of them are announcements of events and not discussions per se. Some

basic statistics relative to the collected mailing list data are presented in Table

3.2: distribution of threads per year, distribution of discussants per thread, and

mailing lists with the highest number of emails.

The values at the top of Table 3.2 show the distribution of threads by year.

As explained above, complete data are only available for years 2006 through

2008, and as the thread distribution shows, the average amount of threads in

these years is roughly 400. The second set of values shows the distribution of

discussants per thread. About one third of threads involve three individuals.

About one fifth involve four discussants. The amount of threads decreases as

the number of discussants increases. It is interesting to note that conversations

among more than fifteen individuals are not many but make however about 5%
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Year n = 1454

2005 255
2006 468
2007 339
2008 375
2009 17

Discussants per thread n = 1454

3 493
4 299
5 189
6 144
7 80
8 53
9 44
10 36
11 25
12 20
15+ (maximum is 26) 71

Mailing list name n = 30 671

cens-seismic 2502
dgroup 2088
peir 1888
us-internal (formerly: urbansensing-internal) 1704
stargate-users 1388
cens-rec 734
sysadmin 710
us-general 708
tenet 629
emstar-users 553
jr-systems 543
metwi 376
ess2 375
urbansensing 359
kaiserlab 345
emissary 291
integrity 280
education 258
nims 246
peir-info 221

Mailing list data statistics: distribution of threads per year, distribution of dis-
cussants per thread, and mailing lists with the highest number of emails.

Table 3.2: Basic statistics for the collected mailing list logs.
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of the dataset. The set of values at the bottom of Table 3.2 displays the most-

emailed mailing lists. A number of CENS application areas make extensive use of

mailing lists, such as cens-seismic of the seismology group, and us-general of

the urban sensing group. Other high volume lists are project-specific, e.g., peir,

for the Personal Environmental Impact Report project, or dedicated to users of

specific sensor network technologies, e.g., emstar-users.

3.2.3 The social network survey instrument

The third interaction analyzed in this dissertation is acquaintanceship. As dis-

cussed in Chapter 2, acquaintanceship involves a form of personal knowledge that

is stronger than mere recognition, but is less prominent than a familiar and in-

timate relationship. How can one collect acquaintanceship data? While the two

interactions discussed above (scholarly coauthorship and electronic communica-

tion) measure tangible indicators of collaboration directly extracted from artifacts

(bibliographic records and mailing list logs), in order to measure acquaintance-

ship I rely upon methods of survey research. There are many ways to collect

acquaintanceship data — see Chapter 2 for an extensive review — but most of

them essentially involve asking respondents to name or indicate who they know

via surveys, questionnaires, and interviews.

The measurement of acquaintanceship is inevitably an error-prone procedure.

Mark Newman notes that the use of qualitative methods for the study of ac-

quaintanceship is subject to two major issues [157]. First, the data collection

process is elaborate and thus the quantity of data returned is necessarily lim-

ited to small samples — “most data sets contain no more than a few tens or

hundreds of actors” [157, p. 338]. This, in turn, affects statistical accuracy for

large-scale investigations [158]. Second, Newman notes that the subjective nature
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of the respondents’ perception of acquaintance introduce uncontrolled statistical

errors — “what one respondent considers to be a friendship or acquaintance,

for example, may be completely different from what another respondent does”

[157, p. 338]. For these reasons, Newman and many other researchers in similar

approaches have operationalized acquaintance through more tangible indicators,

better suited for large-scale quantitative analyses. For example, in Who is the

best connected scientist? [157], Newman constructs a coauthorship network and

employs it as an acquaintanceship network, assuming that “it is probably fair to

say that most people who have written a paper together are genuinely acquainted

with one another” [157, p. 339]. Using coauthorship networks as proxies to so-

cial networks can be a fair assumption for the study of very large collaborative

environments, for which collecting data via interviews and surveys would be an

arduous task. At CENS, however, the population under study is relatively small

(a few hundred individuals) compared to large-scale social network analyses that

suffer from these sampling errors. For this reason, I develop and employ a survey

instrument that asks all respondents in the population to directly indicate their

acquaintances2. The rosters extracted from the bibliographic record and the mail-

ing list archives, i.e., the list of coauthors on scholarly articles and discussants on

mailing lists, are conjoined to form the survey roster.

At the time that this research was conducted, the survey roster consisted of

a total of 388 individuals, all of whom were invited to take part in the survey

via a recruitment letter, sent via email on August 17, 2009 (included in the

Appendix, A.1). The email includes a hyperlink pointing to a customized online

questionnaire. Delivery to some recipients failed due to a number of technical

reasons, such as non existing address or invalid domain. This was due to the

2The survey instrument employed in this research was certified exempt by the Institutional
Review Board (IRB), Office for Protection of Research Subjects, University of California, Los
Angeles on December 8, 2008 (Protocol no. 08-471).
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fact that some of the participants have changed affiliation and/or email address

since the time of compilation of the email database. I dealt with each invalid

email address individually, trying to gather the latest contact information about

unreachable individuals. One month into the data collection, on September 14,

I sent a reminder (again, via electronic mail) to participants that had not yet

responded to the survey. It is worth noting that the Institutional Review Board

(IRB), who certified this research as exempt, only allowed me send a total of one

recruitment letter and one reminder to the survey population.

The social network survey instrument employed in this research, that I de-

veloped from scratch using HTML and PHP, is hosted on a dedicated server at

CENS (more details about this in the Appendix, § A.5). The survey is structured

as follows. The questionnaire begins with an informed consent form in which re-

spondents are prompted with basic information about the study: the names and

contact details of the principal investigators, the context of the research and its

goals, and the details of participation. The text used in the informed consent

form is included in the Appendix, § A.2. The questionnaire follows, divided into

two parts. In the first part, respondents are asked to select their acquaintances

from a list. In the second part, they are then asked to indicate the nature and

length of the relationship with their acquaintances. Screen-shots of the first and

second parts of the questionnaire are included in the Appendix, Figures A.1 and

A.2.

The first part of the questionnaire asks the question: “Who do you know?”.

Respondents are asked to select individuals that they are acquainted with from

the roster. In particular, in order to clarify the notion of acquaintanceship,

respondents are reminded that:

For the context of this survey, an acquaintance is someone that you
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know in person and that you would say ”hi” to if you bumped into

them in the hallway.

This description is aimed at informing respondents that they are asked to indicate

real, offline acquaintances with whom a personal form of knowledge exists. This

question is followed by a list of all of the individuals in the survey roster. Indi-

viduals are identified by name, last name and a thumbnail picture, if available.

Pictures are obtained from a public roster held by the CENS administrative office.

In order to aid recognition, individuals are grouped together by department and

affiliation (Figure A.1, in the Appendix). In the first page of the questionnaire,

respondents select their acquaintances and after submitting the data are taken

to the second part of the survey.

The second part of the questionnaire asks the question: “How do you know

them?”, i.e., it asks respondents to describe the nature and length of the rela-

tionship with their acquaintances. In this page, respondents are prompted with

the list of people that they selected as acquaintances in the previous page. For

each acquaintance, the following two questions are asked (see Figure A.2, in the

Appendix):

1. When did you first meet?

(a) 2001 or earlier

(b) 2002

(c) 2003

(d) 2004

(e) 2005

(f) 2006

(g) 2007

(h) 2008
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(i) This year

2. How often are you in touch?

(a) At least once/week

(b) At least once/month

(c) Occasionally

(d) Rarely or never

Answers to these questions are optional and respondents are asked to leave

answers blank if they do not know or cannot remember these details. Submitted

data are saved to a database hosted on the CENS server. A total of 191 responses

were collected over a period of about two months, from August 17 to October

7, 2009. The distribution of survey responses over the data collection period is

presented in Figure 3.5 as a time-series chart. The two spikes in the figure clearly

correspond to the day the first email invitation and the reminder email were sent

— August 17 and September 14, respectively.
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Figure 3.5: Temporal distribution of survey responses.
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Some basic statistics relative to the data collected via the social network

survey are summarized in Table 3.3. Nearly half of respondents invited to fill in

the survey (49%) participated in the study. The rest were either not reachable

(4%), or did not respond to the survey by the end of data collection (47%).

About one third of respondents (39%) only completed the first part of the survey.

The vast majority of respondents indicated a number of acquaintances ranging

between 5 and 40.

Survey response n = 388

Respondents 191 (49 %)
Non-respondents 182 (47 %)
Unreachable 15 (4 %)
Portion of survey completed n = 191

Full survey 116 (61 %)
Only part one 75 (39 %)
Number of acquaintances n = 191

1-5 12
5-10 21
10-20 47
20-30 38
30-40 19
40-50 12
50-60 16
60-70 9
70-100 10
100+ (maximum is 197) 7

Table 3.3: Basic statistics for the collected social survey data.

3.3 Summary

This chapter is divided in two parts. The first part (§ 3.1) includes an overview

of the research methods used in this dissertation. As network theory is the
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overarching analytic framework employed here, this part provides an explanation

of concepts and topics relative to the structure and function of networks. The

second part (§ 3.2) includes an overview of the data employed in this research, and

the methods and instruments of data collection. In the next chapter, I discuss

how these data — a bibliographic record, a mailing list archive, and a record

of personal knowledge patterns — are converted to networks of coauthorship,

communication and acquaintanceship.
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CHAPTER 4

Results: Network topology and socio-academic

configuration

In the previous chapter, the three data sources employed in this study are intro-

duced: a bibliographic record of scholarly publications, extracted from CENS’ an-

nual reports; an archive of threaded discussions derived from mailing list archives;

and a record of acquaintanceship obtained by collecting the responses to a survey

questionnaire. In this chapter, I convert these datasets to a graph-based format.

I illustrate the construction of these networks and study their basic topology.

4.1 Coauthorship network

The bibliographic database of CENS publications, consisting of 608 metadata

records, was gathered and managed in BibTEX format (http://www.bibtex.org/).

In order to illustrate the procedure by which I construct the coauthorship net-

work, consider the BibTEX entry below, relative to a recent CENS publication.

The entry is of type article (journal article); conference papers are indicated in

BibTEX as inproceedings. The entry contains a unique identifier and fields for

authors, title, year, etc. Authors are separated by the keyword and.
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@ar t i c l e {Pepe Rodriguez : 2010 ,
Author = {Alberto Pepe and Marko A. Rodriguez } ,
T i t l e = {Col l abora t i on in s enso r network r e s ea r ch :

an in−depth l o n g i t ud i n a l a n a l y s i s o f a s s o r t a t i v e
mixing pat t e rns } ,

Abstract = {Many i n v e s t i g a t i o n s o f s c i e n t i f i c c o l l a b o r a t i o n
are based on s t a t i s t i c a l ana ly s e s o f l a r g e networks
cons t ruc ted from b i b l i o g r aph i c r e p o s i t o r i e s . These
i n v e s t i g a t i o n s [ . . . ] } ,

Year = {2010}} ,
Journal = { Sc i en tomet r i c s }

}

In order to construct a coauthorship network, the crucial information to be

extracted from each publication is the author list. Even when dealing with rel-

atively small datasets (as in this case, n = 391), constructing a reliable coau-

thorship network, requires disambiguating author names. Authors might have

identical names and last names, and their names might be spelled differently or

incorrectly in the bibliographic metadata. In order to overcome this problem, I

allocate unique identifiers (a string composed of the name initial followed by a

dot and the last name) to every author in the bibliographic database. Whenever

identifiers are already taken, the middle name initial is introduced, or the full

name. As BibTEX handles ASCII only, names containing non-ASCII characters,

such as cedillas (ç) and umlauts (ö) are converted manually into arbitrary iden-

tifiers. The author database was de-duplicated, checked and curated manually.

For example, the BibTEXentry above is coded as follows:

Author ID = {a . pepe } ,
Author ID = {m. rodr i guez } ,

These identifiers are used to construct the edges of the coauthorship network

— a network in which vertices represent authors and edges represent the extent
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of coauthorship activity. The network is weighted and the edge weights are

established by partitioning a set value for every publication. In order to determine

the weights between nodes, i.e., the strength of collaboration among coauthors,

I use a weighting mechanism proposed by Newman [159] by which the weight of

the edge between nodes i and j is:

wij =
�

k

δki δ
k
j

nk − 1
, (4.1)

where δki is 1 if author i collaborated on paper k (and zero otherwise) and nk is

the number of coauthors of paper k. For the example above, the edge between

authors Pepe and Rodriguez have wij = 1, or in ncol format [16]:

a . pepe m. rodr i guez 1 . 0

An article written by three authors (e.g., Pepe, Rodriguez, and Bollen) would

result in three edges (Pepe-Rodriguez, Pepe-Bollen, and Rodriguez-Bollen), each

one with wij = 0.5. And so on. As such, this weighting mechanism confers more

weight to small and frequent collaborations, based on the assumptions that: i)

publications authored by a small number of individuals involve stronger interper-

sonal collaboration than multi-authored publications, and ii) authors that have

authored multiple papers together know each other better on average and thus

collaborate more strongly than occasional coauthors [159]. Using this weighting

mechanism, a network of coauthorship is constructed. It is depicted in Figure

4.1.

Some statistics relative to the topology of the constructed coauthorship net-

work (depicted in Figure 4.1) are presented in Table 4.1. A descriptive summary
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The coauthorship network (n = 391, m = 1747) diagrammed according to the
Fruchterman-Reingold network layout algorithm [160]. Line width is proportional
to edge weight, where more intense collaborations have wider and more marked
lines; the diameter of the nodes is proportional to the weighted centrality score
on a logarithmic scale, or strength [161], where more central nodes have larger
diameters.

Figure 4.1: Weighted coauthorship network.

of the code and tools developed to perform the analyses presented in dissertation

is provided in the Appendix, § A.5.
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Topological property Value

Number of nodes (individuals), n 391
Number of edges (collaborations), m 1 747
Connected components 5 (377, 5, 4, 3, 2)
Diameter 6
Average path length, � 2.952
Maximal cliques 291
Largest clique 14
Clustering coefficient, C 0.301

Table 4.1: Topological properties of the coauthorship network.

An analysis of the statistics of Table 4.1 provides insights into the topology

of the coauthorship network. The bibliographic dataset includes a total of 1747

scholarly collaborations among 391 authors, which in network terms are expressed

as edges and nodes, respectively. The analysis of the network’s configuration

shows that the network is partitioned into 5 different connected components.

This finding is also evident from Figure 4.1, which depicts five separate clusters.

Most of the network’s nodes, however, are grouped within the largest component,

i.e., the cluster with the maximum number of nodes, which in this case includes

96% of nodes (377 out of 391). This means that the vast majority of the network

is connected, i.e., one node can be reached from any other one by following simple

paths in the network. The network diameter indicates that these simple paths

(to connect any two nodes in the largest connected component) are at most 6

steps long and, on average, 2.952. This last value — the average path length, �,

indicates that on average, just under three steps are necessary to connect any two

individuals in the coauthorship network. This means that between two and three

steps is enough to reach any other coauthor in the network. Thus, if we take

two random individuals in the network, they are very likely to have collaborated

with a common coauthor (path length of 2). The coauthorship network features

291 maximal cliques, with the largest consisting of 14 nodes. The clustering
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coefficient, which is 0.301 in this case, indicates that the network is not highly

clustered, i.e., the density of cliques in this network is not very high.

4.2 Communication network

The archive of electronic communication derived from 100 CENS-managed mail-

ing lists was obtained in mbox (http://www.qmail.org/man/man5/mbox.html), a

file format for holding collections of electronic mail messages. As an example,

consider the following discussion thread called “beta.sensorbase.org down” that

was initiated by a CENS staff member on July 1, 2008 on mailing list 3551, upon

realizing that the server holding Sensorbase, CENS’ sensor data sharing platform,

was inaccessible (email and name of sender, message ID and body of the email

intentionally removed):

From : [ sender1 ] @ucla . edu ( [ sender name ] )
Date : Tue , 1 Jul 2008 12 : 43 : 00 −0700 (PDT)
Subject : [ 3 5 5 1 ] beta . s enso rbase . org down
Message−ID : [ some message ID ]

[ body o f the emai l ]

The snippet above displays an email sent by [sender1] on the date shown

(1 Jul 2008), with subject “beta.sensorbase.org down” (anonymized). Analyz-

ing the mbox archive around the given subject (beta.sensorbase.org down),

one finds that this particular email was followed by five responses within the

next 24 hours by two other researchers of UCLA: [sender2]@ucla.edu and

[sender3]@ucla.edu. In particular, the communication pattern relative to this

specific email thread can be summarized as follows:
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sender1 sender 2 sender1 sender2 sender3 sender1

This email list represents the sequence and extent of electronic communica-

tion between [sender1], [sender2], and [sender3]. These email addresses are

associated to the respective individuals automatically, using a lookup table. In

order to enable comparisons among different networks consisting of the same in-

dividuals, I use the same unique identifiers already utilized in the coauthorship

and acquaintanceship networks. For the purpose of the current presentation, let

us suppose that sender1 is a.pepe, sender2 is m.rodriguez, and sender3 is

j.bollen. The mailing list thread presented above can be then expressed as:

a . pepe m. rodr i guez a . pepe m. rodr i guez j . b o l l e n a . pepe

Using this list of unique identifiers, it is possible to construct a network in

which vertices represent discussants and edges represent the extent of the commu-

nication activity. In the case presented above, for example, a.pepe, m.rodriguez,

and j.bollen should be connected by edges. There are many different schemes

by which edge weights can be assigned. For example, one might decide to con-

fer more weight to individuals that have communicated more in a single thread

(e.g., a.pepe in the above example). However, emails can be short or long and

since I am not analyzing email content in my study, it is not fair to assume that

more emails sent constitute necessarily more involvement in a discussion. Thus,

I distribute weights equally to all individuals involved in an email thread. The

thread presented above is reduced to the following list (duplicates removed):

a . pepe m. rodr i guez j . b o l l e n
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This list can now be easily converted to a network format, such as ncol. For

the coauthorship network, presented in the previous chapter, I assign edge weights

using a weighting mechanism by Newman that confers more weight to small and

frequent collaborations [159]. While this weighting scheme is appropriate for

scholarly coauthorship — it is fair to assume that smaller collaborations involve

stronger interpersonal collaboration — it does not fit the nature of collaboration

found in communication network. For this reason, I modify Newman’s formula

(1) by calculating the weight of an edge between nodes i and j as:

wij =
�

k

δki δ
k
j , (4.2)

where δki is 1 if author i is a discussant in thread k (and zero otherwise). As such,

the scheme confers weight equally to all discussants in a thread and gives more

weight to frequent communication between individuals. For the example above,

the edges between individuals Pepe, Rodriguez and Bollen would be:

a . pepe m. rodr i guez 1 . 0
a . pepe j . b o l l e n 1 .0
m. rodr i guez j . b o l l e n 1 . 0

Using this weighting mechanism, a communication network representing mail-

ing list activity is constructed. It is depicted in Figure 4.2. Some statistics relative

to the topology of the communication network are presented in Table 4.2.

Looking at Table 4.2, it is evident that the communication network is much

smaller than the coauthorship network (Table 4.1), consisting of only 119 nodes

and 994 edges, all assembled in a unique connected component. The diameter of

the network is also smaller (4) as well as the average path length (2.095): only

two steps are required to reach any two nodes in the communication network.
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The communication network (n = 119, m = 994) diagrammed according to the
Fruchterman-Reingold network layout algorithm. In the Figure, line width is pro-
portional to edge weight, where more intense communication activities are repre-
sented by wider and more marked lines; the diameter of the nodes is proportional
to the node strength, where more central nodes have larger diameters.

Figure 4.2: Weighted communication network.

This network also features a higher number of maximal cliques and a higher

clustering coefficient (0.461) indicating a more dense concentration of tight-knit

circles, compared to the coauthorship network, in which collaboration is more
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Topological property Value

Number of nodes (individuals), n 119
Number of edges (discussions), m 994
Connected components 1 (119)
Diameter 4
Average path length, � 2.095
Maximal cliques 368
Largest clique 14
Clustering coefficient, C 0.461

Table 4.2: Topological properties of the communication network.

sparse. This means that CENS individuals tend to write papers with a diverse

group of collaborators, but when it comes to electronic communication, most

discussions happen with the usual restricted circle of collaborators: communica-

tion patterns are more cliquish. This finding is probably linked to the fact that

people only subscribe to the mailing lists that most specifically match their inter-

ests and research areas. Thus, the organization of mailing lists naturally restrain

cross-fertilization of ideas and novel communication patterns among previously

disconnected individuals.

4.3 Acquaintanceship network

As anticipated in the previous chapter, the social network survey research admin-

istered to 388 participants had a response rate of 49%. Although in most social

science research such a response rate would be deemed more than sufficient, when

using survey data to construct social networks, missing data becomes of crucial

importance. This is because in a social network survey, participants are asked

to describe their relationship to one another. When information is missing, it

cannot always be reconstructed or inferred from the topology of the rest of the

network. Missing data has been notoriously noted as a “curse” to social network
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research because network analysis is especially sensitive to missing data [162]. In

the case of large scale who-knows-whom networks, such as the one presented here,

missing data might result in large holes in the adjacency matrix, thus distorting

the overall network structure. It is thus important to consider various techniques

to deal with missing and incomplete data before constructing a social network

from the collected data.

In the social network survey, each participant is asked to indicate who they

know in the entire population (N = 388). Responses obtained are independent

from one another and might result in either reciprocal or non-reciprocal ties.

The response scenarios that are relevant here are presented in Figure 4.3. Filled

(black) nodes represent individuals that took the survey, while blank (white)

nodes depict individuals that did not respond. The first case represents the

simplest case: both respondents A and B took the survey and indicated one

another as acquaintances. In the second case, data is also complete, i.e., both

A and B responded, however A indicated B as an acquaintance, but B did not.

In the third case, data is incomplete: A took the survey and indicated B as an

acquaintance but B did not take the survey. Finally, the fourth case depicts a

case of missing data: a tie might or might not exist between A and B but we

cannot know about it because neither one of them took the survey.

The typology presented in Figure 4.3 includes both reciprocal ties (represented

in a directed network by bidirectional edges) and non-reciprocal ties (unidirec-

tional edges). Using the data collected in the survey, I construct a preliminary

directed network, drawing bidirectional edges for case (1), and unidirectional

edges for cases (2) and (3). Case (4) ties are not considered. This directed

network is presented in Figure 4.4.

Many network studies ignore directional information by converting directed
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(1)
Responded

A B

BA

A

A

B

B

(2)

(3)

(4)

Did not respond

Non-reciprocal tie

Reciprocal tie

? Missing data

Survey responses give rise to four possible classes of acquaintanceship ties between
surveyed individuals: (1) complete data, reciprocal tie, (2) complete data, non-
reciprocal tie, (3) incomplete data, non-reciprocal tie, and (4) missing data

Figure 4.3: Four possible classes of acquaintanceship ties.

networks to undirected. This conversion necessarily results in information loss,

as both mutual and non-mutual connections are converted to undirected ties. As

mentioned in Chapter 4, directional information is of fundamental importance

for a number of networks. For example, a citation network (who cites whom) is

useless without directional information. In an acquaintanceship network, such as

the one studied here, directionality might also be useful: if studying social norms

or subjective connotations of friendship, for example. For the purpose of this

dissertation, however, I am exclusively interested in overall large-scale structures

of network ties and their evolution. Also, as explained earlier in this chapter,

the coauthorship and communication networks are natively undirected (article

coauthoring and mailing list discussion are interactions without direction), so

that maintaining information at a finer granularity does not enable additional

analyses and comparisons between networks. For these reasons, I convert the

acquaintanceship network to an undirected network.
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The directed acquaintanceship network (n = 385, m = 6, 183) diagrammed ac-
cording to the Fruchterman-Reingold network layout algorithm. In the Figure,
line width is fixed and node diameter is proportional to in-degree centrality, i.e.,
the more an individual has been indicated as an acquaintance, the larger its node
diameter.

Figure 4.4: Weighted acquaintanceship network (directed).

In general, there are three different approaches one can take to convert the

undirected tie typology presented in Figure 4.3 to a simple directed network:

complete-case analysis, available-case analysis, and imputation [163]. Complete-
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case analysis is the simplest approach: it only considers reciprocal ties with com-

plete descriptions and it discards all incomplete data and non-reciprocal ties. In

other words, if a complete-case approach is used, then edges are drawn between

nodes only in the case (1) of Figure 4.3. An available-case approach allows more

flexibility by including both complete and incomplete cases with reciprocal and

non-reciprocal ties. In other words, when adopting an available-case approach,

one would draw edges for cases (1), (2) and (3). The third approach, imputation,

uses statistical techniques to replace missing data with expected values, i.e., it

computes missing ties based on the topology of the rest of the network. When

using imputation, one uses all available data — cases (1), (2) and (3) — as well

as missing data — case (4).

For the purpose of this study, given the relatively high response rate (49%), I

choose to employ an available-case analysis, i.e., include all reciprocal and non-

reciprocal ties with both complete and partial descriptions—or, cases (1), (2) and

(3), in Figure 4.3. Case (1)—reciprocal tie descriptions—are the simplest case: an

edge between A and B is drawn for every reciprocal tie encountered. Cases (2) and

(3)—non-reciprocal ties—are more complex to deal with. To draw these edges,

I employ an approach called reconstruction, which is based upon the following

assumption: if A describes a relationship with B, then a tie between A and B

exists, regardless of the response provided by B. In statistics literature, it has been

noted that reconstruction is a reliable technique of network data manipulation as

long as it is appropriately justified [164]. Stork & Richards suggest two criteria

for justification. The first is that the population of respondents should not be

systematically different from the larger population. The second is that incomplete

data should be manually inspected and checked for reliability. In order to justify

reconstruction of ties based on non-reciprocal descriptions, I perform the following

two tests.
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First, I check that respondents’ characteristics match closely those of the pop-

ulation at large, with no systematic differences. It might be the case that only a

specific subgroup of the population responded to the survey (e.g., graduate stu-

dents, or individuals from a certain department) causing the results, regardless of

the obtained response rate, to be skewed and non representative of the population

at large. For this reason, I compare academic attributes of respondents to those

of the overall population. Table 4.3 lists counts for selected academic properties

(academic affiliation, department, and position) of both the population at large

(all) and the survey respondents (resp). Results of a Pearson product-moment

correlation show that these sets of values are highly correlated (r is very close

to 1 and p-value is low.), indicating that respondents’ characteristics match the

overall population. These populations counts are also plotted as pie charts, in

Figure 4.5. From a quick visual analysis of the charts, it is clear that not only is

the academic profile of respondents very diversified (pie charts on the left), but

it also matches very well that of the broader population (pie charts on the right).

In order to confirm this finding (that the profile of respondents match that

of the population at large), I also present in Figure 4.6, the coauthorship degree

distribution of respondents and compare it to that of the broader population.

The coauthorship degree distribution displays the number of times (frequency)

that individuals that have authored the same number of papers (degree) appear

in the bibliographic corpus. The distribution curves for survey respondents (left)

and the entire population (right) presented in Figure 4.6 are very similar. They

show that the majority of individuals among both respondents and the entire

population authored only one paper (degree = 1). The frequency rapidly drops

as a function of increasing degree. This suggests that survey respondents’ central-

ity measures in the coauthorship network are a fair representation of the entire

population.
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resp all
Academic affiliation, r = 0.995†

University of California, Los Angeles (UCLA) 90 169
University of Southern California (USC) 33 77
University of California, Riverside (UC Riverside) 9 13
California Institute of Technology (Caltech) 6 13
Massachusetts Institute of Technology (MIT) 5 10
University of California, Berkeley (UC Berkeley) 3 8
Academic department, r = 0.981†

Computer Science 70 147
Electrical Engineering 33 91
Biology 19 31
Civil Engineering 9 24
Geology 9 14
Information Studies/Sciences 5 13
Academic position, r = 0.991†

Graduate student 70 134
Faculty 59 128
Staff / Postdoc 56 106
Undergraduate Student 4 7

Population counts for selected socio-academic properties (academic affiliation,
department, and position) of the individuals in the entire survey population (all)
and survey respondents (resp), and associated Pearson correlation results, r. The
† symbol indicates that a correlation has p-value < 0.05.

Table 4.3: Socio-academic profile of survey population and respondents

Second, I check collected data for reliability. As explained above, data col-

lected from respondents can fall into one of three categories—cases (1), (2) and

(3)—based on whether indicated acquaintance relationships are complete and/or

reciprocal, as shown in Figure 4.3. The 191 respondents to the survey indicated a

total of 6183 acquaintance relationships, i.e., possible edges in the network. The

breakdown of the obtained results is presented in Table 4.4. The majority of ties

indicated by respondents fall within case (1): both respondents (say, A and B) in-

dicated to know each other in the survey. As discussed above, this is the simplest

case. I can safely deem data reliable and their acquaintanceship tie valid and
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Academic profile (institutional affiliation, department and academic position) of
survey respondents (left) and broader population (right).

Figure 4.5: Academic profile of survey respondents and entire popula-
tion.
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Figure 4.6: Coauthorship degree distribution of survey respondents
and entire population

thus construct an edge in the network between, say, A and B. From Table 4.4, a

small portion of the ties indicated (about 16%) fall within case (2), which means

that two survey respondents expressed diverging opinions about each other, e.g.,

respondent A indicated B as an acquaintance, but B did not. Clearly, some

of these inconsistencies might be related to the fuzzy and subjective nature of

the concept of acquaintanceship. Even though I specifically ask survey respon-

dents to indicate individuals whom “they would say ’hi’ to if they bumped into

them”, many individuals might still have different practices of greeting colleagues

and acquaintances. Also, there are infinite levels and modalities of “knowing a

person” and thus acquaintanceship relationships are not necessarily replicated,

e.g., A might consider B an acquaintance, but B might think otherwise. How-

ever, manually inspecting the network of non-reciprocated acquaintanceship ties,

I note that highly-connected individuals are responsible for the vast majority of
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missed connections, i.e., people that had a lot of acquaintances failed to recipro-

cate ties the most. This finding suggests that many non-reciprocated ties might

be due solely to a response error, i.e., individuals that had a large number of

acquaintances to indicate in the survey form overlooked some of them. Based

on this finding, I assume that all case (2) ties are non-reciprocated because of

respondents’ oversight. Thus, I consider them valid and, by reconstruction, I can

include them as reciprocal ties in the network. Finally, a significant portion of the

collected data falls within the third category—case (3). This category includes

ties that are non-reciprocal, but for which only partial information is available,

i.e., respondent A indicated B as an acquaintance but B did not respond to the

survey. In order to justify the reconstruction of these ties, I look at the percent-

age of non-reciprocal ties in the complete dataset. Complete data (cases 1 and

2) makes up a total of 3732 ties, of which only 976 (26%) are non-reciprocal.

Extending this finding to incomplete data, I set forth the following assumption:

a case (3) tie between A and B is non-reciprocated only because B did not take

the survey. Had B taken the survey, they would have indicated A as an acquain-

tance. Based on this assumption, I can then consider case (3) ties reliable for

data reconstruction.

Data Type of tie # ties

Case (1) Complete Reciprocal 2756 (45%)
Case (2) Complete Non-reciprocal 976 (16 %)
Case (3) Incomplete Non-reciprocal 2451 (39 %)
Totals 6183 (100%)

Table 4.4: A summary of the data collected in the social network
survey.

Based on the above justification, I can safely reconstruct case (1), (2) and

(3) ties. In other words, I draw undirected acquaintanceship ties between nodes

whether they are reciprocated or not, both with complete and partial data. After
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removing directionality, the resulting undirected network consists of the same

number of nodes (N = 385), but the number of edges between them drops from

6183 to 4805, since bidirectional edges (two arrows) are collapsed to a single

non-directional edge (no arrows).

At this point, the last step of the data processing involves dealing with the

additional data collected in survey responses. In the second part of the survey,

I ask respondents to indicate how long they have known their acquaintances for

and how frequently they are in touch with them. Although answers to these

questions were optional, many respondents provided this information. Table 4.5

summarizes the data collected in this portion of the study.

As shown in Table 4.5, respondents provided data relative to the frequency

of communication for about three quarters of the total number of acquaintances

indicated. Moreover, a quick analysis of the distribution of responses reveals

that nearly half of all acquaintances (2245 out of 4621) communicate rarely or

never. About a third of all ties (1539 out of 4621) are based on occasional

communication. Only about a fifth of all ties relies on frequent communications

(once a month and once a week). This information is used to assign a weight

to the edges connecting acquaintances. Frequent communication are given a

higher weight, based on the assumption that frequent communication involves a

higher degree of cognizance among individuals, regardless of the nature of the

relationship (formal or informal). If respondents indicate to communicate once

a week, the edge among them is weighted 1.0; acquaintances communicating at

least once a month are assigned with a weight of 0.75. Occasional communication

is weighted 0.5 and even less frequent communication is weighted 0.25.

Similar to cases (1)-(4) discussed above, data relative to the frequency of com-

munication among respondents might be non-reciprocal and incomplete. In line
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Frequency of communication
How often do you communicate with [name]?

Did not respond (no data available) 1668 (26%)
Responded: 4621 (74%)

..........Rarely or never (0.25) 2245

..........Occasionally (0.50) 1539

..........At least once/month (0.75) 421

..........At least once/week (1.0) 416

Length of acquaintanceship
When did you first meet [name]?

Did not respond (no data available) 2454 (39%)
Responded: 3835 (61%)

..........2001 or earlier 933

..........2002 292

..........2003 363

..........2004 430

..........2005 580

..........2006 516

..........2007 467

..........2008 191

..........2009 (this year) 63

Table 4.5: A summary of the data collected in the second part of the
social network survey.

with my decisions made for the construction of the weighted network, discussed

above, I preserve all collected data (including partial and non-reciprocal data) to

construct weighted edges. So, for example, if respondent A indicates to communi-

cate occasionally with respondent B, I assign a weight of 0.5 between node A and

B, even if B did not indicate a frequency of communication with A. One problem,

however, is to deal with incongruent responses—for example, A indicates occa-

sional communication with B (0.5), but B indicates rare communication (0.25)

with A. In these cases, the highest available weight is chosen (in the example, the

edge between A and B would be given weight 0.5). Moreover, when weight data
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are missing entirely (i.e., A and B are connected by an edge but neither of them

indicated frequency of communication), then a default weight of 0.25 is assigned

to edges. This is a fair assumption, given the fact that the vast majority of ties

indicated is, in fact, predicated by rare communication.

The other set of information provided by respondents in the second portion of

the survey is the length of acquaintanceship. As shown in Table 4.5, this informa-

tion was obtained only for 61% of all ties. Moreover, a quick investigation of the

responses reveals that most respondents have known each other for a relatively

long time (at least since 2001). The vast majority of all other acquaintances has

begun in the period between 2004 and 2007. This information is not per se useful

for the construction of the overall acquaintanceship network, but it is necessary

to study its evolution over time, presented in much detail later in this disserta-

tion, in Chapter 7. At this point, it is worth mentioning that these data can

be handled using exactly the same method presented above: all available data

are used, including partial and non-reciprocal data, to reconstruct the length of

acquaintanceship relationships. When incongruent data are detected, the oldest

available value is recorded. For example, if A indicates that has known B since

2002, while B indicates that has known A since 2003, the edge between A and B

is recorded to exist since 2002. Missing data are not reconstructed.

Using the information provided in the survey, computed as discussed above, a

weighted network of acquaintanceship is constructed. It is depicted in Figure 4.7.

In the figure, line width represents edge weight, where more frequent communi-

cation activities are represented by wider and more marked lines; the diameter

of the nodes is proportional to the node strength, where more central nodes (i.e.,

individuals that both know and are known by more people) have larger diame-

ters. Some statistics relative to the topology of the acquaintanceship network are
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included in Table 4.6.

The undirected acquaintanceship network (n = 385, m = 4, 805) diagrammed
according to the Fruchterman-Reingold network layout algorithm. In the Figure,
line width is fixed and node diameter is proportional to in-degree centrality, i.e.,
the more an individual has been indicated as an acquaintance, the larger its node
diameter.

Figure 4.7: Weighted acquaintanceship network (undirected).

An analysis of Table 4.6 reveals that the acquaintanceship network, with 385
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Topological property Value

Nodes (individuals), n 385
Edges (recorded acquaintances), m 4 805
Connected components 1 (385)
Diameter 5
Average path length, � 2.427
Maximal cliques 5 925
Largest clique 20
Clustering coefficient, C 0.359

Table 4.6: Topological properties of the acquaintanceship network.

nodes, is comparable in size to the coauthorship network (Table 4.1). What differs

greatly, however, is the number of edges in the acquaintanceship network, which is

almost three times bigger than that of the coauthorship network. This value alone

indicates that, in general, researchers have more acquaintances than coauthors.

All the nodes in the acquaintanceship network form a single connected component

with relatively short diameter (5) and average path length (2.427). This means

that any member in the network of acquaintanceship is easily accessible within

few hops in the network. The values related to the topological features—very

high number of maximal cliques and moderate clustering coefficient—expose a

very dense social environment in which “everyone knows everyone”. Among the

three studied networks, the acquaintanceship network is that one with the most

tangible small-world properties—short average path length (accessibility) and

moderately high clustering coefficient (density).

4.4 Socio-academic configuration

The networks of collaboration constructed in this chapter are based on the obser-

vation of specific interactions among CENS researchers, i.e., their coauthorship,

communication and acquaintanceship patterns. However, as anticipated in Chap-
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ters 1 and 2, this dissertation also aims to explore the social and academic land-

scape in which these collaboration patterns take place, and specifically how the

structure and evolution of these networks relate to organizational, disciplinary,

institutional and international arrangements of collaboration at CENS. In order

to support this portion of the study, I collect additional information about every

individual in the population under study, namely a) academic affiliation, b) aca-

demic department, c) academic position, and d) country of origin. A summary

of the population counts for these parameters, and for each network under study,

are presented in Table 4.7.

These socio-academic data are collected via manual techniques, i.e., gathering

required information on the authors’ personal web pages, curriculum vitae, and

consulting online directories from university and departmental web sites. The

data presented in Table 4.7 summarizes the latest available socio-academic data

(year 2009). It is worth noting, however, that all the parameters collected (except

for country of origin) are subject to change over time. Scholars are likely to change

academic institution, department and position over the period studied here (2001-

2009), e.g., a graduate student may become a Postdoctoral Researcher and later

an Assistant Professor. For this reason, these parameters are also recorded histor-

ically by inspection of researchers’ curriculum vitae and biographies. Curriculum

vitae are also useful to collect the country of origin of researchers, which, for

the purpose of this study, I consider to be the country of principal citizenship, if

available, or the country in which researchers pursued their lowest recorded level

of education. It is worth noting that an additional characteristic—workplace

location—was collected for occupants of the CENS headquarters (3551 Boelter

Hall). This information is discussed in detail with the analysis of physical prox-

imity, in Chapter 6, § 6.7.
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Node property (a) (b) (c)

A
ca

d
em

ic
a
ffi
li
a
ti
o
n

University of California, Los Angeles (UCLA) 169 90 169
University of Southern California (USC) 77 11 73
University of California, Riverside (UC Riverside) 13 3 13
California Institute of Technology (Caltech) 13 3 13
Massachusetts Institute of Technology (MIT) 10 2 10
University of California, Berkeley (UC Berkeley) 8 1 8
University of California, Merced (UC Merced) 7 4 7
University of Illinois at Urbana-Champaign (UIUC) 4 - 4
Stanford University 4 - 4
State University of New York at Stony Brook (SUNYSB) 4 - 4
Carnegie Mellon University (CMU) 4 - 4
None - 3 -

A
ca

d
em

ic
d
ep

a
rt
m
en

t

Computer Science 147 54 146
Electrical Engineering 91 28 86
Biology 31 5 30
Civil Engineering 24 2 24
Geology 14 2 14
Information Studies/Sciences 13 2 13
Environmental Sciences 11 2 11
Engineering (others) 7 1 7
Education 7 - 7
Marine Biology 6 1 6
Film, media, arts 5 5 5
Statistics 4 5 4

A
ca

d
em

ic
p
o
si
ti
o
n

Graduate Student 138 48 134
Staff / Research Associate (Staff) 90 32 89
Full Professor (Professor) 66 15 65
Assistant Professor 35 3 35
Associate Professor 27 4 27
Postdoctoral Student (PostDoc) 26 3 25
Undergraduate Student 7 7 7
Lecturer 4 1 3
CENS Admins - 3 -

C
o
u
n
tr
y
o
f
o
ri
g
in

United States of America (USA) 191 78 191
India 48 15 48
China 26 3 22
South Korea (Korea) 12 2 11
Italy 11 - 11
Australia 6 2 6
Mexico 5 - 5
Iran 5 1 5
Brazil 5 2 5
Taiwan 4 1 4
Greece 4 2 4

Totals (n) 391 119 385

Population counts for selected socio-academic properties (academic affiliation,
department, position and country of origin) of the individuals in the (a) coau-
thorship, (b) communication and (c) acquaintanceship networks of collaboration.
Entries sorted by frequency in the coauthorship network. Abbreviations listed in
brackets, when available. CENS official member institutions are indicated in bold.

Table 4.7: Socio-academic profile of the coauthorship, communication
and acquaintanceship networks of collaboration
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A quick analysis of Table 4.7 reveals that, overall, the three collaboration

networks do not differ very much in their social and academic configurations. In

particular, since the population of the acquaintanceship study is derived directly

from the coauthorship network, and the survey results cover nearly the entire

population set (n = 391 and n = 385, in the coauthorship and acquaintanceship

networks, respectively), their scores hardly differ. The results obtained for the

communication network (n = 119) also present a population distribution that

is similar to that of the coauthorship network. The population distribution of

the communication network, however, presents some minor, yet interesting differ-

ences. For example, only in this communication network does one find individuals

that are not affiliated with any academic institution, and CENS administrative

staff. This shows that some individuals that do not normally take part in the

authoring of papers might however be involved in open discussions on dedicated

mailing lists.

Overall, Table 4.7 displays a population scenario dominated by the presence of

UCLA scholars, which make up almost half of the population. The other member

universities affiliated with CENS (USC, UC Riverside, Caltech and Merced) ac-

count, altogether, for about a quarter of the population. The population count by

department is vastly taken up by two disciplines: Computer Science and Electrical

Engineering. Top ’science’ disciplines are Biology, Geology and the Environmen-

tal and Marine Sciences. The repartition by academic position shows doctoral

students and staff researchers making up the vast majority of the population,

the remainder being composed by a balanced mix of professors (at all levels) and

postdoctoral students. Finally, about half of the individuals in the collaboration

networks come from the United States. Researchers from India and China make

up about a quarter of the population. Overall, this scenario is not very surpris-

ing, considering that a) UCLA is the central institution behind CENS and the
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location of its headquarters, b) Computer Science and Electrical Engineering are

the core ’technology’ disciplines in the domain of sensor network research, and c)

CENS is a scientific enterprise largely funded by agencies from the United States.

What is interesting, from this preliminary analysis, is the large involvement of

doctoral students in CENS research. These findings are supplemented by further

data, analyzed and discussed in detail in the following chapters.

4.5 Summary

In this chapter, I demonstrate how different manifestations of collaborative activ-

ity can be represented as networks. Three data sources (a list of publications, an

archive of mailing list emails, and the results of a social survey) are converted to

dedicated networks of CENS collaboration: coauthorship, communication, and

social networks.

A topological analysis of these networks reveals that all have a peculiar con-

figuration. The coauthorship network features nearly 400 authors and 2000 con-

nections among them, in five separate components. The vast majority of authors,

however, are part of a giant component, indicating that the CENS has a solid,

connected core of collaborating researchers. The giant component has a low clus-

tering coefficient, indicating that collaborations are sparse, i.e., CENS authors

connect on paper with a relatively large number of other authors.

The communication network is much smaller in size, compared to the other

networks, with just over 100 individuals involved in nearly 1000 discussions on

mailing lists. Communication patterns are centered around a single connected

component, and are very clustered, i.e., individuals always tend to communicate

in online discussions with the same circles of contacts.
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The population making up the acquaintanceship network is comparable in

size to the coauthorship network, but there are many more connections among

individuals: nearly 5000 knowledge relationships among CENS researchers are

recorded. This network is solidly connected in a single, dense component.

In the chapters that follow, the structure and dynamics of these networks are

analyzed and discussed.
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CHAPTER 5

Results: Structural analysis

The previous chapter details the construction of three networks that embody

collaboration activities at CENS: how researchers write papers, how they com-

municate on mailing lists, and how they are acquainted with one another. This

chapter presents the results of a comparative structural analysis of these net-

works. This analysis addresses the first research question of this dissertation,

restated here:

Research Question #1. What types of structural communities can

be detected in the coauthorship, communication, and acquaintance-

ship networks of CENS? How do these structures relate to each other

and to the disciplinary and institutional arrangements of CENS?

This chapter explores the community structure of the networks of collaboration at

CENS, i.e., their topological repartition into clusters. By performing comparative

analyses of community structure, I expose how CENS researchers organize them-

selves in scholarly, social, and communication circles, and how these structures

relate to the disciplinary and institutional arrangements of CENS.
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5.1 Detection of community structure

While the analysis of the topological properties presented in the previous chap-

ter gives a general idea about the structural configuration of the networks under

study, further analysis is required to understand more in detail the actual arrange-

ment of CENS collaboration circles. Studying a network’s clique structure, for

example, can throw light on its mechanisms of information exchange, homophily

and other forms of social seclusion. But clique analysis is only convenient for

networks composed of only a few actors. The networks studied here feature so

many overlapping maximal cliques (see Table 4.1) that an in-depth clique anal-

ysis is impossible. For this reason, I analyze another structural property of the

network, known as community structure, and introduced in § 3.1.2. A study of

community structure enables a network to be partitioned in clusters and com-

paratively analyze how different configurations of collaboration patterns overlap

with each other.

As discussed in Chapter 3, the community structure of a network reveals its

underlying “cliquish” groupings of nodes that are highly connected between them,

but poorly connected to other vertices. In the networks discussed in this disser-

tation, the clusters detected via a structural analysis correspond to communities

of collaborating researchers that write papers together, communicate over email,

and know each other. The community detection method used in this dissertation

is the spinglass algorithm [145]. This method relies on an analogy between the

statistical mechanics of networks and physical spin glass models to deconstruct a

network into communities. In doing so, it assigns a community membership value

to each node. Thus, individuals that are in the same structural community are

given the same membership value. It is worth noting that the membership value

is a nominal value identifying distinction, not relative similarity between identi-
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fied communities. For example, the node that represents myself (id = a.pepe)

in the CENS collaboration networks can be associated with information regarding

my membership to different communities (Figure 5.1). In my case, I belong to

community #3 in the coauthorship network, community #2 in the acquaintance-

ship network, and I am not a member of any community in the communication

network (because I have not participated in discussions on mailing lists).

a.pepe

Name = Alberto Pepe

Coauthorship community = 3

Communication community = NULL

Acquaintanceship community = 2

Figure 5.1: Community membership as node metadata.

The structural communities found in the CENS collaboration networks via

the spinglass algorithm are diagrammed in Figures 5.2, 5.3, and 5.4. Each Figure

presents a network with nodes colored according to the structural community that

they belong to. Each community is represented using a different color (or shade).

Node diameter represents the betweenness centrality score of nodes, where more

central vertices have larger diameters. The histogram associated with each Fig-

ure describes the frequency distribution of each community, i.e., the number of

scholars in each identified structural community. It is worth noting that struc-

tural communities are computed only on the giant connected component. The

communication and acquaintanceship networks feature only one connected com-

ponent, so the entire networks were employed to detect structural communities.

The coauthorship network, however, features 5 connected components (see Table

4.1), thus structural communities were only computed on the giant component,

consisting of 377 vertices.

106



1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Structural communities in the CENS coauthorship network detected according to
the spinglass algorithm. Node color represents structural community membership.
Node diameter represents betweenness centrality. Associated histogram describes
the frequency distribution of each community.

Figure 5.2: Coauthorship network: detected community structure.

A total of 14 structural communities were found in the CENS coauthorship

network (Figure 5.2). The population distribution histogram shows that three
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single communities (with populations 76, 66, and 58) cover about half of the

entire CENS coauthorship population. The remaining communities are smaller

in size (with an average of 15 members). At a first glance, this indicates that

three large-scale coauthorship circles exist, possibly corresponding with CENS’

main application or system areas. The other communities, more limited in size,

correspond with more specialized domains.

A total of 7 structural communities were found in the communication network

(Figure 5.3). As the Figure shows, the population is distributed in the commu-

nities more homogeneously with respect to the coauthorship network. Six out of

the seven communities are made up by a similar number of members, ranging

between 9 and 16. Only one community is much smaller with two members only.

The acquaintanceship network was partitioned into 8 communities (Figure

5.4). The population distribution shows that there are three communities that

are highly populated (with populations 101, 79, and 62) and the remainder of

the nodes more or less evenly distributed in the remaining five communities.
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Structural communities in the CENS communication network detected according
to the spinglass algorithm. Node color represents structural community mem-
bership. Node diameter represents betweenness centrality. Associated histogram
describes the frequency distribution of each community.

Figure 5.3: Communication network: detected community structure.
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Structural communities in the CENS acquaintanceship network detected accord-
ing to the spinglass algorithm. Node color represents structural community mem-
bership. Node diameter represents betweenness centrality. Associated histogram
describes the frequency distribution of each community.

Figure 5.4: Acquaintanceship network: detected community structure.
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5.2 Comparative analysis of community structure

The community structure analysis presented above shows the repartition of the

CENS networks into clusters of collaboration. In order to reveal how these ar-

rangements of collaboration differ with each other, i.e., how researchers group into

communities in their scholarly, communication, and social networks, I perform

here a statistical comparison of the detected communities, using two statistical

independence tests: Pearson’s χ2 and Fisher’s exact tests. These comparisons

are aimed at understanding whether certain individuals tend to group with the

same individuals across different manifestations of collaboration, i.e., coauthor-

ship, communication and acquaintanceship. In other words, these independence

tests address this question: how well do communities of coauthors, discussants,

and acquaintances overlap with one another?

5.2.1 Tests for statistical independence

Pearson’s χ2 (chi-square) test is one of the most widely used statistical tests of

independence. As an example consider the two networks depicted in Figure 5.5.

The two networks diagram the same 15 nodes (A-O) in two different networks.

Let us suppose that the network on the left represents coauthorship, and the net-

work on the right represents acquaintanceship. These networks are very similar.

The only difference between them is that the nodes C and G are more promi-

nently connected to the hub D in the coauthorship network, and hub H in the

acquaintanceship network. From a visual analysis, one can say that coauthorship

and communication patterns in these two networks are very similar and thus,

individuals that write papers together, also know each other. When analyzing

larger networks, however, a visual investigation is not feasible.
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Two fictitious networks, each one composed of 15 nodes (A-N). The nodes repre-
sented in each network are the same, but the interactions among them are differ-
ent. The community detection algorithm partitions these two networks in different
ways: the network on the left is partitioned in communities YELLOW and RED,
while the network on the right is partitioned in communities BLUE and GREEN.
Community membership is depicted by node color and an enclosing box.

Figure 5.5: Two fictitious networks and detected community structure.

One solution is to detect the community structure in each network and com-

pare them statistically. Let us suppose that a community detection mechanism

subdivides each network into two communities. In particular, the coauthorship

network is divided into communities YELLOW (composed of nodes A through

G) and RED (composed of nodes H through N). The communication network

is divided into communities BLUE (A,B,D,E, F ) and GREEN, (H −N,C,G).

In this simple case, it is fairly easy to deduce from the network visualization

that community pairs YELLOW—BLUE and RED—GREEN overlap. But for

larger and more complex networks, visual analysis might not be sufficient and a
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statistical test of independence might be necessary. One can test for statistical

independence between two groups (in this case, the detected communities in the

two different networks), by conducting a Pearson’s χ2 analysis.

The community membership values depicted in Figure 5.5 can be expressed

as a contingency table. In a contingency table, the x-axis elements represent a

distinct community membership value in a network (e.g., YELLOW and RED)

and the y-axis represents a distinct community membership value in the other

network (e.g., BLUE and GREEN). Cell values in each contingency table identify

the number of observed occurrences of an x/y relationship. As an example, the

contingency table summarizing the community membership of the two networks

of Figure 5.5 is presented in Table 5.1. The table displays how the population of

a community is decomposed in the other network. For example, a total of seven

nodes makes up the YELLOW community of the coauthorship network. Of these,

five are members of the BLUE community in the acquaintanceship network (nodes

A,B,D,E, F ), and two of them belong to the GREEN community (nodes C,G).

Membership YELLOW RED Totals
BLUE 5 0 5
GREEN 2 8 10
Totals 7 8 15

Table 5.1: Contingency table displaying the community membership
distribution of two fictitious networks.

Subjecting this contingency table to a Pearson’s χ2 test one can determine

whether community membership in one network is dependent or independent on

membership in the other network. In other words, the χ2 test calculates the

values we would expect for a contingency table in case of independence of the

variables and then computes deviations between expected and actual values. The

χ2 score for the contingency table presented in Table 5.1 is 5.65, a value suffi-
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ciently high to indicate variability in the actual data, compared to the expected

values. The test also returns a p-value of 0.02 which confirms that the community

membership in the two networks are statistically related. The p-value denotes

the probability that an association is random (i.e. a p-value greater than 0.05 is

generally considered statistically independent).

Pearson’s χ2 is a reliable test of independence when dealing with samples of

sufficiently large size. When samples are small, however, contingency tables have

sparse data, i.e., many cells with expected values below 5. It has been noted that,

as a rule of thumb, results of a χ2 test should be considered suspicious or invalid

if more than one fifth of its cell expectations are below 5 [165]. As demonstrated

in the next section, some contingency tables studied in this dissertation have

sparse data. In order to remedy this situation, statisticians can employ different

techniques.

One obvious technique involves directly manipulating the data in the table.

One manipulation technique, known as “re-binning” involves grouping together

columns and rows of sparsely populated contingency tables. For example, if a

table presents Likert-scale responses (“Strongly Agree”, “Agree”, “Neither agree

or disagree”, etc.), it is possible to collapse responses to “Strongly Agree” and

“Agree” into a single class, to augment cell frequency. Another technique of data

manipulation is to remove rows and columns with low frequency counts.

Other techniques to deal with table sparseness involve using alternative tests

of independence. For example, one viable alternative when dealing with simulated

data is to run a variation of the traditional χ2 with a Monte Carlo simulation,

which computes the p-value for a Monte Carlo test with a number of replicates

[166, 167]. Another alternative is to replace the χ2 test with a Fisher’s exact

test of independence [168]. This test is particularly convenient for contingency
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tables with small samples and sparse data. The advantage of Fisher’s test is that

it calculates statistical independence exactly and not based on an approxima-

tion; this advantage, however, comes at a cost: Fisher’s test can be extremely

computation-intensive and resource-consuming, especially for large tables (larger

than 6× 6).

In this dissertation, in order to deal with table sparseness I use both direct

manipulation of table data (re-binning and removal techniques) and computation

of different statistical significance tests (both Pearson’s χ2 and Fisher’s exact

tests).

5.2.2 Community structure across networks

In this section, I present the results of a comparative analysis of structure among

the networks of collaboration. In other words, I run the tests of independence

presented above (Pearson’s χ2 and Fisher’s exact tests) on the coauthorship,

communication and acquaintanceship networks to determine whether community

membership in one network is dependent or independent on membership in the

other network. The community structures describing how researchers organize

themselves in scholarly, communication, and social circles, diagrammed in Figures

5.2, 5.3, and 5.4, are converted to contingency tables in order to allow data

manipulation and statistical analysis. These contingency tables are included in

Tables 5.2, 5.3, and 5.4.

Each one of these tables is a numerical representation of the overlap between

community membership in two networks. For example, Table 5.2 displays the

association between the communication and coauthorship networks, i.e. between

circles of collaboration depicted in Figures 5.2 and 5.3. Columns in this table

(the x-axis) list community membership values in the communication network
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and rows (y-axis) in the coauthorship network. The description under Table 5.2

discusses how to interpret this and following contingency tables.

Communication network

C
oa
u
th
or
sh
ip

n
et
w
or
k

1 2 3 4 5 6 7 T
1 17 3 3 2 3 28
2 2 1 7 8 18
3 8 1 9
4 3 1 2 3 9
5 0
6 2 2
7 0
8 6 1 7
9 1 1
10 2 2
11 1 1
12 3 3
13 2 2
14 1 1
T 19 17 16 12 9 8 2 83

Community membership association between the communication and coauthor-
ship networks. “T” stands for “totals”. Columns present community member-
ship values in the communication network and rows in the coauthorship network.
This table can be read as follows. There are a total of 83 nodes that are found
both in the communication and coauthorship networks (i.e., the communication
and coauthorship networks overlap by 83 nodes). In the communication network,
these 83 nodes are partitioned into 7 different communities, with populations [19,
17, 16, 12, 9, 8, 2] (bottom row of the table). The columns display how these
communication-based communities overlap with coauthorship-based communities.
For example, looking at the first column, one can see that the majority of nodes (17
out of 19) composing community #1 of the communication network are found in
community #1 of the coauthorship network. This indicates that there is a strong
correlation between community #1 in the communication network and community
#1 in the coauthorship network, i.e., most of the people that compose commu-
nity #1 in the communication network are found to connect both on mailing list
platforms and on scholarly papers.

Table 5.2: Contingency table: communication vs. coauthorship net-
works.
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Communication network

A
cq
u
ai
n
ta
n
ce
sh
ip

1 2 3 4 5 6 7 T
1 2 1 2 1 7 13
2 15 2 10 5 4 1 37
3 4 3 2 2 2 13
4 6 3 1 1 11
5 3 1 4
6 1 1 2
7 1 1 2
8 1 1
T 19 17 16 12 9 8 2 83

Table 5.3: Contingency table: communication vs. acquaintanceship.

Coauthorship network

A
cq
u
ai
n
ta
n
ce
sh
ip

1 2 3 4 5 6 7 8 9 10 11 12 13 14 T
1 50 7 37 1 2 2 2 101
2 1 23 10 8 8 1 18 3 1 1 74
3 34 5 1 14 1 1 56
4 6 2 2 1 1 12 15 6 45
5 1 16 13 30
6 18 9 27
7 4 1 20 1 26
8 1 1 9 11
T 76 66 58 25 23 22 21 19 16 16 11 9 6 2 370

Table 5.4: Contingency table: coauthorship vs. acquaintanceship.
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Analyzing the composition of the contingency tables (Tables 5.2, 5.3, and

5.4), it can be seen that some communities overlap nearly perfectly, while others

are highly partitioned. For example, looking at Table 5.4, it can be seen that

community # 11 in the coauthorship network and community # 8 in the acquain-

tanceship network overlap almost completely. Both communities are composed

of 11 individuals and 9 of them are found to be part of the same communities

of coauthorship and acquaintanceship. A closer look at the composition of these

communities reveals that they represent a collaboration circle centered around the

Computer Vision Laboratory of UCLA. Let us employ this collaboration circle as

an anecdotal example to explore more in detail the overlap between communities

of coauthors and acquaintances. Figure 5.6 depicts such anecdotal example.

Coauthorship community # 11 and acquaintanceship community # 8 are di-

agrammed in the inset images of Figure 5.6. The main image of Figure 5.6 shows

the overlap between these communities, with nine members (C −K) common to

both communities. The inset image at the top depicts community # 11 in the

coauthorship network. This coauthorship community is tightly centered around

one individual (node D) whom collaborates separately with different groups (e.g.,

with B and C, with I, J , and K, etc.). It is interesting to note that this commu-

nity is very marginalized from the rest of the coauthorship network: only nodes

A, B, and D have connections with outside this community (dashed edges). The

inset image at the bottom is community # 8 in the acquaintanceship network.

This community is composed of roughly the same nodes, but the relationships

among them are more frequent and dense: nearly everyone is connected to every-

one else in the acquaintanceship network. This indicates that even though not all

members of a coauthoring community collaborate directly with each other, they

are likely to know each other. Also, while the members of this community are

separated from the rest of the coauthorship network (i.e., they only write papers
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The inset image in the top right corner shows community # 11 in the coauthorship
network (n = 11,m = 16). The inset image at the bottom right corner shows
community # 8 in the acquaintanceship network (n = 11,m = 29). The main
image shows the overlap between these two communities.

Figure 5.6: Anecdotal example: overlap of coauthorship and acquain-
tanceship communities.

with each other), they are considerably more integrated with the social network

(dashed lines represent social relationships with the outside).

This anecdotal example provides a precise understanding of the scholarly and

social organization of the Computer Vision Lab at UCLA. This analysis is limited

to a specific case study. In order to determine statistically the level of indepen-

dence between community membership at a broader level, it is necessary to run
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a significance test on Tables 5.2, 5.3, and 5.4. These tables, however, are not

suitable for a Pearson’s χ2 or a Fisher’s exact test, because of data sparseness.

It is natural for these tables to be sparsely populated, i.e., it is normal that a

high proportion of the cells are low (or zero). This is because, across all studied

networks, individuals tend to cluster together with the same individuals across

all networks. The Fisher exact test would be a viable alternative to remedy table

sparseness, but its computation is too resource-consuming and thus unfeasible

for tables of this size.

In order to allow both Pearson’s and Fisher tests, I produce reduced versions of

all contingency tables by removal of rows and columns with low frequency counts.

The removal is performed manually, in iterations. At every iteration, I remove

the row or column with the lowest count value. I follow this procedure until less

than one fifth of the cells have values below 5. For example, for Table 5.2, I begin

the removal with one of the rows with total count of 1, i.e., rows 5, 9, or 14.

By removal of few rows and columns with low counts, table sparseness is greatly

reduced. Moreover, the overall population and composition of the contingency

table is not affected greatly. The original population sizes of all three contingency

tables (83, 83, 370) are only reduced by about a third or less (49, 58, 224). The

three reduced contingency tables are then subjected to a Pearson’s χ2 test and a

Fisher’s exact test. Results from the tests are summarized in Table 5.5.

A first glance at Table 5.5 reveals that the p-values for the χ2 and Fisher’s

tests are very similar for every association. The highest χ2 score obtained is

for the contingency table associating coauthorship and acquaintanceship net-

works (301.45), indicating a strong correlation between community membership

in these two networks. Moreover, the p-value for this test is the lowest recorded

(well below 0.001) indicating that the results are statistically significant. This
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Contingency table χ2 p-value Fisher p-value
Communication-Coauthorship 46.66 4.54× 10−7 1.14× 10−7

Communication-Acquaintanceship 20.24 1.6× 10−2 0.4× 10−2

Coauthorship-Acquaintanceship 301.45 2.2× 10−16 2.2× 10−16

Pearson’s χ2 and Fisher’s exact tests on the contingency tables associating com-
munity membership in the coauthorship, communication and acquaintanceship
networks (Tables 5.2, 5.3, and 5.4). All tests performed on statistically reduced
tables.

Table 5.5: Independence tests between collaboration networks.

result means that scholarly and social circles overlap very well. In other words,

coauthors of scholarly papers are very likely to know each other, as they are part

of the same communities of collaboration.

The other two tests performed result in lower χ2 scores and higher p-values.

The second highest score (46.66) was obtained for the contingency table associat-

ing communication and coauthorship networks. The p-values recorded both for

the χ2 and Fisher tests are again very low. This indicates that communities of

usual online contacts on CENS mailing lists overlap fairly well with communities

of coauthors. In other words, individuals that communicate frequently on mailing

lists also write papers together.

Finally, the lowest recorded χ2 score (20.24) is obtained for the contingency

table associating communication and acquaintanceship networks. Recorded p-

values for χ2 and Fisher tests are well above the other ones, but are are however

within significance levels (below 0.05). This result indicates that communities in

the communication and acquaintanceship network do overlap slightly but not as

much as the overlap detected in the other associations. In other words, it is less

probable that frequent contacts on mailing lists actually know each other.
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5.2.3 Community structure and socio-academic configuration

The comparative analysis of the previous section is external — it measures the

overlap between structural communities detected in different networks. If the

socio-academic configuration of a network is known, a network can also be ana-

lyzed internally — by comparing its community structure to the social and aca-

demic arrangement of its constituents. In other words, I look at how scholarly,

communication, and social circles are variegated in their academic configurations.

In the previous chapter, in § 4.4, I introduce the socio-academic configuration

of the population under study: how individuals are distributed across different

academic affiliations, academic departments, academic positions, and countries

of origin. Similar to the way that membership to a structural community is

included in a node metadata (Figure 5.1), socio-academic information also can

be included as metadata information for every node. For example, the node

that represents myself (id = a.pepe) in the CENS collaboration networks can

be associated with information about my affiliation, department, position, and

country of origin, in addition to the previously recorded community membership

information, as shown in Figure 5.7.

a.pepe

Name = Alberto Pepe

Coauthorship community = 3
Communication community = NULL
Acquaintanceship community = 2

Affiliation = UCLA
Department = Information Studies
Position = Ph.D. Student
Country of Origin = Italy

Figure 5.7: Socio-academic information as node metadata.

From a network perspective, these node-based metadata can be used to group
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together individuals that belong to the same institution, department, etc. into

a community, i.e., similar to the structural community presented earlier in this

chapter. This type of community, however, is not structural, i.e., it is not made

salient by the network topology; rather, it is based on socio-academic informa-

tion that is external to the structure of the network. Thus, for example, if I

am a frequent collaborator with another student in the Department of Informa-

tion Studies, we are part of the same scholarly collaboration circle, i.e. of the

same structural community in the coauthorship network. If I am not a frequent

collaborator with her/him, we will probably not be part of the same structural

community, but we will however be part of the same socio-academic community,

for we both belong to the same department.

This enables an interesting comparison between the repartition of the net-

work into structural communities, based on topological properties of the network

(e.g., the extent of scholarly collaboration), and socio-academic communities,

made salient by selected social and academic properties of the individuals in the

network (e.g., the academic department to which one is affiliated). Thus, the

node representing me in the network (id = a.pepe) belongs to three different

structural communities, based on my coauthorship, communication, and acquain-

tanceship patterns. I also belong to four different socio-academic communities,

based on my socio-academic profile of Figure 5.7. Thus, for example, since I

am part of the Department of Information Studies, I belong to a socio-academic

community that groups together all Information Studies scholars in the network.

Similarly to previous analyses, the comparison between structural and socio-

academic communities is made by constructing a contingency table. In this case,

the columns of the contingency table list structural community membership val-

ues (i.e., the scholarly, communication, and social community to which a person
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belongs), while rows represent socio-academic community membership (i.e., the

institution, department, position, and country of origin of that person). These

contingency tables are presented in Tables 5.7, 5.8, and 5.9, for the coauthor-

ship, communication, and acquaintanceship networks, respectively. It is worth

noting that these contingency tables are “re-binned”, as described in § 5.2.1.

This involves collapsing together similar categories under a single denomination.

Re-binning similar categories greatly reduces table sparseness and improves the

reliability of the statistical independence tests. However, re-binning also leads to

information loss, as categories lose granularity. In order to reduce table sparse-

ness, but retain as much information as possible, I group categories together

only when (i) they are similar, (iii) re-binning brings a significant reduction of

table sparseness, and (iii) studying the interaction among them is not of cru-

cial importance for this study. The categories that I re-bin in this dissertation

are included in Table 5.6. For the most part, I re-bin similar academic depart-

ments. For example, the categories “Statistics” and “Mathematics” are folded

into one: “Stats/Math”. The reason for this is that there are only 4 members

of the Department of Statistics and 1 from the Department of Mathematics in

the population. Statistics and Mathematics are similar enough and the inter-

action among them (e.g. the scholarly collaborations between statisticians and

mathematicians) are not of fundamental importance for this study. By group-

ing together these categories, the cells in the contingency tables become more

populated allowing reliable statistical tests. The most substantial re-binning I

perform in Table 5.6 is that of “Electrical Engineering” and “Computer Science”

into “EECS”. The reason for bundling these crucial categories together can be

found in the fuzziness by which these departments are separated from one an-

other in many institutions. In the case of CENS, in particular, belonging to one

or another department is just nominal, as most scholars perform work that clearly
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bridges the Computer Sciences with Electrical Engineering. Please note that I

could have performed much more extensive re-binning. For example, I could have

grouped together related institutions (e.g., all University of California campuses)

and country of origins by their geographical location (e.g., all countries of the

North American continent). I explicitly choose not to re-bin these categories to

avoid loss of information.

New category Old categories

Stats/Math
Statistics
Mathematics

EECS
Electrical Engineering
Computer Science

Engineering
Mechanical Engineering
Chemical Engineering

Environment

Environmental Science
Ecology
Earth & Space
Botany
Meteorology
Geology

Civil Engineering
Civil & Environmental Engineering
Urban Planning

Faculty
Assistant Professor
Associate Professor
Professor
Lecturer

Table 5.6: Collapsed categories (academic departments and positions).

Each one of these tables (Tables 5.7, 5.8, and 5.9) consists of four contin-

gency tables that indicate the association between a given structural community

membership and socio-academic community membership. For example, the top

contingency table of Table 5.7 presents the association between coauthorship

community membership and academic affiliation membership. In other words,

the columns in this table refer to the 14 different communities of coauthors; each
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one of these communities is decomposed according the affiliation of its members

(rows). The description text shown below Table 5.7 provides guidance on how to

read this contingency table, as well as Tables 5.8 and 5.9.

Starting with the contingency tables displaying the association between coau-

thorship community membership and socio-academic community membership

(Table 5.7), it is evident that the coauthorship network has two large, distinct

structural communities (#1, and #2) that include almost exclusively researchers

from either USC or UCLA. Remarkably, these two communities are fairly homo-

geneous along the other socio-academic components (they are composed mostly

of graduate students, and equal parts of faculty and staff, from the departments

of Computer Science and Electrical Engineering, and largely from the United

States, and India). This indicates that there are two major scholarly communities

of collaboration almost identical in size, domain, position, and origin distribution,

but they are based at different universities. Community #3 is also interesting

for it is evenly split between UCLA and USC, but is then homogeneous along

the other components. Thus, while communities #1 and #2 are centered exclu-

sively around USC and UCLA, respectively, community #3 is a community of

multi-institutional collaboration among the two universities. All these three com-

munities are largely composed of members of CS and EE departments. Among

the other communities, community #4 and #5 are interesting because they are

mostly composed of biologists and environmental scientists from UCLA and UC

Riverside. Also, in these communities faculty and staff are more prevalent than

graduate students, and there are only U.S. domestic collaborations.

A look at Table 5.7, which portrays the association between communication

and socio-academic community membership, reveals a different scenario. The

most populated community (#1) is entirely made up of UCLA individuals, but it
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Coauthorship network
1 2 3 4 5 6 7 8 9 10 11 12 13 14 T

Affiliation
UCLA 8 55 20 6 11 18 9 8 3 7 8 6 159
USC 42 2 23 2 1 2 72
UC Riverside 8 5 13
Caltech 1 1 4 7 13
MIT 2 3 4 9
UC Berkeley 1 4 3 8
UC Merced 1 6 7
UIUC 1 1 1 1 4
SUNYSB 3 1 4
Department
EECS 55 51 50 1 7 16 6 14 1 4 11 7 2 225
Environment 2 8 4 3 15 5 1 38
Civil Eng 3 3 5 11 6 28
Biology 9 8 12 1 30
Engineering 4 1 5 1 11
Info Stu 2 4 7 13
Education 1 3 4
Marine 6 6
Stats/Math 4 1 5
Media/arts 5 5
Position
Graduate 26 33 21 4 4 8 5 6 1 4 6 5 1 1 125
Faculty 22 12 16 17 8 7 9 9 7 7 4 2 3 1 124
Staff 20 16 14 3 9 6 7 4 1 4 1 1 1 87
Postdoc 6 2 6 1 1 4 1 1 1 23
Undergrad 1 3 1 1 1 7
Origin
USA 40 32 29 18 21 12 10 12 13 12 4 4 5 1 213
India 15 15 10 2 1 1 1 45
China 1 3 7 1 1 1 2 1 4 21
Korea 3 4 3 1 11
Italy 1 1 3 1 4 10
Australia 4 1 1 6
Iran 1 1 2 1 5

Columns present community membership values in the coauthorship network and
rows present selected socio-academic values. Each column indicates how the mem-
bers of the same coauthorship community are distributed across academic affil-
iation, department, position and country of origin. For example, community
#1 is heavily populated with scholars affiliated with USC (42 individuals), while
community #2 is largely composed by scholars affiliated with UCLA (55 indi-
viduals). Both communities are composed mostly of scholars in the departments
of Computer Science and Electrical Engineering. Also, the distribution of aca-
demic positions and country of origin is very similar in both communities, with
a large presence of graduate students, faculty, and researchers, from the U.S.A.
and India.

Table 5.7: Contingency tables: coauthorship vs. socio-academic com-
munity membership.
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Communication network
1 2 3 4 5 6 7 T

Affiliation
UCLA 19 11 14 8 7 2 1 62
USC 3 1 1 6 11
UC Riverside 2 1 3
Caltech 1 1 2
UC Merced 1 1 2
Department
EECS 9 10 8 11 9 8 2 57
Environment 1 5 6
Civil Eng 2 3 5
Biology 4 1 5
Stats/Math 4 4
Media/arts 3 3
Info Stu 1 1 2
Position
Graduate 9 4 5 4 6 4 32
Staff 6 5 8 5 2 1 27
Faculty 4 8 3 1 1 3 2 22
Postdoc 2 2
Origin
US 11 14 12 10 5 4 1 57
India 5 3 2 1 2 13
Korea 1 1 2

Table 5.8: Contingency tables: communication vs. socio-academic
community membership.

is very diversified by department, position and origin. This indicates that mem-

bers of this community are involved in discussions about large, multi-disciplinary,

UCLA-based projects. All the other communities are all prevalently composed

of UCLA affiliates of CS and EE, but are overall more diversified. In particular,

community #2 and #3 involve discussions by a discrete amount of biologists and

environmental scientists, respectively.

Finally, Table 5.9 portrays the association between acquaintanceship and

socio-academic community membership, revealing yet another scenario. Com-

munities of acquaintances are very much dependent on academic affiliation: ac-

quaintanceship community #1 is composed of USC affiliates, communities #2,

#3, and #4 have mostly UCLA scholars, community #5 has affiliates of UC
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Acquaintanceship network
1 2 3 4 5 6 7 8 T

Affiliation
UCLA 6 61 46 27 1 1 18 9 169
USC 58 1 1 1 12 73
UC Riverside 13 13
Caltech 2 4 7 13
MIT 4 5 1 10
UC Berkeley 4 3 1 8
UC Merced 1 6 7
UIUC 2 1 1 4
SUNYSB 1 3 4
CMU 3 1 4
Department
EECS 93 32 59 9 2 8 18 11 232
Environment 16 6 12 1 3 38
Civil Eng 3 3 25 31
Biology 3 16 10 1 30
Engineering 2 1 2 6 3 14
Info Stu 2 7 1 2 1 13
Education 7 7
Marine 6 6
Stats/Math 1 4 5
Media/arts 5 5
Position
Graduate 40 27 28 8 3 7 10 7 130
Faculty 29 20 16 20 20 13 9 3 130
Staff 25 26 13 9 6 4 5 1 89
Postdoc 6 2 5 6 4 2 25
Undergrad 1 4 3 8
Masters 1 2 1 4
Origin
USA 37 56 25 40 26 18 15 5 222
India 25 3 18 2 48
China 8 2 2 6 2 1 21
Korea 6 1 3 1 11
Italy 2 1 1 3 4 11
Australia 4 2 6
Iran 2 2 1 5
Mexico 2 2 4

Table 5.9: Contingency tables: acquaintanceship vs. socio-academic
community membership.

Riverside, and so on. The other socio-academic components, however, display a

high degree of diversification. Except for communities #1 and #3 (that are made

up of CS and EE scholars), all the other communities are multi-disciplinary in
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their population.

While this analysis provides a sense of the overlap between CENS structural

and socio-academic communities, the presented findings need to be validated by

a statistical comparison. Table 5.10 summarizes the results of a Pearson’s χ2 test

of independence on these data. These results can be interpreted as follows.

Contingency table Affiliation Department Position Origin
Coauthorship 2.2× 10−16 2.2× 10−16 0.024 0.0023
Communication 0.070 0.081 0.20 0.23
Acquaintanceship 2.2× 10−16 2.2× 10−16 7.3× 10−4 6.22× 10−8

Results of Pearson’s χ2 test of independence (p-values) on contingency tables
that display association between structural and socio-academic community mem-
bership. All tests performed on statistically reduced tables.

Table 5.10: Independence tests: collaboration networks and socio-aca-
demic profile.

Starting with the coauthorship network (first row), it can be noted that two

very different groups of p-value scores are obtained. These value show that, on

one side of the spectrum, scholars’ membership in a coauthorship community is

dependent on scholars’ department and affiliation (first two columns, very low

p-values). On the other side of the spectrum, community membership is much

less dependent on academic position and country of origin (last two columns,

higher p-values). Both affiliation and department have extremely low p-values:

communities of coauthors overlap very well with communities of scholars of the

same institution and department. This means that tight-knit communities of

coauthors are normally made up of scholars that belong to the same institu-

tion and department. In turn, this result indicates that coauthorship patterns

at CENS do not involve significant inter-institutional and inter-departmental ef-

forts. Academic position and country of origin have much higher p-values (0.024

and 0.0023, respectively). Although both these value are statistically significant
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(below 0.05), they indicate that academic position and country of origin are much

less dependent of coauthorship community membership, i.e., scholars at all lev-

els and positions (Ph.D. students, professors, etc.) and of different nationalities

coauthor papers together.

The communication network (second row in Table 5.10) presents a much more

variegated scenario. All p-values obtained via the Pearson’s χ2 test on the com-

munication network indicate independence between membership in structural and

socio-academic community. In other words, these values show that individuals

participate in discussions on CENS mailing lists regardless of their affiliations,

departments, positions and country of origin. Communities of discussants are

very variegated in their socio-academic composition.

The acquaintanceship network presents the least variegated scenario of the

three. All recorded p-values are well below significance level (0.05). The p-values

recorded for academic affiliation and department are the lowest, indicating that

scholars really know mostly people in their own institution and in their own

department. Academic position and country of origin are less dependent, but are

also low, indicating that acquaintances are made within one’s academic position

(e.g., Ph.D. students are acquainted with other Ph.D. students) and country of

origin (e.g., Italian scholars are acquainted with other Italians).

Let us discuss this finding in terms of the same anecdotal example presented

above (the Computer Vision Lab at UCLA). Figure 5.8 depicts coauthorship

community #11, annotated according to the socio-academic characteristics of its

constituents. In other words, Figure 5.8 is a pictorial representation of column

#11 in Table 5.7. The image in the top left corner displays the institutional

composition of this community. Four different academic affiliation are present,

although the community is largely made up by UCLA scholars. The departmen-
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Coauthorship community #11 (n = 11,m = 29) annotated according to the socio-
academic characteristics of its constituent nodes.

Figure 5.8: Anecdotal example: overlap of coauthorship community
and socio-academic profile.

tal decomposition, in the top right corner, shows that all the individuals come

from departments of Electrical Engineering and Computer Science (EECS). In

the bottom left corner, academic position of this community is displayed. The

community is almost evenly split between graduate students and faculty. Fi-
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nally, in the bottom right corner, the decomposition by country of origin shows

a very international environment with five different countries (most represented

countries: United States and Italy).

This case study—although limited to a single community of coauthorship—

is representative of the population at large. It shows that scholarly communities

internally exhibit little (or no) disciplinary and institutional variation. When

zooming into tight-knit circles of scholarly collaboration, a local ecology emerges,

homogeneous in terms of academic affiliation and department. The same can be

said of acquaintanceship communities: circles of acquaintances tend to be mono-

institutional and mono-disciplinary. This finding does not indicate that CENS

collaboration networks, at large, are mono-institutional and mono-disciplinary.

As noted throughout this dissertation, CENS is populated by a very variegated

array of researchers from different institutions and departments. What this find-

ing indicates is that the mélange between disciplines and institutions does not

happen at a community level, but via the bridging action of community hubs

(e.g., node D in Figure 5.8).

5.3 Summary

This chapter describes the findings of a structural analysis of CENS collaboration

networks. I find that the coauthorship, communication, and acquaintanceship

networks are composed of 14, 7, and 8 structural communities, respectively. A

comparative analysis of these structures reveals the following scenario: commu-

nities of coauthoring researchers at CENS overlap very well with communities

of acquaintanceship, and relatively well with communities of discussants on elec-

tronic platforms; these communities of discussants, however, overlap only slightly
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with communities of acquaintances. These results substantiate the theory that

scientists that write papers together know and communicate with each other, but

communication alone does not necessarily indicate acquaintanceship. As such,

these results present a fairly homogeneous scenario of collaboration in which re-

searchers are divided in fairly separated communities of collaboration, the mem-

bers of which write papers together, communicate on mailing lists and know each

other.

This research finding is further supplemented by a comparative analysis of

community structure and socio-academic configuration. This analysis reveals

how topological structures relate to the organizational, disciplinary, institutional

and international arrangements of collaborations at CENS. Findings show that

structural communities in the coauthorship network overlap very well with aca-

demic affiliation and department, i.e., communities of scholarly collaborators tend

to be populated with individuals working in the same institution and domain.

Comparison of communities of online discussants and their socio-academic con-

figuration shows that there is no significant dependence among them, i.e., indi-

viduals connect online regardless of their affiliations, departments, positions and

country of origin. Finally, the comparative analysis of acquaintanceship shows a

high level dependence between communities made up of individuals that all know

each other and socio-academic configuration. This indicates that, even though

the acquaintanceship network is dense and sparse (“everyone knows everyone”),

social circles tend to be populated, at large, with people of the same institution,

department, position, and country of origin.
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CHAPTER 6

Results: Evolutionary analysis

In the previous chapter, I report a comparative structural analysis of three dif-

ferent networks of scientific collaboration, looking at how researchers organize

themselves in communities of scholarly, communicative, and social interaction.

In this chapter, I shift my analysis to the evolution of these networks, in order to

address the second research question, restated here:

Research Question #2. What collaboration dynamics can be

evinced from the coauthorship, communication, and acquaintanceship

networks of CENS? Can specific evolutionary features be explained

in terms of changes in the disciplinary and institutional arrangements

of collaboration?

6.1 Slicing the networks by their temporal component

The structural analysis of the CENS collaboration networks, presented in the

previous chapter, is based on the most recently available data (data collection

was concluded in October 2009). Thus, the networks analyzed thus far represent

the cumulative volume of scholarly coauthorship, electronic communication, and

acquaintanceship patterns. In order to allow a historical or longitudinal network
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analysis, it is necessary to “slice” these cumulative networks along their temporal

component. As discussed in previous chapters, all data studied in this dissertation

contain some temporal information: the bibliographic record contains the date of

publication of papers; the communication logs contain the date at which a discus-

sion in a mailing list thread took place; and with the administered social network

survey, I gathered information about the length of acquaintanceship patterns.

There are, however, several different ways in which this temporal information

can be utilized. I use different techniques for each different network, in order to

reflect the different aspects of collaboration that these networks represent.

Slicing the coauthorship network. The publication date of papers in the

CENS bibliographic record represent the date at which an article is published in

a journal or in conference proceedings. Many scientific collaboration networks are

constructed cumulatively, i.e., they sum the coauthorship contributions for every

year, based on the assumption that a coauthorship relationship, once established,

can increase in intensity but cannot decay. This assumption, however, does not

genuinely reflect the writing lifespan of an article. In fact, due to the lengthy

processes of scholarly peer-reviewing, revision, proof-reading, and editing, the

publication date of an article very rarely represent the year in which it was writ-

ten. Of course, the timescales of these processes vary depending on a number

of factors: the promptness of peer-reviewers and editors to return reviews, the

efficiency of coauthors to produce revisions, the nature of publication (journal

article, conference proceedings, book chapter, etc.) and the scholarly domain in

which an article is published (some domains have faster publication workflows

than others). Some recent research has addressed this issue by proposing a net-

work model in which ties have a lifespan, i.e., they decay with time [169, 170].

For the purpose of this research, I employ a similar decaying model. I assume

that the body of literature studied here is subject to the following publication
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timeline: most of the collaborative activity to produce a paper takes place the

year prior to the publication date; the year in which a paper is published, collabo-

ration is less prominent, but a fair amount of research and collaborative activities

take place (reviews, edits, revisions); the year after a paper is published research

and editorial activities are at a minimum, yet coauthors may still collaborate on

lateral related activities (disseminating the paper, making related material pub-

licly available, etc.). In other words, I posit that publications have a decaying

lifespan of 3 years. Assuming this publication timeline, I can slice the coauthor-

ship network, as follows. The year prior to a publication, coauthorship activities

are computed in full, i.e., I use Formula 4.1 to calculate edge weights. The year

in which a paper is published, I reduce the original edge weights by half. In the

year following publication, I further reduce edge weights by a factor of 2. For

example, an article authored by Alberto Pepe and Marko Rodriguez published

in 2007 would appear as an edge between the two in the coauthorship networks

of years 2006, 2007, and 2008, with weights 1.0, 0.5, and 0.25, respectively (cu-

mulative, decaying weight over a 3-year period). Four network snapshots (years

2002, 2004, 2006, and 2008), depicting the evolution of coauthorship activity at

CENS in these years, are included in Figure 6.1 (a through d).

Slicing the communication network. The communication network is

based on mailing list logs that are time-stamped. Thus, every discussion ac-

tivity on a thread has a specific date and the communication network can be

sliced accordingly. Whereas the authoring of a paper is a collaborative process

that potentially extends over a period of several years, electronic communication

on mailing lists is predicated upon narrow windows of time: an analysis of CENS

mailing lists reveals that threads are only active for short periods, never exceeding

one or two weeks in time. For this reason, the amount of communication among

two given discussants (i.e., edge weights) can be computed for a given year by
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summing individual interactions (calculated using Formula 4.2). Communication

activity is not considered cumulative over the years. The evolution of communi-

cation activity at CENS for the available timeframe (years 2005 through 2008) is

depicted in the networks included in Figure 6.2 (a through d).

Slicing the acquaintanceship network. In the social network survey ad-

ministered to gather information about personal knowledge relationships, respon-

dents are asked to provide temporal information regarding every individual they

indicate as an acquaintance (see Figure A.2, in Appendix A). More specifically,

respondents indicate the date (year) when they first met an acquaintance. It is

fair to assume, in this context, that respondents that provide this information

are still acquainted (to date) with the individuals they indicate. For this reason,

acquaintanceship is sliced by year of first acquaintance, and cumulatively. For ex-

ample, if Marko indicates in the survey to have known me (Alberto) since 2006,

and that we communicate with weekly frequency, then Marko and I would be

connected by an edge of weight 1.0 (maximum weight) in year 2006, and subse-

quent years (i.e., 2007, 2008, and 2009). As such, the acquaintanceship network is

cumulative, and non-decaying. Four network snapshots (years 2003, 2005, 2007,

and 2009), depicting the evolution of acquaintanceship at CENS in these years,

are included in Figure 6.3 (a through d).

All the evolutionary analyses presented in this chapter are based upon the

networks sliced according to the criteria presented above.

138



(a) 2002 (b) 2004

(c) 2006 (d) 2008

The coauthorship networks in 2002, 2004, 2006, and 2008, diagrammed according
to the Fruchterman-Reingold network layout algorithm [160]. Line width is pro-
portional to edge weight, where more intense collaborations have wider and more
marked lines; the diameter of the nodes is proportional to the weighted centrality
score on a logarithmic scale, or strength [161], where more central nodes have
larger diameters.

Figure 6.1: Evolution of the coauthorship network.
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(a) 2005 (b) 2006

(c) 2007 (d) 2008

The communication networks in 2005, 2006, 2007, and 2008, diagrammed ac-
cording to the Fruchterman-Reingold network layout algorithm [160]. Line width
is proportional to edge weight, where more intense collaborations have wider and
more marked lines; the diameter of the nodes is proportional to the weighted cen-
trality score on a logarithmic scale, or strength [161], where more central nodes
have larger diameters.

Figure 6.2: Evolution of the communication network.

140



(a) 2003 (b) 2005

(c) 2007 (d) 2009

The acquaintanceship networks in 2005, 2006, 2007, and 2008, diagrammed ac-
cording to the Fruchterman-Reingold network layout algorithm [160]. Line width
is proportional to edge weight, where more intense collaborations have wider and
more marked lines; the diameter of the nodes is proportional to the weighted cen-
trality score on a logarithmic scale, or strength [161], where more central nodes
have larger diameters.

Figure 6.3: Evolution of the acquaintanceship network.
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6.2 Evolution of network topology

In Chapter 4, I compute some fundamental statistics relative to the topology of

the networks of CENS collaboration. In this section, I examine how these topo-

logical properties evolved over time. I present in Table 6.1, the following network

statistics: number of nodes, edges, number of connected components, diameter of

the largest connected component, average path length, clustering coefficient and

degree assortativity. These measures are computed on each collaboration network

sliced temporally according to the mechanisms discussed above. An analysis of

the statistics presented in Table 6.1 provides insights into the evolution of the

CENS networks over time.

Coauthorship network. The first three rows of Table 6.1 present the num-

ber of publications, nodes (authors), and edges (collaborations) in the coauthor-

ship network sliced along its temporal component. When analyzed over time, it

can be seen that CENS scholarly collaboration is at its most active period during

years 2004 through 2008. Although the number of publications peaks in 2004, the

number of authors and the number of collaborations reach at maximum in 2006.

This result alone suggests that the number of authors per paper has increased

over time. Also, looking at the overall range of the network (number of nodes

and edges), two distinct time periods can be discerned: a first term (2001-2005)

during which number of nodes and edges increase, and a second term (2006-2009),

during which the growth slightly slows down. In particular, the author count val-

ues indicate that CENS quickly became large and diversified in its population in

the first term reaching a solid population base of collaborators by the year 2004.

In the second term, the number of published works and collaborations maintains

a regular growth (with nearly 1000 collaborations in 2008), but the author base

shrinks to a solid core of about 200 individuals.
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This finding is confirmed by an analysis of the network’s configuration (num-

ber of components and diameter). The number of connected components grows

from 2, in 1999, to 14, in 2003, indicating that the network becomes more frag-

mented in the first term, even if collaboration is overall increasing. In the second

term, however, the number of connected components begins to drop and the net-

work quickly solidifies into a giant component, which indicates a solid base of

strong collaboration. By looking at the the network diameter, the formation of

the giant component, starting in 2004, is evident. This is further reinforced by a

quick analysis of Table 6.2, which lists component populations by year, and shows

that the number of components drops between year 2003 and 2005 resulting in a

giant component of over 200 nodes.

year # population

1999 2 2 8
2000 4 18 6 4 5
2001 5 36 8 16 4 2
2002 9 79 10 6 5 5 4 3 3 2
2003 14 131 10 8 8 7 7 5 4 2 3 3 2 3 2
2004 11 183 8 5 4 3 3 2 2 2 2 2
2005 7 230 5 4 3 2 2 2
2006 6 255 4 3 2 2 2
2007 6 241 5 4 3 2 2
2008 9 188 10 7 5 4 3 2 2 2
2009 9 137 7 4 4 3 3 3 2

Table 6.2: Components of the coauthorship network (by year).

The last three sets of values presented in Table 6.1 (average path length,

clustering coefficient, and degree assortativity) can be investigated to provide

an understanding of network topology. The average path length, �, is about

1.5 in 1999; it grows steadily in the first term, reaching a value of about 3.2 in

2004, which stays roughly constant (or slightly shrinks) throughout the second

term. This indicates that once a CENS authoring base is formed, an average

of 3 steps are necessary to transfer information among any two pairs of nodes.
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The clustering coefficient, C, decreases steadily over time. It halves in the first

period, from an initial value of about 0.7 in 1999, to about 0.35 in 2005, and

then remains constant. This suggests that the network becomes less cliquish and

collaboration patterns becomes more uniform across the network over time.

A final indicator of network topology presented here is degree assortativity.

As explained in § 3.1.3, assortativity can be defined as the tendency for individ-

uals (nodes) in a social network to establish connections preferentially to other

individuals with similar characteristics. The measure of assortativity presented

here is computed based on the individuals’ degree centrality, which indicates the

tendency for CENS researchers to write papers with others with a similar number

of collaborators. In other words, a high degree assortativity means that very pro-

ductive authors collaborate with other very productive authors, while low-degree

authors (i.e., authors that do not collaborate very much) collaborate with other

low-degree authors. The degree assortativity coefficient, r, calculated using For-

mula 3.2 returns a value in the range −1 ≤ r ≤ 1, where r = 1 indicates perfect

assortativity, r = 0 indicates no assortativity, and r = −1 indicates perfect dis-

assortativity. In the coauthorship network, degree assortativity has a declining

trend: in year 2001, the network is slightly assortative (r = 0.217), but very soon

the coefficient drops to zero or just below zero, indicating no significant level of

degree assortativity or disassortativity. In other words, individuals collaborate

(with no preference) with other individuals of any degree.

It is interesting to note that, the decline of the degree assortativity measure

follows very closely that of the clustering coefficient — a Spearman correlation

between the two gives ρ = 0.975 (p-value < 0.005). This means that as collabo-

ration patterns in the network become more sparse and uniform (decreasing C),

they also become more mixed (decreasing r), i.e., highly-connected individuals
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begin to collaborate with lowly-connected ones.

Communication network. The mailing list logs upon which the communi-

cation network is based contain data for the years 2005 to 2009. Moreover, 2005

and 2009 data are partly incomplete. In particular, 2009 data are only limited to

the month of January and February, and they were folded into the logs of year

2008, for the purpose of the evolutionary analysis. Overall, the communication

network does not present a variation comparable to that of the coauthorship net-

work. From 2005 to 2008, the number of mailing list threads varies only slightly.

Every year, roughly 400 threads contain conversational communication by more

than three individuals. The total number of individuals involved in CENS mailing

list discussions is also roughly the same every year, with about 70 discussants per

year. With the exception of year 2005 (that has 2 components with populations

57 and 3), all the individuals that are part of the communication network belong

to a single connected component through time. The diameter is also stable, it

takes 4 to 6 steps to connect the most remote nodes in the communication net-

work. Similarly, the average path length is almost unchanged: an average number

of roughly 2 steps are needed to connect any two discussants in the network at

any point in time.

More interesting are the results obtained for the clustering and degree assor-

tativity coefficients, C and r. Although these coefficients only increase slightly,

they follow roughly the same pattern of growth of the respective measures in the

coauthorship network. A Spearman correlation between the two gives ρ = 0.8

(p-value < 0.05). Moreover, the range of change of C and r for the commu-

nication and coauthorship networks are comparable. This relationship suggests

that the practices by which individuals connect to others when authoring papers

and communicating online follow similar dynamics. Thus, for example, high-
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degree individuals attach preferentially both to other high-degree authors and

high-degree mailing list discussants.

Acquaintanceship network. The temporal slicing of the acquaintance-

ship network results in nine networks (2001-2009). Since these networks are

constructed from cumulative data, the number of nodes and edges naturally in-

creases over time. Yet, these measures follow different trends of growth. At the

outset, in 2001, 270 individuals are already in the network, i.e., they are already

acquainted with someone who is part of the acquaintanceship network. In the

first term, up to year 2005, the number of nodes increases by about 100 nodes,

and it then stays roughly constant up to 2009. The number of edges is fairly low

in 2001: only about 800 acquaintanceship relationships predate 2002. This num-

ber increases steadily over time: by 2009 the number of personal relationships

quadruples. This indicates that the network of acquaintanceship includes many

individuals but few connections among them at the outset, but acquaintanceship

patterns become more and more dense over time. The analysis of components

and diameter reinforces this finding and demonstrates that the network becomes

solidly interconnected in year 2004, when all nodes can be found within a single

connected component and there are 6 degrees of separation between the most

remote nodes (diameter).

The temporal analysis of average path length, clustering coefficient and de-

gree assortativity point to a linear evolution. The average path length decreases

steadily from 3.5 in 2001 to 2.6 in 2009: over time, the network becomes more

connected and the average number of steps required to travel from any two in-

dividuals diminishes. The clustering coefficient increases throughout this period,

from 0.2 to 0.28, as the network becomes progressively more clustered. Finally,

the network is slightly disassortative in 2001 (r = 0.17) but over time assortativ-
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ity comes close to zero (r = −0.06 in 2009), i.e., at the outset, individuals with

similar degree attach preferentially with each other, but later acquaintanceship

patterns become more sparse and variegated. Two remarks can be advanced when

comparing these measures to those found in the coauthorship network. First, it

is interesting to note that even though the coauthorship network is overall more

clustered than the acquaintanceship network, its clustering coefficient diminishes

over time, i.e., scholarly collaboration patterns become more sparse. Second,

both the coauthorship and acquaintanceship network exhibit very poor assorta-

tivity, i.e., both scholarly collaboration and personal knowledge are not driven

by preferential attachment with individuals of similar degree. These findings are

further analyzed in the next section, below.

6.3 The dynamics of preferential attachment

The dynamics by which individuals connect with each other in the networks

of coauthorship, communication and acquaintanceship are best understood by

an analysis of three degree distributions: the degree frequency distribution, the

degree clustering distribution, and the degree assortativity distribution. These

distributions are plotted for the coauthorship, communication, and acquaintance-

ship networks in the block images of Figures 6.4, 6.5, and 6.6 respectively. Each

row in these block images represents a different year, i.e., a different evolutionary

stage of the network.

Coauthorship network. Figure 6.4 presents degree distributions of the

coauthorship network in years 2002, 2004, 2006, and 2008. The first column

from the left displays a plot of degree frequency distribution, i.e., it depicts the

frequency with which nodes of a certain degree occur. The x-axis presents node
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Figure 6.4: Degree distributions of the coauthorship network
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degrees and the y-axis their cumulative frequency. Low-degree nodes (i.e., indi-

viduals with very few publications) lay on the left portion of these plots while

high-degree nodes (i.e., well published authors) lay on the right side of the plot.

A visual analysis of these plots over the years reveals that the degree distribution

has a power-law tail (a power-law fit line is plotted) and thus the coauthorship

network is scale-free. It is important to note that the degree distribution evolves

into a perfect power law tail with time: in years 2001 and 2004, degree and power

law distributions are not perfectly aligned; in later years, they overlap completely.

As discussed in Chapter 4, power-law degree distributions and scale-free effects

are normally considered a common feature of coauthorship networks. It is in-

teresting to note that the power law fits particularly well the middle part of the

degree distribution with a flat “hook” on the top left portion of the plot and a

flat “tail” on the bottom right portion of the plots. It has been argued that the

hook represents young newcomers in the collaboration network (with very few

publications on their record), while the tail represents older, well-established sci-

entists (with many publications) [63]. The coauthorship network analyzed here is

not mature enough for this assumption to hold. However, the hook and the tail

can be clearly seen in all the time-based degree distributions, suggesting that the

CENS collaboration network is subject to a constant influx of newcomers that

occupy the top left portion of these plots. Moreover, the flat tail has a visible

offset in year 2004. This offset indicates that during this year a significant num-

ber of well-established researchers authored more CENS publications than usual.

This validates the finding discussed above that the network solidifies into a giant

component in years 2004/2005, with well-established researchers becoming major

hubs.

The second column in Figure 6.4 shows the degree clustering distribution of

the CENS coauthorship network over time. In these diagrams, node degrees are
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plotted on the x-axis and their clustering coefficient on the y-axis. Overall, in

all time frames analyzed, clustering coefficient nearly follows a power-law distri-

bution with clustering decreasing as the node degree increases. This means that

low-degree degree nodes belong to highly clustered portions of the network that

are connected to each other via hubs (the high-degree nodes, which sit in less

clustered portions of the network). The formation of four main hubs is evident in

the clustering degree distribution plot of year 2004, in which a small number of

nodes with high-degree and low-clustering is separated by the rest of the degree

population (low-degree and high-clustering).

The third column presented in Figure 6.4 shows the degree assortativity dis-

tribution of the CENS coauthorship network over time. In these plots, the x-axis

is the node degree and the y-axis is the average degree of the neighboring nodes.

As such, this plot gives the distribution of how nodes of a given degrees con-

nect to others (i.e., assortativity measure). This distribution, especially in years

2002 and 2004, is not as linear as those observed thus far. Yet in year 2006, a

trend emerges in which neighboring degree increases as a function of node degree,

i.e., the higher the degree of an author, the higher the degree of a collaborating

author. This indicates that very prolific, centrally-located authors tend to collab-

orate together, while newcomers (low-degree nodes) tend to attach preferentially

to higher degree, but marginal authors.

Communication network. Figure 6.5 presents degree distributions of the

communication network in years 2005, 2006, 2007, and 2008: degree frequency,

degree clustering and degree assortativity distributions. The first column shows

the degree frequency distribution of the communication network in years 2005

though 2008. The power law fit line is plotted in each diagram. Even though

the communication network is not constructed from cumulative data, degree fre-
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Figure 6.5: Degree distributions of the communication network.
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quency has essentially an identical distribution every year. This distribution

presents a top left hook and a bottom right tail, similar to those found in the

coauthorship networks, however, the middle distribution is skewed to the right.

This indicates that there is a much more distinct gap between individuals that

communicate on mailing lists frequently and those who do not.

The second column in Figure 6.5 shows the clustering distribution. While

the plot for year 2006 has a distribution that seems to follow a power law, i.e.,

with clustering decreasing as the node degree increases, all the other years have

distributions that cannot be easily fit to a linear trend. This suggests that clus-

tering and degree are not significantly related in the communication network, i.e.,

communication patterns are fairly sparse and clustering is independent of node

degree.

The same remark can be advanced for the assortativity degree distribution,

shown in the third column of Figure 6.5: there is no visible dependence between

node degree and average degree of neighboring nodes. This indicates that there

is no specific rule of preferential attachment to govern communication patterns.

Acquaintanceship network. Figure 6.6 presents degree distributions of

the acquaintanceship network in years 2003, 2005, 2007, and 2009. The first

column depicts the degree frequency distribution. Similarly to the previous two

networks, also the acquaintanceship network follows a power-law degree distri-

bution, especially in the first years, up to 2005. From 2005 onwards, the top left

hook flattens and the bottom right tail drops, to form a nearly straight verti-

cal line. Only the middle portion of the distribution remains aligned with the

power-law line. The flattening of the hook means that the volume of low-degree

nodes in the acquaintanceship network increases over time, i.e., every year there

are newcomers who progressively become acquainted with the CENS population,
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Figure 6.6: Degree distributions of the acquaintanceship network.

154



moving to the middle of the distribution. The absence of a horizontal tail signifies

that the network does not have a small “elite” group of individuals that act like

“hubs”, connecting different communities. Rather, there are many high-degree

nodes, i.e., individuals acquainted with many other individuals.

The second column in Figure 6.6 shows the degree clustering distribution. The

acquaintanceship network evolves into a nearly perfect power-law with time, indi-

cating that high-degree nodes are indeed connected to nodes with low clustering

coefficient. This confirms that hubs do exist, but as explained above, the volume

of hubs is much higher than that found in the coauthorship and communication

networks.

Finally, the degree assortativity distribution of the acquaintanceship network,

presented in the third column of Figure 6.6 presents a curious case. The plots for

years 2003 through 2007 do not exhibit an easily identifiable linear dependence.

However, the network in its mature stage, in year 2009, shows that assortativity

is nearly perfectly independent of degree. The plot shows a nearly horizontal

linear distribution, indicating that no matter what degree a node has, the degree

of its neighbor is high. In other words, the acquaintanceship network in 2009

is so densely connected that most nodes are connected to many other nodes

(“everybody knows everybody”) and thus every incoming node to the network

will have to necessarily (rather than preferentially) connect to a high-degree node.

6.4 Evolution of the socio-academic configuration

The analysis of network evolution presented thus far illustrates the dynamics

by which CENS scholars connect on different collaboration networks over time

and the mechanisms of preferential attachment. This analysis is based solely
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on selected topological features of the network: average path length, clustering

coefficient, degree assortativity coefficient, and various degree distributions. A

more nuanced interpretation of these findings can be obtained by placing them in

the socio-academic context in which CENS collaboration interactions take place.

For example, one of the findings reported above, in § 6.2, indicates a strong

correlation between clustering coefficient and degree assortativity of the coauthor-

ship network. The analysis indicates that there exists a solid correlation between

these two patterns: as the network becomes more sparse and uniform with time

(decreasing C), scholarly collaboration patterns become more mixed (decreas-

ing r), i.e., highly-connected individuals start collaborating with lowly-connected

ones. This finding, however, is restricted to degree assortativity only; it ignores

other types of mixing patterns that might have contributed to the decrease in

network clustering over time. For example, is it possible to speculate that the

network becoming more sparse is indicative of higher interdisciplinary collabo-

ration and/or higher collaboration across different institutions? In this context,

the question that I would like to address is: what specific mixing patterns are

accountable for the decrease in the network’s clustering coefficient?

In the remainder of this chapter, I extend the evolutionary analysis presented

above to a set of node-based social and academic characteristics. The aim of this

analysis is to address the second part of the second research question, i.e., can

specific evolutionary features in the CENS collaboration networks be explained

in terms of changing configurations of organizational, disciplinary, institutional,

and international nature? I address this question in the next section, via a

detailed analysis of the dynamics of preferential attachment in terms of specific

socio-academic characteristics.

In this section, I look at the overall evolution of the socio-academic landscape
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of CENS. Leaving aside collaboration interactions for a moment, I present below

some statistics about the history of CENS in terms of number of participating

researchers, their affiliation, their department, and their academic rank. The

results presented in this section are not based on network data, i.e., they do not

illustrate any form of collaborative activity. Data presented here are statistics

obtained from the CENS annual reports. As explained in § 3.2.1, the annual

reports are the official reporting documents published yearly by CENS. They are

published in May and they report the progress of the center for the preceding

fiscal year. The first CENS annual report was published on May 1, 2003 and

contains crucial information regarding this nascent NSF Science and Technology

Center. The latest available annual report described in this dissertation is the

one published on April 30, 2009.

Although the exact structure of annual reports has changed over time, they

all have a similar overall organization. An annual report begins with an exec-

utive summary, followed by a general description of the research objectives and

areas. The bulk of the annual report is divided into two major sections. The first

section describes in detail the progress of all technology and application areas of

CENS. The second section describes education, knowledge transfer, and diversity

activities of CENS, together with a management plan, budget information and

a summary of outputs and impacts. Annual reports also include a list of schol-

arly materials published by CENS members in the reporting period, biographical

sketches of new CENS faculty, organizational charts, and press materials. Up

to year 2007, CENS annual reports also contain a comprehensive list of official

CENS participants, which includes names of participants, academic position, af-

filiation, department, gender, ethnicity, and citizenship. As explained in § 4.4, I

use these data (together with data gathered on personal websites, curriculum vi-

tae, and online directories) to construct the socio-academic profile of nodes in the
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collaboration networks. While the CENS socio-academic configuration presented

in § 4.4 refers specifically to the academic configuration of the collaboration net-

works, it is interesting to look at the official socio-academic distribution of CENS

participants. Some statistics collected from the annual reports are presented in

Table 6.3.

Quantity 2003 2004 2005 2006 2007
# Participants 57 198 321 305 277
# Graduating students 0 14 18 27 9

A
ffi
li
a
ti
o
n UCLA 135 235 213 204

USC 32 41 27 26
UC Riverside 5 21 30 28
Caltech 4 7 9 5
UC Merced 0 4 7 6

D
e
p
a
rt
m
e
n
t

CENS† 95 199 121 48
Computer Science 65 43 49 68
Electrical Engineering 38 23 29 43
Biology 3 16 23 27
Civil Engineering 0 6 16 14
Information Studies 3 3 2 4
Environmental Sciences 0 8 24 20
Education 3 3 8 15
Film, Media, and Design 2 2 2 3
Statistics 2 1 4 6

P
o
si
ti
o
n

Faculty 27 42 52 47 44
Graduate student 12 95 150 120 123
Admin Staff 9 9 13 25 37
Research Staff 6 6 26 37 30
Postdoctoral 2 2 6 10 3
Undergraduate 0 41 72 63 73

Data obtained from official Annual Reports. Blank cells indicate unavailable data.
†Under the heading “Department” of the Annual Reports, university departments,
research laboratories, field locations, and research centers are listed. Many indi-
viduals listed as “CENS” are likely to be affiliated with a university department,
but this information is not available.

Table 6.3: Evolution of the CENS socio-academic configuration,
2003-2007

Table 6.3 is based on the annual reports published by CENS since its incep-

tion up to 2007 (annual reports published in 2008 and 2009 do not include a
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comprehensive list of participants). The number of CENS participating members

has increased steadily over time from 2003 to 2005, from about 50 to just over 300

individuals. This population slightly shrinks in 2006 and 2007. The number of

CENS graduating students also has an increasing trend, and it oscillates between

zero in the first year, and 27 in 2006.

About two-thirds of all participants are affiliated with the lead university

(UCLA) at any time. Participants affiliated with the major participating uni-

versity (USC) are also constant through time, at about 10-15% of the yearly

population. Interestingly, UC Riverside grows into a major collaborating univer-

sity: in year 2004, it has only five participating members, but this number grows

to nearly 30 in 2007. Caltech and UC Merced only have a handful researchers

working on CENS projects at any time.

The distribution by department presented in Table 6.3 is likely to be inac-

curate. This is because annual reports conflate university departments, research

laboratories, field locations, and research centers into one heading, so that, for

example, CENS graduate student researchers from the Computer Science depart-

ment might be listed as “CENS” or “Computer Science”. Despite these inaccura-

cies, it is possible to see a general trend in which the number of participants from

application areas (Biology, Civil Engineering, Environmental Science) increases

over time, while technology research areas (Computer Science and Electrical En-

gineering) remain constant.

Finally, Table 6.3 presents participant distribution by academic position.

While nearly all categories increase in the presented time period, the follow-

ing trends are clearly evident from the data: the number of faculty only increase

slightly, from 27 in 2003 to 43 in 2007; postdoctoral, graduate and undergraduate

students, however, increase sharply in the first three years (graduate students, for
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example, rise from a mere 12 in 2003 to 150 in 2006). They decrease in number

in following years, but this decline might be due to an increase in the number of

graduating students (see above). CENS research and administrative staff increase

modestly over time.

Given the limited number of participating faculty, and their important influ-

ence in setting the research agenda and objectives, I can analyze more in detail

the dynamics in the population of participating faculty. The overall trend, pre-

sented in Table 6.3, is that the number of faculty almost doubles in the first two

years (from 2003 to 2005), but then slows down considerably. It is interesting to

look at what exact dynamics occurred during this time, i.e., what faculty entered

and exited the CENS list of participants? This information can be gathered by

inspecting Table 6.4, generated using information from the annual reports. Fac-

ulty listed as a CENS participants for a given year are marked by a bullet (•).

Prior participants that are dropped out of the list are marked by a cross (×).

Faculty names in bold typeface indicate CENS participants as of 2007.

Table 6.4 lists details of faculty participants (name, affiliation, and depart-

ment) for years 2003 through 2007. Faculty are separated by horizontal lines

based on the year of joining CENS, and organized in alphabetical order. The

table shows that of the 27 faculty listed in the 2003 report, the majority are from

UCLA and from the departments of Computer Science and Electrical Engineer-

ing. However, there is sufficient institutional and departmental diversity already

at the outset of CENS, with faculty from other member universities (USC, UCR,

UC Merced, Caltech) and from a wide mosaic of domains (from Atmospheric

Science to Civil Engineering, to Education). Nearly all faculty that “jump-start”

CENS remain part of the center for the first few years, and are still members

today. About six of them leave in year 2006 or 2007.
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Faculty name and affiliation 2003 2004 2005 2006 2007

Alkalai, Leon (Jet Propulsion Lab) • • • • ×

Allen, Michael (UCR, Biology) • • • • • •
=

p
re
se
n
t;

×
=

a
b
se
n
t;

b
o
ld

n
a
m

e
s
=

2
0
0
7
p
a
rtic

ip
a
n
ts

Borgman, Christine (UCLA, IS) • • • • •

Caron, David (USC, Biology) • • • • •

Daneshgaran, Fred (CSULA, EE) • • • • ×

Davis, Paul (UCLA, Earth & Space) • • • • •

Estrin, Deborah (UCLA, CS) • • • • •

Govindan, Ramesh (USC, CS) • • • • •

Hamilton, Michael (UCR, Biology) • • • • •

Harmon, Tom (UC Merced, Engineering) • • • • •

Ho, Chih-Ming (UCLA, Mech Eng) • • • • •

Judy, Jack (UCLA, EE) • • • • •

Muntz, Richard (UCLA, CS) • • • × ×

Potkonjak, Miodrag (UCLA, CS) • • • • •

Pottie, Greg (UCLA, EE) • • • • •

Requicha, Ari (USC, CS) • • • • ×

Rotenberry, John (UCR, Biology) • • • • •

Rundel, Philip (UCLA, Biology)) • • • • •

Sandoval, William (UCLA, Education) • • • • •

Soatto, Stefano (UCLA, CS) • • • • •

Srivastava, Mani (UCLA, EE) • • • • •

Sukhatme, Gaurav (USC, CS) • • • • •

Tai, Y.C. (Caltech, EE) • • • • •

Taylor, Charles (UCLA, Ecology) • • • • •

Turco, Richard (UCLA, Atmo Sci) • • • • ×

Wallace, John (UCLA, Civil & Env Eng) • • • • •

Yao, Kung (UCLA, EE) • • • • •

Zhou, Chong-Wu (USC, EE) • • • • ×

Burke, Jeffrey (UCLA, Film) • • • •

Chu, Wesley (UCLA, CS) • • × ×

Cuff, Dana (UCLA, Architecture) • • • ×

Furner, Jonathan (UCLA, IS) • • × ×

Hansen, Mark (UCLA, Statistics) • • • •

Heidemann, John (USC, Info Systems) • • • •

Jay, Jenny (UCLA, CEE) • • • •

Kaiser, William (UCLA, EE) • • • •

Kohler, Edward (UCLA, CS) • • • •

Millstein, Todd (UCLA, CS) • • • •

Palsberg, Jens (UCLA, CS) • • • •

Sax, Linda (UCLA, Education) • • • •

Urbashi, Mitra (USC, EE) • • × ×

Ambrose, Richard (UCLA, Environmental Sci) • • •

Enyedy, Noel (UCLA, Education) • × ×

Fitz, Michael (UCLA, EE) • × ×

Goldberg, Ira (Rockwell, Engineering) • × ×

Kohler, Monica (UCLA, Earth & Space) • • •

Mishler, Brent (UC Berkeley) • • ×

Saez, Jose (LMU, Civil & Env Eng) • • •

Stabler, Edward (UCLA, Linguistics) • • •

Vallejo, Edgar (UCLA, Biology) • • ×

Villasenor, John (UCLA, EE) • • •

Ye, Wei (USC, CS) • × ×

Allen, Edith (UCR, Botany) • •

Cody, Martin (UCLA, Biology) • •

Heaton, Tom (Caltech, Civil Eng) • ×

Majumdar, Rupak (UCLA, CS) • •

Margulis, Steve (UCLA, Civil & Env Eng) • •

Taciroglu, Ertugrul (UCLA, Civil & Env Eng) • •

Blumstein, Daniel (UCLA, Ecology) •

Golubchik, Leana (USC, CS) •

Sabol, Tom (UCLA, Civil & Env Eng) •

Table 6.4: CENS Faculty dynamics, 2003-2007
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In year 2004, fifteen new faculty become CENS participants. Almost all of

them are from UCLA. The two non-UCLA members that join this year are from

technical departments at USC (John Heidemann and Mitra Urbashi). Despite

being all from UCLA, the incoming faculty of 2004 present a diverse array of

specializations. While half of them are from the technical side of the spectrum

(CS and EE), the other half includes disciplines such as Architecture, Film/me-

dia, Education, Information Studies, and Statistics. Most faculty that joined in

year 2004 remain CENS participants until 2007. Many of them are principal

investigators and research area leaders at the time of writing.

In 2005, eleven new faculty join CENS collaboration. Again, most of the

incoming faculty are from UCLA, but the array of disciplines is less technical,

with faculty joining from departments of Education, Linguistics, Biology, Earth

& Space, Environmental Science. More than half of the faculty joining in 2005

will discontinue their participation with the Center by 2007.

In 2006, growth slows down for the first time. Ten faculty leave, but six

new faculty (from UCLA, UCR and Caltech) join CENS activities. Interestingly,

nearly all of the outgoing faculty are from technical disciplines, while incoming

faculty are from scientific and applied disciplines (Botany, Biology, Civil and

Environmental Engineering). This reorganization of participants, points to a

broader pattern of disciplinary readjustment of technology vs. science popula-

tions.

Finally, in year 2007, three applied scientists from member universities join

(Ecology, Civil and Environmental Engineering), while few others leave, bringing

the faculty population down to 43.

In the next section, the institutional, organizational, and departmental ar-

rangements that make up the socio-academic configuration of CENS are explored
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in conjunction with the evolution of the coauthorship, communication, and ac-

quaintanceship networks.

6.5 Network evolution and socio-academic configuration

The evolutionary analysis of degree-based assortativity presented in this chapter

elucidates the mechanisms of preferential attachment, i.e., the dynamics by which

scientists connect with each other based on their position in the network. As

explained in the previous section, this analysis is limited to the topology of the

network only: it ignores the socio-academic standing of the individuals under

study, and how this might have affected the mechanisms of attachment.

In this section, I extend the calculation of assortativity to a set of socio-

academic properties, by computing discrete assortativity coefficients. While de-

gree assortativity measures the extent by which nodes with similar degree (i.e.,

with similar centrality and position in the network) attach to each other, discrete

assortativity measures the extent by which nodes with similar characteristics

attach to each other. The characteristics analyzed here are the same already

employed in the structural analysis of the previous chapter (§ 5.2.3): academic

affiliation, department, position and country of origin.

Table 6.5 presents the evolution of discrete assortativity coefficients for the

coauthorship, communication, and acquaintanceship networks through the stud-

ied time periods, based on nodes’ academic affiliation, department, position and

country of origin. Discrete assortativity coefficients are calculated using Formula

3.3, which returns r = 1 when there is perfect assortative mixing, r = 0 when

there is no assortative mixing, and r = −1 when there is perfect disassortative

mixing. By analyzing these results, it is possible to understand how discrete
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assortativity coefficients have changed in the three collaboration networks, i.e.,

how scientists have connected with others from similar affiliation, department,

position, and country of origin over time. In the remainder of this chapter, I

present an in-depth analysis of these results.

6.5.1 Assortative mixing in the coauthorship network

The discrete assortativity coefficients relative to the evolution of the coauthorship

network (Table 6.5) are plotted in a graph (Figure 6.7), to aid interpretation and

discussion of the results. Figure 6.7 shows how discrete assortativity has changed

in the coauthorship network over time, i.e., the extent to which individuals from

the same academic affiliation, department, position and country of origin have

coauthored papers with each other. As explained earlier, a positive coefficient

(approaching r = 1) indicates perfect assortativity, i.e. homophilious collabora-

tions; a near zero coefficient (r = 0) indicates no assortativity; and a negative

coefficient (approaching r = −1) indicates perfect disassortativity, i.e., highly

variegated patterns of collaboration.

The coauthorship network has a moderately high variation in assortativity

mixing over time: as Figure 6.7 shows, coefficients range between a minimum of

-0.2 and a maximum of 0.5 between 1999 and 2010. Overall, the coauthorship

network is more assortative by academic affiliation and department, and less

assortative by academic position and country of origin. In particular, during

the first period, assortativity by affiliation and department rises sharply: by year

2005, CENS publications are largely authored between individuals working in the

same institutions and departments. In the second period, these two coefficients

decrease, indicating that coauthoring patterns become more inter-disciplinary

and inter-institutional. The rise in assortativity registered at the very end of
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Figure 6.7: Evolution of discrete assortativity mixing in the coauthor-
ship network

the time period (i.e., years 2009-2010) can be attributed to the network being

much smaller in size in those years. Country of origin follows a trend similar

to that of academic affiliation and department (increasing in the first period,

decreasing in the second period), but both its coefficient and fluctuation are much

smaller: the coauthorship network only becomes slightly assortative by year 2003,

but then drops back to a near-zero value, indicating neither a significant intra-

national nor international pattern of collaboration among CENS authors. In the

studied period, academic position has an essentially unchanged, null assortativity

measure. This means that individuals of all academic ranks coauthor papers with

others of any rank, without following specific preferential mechanisms.

This analysis of the extent and nature of assortative mixing patterns can be

pushed even further to reveal the specific components that contribute to the net-

work becoming more or less assortative. For example, the assortativity mixing by
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academic department in the coauthorship network, discussed above, shows an in-

crease in assortativity in the first period, and a decrease in the second period, i.e.,

CENS publications are initially authored by individuals from the same domain,

but in the second period, they become more and more inter-disciplinary. In this

context, the question at hand is: what specific collaborations are most responsi-

ble for the decrease and the increase in inter-disciplinarity? In the remainder of

this chapter, I address this question for every studied socio-academic property.

For each property, I inspect the collaboration pairs that are most responsible for

the observed assortativity trend. This analysis is useful both to validate and to

justify the results presented thus far.

Academic affiliation. In Figure 6.7, the assortativity coefficient in the

coauthorship network based on academic affiliation grows steadily over time,

until 2005 and then drops in the second period. This indicates that, coauthorship

patterns are intra-institutional at the outset, but then become more variegated.

Yet, in the latest snapshot studied here (year 2010) academic affiliation is the

single most assortative characteristic in the coauthorship network, suggesting

that CENS authors collaborate preferentially with individuals of their institution.

In order to investigate this finding further, I analyze the specific intra- and

inter-institutional collaborations that contribute to this assortativity trend. I

inspect the most prominent yearly mixing patterns, i.e., the institutional pairs

that make up the majority of collaboration volume in every year. These values

(raw counts) are presented in Table 6.6, accompanied by a stacked plot which

depicts the same values normalized by yearly volume.

Each row in Table 6.6 presents the volume of scholarly collaboration among

institutions. The top five rows in this table (IV-VIII), present the pairs that con-

tribute to inter-institutional collaboration. Clearly, as the coauthorship network
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affiliation pair ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
VIII UCLA- Caltech 0 0 0 1 1 5 14 17 17 6
VII UCLA - UC Merced 2 2 6 8 10 19 36 35 31 10
VI UCLA - MIT 3 4 7 20 22 26 32 27 20 12
V UCLA - UCR 2 2 2 2 6 8 24 43 43 27
IV UCLA - USC 27 29 36 63 69 87 125 129 110 66
III UCR - UCR 0 1 2 2 7 12 17 23 18 10
II USC - USC 19 19 48 109 129 162 152 128 116 112
I UCLA - UCLA 19 54 107 208 297 394 457 404 310 209

Totals 86 168 308 561 708 868 1088 1053 921 597

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

I

II

III

IV

V

VI
VII

VIII

The table at the top presents raw counts, i.e. the volume of coauthorship connec-
tions that exist among scholars of different or same institution. The stacked plot
at the bottom depicts the same values as proportion of the totals, i.e., normalized
by yearly volume.

Table 6.6: Academic affiliation pairs in the coauthorship network.

is undirected, the order of the pairs is not relevant (e.g., Caltech-UCLA is the

same as UCLA-Caltech). The bottom three rows (I-III), present the pairs that

contribute to intra-institutional collaboration. For example, in year 2000 there

are 19 coauthorship activities among individuals affiliated with UCLA. From a

network perspective, this means that in the year 2000, 19 out of 86 total edges
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connect nodes of affiliation type “UCLA”. In turn, 19/86 = 0.22 and thus, the

stacked plot below the table shows that about 20% of the total volume of collab-

orations in 2000 are UCLA-UCLA (I). Please note that years 1999 and 2010 are

not shown in the table and stacked plot because data are scarce in these years.

A visual analysis of academic affiliation pairs in the stacked plot of Table 6.6

reveals the following scenario. The increase in assortativity registered in the first

period can be attributed to the increase in intra-institutional collaboration at

UCLA (I): by year 2005, nearly half of the recorded scholarly collaborations are

between UCLA scholars. Intra-institutional collaborations at USC (II) increase

slightly during the same period. Also, the collaborations between UCLA and

USC scholars (IV) become less prominent from 2000 to 2005. These dynamics

are responsible for the coauthorship network becoming more intra-institutional

in the first period.

In the second period, assortativity mixing by affiliation slows down, i.e.,

the coauthorship network becomes slightly more inter-institutional. The pairs

that fluctuate the most in this direction during the same period are the inter-

institutional collaborations between UCLA and UC Riverside (V) and UCMerced

(VII): both were negligible in the first period, but become more prominent in the

second. Also, after 2005, the growth of intra-institutional collaborations within

UCLA (I) and USC (II) slow down considerably, making the network more var-

iegated in terms of institutional cross-fertilization.

In sum, the scholarly collaboration scenario is initially dominated by publi-

cations authored within UCLA and USC. The inception of CENS, in 2002, does

not provide an immediate boost of inter-institutional activity. However, by 2005,

intra-institutional collaboration starts dropping and new inter-institutional col-

laborations with partnering universities UC Riverside and UC Merced become
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more and more prominent. Despite this increase in inter-institutional collabo-

ration, affiliation is the single most assortative socio-academic property in 2009:

CENS authors write papers preferentially with others within their own institu-

tion.

Academic department. From Figure 6.7, the evolution of discrete assor-

tativity mixing based on academic department follows a trend very similar to

that based on academic affiliation: in the first period, up to about 2004, it grows

steadily; in the second period it drops considerably. Thus, coauthorship pat-

terns are very intra-disciplinary at the outset (scientists collaborate within their

own department) but then become more inter-disciplinary. It is interesting to

note, from Figure 6.7, that the growth of assortativity mixing by department

predates that by affiliation: department reaches a peak in year 2002, just prior

to the constitution of CENS; affiliation reaches a peak in 2005, when CENS is

already a consolidated research center. This result alone suggests that the incep-

tion of CENS did indeed contribute in making scholarly collaboration patterns

more inter-disciplinary, but authors hardly collaborated outside the walls of their

own institutions. I explore more in detail assortativity mixing by department,

by looking at Table 6.7, which presents prominent academic department pairs in

the CENS coauthorship network.

A quick visual inspection of Table 6.7 reveals that the dynamics of scholarly

collaboration at CENS in the period under study are far from stable. Intra-

departmental collaborations in Computer Science (I) make up about 50% of all

coauthorship volume in 2000; by 2009, they are halved. The strong presence of

intra-departmental collaborations in Computer Science is telling of the nature of

research being performed at CENS. The domain of networked sensing emerges

historically from computer network research and is thus, normally located as a
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department pair ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
X EECS - Film 0 0 0 0 3 10 20 23 24 15
IX Biology - Env Sci 0 6 9 14 21 19 19 20 24 18

VIII EECS - Statistics 0 0 0 10 16 24 41 35 34 22
VII EECS - Env Sci 0 0 0 1 3 8 36 42 37 18
VI EECS - Biology 9 9 5 2 2 21 72 112 113 88
V Comp Sci - Elec Eng 4 22 46 102 135 145 188 145 118 63
IV Civil Eng - Civil Eng 0 0 1 25 26 39 38 18 9 6
III Biology - Biology 0 5 12 14 23 29 32 38 42 36
II Elec Eng - Elec Eng 5 19 49 91 130 132 123 80 72 57
I Comp Sci - Comp Sci 42 75 130 219 255 279 277 242 169 107

Totals 86 168 308 561 708 868 1088 1053 921 597
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The table at the top presents raw counts, i.e. the volume of coauthorship connec-
tions that exist among scholars of different or same department. The stacked plot
at the bottom depicts the same values as proportion of the totals, i.e., normalized
by yearly volume.

Table 6.7: Academic department pairs in the coauthorship network.

branch in departments of Computer Science. Sensor network technologies, how-

ever, require the design and construction of wireless sensors, and, in turn, inter-

action with engineering disciplines follows necessarily. The increasing incidence

of Electrical Engineering in the CENS coauthorship network can be seen both in
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intra-departmental (II) and inter-departmental (V) patterns between 2000 until

2006, when they both settle down in volume.

Besides the network becoming less centered around intra-departmental col-

laborations in Computer Science, another factor that greatly contributes to its

increase in inter-disciplinarity in the second term (starting from 2003) is the ap-

pearance of new collaboration between the technology disciplines (CS and EE)

and applied natural and social sciences. Just one year after the inception of

CENS, many inter-disciplinary collaborations begin flourishing: between EECS

and Biology (VI), Environmental Sciences (VII), and Film and Media (X). These

collaborations directly reflect the evolution of the center’s research agenda and

application areas.

In sum, looking at paper collaborations, CENS has progressively detached

itself from a CS-centric scholarly record, to become more inter-disciplinary over

time. The increase in inter-disciplinarity can be attributed to CENS’ need to

develop sensor network technologies (Electrical Engineering), apply and deploy

them in field environments (Biology and Civil Engineering), and concurrently

deal with data analysis issues (Statistics).

It is important to mention that in Table 6.7, I list together both binned and

un-binned categories, e.g., “EECS” and “Comp Sci - Elec Eng”. This does not

influence the reliability of the results presented. The row indicated as “Comp

Sci - Comp Sci” indicates the volume of coauthorship among computer scientists

only. The row indicated as “Comp Sci - Elec Eng” refers to the volume of

coauthorship events among computer scientists and electrical engineers. These

results are interesting to be displayed separately. However, when reporting the

extent of collaboration of biologists with both computer scientists and electrical

engineers, I sum these values and include the results as “EECS - Biology”. This
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allows me to discuss the interaction among natural scientists (biologists) and

technologists (computer scientists and electrical engineers) more conveniently,

without affecting the indicated totals and proportions.

Academic position. It is clear, from Figure 6.7, that academic position

has a null assortativity mixing which stays unchanged through time. A look at

the academic position pairs of the coauthorship network, shown in Table 6.8,

confirms this finding.

The stacked plot in Table 6.8 shows a very linear, nearly unchanged volume

of collaboration among different academic ranks in the studied period. None of

the analyzed pairs stands out considerably. Some minor fluctuations are never-

theless observed. For example, collaborations among full professors (I) shrink

slightly, while coauthorship between research staff (II) and graduate students

(III) increases, in the same period. This result suggests that CENS research was

“bootstrapped” by faculty members, but later, as the center grew in size, more

and more researchers and graduate students became involved and patterns of

collaboration among them became more prominent (V).

In sum, the coauthorship network is weakly assortative with respect to aca-

demic position, i.e., coauthorship activities involve scholars of all ranks without

significant preferential attachment mechanisms. A decomposition of the promi-

nent academic position pairs reveals that, although collaboration pairs are overall

highly mixed according to academic position, full professors contributed to boot-

strapping scholarly collaboration at the outset of CENS. Graduate students and

staff researchers become major players in CENS scholarly publications as the

network and the research center become more mature.

Country of origin. As explained above and shown in Figure 6.7, the evolu-

tion of assortativity by country follows a trend which is similar to that of affiliation
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position pair ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
XI Assistant Prof - Grad 4 7 18 30 32 38 27 26 17 14
X Postdoc - Staff 2 8 10 14 17 16 29 36 34 24
IX Assoc Prof - Staff 1 2 11 23 26 34 47 41 35 22

VIII Assoc Prof - Grad 4 4 9 35 42 54 65 52 49 33
VII Assoc Prof - Prof 7 13 15 37 43 48 63 49 41 15
VI Professor - Staff 9 17 34 56 71 82 115 127 111 77
V Grad - Staff 6 14 31 51 70 90 116 125 113 82
IV Grad - Professor 16 32 57 107 127 148 152 131 108 68
III Grad - Grad 4 8 24 51 66 73 80 68 55 30
II Staff - Staff 0 1 1 8 16 31 50 72 64 43
I Professor - Professor 9 20 26 38 44 55 76 63 62 32

Totals 86 168 308 561 708 868 1088 1053 921 597
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The table at the top presents raw counts, i.e. the volume of coauthorship con-
nections that exist among scholars of different or same academic position. The
stacked plot at the bottom depicts the same values as proportion of the totals, i.e.,
normalized by yearly volume.

Table 6.8: Academic position pairs in the coauthorship network.

and department — with an increase in the first term, followed by a decrease in

the second term. However, assortativity measures for country of origin are much

closer to zero (i.e., no assortativity).

Table 6.9 shows the specific intra-national (I-III) and inter-national (IV-XI)

collaborations that account for assortativity mixing by country of origin. At
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origin pair ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
XI Australia - USA 0 0 4 6 6 8 12 14 16 10
X Taiwan - USA 2 2 2 3 7 8 19 16 16 6
IX Italy - USA 0 7 9 19 21 20 16 16 16 10

VIII China - India 6 8 13 19 22 20 10 5 2 1
VII South Korea - USA 0 1 1 2 9 17 23 20 17 15
VI Iran - USA 0 0 2 12 16 20 24 26 23 18
V China - USA 13 24 35 42 40 33 28 18 10 2
IV India - USA 17 26 42 108 142 164 197 176 159 123
III China - China 1 1 11 12 12 6 1 2 1 1
II India - India 2 4 29 47 62 59 53 39 37 31
I USA - USA 21 58 93 174 225 325 476 502 442 282

Totals 86 168 308 561 708 868 1088 1053 921 597
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The table at the top presents raw counts, i.e. the volume of coauthorship con-
nections that exist among scholars of different or same country of origin. The
stacked plot at the bottom depicts the same values as proportion of the totals, i.e.,
normalized by yearly volume.

Table 6.9: Country of origin pairs in coauthorship network.

the network’s outset, the vast majority of collaborations is among Americans

(I) and between Americans and Indian (IV) and Chinese (V) researchers. Be-

tween years 2001 and 2006, intra-national collaborations flourish within Indian
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(II) and Chinese (III) researchers, while China-US collaborations (V) shrink con-

siderably. These patterns are responsible for the increase in assortativity mixing

by country recorded from 2002 to 2006, visible in Figure 6.7. By year 2007, the

coauthorship scenario becomes regular again: it is dominated by collaborations

among American researchers (I) and inter-national collaborations between USA

and India (IV).

6.5.2 Assortative mixing in the communication network

Compared to the coauthorship network, discussed above, the communication net-

work presents a much more regular scenario of assortativity mixing patterns. As

shown in Figure 6.8, which is a pictorial representation of the values presented

in Table 6.5, it is evident that all recorded assortativity measures change very

slightly, or not at all, between 2005 and 2008. Moreover, all measures are very

low and largely remain between 0 and 0.1 levels. Overall, none of the recorded as-

sortativity measures stands out: online communication patters do not follow any

preferential attachment rule, as CENS individuals discuss with others regardless

of affiliation, department, position, and origin.

The biggest variation is recorded between 2005 and 2006: the network be-

comes slightly assortative by academic department and this value stays constant

throughout the end of 2008. This indicates that academic department is the only

socio-academic property to have a slight influence over online discussion patterns.

Since the study of assortativity mixing by academic affiliation, position, and ori-

gin in the communication network does not reveal any interesting fluctuations,

only mixing by academic department is further investigated here.

Academic department. The relatively high assortativity coefficient by aca-

demic department is entirely expected in a communication network: on mailing
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Figure 6.8: Evolution of discrete assortativity mixing in the communi-
cation network

lists, it is normal for individuals to connect with others that work in their own

area of specialization. In fact, one would expect even a much higher assortativ-

ity coefficient by department in this sort of network. This value can be better

understood with the aid of Table 6.10, which lists prominent department pairs of

mailing lists discussants. The bottom two rows in the table (I-II) present intra-

departmental communication within the departments of Electrical Engineering

and Computer Science. The top five rows present inter-departmental commu-

nication pairs (III-VII). A visual analysis of the stacked plot reveals that the

fluctuation recorded in Figure 6.8 between 2005 and 2006 is linked to a number

of minor adjustments: online communications between computer scientists stay

roughly the same (I), but those between electrical engineers increase consider-

ably (II). Between 2005 and 2006, a number of inter-disciplinary communication

trends are also established: members of Film, Theatre, and Media departments
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(III) and Statistics (V) begin using mailing lists on a regular basis. In the same

time period, biologists (VII) and environmental scientists (VI) slow down their

communication with computer scientists and engineers.

department pair ’05 ’06 ’07 ’08
VII EECS - Biology 31 31 13 12
VI EECS - Environmental Sciences 20 14 15 18
V EECS - Statistics 2 39 33 23
IV Computer Science - Electrical Engineering 35 68 57 49
III EECS - Film, Theatre & Media 0 22 29 50
II Electrical Engineering - Electrical Engineering 4 25 16 15
I Computer Science - Computer Science 152 149 144 127

Totals 255 468 339 392
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The table at the top presents raw counts, i.e. the volume of discussions among
scholars of different or same department. The stacked plot at the bottom depicts
the same values as proportion of the totals, i.e., normalized by yearly volume.

Table 6.10: Academic department pairs in the communication network.

Overall, this analysis shows that CENS mailing list activity is dominated

by interactions between technologists — computer scientists and electrical engi-

neers. Different disciplines have different collaborative practices: technologists

rely heavily on mailing lists to discuss their work, report on project progress,
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ask for help, etc. Their communication traces and published content are openly

available to all mailing list subscribers. Other disciplines rely on mailing lists

much less. Contribution from the scientific side of the collaborative spectrum is

only marginal (biologists and environmental scientists are only initially involved

in mailing list activity; their communication slows down considerably in later

years). Moreover, with the exception of Film, Theatre and Media, many other

non-technical disciplines are absent from the communication network. Disciplines

such as Civil Engineering and Education, largely represented in the coauthorship

network, do not rely on mailing lists for electronic communication.

6.5.3 Assortative mixing in the acquaintanceship network

A study of discrete assortativity in the acquaintanceship network (Figure 6.9)

does not reveal any major fluctuations in the time period studied. However,

both acquaintanceship and coauthorship networks display the same overall con-

figuration of discrete assortative mixing, i.e., with academic affiliation and de-

partment more assortative than academic position and country of origin. In

the first term, up to 2005, affiliation and department follow inverse trends, with

assortativity by affiliation increasing, and assortativity by department decreas-

ing. In the second term, the acquaintanceship network becomes less assortative

by department and assortativity by affiliation remains constant. Thus, while

in the first term CENS scholars are acquainted mostly with others within their

own department, acquaintanceship patterns become more interdisciplinary over

time, yet intra-institutional: scholars increasingly connect with others working

in other disciplines, but in their own institution. In the time period under study

the acquaintanceship network is only slightly assortative by country of origin and

academic position: there is only a minimal preference for individuals to be ac-
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quainted with others of their own country and of similar academic rank. Due to

their high coefficient values and their variation over time, assortativity mixing

measures by academic affiliation and department deserve a closer look.
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Figure 6.9: Evolution of discrete assortativity mixing in the acquain-
tanceship network

Academic affiliation. Prominent academic affiliation pairs in the acquain-

tanceship network are presented in Table 6.11. The rows of this table show the

number of scholars from different institutions that became acquainted with each

other in a certain year. Please note that year 2001 refers to both year 2001 and

earlier years. The bottom four rows in the table (I-IV) display intra-institutional

collaboration, while the top seven rows (V-XI) present inter-institutional acquain-

tanceship.

The values and diagram of Table 6.11 show that, at the outset, the network is

already richly populated by scholars of UCLA, USC, UCR, and Caltech. About

20% of both UCLA and USC scholars who know each other in 2009 met in
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affiliation pair ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
XI UCLA - Caltech 13 13 14 16 18 20 21 22 22
X USC - UCM 5 5 5 6 7 17 24 26 26
IX USC - UCR 5 6 12 15 19 25 26 27 28

VIII UCLA - MIT 7 10 15 20 29 30 32 34 34
VII UCLA - UCM 10 15 20 28 63 104 115 119 119
VI UCLA - UCR 28 42 59 82 108 113 123 125 125
V UCLA - USC 77 99 122 155 198 255 302 317 325
IV UCM - UCM 0 0 0 0 9 15 15 15 15
III UCR - UCR 24 27 31 41 51 52 52 53 53
II USC - USC 69 114 178 213 274 303 321 344 350
I UCLA - UCLA 257 357 499 706 945 1147 1352 1404 1429

Totals 785 1041 1370 1746 2246 2679 3058 3208 3261
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The table at the top presents raw counts, i.e. the volume of acquaintanceship
relationships (social connections) that exist among scholars of different or same
institution. The stacked plot at the bottom depicts the same values as proportion
of the totals, i.e., normalized by yearly volume.

Table 6.11: Academic affiliation pairs in the acquaintanceship network.

(or prior to) 2001. This indicates that many social, and necessarily academic

connections that are at the foundation of CENS predate even the earliest recorded

publications: acquaintanceship precedes coauthorship. This finding is investigated

further below, in § 6.6.
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Acquaintanceship between the affiliation pairs in Table 6.11 grows steadily

and uniformly over time: from 2001 to 2009, all the recorded pairs grow roughly

by a factor of five. It is clear that the increase in the assortativity coefficient

observed in Figure 6.9 between 2001 and 2005 can be attributed almost exclusively

to the increase in internal connections between UCLA scholars (I): this value

grows faster than the rest during this time. Other remarkable fluctuations can

be observed for CENS partner institutions UC Riverside an Merced. The personal

connections between UC Riverside scholars (III) solidify before the inception of

CENS (they reach 51 by year 2005), while those between UC Merced scholars

(IV) only begin after CENS is born (they are null, up to year 2004). This can

certainly be attributed to the fact that UC Merced is a much younger university

(only established in 2005), but also to the fact that UC Riverside played a bigger

role in the establishment of the CENS social landscape. Also, a look at the

growth of social interactions between these two institutions and UCLA and USC

(rows VI, VII, IX, X) reveals the central and growing role of UCR and UCM in

the CENS collaboration.

Academic department. In the acquaintanceship network, assortativity

mixing by academic department can be decomposed along the pairs presented in

Table 6.12. The bottom four rows in the table (I-IV) display intra-departmental

collaboration, while the top eight rows (V-XII) display inter-departmental col-

laboration. There are a number of fluctuations that deserve to be discussed.

First of all, all intra-departmental knowledge connections slow down with time:

computer scientists (I), electrical engineers (II), biologists (III), and civil engi-

neers (IV), initially all mainly acquainted with other in their own domain, begin

to build up inter-disciplinary connections. Technologists (computer scientists

and electrical engineers) have strong, constantly growing acquaintanceship con-

nections from the very beginning (V), and they increasingly make connections
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with other disciplines: Biology (VII), Environmental Science (VIII), Statistics

(X), and Film, Media & Theatre (XI). A combination of these dynamics is re-

sponsible for the overall assortativity pattern of Figure 6.9 — a slowly decaying

assortative coefficient by academic department, indicating the acquaintanceship

network becoming more inter-disciplinary over time.

department pair ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09
XII EECS - Civil Eng 8 9 14 15 20 26 31 33 35
XI EECS - Film 5 5 13 15 19 28 39 44 44
X EECS - Statistics 2 2 5 12 35 45 69 72 73
IX Biology - Env Sci 21 27 30 41 53 60 65 77 77

VIII EECS - Env Sci 5 7 20 33 61 89 93 94 94
VII EECS - Biology 24 33 46 74 109 143 165 174 174
VI EECS - Info Studies 36 52 59 67 87 106 154 162 169
V Comp Sci - Electr Eng 144 188 235 295 354 426 491 530 542
IV Civil Eng - Civil Eng 19 24 30 34 37 39 41 42 44
III Biology - Biology 39 46 51 64 73 85 89 89 92
II Electr Eng - Electr Eng 124 142 173 206 237 278 295 313 321
I Comp Sci - Comp Sci 216 318 457 594 742 812 879 897 905

Totals 785 1041 1370 1746 2246 2679 3058 3208 3261
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The table at the top presents raw counts, i.e. the volume of acquaintanceship
relationships (social connections) that exist among scholars of different or same
department. The stacked plot at the bottom depicts the same values as proportion
of the totals, i.e., normalized by yearly volume.

Table 6.12: Academic department pairs in the acquaintanceship net-
work.
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6.6 Sequential relationship: acquaintanceship and coau-

thorship

The results presented above point to interesting dynamics between the acquain-

tanceship and coauthorship networks. A quick comparison between Tables 6.6

and 6.11 shows that scholarly collaborations among and within UCLA and USC

scholars in 2001 are just above one hundred (29 + 19 + 54); the correspond-

ing figure in the acquaintanceship network is about four hundred (77 + 69 +

257). This means that while almost four hundred personal connections existed

in 2001, only one fourth of them were recorded on paper in the form of scholarly

collaboration. This finding points to a sequential relationship between acquain-

tanceship and coauthorship ties. I corroborate this finding by turning back to

the case study discussed earlier on. Figure 6.10 shows the evolution of scholarly

and social patterns in the UCLA Computer Vision Lab of UCLA (coauthorship

community #11). The figure shows these networks at time intervals 2001, 2003,

2005, and 2009. To put findings into context, the networks are annotated with

the academic affiliation of collaborating researchers.

Looking at Figure 6.10, the sequential relationship between acquaintanceship

and coauthorship becomes clear. In 2001, only one scholarly collaboration exists,

between nodes D and H. In the same year, however, 17 social relationships (out

of a total of 26) are already established, between 8 individuals in the community

(out of a total of 11). In other words, even though only one CENS-related paper

was being written in 2001 by two members of this community, most its members

were already acquainted with each other at this time. By year 2003, scholarly

collaboration increases, as more papers are being written and published by this

community. Also, by year 2003, nearly all members of this community know each
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Figure 6.10: Anecdotal example: evolution of coauthorship and ac-
quaintanceship.
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other. The one remaining acquaintanceship interaction (between nodes A and

D) is completed by year 2005. By year 2005, also the collaboration network is

nearly complete. The images at the bottom of Figure 6.10 show the coauthorship

and acquaintanceship networks at their latest recorded stage.

This case study suggests that social patterns anticipate scholarly collabora-

tion. This does not mean that coauthorship is a direct consequence of acquain-

tanceship: the act of befriending does not necessarily imply consequent scholarly

collaboration. Yet, I find that coauthorship activities take place along existing

social paths. For example, from Figure 6.10, it is possible to see that the new col-

laborations observed between the 2003 and 2005 scholarly networks (e.g., between

nodes D, E, and F ), emerge along social paths that were established in the years

between 2001 and 2003. Clearly, this analysis is limited by the fact that the roster

employed for the survey of acquaintanceship is based on the bibliographic record.

Thus, my analysis is only capable of identifying temporal relationships between

scholarly and social interactions that take place within the boundaries of coau-

thorship activities. As such, it fails to explain how social dynamics that operate

beyond scholarly circles potentially influence future coauthorship activities.

The sequential relationship between acquaintanceship and coauthorship can

also be investigated at a broader level, by studying the relationship between

scholarly and interpersonal relationships both in terms of academic affiliation and

department. Table 6.13 summarizes and compares selected values from Tables

6.6 and 6.11. In particular, it lists academic affiliation pairs within and between

UCLA, USC, UC Riverside (UCR) and UC Merced (UCM) in both the coauthor-

ship and the acquaintanceship network in different years. These values are also

associated with a Pearson product-moment correlation coefficient, r, which is a

measure of the dependence between them (r = 1 for linear dependence).
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affiliation pair net† ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 r‡

USC - UCM
acq 5 5 5 6 7 17 24 26 26

0.446
coauth 1 2 2 2 3 4 4 4 1

USC - UCR
acq 5 6 12 15 19 25 26 27 28

0.651
coauth 1 1 0 0 0 0 6 6 6

UCLA - UCM
acq 10 15 20 28 63 104 115 119 119

0.787
coauth 2 6 8 10 19 36 35 31 10

UCLA - UCR
acq 28 42 59 82 108 113 123 125 125

0.824
coauth 2 2 2 6 8 24 43 43 27

UCLA - USC
acq 77 99 122 155 198 255 302 317 325

0.771
coauth 29 36 63 69 87 125 129 110 66

UCM - UCM
acq 0 0 0 0 9 15 15 15 15

0.897
coauth 0 0 0 0 4 4 12 11 10

UCR - UCR
acq 24 27 31 41 51 52 52 53 53

0.875
coauth 1 2 2 7 12 17 23 18 10

USC - USC
acq 69 114 178 213 274 303 321 344 350

0.776
coauth 19 48 109 129 162 152 128 116 112

UCLA - UCLA
acq 257 357 499 706 945 1147 1352 1404 1429

0.682
coauth 54 107 208 297 394 457 404 310 209

†“acq” and “coauth” indicate acquaintanceship and coauthorship networks.
‡r is the Pearson product-moment correlation among the two list of values (acq
and coauth) for each affiliation pair (the more correlated the values, the closer r
is to 1). All correlations have a p-value < 0.5.

Table 6.13: Affiliation pairs in the coauthorship and acquaintanceship
networks: summary and statistical comparison

Glancing at the values of Table 6.13 for different affiliation pairs, it can be

noted that the volumes of collaborations in the coauthorship and acquaintance-

ship networks follow a very similar growth over the years. In particular, it can

be seen that the volume of personal connections (acquaintanceship) always ex-

ceeds that of scholarly connections (coauthorship) in any year and for every pair.

This indicates that, in the CENS community, coauthorship activity is rooted in

interpersonal knowledge relationships: acquaintanceship precedes coauthorship.

Moreover, the values of Table 6.13 suggest that the growth in coauthorship vol-

ume is linked to that of acquaintanceship, i.e., as more people become acquainted

with each other, they also start writing papers together. This finding is validated

by a Pearson product-moment correlation. It can be noted that the Pearson co-

efficient is high (i.e., close to 1) for nearly every affiliation pair. Only three pairs
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have r < 0.75: USC-UCM, USC-UCR and UCLA-UCLA. The first two can be

attributed to the overall small volume of articles written by USC scholars with

UCR and UCM scholars. Even though acquaintanceship relationships build up

quickly after the inception of CENS, through 2005, scholarly collaboration grows

much more slowly. The relatively low Pearson coefficient recorded for the UCLA-

UCLA pair can be attributed to the inverse phenomenon. Acquaintanceship ties

triple in volume in four years — from 2003 to 2008 — a sudden rise that cannot

be possibly replicated in coauthorship activity (coauthorship only doubles dur-

ing this time). In other words, the inception of CENS and the construction of

its headquarters laboratory at UCLA in 2005 greatly fosters social relationships

and acquaintanceship among researchers. Such increase in personal connections

is reflected in coauthorship activity but to a lesser extent. The physical proxim-

ity of the CENS laboratory does increase both scholarly collaboration and social

non-academic interactions. This is analyzed in more detail in the next section.

In a similar way, I investigate the relationship (or the lack thereof) between in-

terpersonal knowledge patterns and scholarly collaboration in terms of academic

domain. Table 6.14 lists department pairs in the coauthorship and acquaintance-

ship networks along with a Pearson correlation coefficient, for comparison.

A visual quick analysis of Table 6.14 reveals that one of the key characteristics

found in Table 6.13, i.e., that the volume of acquaintanceship ties in affiliation

pairs is greater than that of coauthorship ties, is not valid for every department

pair. Between years 2001 and 2004, for example, some coauthorship ties exceed

acquaintanceship ties between statisticians and technologists (EECS). The same

is also true of collaborations between civil engineers: between years 2004 and

2006, coauthorship activity surpasses acquaintanceship. These are, however, two

isolated cases. In all the other pairs studied here, it can be seen that, by and large,
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department pair net† ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 r‡

Biology - Env Sci
acq 21 27 30 41 53 60 65 77 77

0.812
coauth 6 9 14 21 19 19 20 24 18

EECS - Film
acq 5 5 13 15 19 28 39 44 44

0.907
coauth 0 0 0 3 10 20 23 24 15

EECS - Statistics
acq 2 2 5 12 35 45 69 72 73

0.814
coauth 0 0 10 16 24 41 35 34 22

EECS - Environmental Sci
acq 5 7 20 33 61 89 93 94 94

0.888
coauth 0 0 1 3 8 36 42 37 18

EECS - Biology
acq 24 33 46 74 109 143 165 174 174

0.925
coauth 9 5 2 2 21 72 112 113 88

Comp Sci - Electr Eng
acq 144 188 235 295 354 426 491 530 542

0.489
coauth 22 46 102 135 145 188 145 118 63

Civil Eng - Civil Eng
acq 19 24 30 34 37 39 41 42 44

0.373
coauth 0 1 25 26 39 38 18 9 6

Biology - Biology
acq 39 46 51 64 73 85 89 89 92

0.982
coauth 5 12 14 23 29 32 38 42 36

Electr Eng - Electr Eng
acq 124 142 173 206 237 278 295 313 321

0.297
coauth 19 49 91 130 132 123 80 72 57

Comp Sci - Comp Sci
acq 216 318 457 594 742 812 879 897 905

0.424
coauth 75 130 219 255 279 277 242 169 107

†“acq” and “coauth” indicate acquaintanceship and coauthorship networks.
‡r is the Pearson product-moment correlation among the two list of values (acq
and coauth) for each affiliation pair (the more correlated the values, the closer r
is to 1). All correlations have a p-value < 0.5.

Table 6.14: Department pairs in the coauthorship and acquaintance-
ship networks: summary and statistical comparison

scholarly collaboration is well rooted in personal relationships, i.e., coauthors

actually know each other in person, across all departmental pairs inspected.

What differs significantly from the previous analysis is the rate of growth

of acquaintanceship and coauthorship networks. While in Table 6.13 there is a

linear dependence between them (i.e., as more people become acquainted with

each other, they also increase their coauthorship activities), Table 6.14 reveals a

different scenario: technology-based disciplines and Civil Engineering score low

dependency, while natural sciences, statistics and film score very high. This

points to different social and scholarly practices by which technologists and other

scholars operate when collaborating within and across their disciplines. At one

end of the spectrum, technologists make so many personal connections with each

other so that it is hard to find a direct incidence of acquaintanceship on coauthor-
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ship: technologists at CENS have large social networks that grow independently

from their coauthorship networks. At the other end of the spectrum, scholars

from non-technical disciplines have fewer acquaintances in the CENS network,

but their authorship collaboration with technical scholars is directly dependent

on those acquaintances.

Thus, in the context of CENS research, the social networks of technical schol-

ars (computer scientists and electrical engineers) are extensive and go well be-

yond their coauthorship patterns. The social networks of other CENS scholars

(biologists, environmental scientists, statisticians, etc.) are smaller, but they are

instrumental to their coauthorship activity.

6.7 Physical proximity at the CENS headquarters

The results presented in this chapter point to the social nature of the CENS col-

laboration networks and the crucial role of interpersonal networks. In discussing

my results, I often refer to the importance of physical proximity in stimulating

social and scholarly interactions. My interpretation, however, is only based on ob-

servation of institutional and departmental affiliations. Although these two aca-

demic characteristics are telling of the approximate position of researchers—the

institution, and the department within an institution in which they are based—

they do not exactly designate their workplace, i.e., the principal place where

scientific work is conducted.

Collecting the geographical position of researchers’ workplace was among my

initial intentions, for this dissertation research. In fact, I did begin to collect

this information for every researcher in the population, but in the midst of data

collection, I realized that this process is hindered by two problems. First, it is very
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hard to find former workplace information post factum, i.e., researchers rarely

make available on their curricula and personal web pages the location of their

previous workplace. They do indicate previous job positions, affiliations, and job

descriptions, but rarely mention the exact location of their office or laboratory.

Second, even when such information is available, it needs to be decoded spatially,

i.e., the site plan of an institution is needed to interpret the geographical location

of a room name or a seating booth number. It turns out that it is very hard

to obtain the seat maps and site plans of office and laboratories where these

researchers are based. The seating map of the CENS headquarter laboratory,

at Boelter Hall 3551, is however publicly available. The latest available version,

compiled in March 2010, is reproduced in the Appendix, § A.3.

The CENS seating map shown in Figure § A.3 covers the entire space shared

by researchers, staff, and faculty in the CENS workspace. It excludes adminis-

trative offices, director’s office, and conference rooms. 3551 Boelter Hall is an

open-space laboratory with seating booths organized in seven rows (G, H, J, K,

L, M, N), three semi-private booths (T, S, R), and four semi-open office spaces.

For the purpose of the present discussion and to aid the analysis of proximity,

every row is regarded separately and denoted by its letter, whereas all the de-

tached spaces are grouped together under the letter ’A’. Figure 6.11 presents the

coauthorship and acquaintanceship networks of Boelter Hall 3551, depicting how

occupants of the CENS headquarters are connected to one another by coauthoring

and acquaintanceship relationships, respectively.

A visual analysis of Figure 6.11 reveals the same conceptual arrangement al-

ready observed throughout this dissertation: acquaintanceship patterns greatly

exceed coauthorship patterns. Within the CENS headquarters there are five

times more acquaintanceship than coauthorship interactions. This proportion
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is even greater than that observed in the networks as a whole (see Table 6.16),

revealing that social interactions are more marked within the CENS headquar-

ters. This result alone reinforces the finding that physical proximity fuels social

and scholarly interactions. But it is possible to push this finding further by an-

alyzing a finer granularity of proximity: at the level of seating rows. Table 6.15

lists coauthorship and acquaintanceship interactions among individuals that sit

in different rows of Boelter Hall 3551. It shows that the coauthorship network

of 3551 is lowly populated and neighbors tend to collaborate more prominently

(e.g., individuals in rows G, K, and L coauthor within their rows). The acquain-

tanceship network is much more populated and variegated: individuals of all rows

make acquaintances with one another.

Row A G H K L

co
au

th

A 0 0 1 3 4
G - 3 0 0 3
H - - 1 1 1
K - - - 6 4
L - - - - 5

A G H K L

ac
q
u
ai
n
t

A 6 10 5 34 14
G - 3 0 11 7
H - - 1 12 8
K - - - 28 32
L - - - - 6

The letters denote different seating rows of CENS headquarters, Boelter Hall
3551, at UCLA. The number in the cells denote the volume of coauthorship and
acquaintanceship interactions between individuals that sit in these rows.

Table 6.15: Physical proximity pairs in the coauthorship and acquain-
tanceship networks of Boelter Hall 3551.

This finding is confirmed by an analysis of discrete assortativity, summarized

in Table 6.16. The coauthorship network of Boelter Hall 3551 has a discrete as-
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sortativity coefficient by row seat of 0.332, very similar to assortativity levels by

affiliation and department in the entire CENS network. This suggests that look-

ing at coauthorship alone, the CENS laboratory can be considered a microcosm

of the entire collaboratory. The attachment rules that govern coauthorship at

the institutional and departmental level are replicated at a much smaller scale,

at the level of physical proximity in seating arrangements. This is also because

the specific location of individuals in 3551 loosely reflects departmental subdi-

visions. The acquaintanceship network, however, presents a different scenario.

Assortativity by physical proximity in the CENS headquarter lab is very min-

imal (0.058), suggesting that although there is a minimal preferential rule to

attach with others within the same seating area, acquaintanceship patterns in

Boelter Hall 3551 pervade single seating rows.

Coauthorship Acquaintanceship

CENS (total)
Nodes (individuals), n 391 385
Edges (collaborations), m 1 747 4 805
Assortativity, r
....by affiliation 0.301 0.319
....by department 0.236 0.251

CENS (Boelter Hall 3551)
Nodes (individuals), n 24 25
Edges (collaborations), m 32 177
Assortativity, r
....by seating row 0.332 0.058

Table 6.16: Assortativity by workplace location (seating row).

Overall, this analysis is indicative of the prominence of interpersonal net-

works at CENS. While acquaintanceship interactions are pervasive at the CENS

collaboratory, as a whole, they are even more pronounced in the context of its

headquarter: acquaintanceship patterns diffuse widely within Boelter Hall 3551

regardless of geographical location or academic association.
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Figure 6.11: The coauthorship and acquaintanceship networks of Boel-
ter Hall 3551.
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6.8 Summary

This chapter describes the findings of an evolutionary analysis of collaboration

networks at CENS. Three networks: of scholarly authorship, communication on

mailing lists, and social acquaintanceship are analyzed across their temporal com-

ponents to reveal the collaboration dynamics by which researchers connect on

different platforms.

I begin with an evolutionary analysis of network topology and the dynamics

of preferential attachment. The coauthorship network is found to be small and

very fragmented at the outset, but it later grows into a more extensive, connected

network, with a solid CENS author base. Over time, the coauthorship network

becomes less cliquish, and more uniform. An analysis of degree assortativity

reveals that the coauthorship network is poorly assortative, i.e., the standing

of an author is not a major driver of their collaboration patterns. The network

based on mailing list communication presents a much more homogeneous, hardly-

varying scenario of collaboration. It is small and centered around one connected

component. Although communication hubs do exist, the network is fairly sparse

and is not governed by any preferential attachment rules: researchers commu-

nicate with others regardless of centrality and prestige. The social network of

acquaintanceship is the most dense of all studied networks. Many acquaintance-

ship relationships exist at its outset and they increase significantly over time. At

the latest recorded snapshot, the CENS social network is highly clustered and

connected — a small-world. Although preferential attachment mechanisms exist

at the outset, they slow down with time, and the network becomes so densely

connected that most nodes are connected to many others (“everyone knows ev-

eryone”).

In the second portion of this chapter, I connect the above findings to the
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evolution of the CENS socio-academic configuration. By a content analysis of

CENS annual reports, I describe the evolution of the center’s socio-academic

landscape in terms of its changing human composition. This analysis uncovers

the formation of a growing core of faculty members. Initially populated by faculty

from technical disciplines, this community becomes more inter-disciplinary with

time.

This socio-academic information is used to extend the analysis of assortativity

to a number of discrete characteristics to uncover how researchers with similar

socio-academic profiles attach preferentially with each other. Among the stud-

ied socio-academic characteristics, the communication network does not present

any major attachment rules. The coauthorship and acquaintanceship networks

are found not to be assortative by country of origin and academic position, i.e.,

these properties do not have a direct influence on collaboration patterns. How-

ever, they are moderately assortative by academic affiliation and department, i.e.,

individuals that belong to the same institution and department tend to write pa-

pers with and befriend preferentially others within their own institution and their

own academic specialization. Both networks become more inter-disciplinary with

time, i.e., over the years, researchers tend to connect more, both on paper and

in person, with others from different departments. Affiliation, however, becomes

more assortative; over time, researchers favor scholarly and personal connections

within their own institutions.

In the concluding two sections of this chapter, I employ the coauthorship

and acquaintanceship networks to perform two specific analyses. First, I analyze

the temporal relationship between them, finding a sequential relationship: ac-

quaintanceship precedes coauthorship. Second, I perform a site-specific analysis

of physical proximity. I find that the CENS headquarter office at Boelter Hall
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3551 is a microcosm of the broader CENS ecology: acquaintanceship patterns

are largely more prominent than coauthorship patterns and diffuse widely within

the laboratory regardless of exact workplace location (seating row).
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CHAPTER 7

Discussion

The results presented thus far illustrate the configuration and evolution of the

CENS collaborative ecology in terms of selected manifestations of collaboration:

scholarly coauthorship, communication on mailing lists, and personal acquain-

tanceship. In this chapter, I distill and interpret these results, and frame them

in the context of related literature. I begin, in the next section, by presenting a

summary of the findings of this dissertation. The sections that follow discuss the

methodological and theoretical implications of my research for related studies of

scientific networks and cyberinfrastructure.

7.1 Summary of the results

This dissertation examines the topology, structure, and evolution of scientific

collaboration networks in a modern research collaboratory. Many of the results

presented in this dissertation cannot be easily summarized in a compact tabular

format, especially those relative to network evolution. However, for simplicity of

reference, I have compiled, in Table 7.1, a list of the key topological and structural

properties of the coauthorship, mailing list communication, and acquaintanceship

networks.
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Property Coauthorship Communication Acquaintanceship

Nodes (individuals), n 391 119 385
Edges (collaborations), m 1 747 994 4 805
Connected components 5 (377, 5, 4, 3, 2) 1 (119) 1(385)
Diameter (largest distance) 6 4 5
Average path length, � 2.952 2.095 2.427
Maximal cliques 291 368 5 925
Largest clique 14 14 20
Clustering coefficient, C 0.301 0.461 0.359
Structural communities 14 7 8
Comm. overlap, χ2 (p-value)
....coauthorship - 4.54× 10−7 2.2× 10−16

....communication 4.54× 10−7 - 1.6× 10−2

....acquaintanceship 2.2× 10−16 1.6× 10−2 -

....affiliation 2.2× 10−16 0.070 2.2× 10−16

....department 2.2× 10−16 0.081 2.2× 10−16

....position 0.024 0.20 7.3× 10−4

....origin 0.0023 0.23 6.22× 10−8

Assortativity, r
....by degree 0.013 -0.057 -0.060
....by affiliation 0.301 0.047 0.319
....by department 0.236 0.113 0.251
....by position 0.019 0.038 0.086
....by origin 0.071 -0.019 0.136
....by seating row (Boelter Hall) 0.332 - 0.058

This table summarizes some basic topological and structural properties of the coauthorship,
communication, and acquaintanceship networks: number of nodes (n) and edges (m), number
of connected components, diameter of the largest connected component, average path length
(�), number of maximal cliques, size of the largest clique, clustering coefficient (C), number of
detected structural communities, p-value of the test of independence (χ2) between structural and
socio-academic communities, and assortativity by degree and socioacademic properties (2008
values).

Table 7.1: Summary of the main results found for the coauthorship,
communication, and acquaintanceship networks.
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The remainder of this section reports the main results of this dissertation. I

begin by summarizing the results of the topological analysis (points 1-3), followed

by the results of the structural analysis (points 4 and 5). Later, I report the

findings of assortativity and preferential attachment analyses (points 6 and 7)

and the study of network evolution (points 8 and 9). The final item in the list

covers separately some key findings relative to the communication network built

from mailing list data (point 10).

1. Acquaintanceship patterns extend beyond coauthorship circles.

The overall configuration of the networks of collaboration, introduced in Chapter

4, and summarized in Table 7.1, is useful to draw some conclusions relative to

the fundamental modes of collaboration at CENS. I found that CENS research

involves nearly 400 individuals. Over a period of 10 years (2000-2009), these

individuals author over 600 publications, for a total of 1747 coauthoring rela-

tionships (coauthorship edges). The same population is internally linked by 4805

personal relationships (acquaintanceship edges). This result alone suggests that

acquaintanceship ties are far more numerous than are coauthoring ties (4805 vs.

1747). This indicates that there are more researchers connected to each other via

personal relationships than by coauthorship. This finding, which is even more

pronounced within the CENS headquarters office (at Boelter Hall), points to the

inherent social nature of the CENS collaboration ecology.

2. All networks of collaboration are well-connected: average path

length is low. With the analysis of configuration and topology, presented in

Chapter 4, and also summarized in Table 7.1, I find that all the collaboration

networks feature a giant component, i.e., a connected portion of the graph that

includes the majority of nodes. Nodes in the giant component are accessible by

simple paths. In the networks analyzed in this dissertation, these giant compo-
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nents have diameters of length six or less. This means that six steps, at most,

are required to connect the two most remote nodes in the networks. I also find

that the average path length of these networks is very low—between two and

three. For example, the CENS coauthorship network has an average path length

of 2.952 (from Table 7.1), indicating that, on average, any node in this network

can be reached from any other by only performing just under three steps. Short

diameter and average path length connote a well-connected network in which

information can transfer easily between nodes. Well-connected networks are cru-

cial to productivity, for they enable knowledge exchange and cross-fertilization

of ideas. For example, in the CENS acquaintanceship network, an average path

length of two means that it takes only two steps, on average, to transfer infor-

mation from a node to another. This means that even if I (Alberto) have only 30

acquaintances at CENS (accessible via path length = 1), I can potentially reach

the entire CENS population by only performing one step outside my social circle,

i.e., by asking my acquaintances to introduce me to theirs (path length = 2).

3. All networks of collaboration are sparse: clustering coefficient

is low. The clustering analysis presented in Chapter 4 reveals that all networks

of CENS collaboration have low clustering coefficients. For example, the CENS

coauthorship network has a clustering coefficient of 0.301 (from Table 7.1). This

means that the coauthorship network is not very dense, i.e., it does not have a

high number of cliques. In other words, although authors do organize themselves

in communities of collaboration, they tend to write papers both within and out-

side of their closest circle of collaboration. All networks of CENS collaboration

have a similar sparse topology. Similar clustering coefficients are observed across

all studied networks, suggesting that the modalities by which CENS researchers

cluster together do not change significantly based on the platform of collabo-

ration: whether it is scholarly papers, mailing lists, or interpersonal knowledge
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relationships, researchers form communities that result in similar topologies.

4. Coauthorship and acquaintanceship communities overlap signif-

icantly. In Chapter 5, I present a comparative analysis of community structure

at CENS. I subdivide the networks of collaboration in structural communities,

i.e., groupings of researchers that are highly connected in these networks. Using a

community detection algorithm, I find that these networks are composed of 14, 7

and 8 structural communities, respectively (Table 7.1). A comparative analysis of

these communities reveals the following relationships (also summarized in Table

7.1): (a) coauthorship and acquaintanceship communities overlap significantly;

(b) communities of coauthors and mailing list discussants overlap slightly; (c)

communities of discussants and acquaintances do not overlap significantly. These

findings are telling of the modalities by which researchers collaborate across dif-

ferent platforms. The first finding, in particular, elucidates the mechanisms of

social and scholarly interaction. It shows that in the field of sensor network

research, and in the context of the collaboratory studied here, some form of per-

sonal relationship exists between coauthors. I find that tight-knit communities

of coauthors overlap fairly well with communities of acquaintances, i.e., groups

of researchers that actually know each other.

5. Coauthorship and acquaintanceship communities are internally

mono-institutional and mono-disciplinary. In Chapter 5, I push further

the comparative structural analysis discussed above, to investigate how topo-

logical structures relate to the organizational, disciplinary, institutional and in-

ternational arrangements of CENS collaborations. Findings from a comparison

between structural and socio-academic communities across all studied networks

are summarized in Table 7.1. They show significant overlap between scholarly

communities and academic affiliation and department. This means that commu-
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nities of coauthors tend to be populated with individuals working in the same

institution and domain. A similar finding is obtained for the acquaintanceship

network, indicating that communities of people who know each other are mono-

institutional and mono-disciplinary. These communities are also found to be

slightly homophilious in terms of academic position and country of origin. Fi-

nally, no dependence is found between communities of mailing list discussants

and their socio-academic composition: discussion groups are variegated in terms

of their disciplinary and institutional components.

6. Network centrality of researchers has very little effect on their

collaboration patterns. In Chapter 6, I look at the evolution of assortative

mixing patterns in the CENS collaboration networks. I begin by looking at the

simplest form of assortativity mixing, by degree. This measure illustrates how

individuals with different degree ranks, i.e., of different centrality in the network,

connect with others. For example, is it fair to speculate that prolific authors in

this network are more likely to collaborate with other prolific authors? My anal-

ysis of degree assortativity reveals that all the analyzed networks at CENS show

very little (or no) preferential patterns of this kind (Table 7.1). An historical anal-

ysis of assortativity measures (Table 6.1 in Chapter 6), reveals that in the years

prior to the inception of CENS, the coauthorship network is highly fragmented

and cliquish. At this time, the network is slightly assortative—authors tend to

connect with other authors with similar standing. In later years, the network

quickly becomes more uniform, a solid core of scholarly collaboration emerges,

and assortativity drops to zero or near-zero values, suggesting that authors’ pres-

tige has no direct incidence on collaboration patterns. The communication and

acquaintanceship networks exhibit very poor assortativity from the very begin-

ning and their degree assortativity levels are essentially unchanged throughout

the time period studied: communication on mailing lists and acquaintanceship
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patterns are not influenced by standing in the network, i.e., by how much someone

interacts on a mailing list, and by how well they are known in the community.

7. Researchers write papers and make acquaintances preferentially

with others within their own institution and departments. In the second

portion of Chapter 6, I extend the evolutionary study of assortativity to a set of

socio-academic characteristics, to reveal how different academic configurations of

collaboration govern the dynamics of attachment. In other words, I address the

question: how do individuals with a similar socio-academic profile connect with

one another? From this analysis the following scenario emerges. The social and

scholarly networks are found to be moderately assortative by academic affiliation

and department, i.e., individuals from the same institution and the same depart-

ment tend to preferentially collaborate and to know each other. This finding

validates the results of the structural analysis: that coauthorship and acquain-

tanceship communities are internally mono-institutional and mono-disciplinary.

It indicates that besides the mechanisms of attachment that exist at the local

level, i.e., within structural communities, global patterns also enable collabora-

tion with peers in their own institution and department. None of the studied

networks are assortative by academic position. This indicates that researchers of

all ranks (professors, staff researchers, graduate students, etc.) connect on paper,

on mailing lists, and in person without any attachment preference. This finding

corroborates the above remark about the absence of prestige effects in sensor

network research collaboration. Besides being highly mixed in terms of aca-

demic position, CENS collaboration networks are also found to be highly mixed

in terms of country of origin, i.e., the nationality of researchers does not have a

direct influence on the dynamics of collaboration. Finally, an analysis of physical

proximity in the workplace (limited to Boelter Hall 3551) reveals that neighbor-

ing researchers coauthor preferentially with neighbors (i.e., researchers seating
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in their vicinity). No direct relationship is observed between physical proxim-

ity and acquaintanceship: social patterns at Boelter Hall diffuse throughout the

laboratory regardless of seating location.

8. The coauthorship and acquaintanceship networks become both

more intra-institutional and inter-disciplinary over time. The temporal

analysis of assortativity mixing presented in Chapter 6 illustrates the attachment

mechanisms observed in the CENS collaboration networks. As noted above, in

the coauthorship and acquaintanceship networks, assortativity coefficients by af-

filiation and department are high. A temporal investigation of these coefficients

reveals, however, that these properties evolve according to different dynamics.

While assortativity by affiliation increases over the time period under study, af-

filiation by department decreases. The first portion of this finding indicates that

not only are researchers found to connect preferentially within their institutional

boundaries (both on paper and in person); they also do so at an increasing rate,

making the social and scholarly networks more intra-institutional over time. My

in-depth analysis of assortativity patterns reveals that the lack of interdisciplinary

growth is due to the high and increasing volume of collaborations within UCLA

and USC: most of CENS work is performed within the walls of these institutions.

Although some inter-institutional collaborations appear as CENS matures, no-

tably with partnering universities UC Riverside and UC Merced, the coauthor-

ship and acquaintanceship networks remain remarkably intra-institutional. The

second portion of the finding indicates that, although researchers connect prefer-

entially with others within their own discipline, in the long run, both scholarly

and social networks become more variegated in their disciplinary configuration.

A temporal decomposition of department pairs reveals a drastic decline of schol-

arly collaboration between computer scientists and between electrical engineers

in the period under study, and an increasing volume of collaborations between
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technologists and scholars from natural sciences, social sciences, and media schol-

ars.

9. Acquaintanceship precedes coauthorship. The temporal analysis of

attachment dynamics presented in Chapter 6 exposes yet another characteristic

about the CENS collaboration ecology: scholarly interactions are found to be

preceded by acquaintanceship. I find that some fundamental social connections

among CENS researchers predate the oldest available publications: researchers

indicate that they have known each other in person prior to becoming scholarly

collaborators. This finding confirms the crucial role of social cohesion in this

scientific research center.

10. Network centrality and socio-academic profile of researchers

have no effect on their patterns of communication on mailing lists.

While the social and scholarly arenas are governed by institutional and disci-

plinary attachment rules, as well as minor prestige-based mechanisms, I find no

direct dependence between socio-academic profile and standing of researchers and

their communication activity on mailing lists. This means that these interactions

are highly mixed and involve both frequent mailing list users and occasional ones,

from a variegated mosaic of disciplines and institutions. The lack of attachment

rules can be attributed to data sparseness and to the very open nature of mailing

list platforms.

This summary of results is a review of the mechanisms of collaboration that

operate at CENS, based on the structure and evolution of its scholarly, commu-

nication, and social networks. In the following sections, I reflect on these results

and discuss how they compare and complement related research on scientific col-

laboration.
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7.2 A fluid, non-cliquish small-world

The analysis of network topology presented in this dissertation indicates that

all CENS collaboration networks share a peculiar topological configuration. I

have found that both average path length and clustering coefficient are fairly

similar across networks of coauthorship, communication, and acquaintanceship.

Average path length and clustering coefficient are important network measures

as they are telling of the small-world nature of a network. The average path

length of a network is simply the average of all paths between all of its nodes.

As explained throughout this dissertation, average path length also gives an idea

of the information transfer of a network: the smaller the average path length,

the more connected is the network, i.e., the easier it is to transfer information

around it. Clustering coefficient is a measure of clique density in a network. The

higher the clustering coefficient, the more clustered and cliquish is the network.

When a network has high clustering coefficient and short average path length, it

exhibits small-world properties [115]. A small-world is a network in which any

two nodes are only a few steps apart, regardless of network size. In a small-world

network, individuals are not necessarily all connected to each other, yet they are

easily reachable from one another via a short path. My results indicate that the

CENS collaboration networks are hybrid variants of small-worlds: they have very

low average path length, but not a significantly high clustering coefficient. This

makes the CENS topological configuration worth discussing further, especially in

comparison to other collaboration networks.

Small-world effects have been noted in a number of scholarly networks1. For

example, coauthorship networks in biology [132, 133] and neuroscience [61], have

1Table A.1 in the Appendix presents average path length (�) and clustering coefficient (C)
for a number of published networks, alongside the networks of CENS collaboration. The table
is subdivided according to the network type: bibliographic, communication, and social.
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fairly low average path lengths (� = 4.92 and � = 5.7, respectively) and high

clustering coefficients (C = 0.60 and C = 0.76, respectively). Coauthorship

networks in physics have been found to have subtler, but still tangible, small-

world effects, as they have higher average path length (� = 6.19) and slightly lower

clustering coefficient (C = 0.56) [132, 133]. In sum, the coauthorship networks

constructed from biology, neuroscience, and physics papers approximate very well

the typical properties of small-worlds.

Small-world effects have also been found in social networks. For example,

Watts and Strogatz [115] analyzed the topological properties of a Hollywood

actor network, in which two actors are joined to each other if they have acted in

a movie together, uncovering strong small-world effects (� = 3.48 and C = 0.78).

A very similar configuration was found in the network of American corporate

company directors (� = 4.60 and C = 0.88) [171]. These results demonstrate

that both the social networks of Hollywood actors and company directors are true

small-worlds: both actors and directors form cliquish circles of acquaintanceship

(high clustering coefficient) and are reachable within very few hops in the network

(short average path length).

The CENS coauthorship and acquaintanceship networks deviate from this

small-world model2. They have a hybrid configuration, with very low average

2I have intentionally excluded the communication network from my discussion on small-
world topology and preferential attachment. This is not because the topology of the com-
munication network differs from that of the coauthorship and acquaintanceship networks. In
fact, it presents very similar properties: low average path length, low clustering coefficient, and
near-zero assortativity. I do not discuss it for two reasons. First, my mailing list data are fairly
scarce: only four years (as opposed to ten years for the other networks), and one fourth of the
entire population (119 individuals out of 391). Data scarcity makes the communication network
not very appropriate for comparative analyses. Second, there are not many other networks to
compare these data to. While many studies of communication networks exist, not many of
them look at semi-public mailing lists, like the one I have. For example, networks of email
correspondence [172] and peer-to-peer file exchange [173] have both been shown to exhibit poor
small-world properties. However, these networks are based on very different communication
traces and comparing them to the CENS mailing list network is not useful or informative.
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path length and low clustering coefficient (see Table 7.1 for details). What rea-

sons can be found behind this hybrid form of small-world configuration? Why

is it that individuals in the CENS networks are very close to each other (short

average path length), yet they do not form cliquish clusters (low clustering coeffi-

cient), as it is observed in many similar networks? The peculiar “small-worldish”

configuration of the CENS coauthorship and acquaintanceship networks can be

explained by analysis of their attachment patterns. My analysis of degree assorta-

tivity has shown that the network centrality of researchers has very little effect on

their collaboration patterns. The degree assortativity of a network measures the

extent to which nodes with similar degree preferentially attach to one another.

High degree assortativity in a network suggests the existence of prestige-based

mechanism, as individuals with high degree attach to others with high degree.

Network studies of scientific coauthorship networks have shown moderate de-

gree assortativity coefficients3. For example, the network of coauthorship in

physics has a significantly high assortativity coefficient (r = 0.363) indicating that

very prolific physicists tend to coauthor papers with other physicists of similar

high standing [132, 133]. The coauthorship networks of biologists [132, 133] and

mathematicians [111, 174] have been found to have lower coefficients (r = 0.127

and r = 0.120, respectively). Yet, all these values point to the existence of a mod-

erate form of prestige-based mechanisms in coauthorship patterns. The near-zero

assortativity coefficient of the CENS coauthorship network (r = 0.013), as well

as its evolution pattern, indicate a contrasting scenario: prestige has essentially

no influence on the way that coauthoring relationships are established. This is

the main reason behind the small-worldish topology of the CENS coauthorship

network. Its low degree assortativity means that as new members enter the CENS

3Table A.1 in the Appendix presents degree assortativity (r) for a number of published
networks, alongside the networks of CENS collaboration.

209



collaborative ecology (with low degree) they begin to collaborate both with pro-

lific and with marginal authors. This constant mixing between authors of all

degrees keeps the network from becoming cliquish, i.e., very prolific authors do

not isolate themselves from the rest of the network.

Exactly the same observation can be made for the network of CENS ac-

quaintanceship. The social networks presented above—of movie actors [115] and

company directors [171]—have both been found to exhibit some form of assorta-

tivity (r = 0.208 and r = 0.276, respectively). This means that both the world of

entertainment and that of corporations are ecologies in which prestige and popu-

larity matter. The CENS acquaintanceship network has a different configuration.

With a near-zero assortativity coefficient (r = −0.060), it is an open, inclusive

ecology, not subject to prestige-based mechanisms.

The lack of prestige-based mechanisms accounts for the “small-worldish” con-

figuration of the CENS coauthorship and acquaintanceship networks. These net-

works have a remarkably similar topological configuration: they are small-worlds,

for the distance between individuals is very small (low average path length); they

are open and not cliquish (low clustering coefficient); they are fluid and inclu-

sive, for individuals of all degrees collaborate and know each other regardless

of standing (near-zero degree assortativity coefficient). This finding is telling of

both social practices and authorship conventions at CENS.

Regarding social practices and norms, my finding that the configuration of

the CENS acquaintanceship network is one in which “everyone knows everyone”

substantiates the fact that CENS is a fluid social ecology in which befriending

patterns are ubiquitous and are not influenced by standing. The analysis of phys-

ical proximity patterns at Boelter Hall 3551 (the CENS headquarters) presented

in § 6.7 corroborates this view: the physical and organizational configuration of
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the CENS laboratory is one that facilitates social interaction. This open social

configuration not only benefits young students and newcomers, but it also con-

tributes to making CENS a more diverse and inclusive collaborative environment.

It is also interesting to employ results of this research to reflect on the na-

ture of coauthorship conventions in this research community. My study offers a

portrait of the social, disciplinary, institutional, international arrangements that

compose CENS coauthorship. My analysis of assortativity, in particular, provides

clues as to the preferential attachment patterns of authors, and by extension, to

the nature of coauthorship in multi-disciplinary collaboratory research. I found

that researchers coauthor preferentially with others within their department and

institution. Yet, scholarly collaboration is largely inclusive: scholars of different

ranks (faculty, graduate students, staff, etc.) and of different network degrees

(both prolific authors and non-prolific authors) are observed to collaborate on

scholarly papers without specific prestige-based attachment rules. This is not

an isolated finding of my network analysis; it is consonant with common CENS

authorship norms that support inclusion of scholars of all ranks in the prepa-

ration and publication of articles: Master’s students, Undergraduates, Summer

Program visitors, as well as other participating researchers at early stages of their

career.

My use of assortativity analysis as an observational lens to peer into the com-

position of author lists confirms the view of an heterogeneous, inclusive authoring

environment, but signals new questions about the means by which researchers

get credit for their work. Since successful scholarship is the means to get tenure,

promotions, and community recognition, one would expect more monographs,

or at least a more conservative, elitist authorship attitude, i.e., a preference to

author alone or with few prestigious scholars. However, my results show an inclu-
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sive, non-elitist authorship scheme, implying that different recognition and credit

mechanisms may be at play in such an inclusive research environment. Not much

research on collaboratories and cyberinfrastructure has yet addressed the influ-

ence of prestige and elitism on the advancement of scientific collaboration. A

study by Finholt and Birnholtz [175] puts this problem forward, by providing a

preliminary review of differences in professional culture among three distinct U.S.

National Science Foundation cyberinfrastructure initiatives. Related research on

invisible colleges and similar high-level interpersonal structures of scientific col-

laboration has historically addressed the issue. In a 1971 article, de Solla Price

posits that it is via mechanisms of inequality, elitism and close-knit connection

that the hierarchy of invisible colleges has emerged [176]. The existence of elitist

structures has been corroborated in more recent research. In reformulating the

notion of the invisible college, Wagner describes a “new Invisible College” that

circumvents traditional scholarly, bureaucratic, and political power structures in

favor of a social form of elitism: “The more elite the scientist, the more likely it

is that he or she will be an active member of the global invisible college” [177,

p. 15]. With regard to this research, my study presents a contrasting scenario.

My results, grounded in network analyses, suggest that modern collaboratory re-

search circumvents both forms of social and scholarly prestige-based attachment.

In the context of a small-scale collaboratory, I find a well connected, uniformly

distributed, fluid collaboration network.

7.3 The role of interpersonal networks

In Chapter 1, I defined a collaboratory as a blend of physical and virtual environ-

ments in which a multi-disciplinary mix of geographically distributed researchers
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use computer-supported technologies to produce scientific knowledge interacting

formally and informally, solving problems, sharing data, resources, and ideas. In

this dissertation I conceptualized CENS as a research collaboratory to empha-

size its loose geographical and organizational structure, its reliance on electronic

platforms, its highly collaborative nature, as well as its disciplinary and institu-

tional variety. My conceptualization, however, was done a priori, based on my

initial understanding of this research center. It is now appropriate to look back

at previous and current research on collaboratories and frame my findings within

this literature.

A distillation of my results indicates that scholarly and social networks at

CENS are mono-disciplinary and mono-institutional at a local level, but at a

larger scale, they become more inter-disciplinary over time. The local level that

I refer to is that of structural communities—loosely connected, cliquish clusters

of individuals grouped with each other based on the topological properties of the

network. Turning back to related literature on cyberinfrastructure initiatives,

the configuration that emerges from my structural analysis resembles—at least

at a conceptual level—the intensional networks [127] and the knotworks [128]

discussed earlier on, in § 2.4.3. Whether one calls them structural communities,

intensional networks, or knotworks, my research, in agreement with previous

work, points to the importance of small-scale, local, personal networks for ac-

complishing work in cyberinfrastructure initiatives. As such, this dissertation

validates previous ethnographic observations by providing a quantitative map of

the social and scholarly infrastructure that supports scientific and technological

practices in modern collaboratory research.

Although both my work and that emerging from qualitative studies of cy-

berinfrastructure signal the importance of personal networks in collaboratory
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research, my research however differs in an important way. Nardi et al. [127] and

Engeström et al. [128] find that personal networks are loose assemblages of indi-

viduals that span organizational and institutional boundaries. I find the contrary:

that structural communities of coauthors and acquaintances are internally com-

posed by researchers of the same institution and the same department. This is

in contrast with the perception that modern collaboratories are inherently inter-

institutional and inter-disciplinary. It is true that, overall, CENS is composed of

a variegated collection of institutions and disciplines: CENS is indeed, like many

other collaboratories, multi-institutional and multi-disciplinary. However, I find

that, for the most part, inter-disciplinary and inter-institutional interactions do

not take place at a local, community-based level. Rather, I find that within

small communities, collaboration interactions are fairly homogeneous: they in-

volve scholars of the same institution and department. Focusing on disciplinary

diversity, the following scenario emerges: CENS communities are internally mono-

disciplinary, but CENS is overall inter-disciplinary. This scenario demonstrates

that inter-disciplinary work in a collaboratory is not necessarily carried out at

the community level; rather, it is the result of the bridging action of community

hubs.

While my findings indicate a general growth of inter-disciplinarity, I do not

find a corresponding increase in inter-institutional collaboration. One of the core

promises (and premises) of cyberinfrastructure is exactly to provide simultaneous

and remote access to data, resources, and tools to relax the distance constraints

imposed by traditional laboratory research. My findings, however, do not point in

this direction. I find that the volume of inter-institutional coauthorship patterns

decreases over time. I wonder then, whether the use of computer-supported col-

laborative technologies can actually relax physical distance constraints and enable

inter-institutional collaboration. Recent research on this matter has found that
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even though inter-institutional collaboration has increased over time, its increase

is not directly linked to increased use of dedicated collaborative technologies.

Lorigo and Pellacini have found that inter-institutional and cross-country collab-

orations in the past 30 years of physics collaborations, has increased at the same

rate both before and after introduction of such technologies [76]. With regard

to this, I find my research to be in line with the work of Cummings and Kiesler

[15] who warn against the inefficiency of cyberinfrastructure programs to foster

collaboration between scholars from different institutions. What my results show,

overall, is that it is via social, interpersonal relationships that scientific collabo-

ration nurtures. I find that CENS collaboration has a strong social component

and its acquaintanceship patterns are pervasive: researchers know each other well

within their coauthorship circle and beyond. In particular, I detect a sequential

relationship between acquaintanceship and coauthorship: collaborative interac-

tions are seen to take place along existing social paths. These findings point,

again, to the importance of personal, local networks in the processes of scientific

collaboration.

In sum, my findings portray a form of scientific collaboration driven by so-

cial cohesion: interpersonal knowledge is the glue that holds the CENS scientific

collaboratory together. It is this form of social cohesion that makes collabora-

tory research particularly peculiar: even though the collaboratory is by definition

predicated upon notions of remote collaboration and computer-supported com-

munication, my research shows that social, face-to-face relationships are at the

core of collaboration activity. Given the crucial role of social relationships for the

advancement of scholarly collaboration, one wonders whether the cyberinfras-

tructure vision of a fluid, distributed, multi-sited science, agnostic to geograph-

ical and physical constraints, can ever be attained. In this context, my work

reinforces previous recommendations to consider the spatial, social, and human
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arrangements that drive scientific advancement and collaboration, and how they

differ across different disciplines and organizational settings [178]. Bringing this

recommendation to the attention of policy makers and funding agencies has the

potential to shape the direction and form of future investments and efforts in

cyberinfrastructure.

7.4 Reflections on the notion of complexity

I began this dissertation by framing modern scientific collaboratories, and CENS,

in the realm of complex systems. In particular, I outlined some key defin-

ing characteristics of complexity—emergence, self-organization, and boundary

flexibility—and I discussed how they apply to the organization and function

of collaboratory research. With results of my research in hand, and my per-

sonal experience working close to CENS for nearly four years, I now find myself

at a favorable position to discuss whether complexity science is an appropriate

methodological platform to investigate scientific work, especially in the context

of collaboratories and related cyberinfrastructure initiatives.

One level of complexity that comes to the surface with my research is the

boundary flexibility of the collaboratory. As thoroughly discussed in Chapters 1

and 3, delineating the population under study was not a trivial task. Although

CENS maintains and updates an official list of participants, the multi-disciplinary

nature of CENS work necessarily involves collaborations that span its organiza-

tional boundaries. Throughout my research, I ran into boundary objects [28], of

many different kinds. Although I did not employ qualitative observation tech-

niques to detect and document their existence, I can provide here some examples

that directly emerge from my analyses of data sources. In this dissertation, I
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used the official bibliographic record and mailing list logs of CENS to construct

a survey roster. Manual analysis of these data sources revealed papers, emails,

and people that were clearly at the intersection between two or more disciplines,

understandings, and scientific practices. Some papers in the bibliographic record,

for example, were only marginally related to CENS research. An example, is the

paper that I employ in some of the examples in Chapter 4 [77]. This article,

published in the journal Scientometrics, is a study of coauthorship practices at

CENS. Is this a product of CENS research? Clearly, it is not a paper about

the development and application of sensor network technologies, but it is about

CENS, and it comes out of the CENS collaboration. As such, this paper can

be regarded as a boundary object, in the definition of Bowker and Star [29]: it

inhabits different communities of practices (CENS, the field of bibliometrics, the

information sciences, and research policy on sensor networks), satisfying the in-

formational requirements of each of them. There are many more papers in the

bibliographic record I analyzed that were in a similar boundary location. The

same can be said of the survey population. As the survey roster was directly de-

rived from the bibliographic record and mailing list logs, many people in the roster

were situated at the intersection of many domains, practices, and laboratories.

For example, some individuals that I invited to participate in the survey, wrote

back to me saying that they were not sure whether their input would be useful, as

their work with CENS was on an occasional and short-term basis. Others wrote

back saying that they had been invited to the survey by accident, as they were

not officially affiliated with (and paid by) CENS, even though the bibliographic

records showed that they were frequent collaborators on CENS articles.

The scenarios above reinforce the observation, made by many complex sys-

tem researchers, that complex ecologies have inherently flexible boundaries [26].

When studying scientific work via empirical methods, however, one needs to de-
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termine a cutoff point. How should one go about drawing these boundaries?

There is a binary tension at play. At one end of the spectrum, qualitative studies

of science rooted in sociology and cooperative work research can deal with loose,

fuzzy, flexible boundaries by employing qualitative techniques of observation.

These approaches are able to reveal and interpret the nuances of scientific work

and collaboration, but probably fail to see high-level patterns. At the other end

of the spectrum, computational and quantitative studies can use network analysis

to reveal broad patterns of scientific organization and function, but in order to

do so, they need a rigid, well-defined cutoff point. The first approach limits the

possibilities of employing network analytic techniques, while the second compro-

mises fluid, open-ended techniques to study the boundaries and the margins of

the network. With my research, I tried to play around this methodological ten-

sion. First, I mined the topology and configuration of the coauthorship network

to construct a population set with rigid boundaries, but as inclusive as possible.

Then, I relaxed those boundaries, by allowing individuals to define their own

communities within the broader population. Despite being subject to limita-

tions, detailed later in this and in the next chapter, my approach is instrumental

in making apparent the breadth of the CENS collaboration ecology. In fact, I

argue that, at the least possible level, by administering a social survey listing

names and pictures of people related with CENS research, I raised awareness

about the existence of a CENS community, delimited by boundaries, blurry as

they may be.

While I did find that the notion of boundary flexibility applies very well to

modern collaboratory research, I did not find an equally fitting conceptualization

for the notions of emergence and self-organization. As anticipated in Chapter 1,

the emergent and self-organizational components of collaboratories pertain specif-

ically to their functional arrangement which is not fixed and guided by a master
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plan, but rather by adaptive and dynamic interactions among its constituent

components [24, 9]. My findings partially corroborate this view.

My research indicates that interpersonal relationships and small-scale dynam-

ics at the level of communities play a preeminent role in collaborative interactions,

as discussed in the previous section; these findings, in turn, point to a bottom-up

organizational scheme, as those found in many emerging systems. In other words,

the small-scale interactions that govern collaborative work within individual com-

munities pose an ideal prerequisite for emergent growth and self-organization. It

is at this scale that individual interactions of coauthorship, communication, and

acquaintanceship are performed.

At a higher level, the aggregated ensemble of small-scale interactions solidi-

fies into the structure of a system—its top-down configuration which manifests

itself in the form of rules, values, ethics, morals, and large-scale patterns. I have

mentioned, in Chapter 1, that the structure of a system both constrains and

enables small-scale interactions: structural properties can act as barriers limit-

ing the scope of action of individuals, but at the same time they also provide

them with a potential framework for action. In this research, I unveil CENS’s

structural configuration based on its network topology and compare it to its

socio-academic arrangement. My major finding in this context, as discussed

above, is that the structure of the collaboratory—its repartition into communities

of collaboration—reflects very closely its academic top-down organization—its

repartition into institutions and departments. From the perspective of complex

system science, this finding suggests that the academic organization of the collab-

oratory acts as a constraint on the extent and breadth of individual interaction.

In other words, the adaptive, emergent, dynamic properties of modern collabo-

ratory research are inhibited by the overarching, top-down academic structure in
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which the collaboratory is embedded.

This finding brings about two immediate considerations for complex systems

research. First, it points to the difficulty of detecting emergent and self-organizing

forms of collaboration in scientific research environments with such strong orga-

nizational constraints. What kind of methods and tools are to be used to discern

emergent bottom-up agency when the behavior of a system is heavily dependent

on its top-down structure? Second, it demonstrates that my research elucidates

only one of the myriad relationships that define the dialectic between agency and

structure; it ignores other forms of structural factors such as political interests, fi-

nancial constraints, and cultural values that have unequivocal capacity to inhibit

or enable interaction. These problems—the lack of powerful, well-established

techniques to discern emergence and the inability to account exhaustively for

the multi-dimensionality of complex ecologies—are the disputed aspects of the

science of complex systems. My criticism is by no means unprecedented; it has

been advanced in the past both from within and outside of the field of complex

systems [21, for a review]. With regard to this, in his seminal work on the com-

plexity of social systems, Niklas Luhmann came to notice that, paradoxically,

“complexity cannot be observed” [17, p. xviii]. A related criticism comes from

scholars in science studies that have warned about the risks of borrowing a com-

plex systems approach to explain emergent phenomena in cyberinfrastructure. In

recent work, Jackson, Edwards, Bowker, and Knobel posit that in order to move

between social organization and technical infrastructure, “what is needed are not

rigid maps, but flexible and creative principles of navigation” [24]. I argue that a

major challenge for contemporary complex network research is finding a strategy

to accommodate such methodological flexibility. Integrating computational stud-

ies of networks with field-based observations, ethnography, and other qualitative

methods, as discussed in the next section, is an obvious step in this direction.
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Only then will sociological theory be able to embrace the notions of emergence

and self-organization empirically, and not solely as a mere metaphorical tool.

7.5 Lessons learned amid two modes of studying science

The work presented in this dissertation is essentially quantitative in nature. I

employ network analysis and survey research to collect and analyze tangible in-

dicators of scientific interaction. Yet, in many parts of this dissertation I have

discussed how the framing of my research, my choice of methods, my analytical

investigations, and the interpretation of my results were guided by considera-

tions triggered by my interest in studies of science grounded in qualitative meth-

ods and sociological theory. I have discussed that these two modes of studying

science—one quantitative, the other qualitative—are not easy to reconcile. In

this context, while covering the boundary flexibility problem, above, I have re-

ferred to a “methodological tension” between computational and ethnographic

studies of scientific collaboration. This research is an attempt to explore and

loosen up this tension. Having performed a quantitative analysis of scientific

collaboration giving thought to the socio-academic landscape of CENS for the

interpretation of my results, I can now reflect on my research process, and the

validity of my method, with the aim to inform future studies of this kind. Based

on my experience and the lessons I learned throughout my research, I provide in

this section some considerations regarding the benefits and shortcomings of us-

ing the method advanced in this dissertation to study scientific work in different

contexts and environments.

First of all, using a quantitative framework of network analysis as the method-

ological foundation of my research has an important ramification: I was able to
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render and scrutinize the “big picture” of scientific collaboration at CENS. Quan-

titative analyses of networks make apparent phenomena that are not visible to

the “naked eye”: they provide a far-reaching perspective, a bird’s eye view of

the dynamics of collaboration. This has its advantages and disadvantages. On

one hand, it misses important minutiae and microscopic manifestations of sci-

entific collaboration that can only be revealed by personal interviews and other

ethnographic methods. On the other hand, it provides a powerful observational

lens to detect and make sense of high level topological, structural, and evolution-

ary features of collaboration. A scientific environment as a whole might exhibit

high-level patterns that are not necessarily apparent at the local level. An ex-

ample of this is my analysis of network topology: average distance, density and

assortativity of a network are high-level features of a collaborative environment

that could not be studied using ethnographic methods only. These topologi-

cal features are important as they provide a standardized, systematic procedure

to compare scientific collaboration endeavors with one another. Moreover, only

such a high-level analysis can provide insights into aggregate patterns of collab-

oration. For example, my analysis of discrete assortativity reveals the evolution

of inter-disciplinary and inter-institutional work and the specific academic pairs

that most contribute to those evolutionary patterns. These metrics are not only

useful from a science studies perspective, i.e., to study the development of sci-

entific collaboration in relation to its institutional and disciplinary organization.

They are also the yardstick by which science policy and funding agencies review

the extent and composition of inter-disciplinary and inter-institutional work in a

research center.

There is yet another benefit of using a quantitative approach for the study

scientific collaboration: research reusability and reproducibility. My network

analysis is based upon tangible indicators of collaboration and it produces re-

222



sults that can be discerned by computational analysis. As covered in § A.5 of

the Appendix, the code developed and the analytical tools employed in this re-

search are built on open source platforms. The coauthorship network is built

from a public and openly accessible bibliographic record. The communication

network is built from semi-public mailing list interactions available upon sub-

scription. Only the acquaintanceship data, which I collected via a social survey,

are not made publicly available, to protect responders’ privacy and comply to

the ruling of the Institutional Review Board. As such, with the exception of

acquaintanceship data, my research method is fully reusable and my results are

reproducible. As recently noted by Stodden [179], data reusability and repro-

ducibility of results are crucial to modern scientific communication, especially as

scientific inquiry progressively becomes more dependent on scientific computa-

tion. Besides reproducibility, the availability of data and tools also ensures that

further research on the same or other data sources can be conducted. As new

tools for the study of network structure and evolution appear in the literature,

the data of this study could be analyzed in novel ways to both improve existing

results and provide novel insights. For example, as discussed further in the next

Chapter (§ 8.2), the multi-faceted nature of my data sources coupled with the

richness of available socio-academic metadata, would make them a convenient

platform to develop and test scientific recommendation algorithms. Moreover,

my analytical tools, that are specifically suited for the study of time-dependent,

multi-faceted, richly annotated networks, could be applied to larger and more

complex networks of interaction to validate their potential beyond the scope of

scientific collaboration.

While the use of quantitative techniques allowed me to provide a portrait of

high-level patterns of collaboration at CENS, supplementing my network analysis

with an in-depth analysis of the socio-academic landscape in which those collab-
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oration networks operate was instrumental in elucidating my findings. By and

large, network analyses of scientific collaboration are based on large data about

one specific phenomenon. Studies of scientific collaboration networks, such as

those reviewed in Chapter 2, are abundant in data—networks typically range

between tens and hundreds of thousands of nodes—but examine only a single

manifestation of collaboration, e.g., patterns of coauthorship, co-citation, or co-

word use. As such, this body of literature ignores the advantages of triangulation,

i.e., the benefit of capturing, investigating, and validating phenomena using mul-

tiple data sources. Triangulation techniques are not new. They were introduced

by Webb [129], and adapted to social network analysis by Lievrouw et al. [47]

over two decades ago. Yet, the bulk of computational research on social net-

works has been slow in embracing them, or has ignored them altogether. This

is very likely because capturing information about multiple relationships can be

expensive and inconvenient, especially for large-scale studies.

For my dissertation research, I worked with networks of manageable size and

I was able to supplement purely quantitative techniques of network analysis with

an in-depth inquiry of CENS’s socio-academic milieu. The collaboratory ecol-

ogy that I study is composed of roughly four hundred researchers. Given the

relatively small breadth of this collaboratory, I was able to collect information

about collaboration patterns from three distinct data sources, rather than just

one. I collected information about coauthorship using a bibliographic record,

about electronic communication using mailing list logs, and about acquaintance-

ship by administering a social survey. This allowed me to perform comparative

analyses between different manifestations of collaboration. Unfortunately, the

collected mailing list data and the resulting communication network are not rich

and ample enough to explore in detail communication practices. However, the

wealth of collected bibliographic and social data allowed me to perform detailed
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comparative analyses between coauthorship and acquaintanceship patterns. This

relationship—between coauthorship and acquaintanceship—is important to sci-

entific communication, but it is rarely studied in depth; it is often based on

assumptions. As already discussed in Chapter 3, Newman states that “it is prob-

ably fair to say that most people who have written a paper together are genuinely

acquainted with one another” [157, p. 339]. Many network researchers make as-

sumptions of this kind, without supporting them with data. My dissertation

research provides data to validate this assumption.

My results demonstrate that in the context of a small multi-disciplinary col-

laboratory, circles of coauthors overlap very well with natural communities of ac-

quaintances, thus validating Newman’s assumption. My research examines both

the extent of social cohesion and its temporal nature in the process of scientific

collaboration. The results, as explained in the previous section, are important

to policymakers and researchers of cyberinfrastructure initiatives. My hope is

that my dissertation brings the importance of this kind of multi-faceted network

analysis to the attention of network researchers. As scientific work and scholarly

communication move to new, digital paradigms, exploring a single manifestation

of connection among scientists would fail to reveal the rich web of interactions

that scientists engage in, on electronic platforms, in person, and on social media.

Another advantage of working with networks of manageable size has to do with

the wealth of additional data that I could gather for every individual in the net-

work. It is rare that bibliographic repositories, mailing list logs, and similar data

sources used for network research make available data about the academic affilia-

tion, department, position and country of origin of people in the database. Even

when such data are made available, many studies ignore them, as they are not

offered in a structured format, and are thus unusable. Moreover, these data are
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often not recorded historically, so that only latest available data are used in net-

work studies, hindering detailed evolutionary analyses. Capturing and analyzing

historical socio-academic information about individuals in the CENS population

allowed me to perform detailed comparisons between the community structure of

collaboration networks and their organizational arrangements. In other words, I

was able to test the capability of computational techniques of community detec-

tion to describe social and academic configurations of scientific collaboration. My

analysis points, once again, to the methodological tension between quantitative

and qualitative approaches to the study of science. It is in the interest of both ap-

proaches to understand how scientists coalesce into communities. However, these

approaches seem to grow in two separate directions. On the one hand, qualitative

studies struggle to both provide a framework to quantify the structural compo-

nents of communities of practice [140] and to align their ethnographic approaches

with social network theory [138]. On the other hand, network researchers con-

tinue to develop algorithms for the detection of structural communities without

considering the sociological ramifications of their methods. All the techniques to

detect structural communities in networks are based solely on quantitative prop-

erties of the networks. Paradoxically, their efficiency and quality are validated

using benchmarks that are also based on quantitative properties [151], leaving

one to wonder: what are structural communities representative of? Network re-

searchers have the ability to develop large-scale automated mechanisms for the

detection of communities and social structure in networks. Sociologists of science

have the ability to make sense and validate the composition of those structures.

Unfortunately, these two abilities rarely meet.

In my dissertation research, I have scratched the surface of this problem by

comparing the results of a quantitative analysis of community structure with a

more qualitative analysis of the institutional and disciplinary settings that those
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communities represent. I can argue that the level of familiarity that I reached

with the network and the underlying data had its benefits. First, all the data I

collected—names, affiliations, coauthorship relationships, communication traces,

etc.—were filtered and validated by manual inspection. In large-scale studies of

scientific networks, the reliability of collected data is a significant source of er-

ror. Name ambiguity in bibliographic databases, for example, negatively affects

results by conflating and/or failing to combine names. Even the most reliable

techniques of name disambiguation on average only resolve 85% of ambiguities

[180]. Given the size of the CENS network and the amount of work I dedi-

cated to maintaining it, I can safely assume that my study does not suffer from

name ambiguity issues and other data collection errors. Moreover, by working so

closely to the data, I developed an extensive knowledge of the individuals in the

database and their scientific and social interactions. By close inspection of their

personal web pages, biographies, and curricula, I was able reconstruct the narra-

tives behind their scholarly production, their academic career, and their scientific

collaboration patterns. I do not claim that my level of inspection can compete

with in-depth ethnographic observations of science. However, this level of famil-

iarity with data is unheard of in large-scale studies of scientific networks. I argue

that complex network researchers would gain great advantage from performing

manual, close investigations of the data they produce. By connecting more “inti-

mately” with their data, they would improve statistical errors and carry out more

nuanced interpretations of their results. The future of complex network research

lies at the intersection of the two modes of studying science. Only by supplement-

ing computational and algorithmic techniques with an interpretive approach, will

quantitative studies of science be able to reconstruct the narrative fragments that

lie behind the patterns of interactions, the topology, and structure of a scientific

collaboration network.
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CHAPTER 8

Conclusion

This dissertation is a study of collaboration in the Center for Embedded Net-

worked Sensing (CENS), a National Science Foundation Science and Technology

Center involved in sensor network research. CENS is a collaboratory embed-

ded in a larger cyberinfrastructure; it is a modern, multi-disciplinary, distributed

laboratory. In this research, I have examined its collaboration patterns by us-

ing network analytic methods and studying its collaborative ecology in terms of

three networks of interaction: coauthorship of scholarly publications, commu-

nication on mailing list platforms, and interpersonal acquaintanceship. Results

from a topological analysis of these networks indicate that (i) acquaintanceship

patterns at CENS diffuse beyond coauthorship circles; (ii) average path length is

low: only two steps are needed to connect any two individuals in the coauthorship,

communication, and acquaintanceship networks; (iii) all collaboration networks

have low clustering coefficient. My structural analysis indicates that (iv) indi-

viduals who are part of the same coauthorship community are well acquainted

with each other; (v) coauthorship and acquaintanceship communities are mono-

institutional and mono-disciplinary. Looking at preferential attachment mecha-

nisms in the CENS collaboration networks, I find that (vi) researchers’ network

centrality has no direct influence on any collaboration pattern; (vii) on schol-

arly coauthorship and in interpersonal relationships, researchers tend to connect
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preferentially with others within their own institution and department. My evo-

lutionary analysis reveals that (viii) coauthorship and acquaintanceship networks

become both more intra-institutional and more inter-disciplinary over time; (ix)

researchers indicate to have known their coauthors prior to the beginning of their

coauthoring relationship; (x) the communication network built from mailing list

data is not affected by any preferential attachment patterns. In the previous

chapter, I discussed these results in the context of related literature on collabo-

ratories and cyberinfrastructure initiatives. This chapter draws this dissertation

to a close by discussing the strengths and weaknesses of this study, and sketching

out possible avenues for future research.

8.1 Limitations and assets of this study

While the research presented in this dissertation successfully elucidates the dy-

namics and the configuration of scientific collaboration at CENS, and its reper-

cussions for modern collaboratory research, my methodological approach is not

without its limitations. I identify here three important shortcomings of my re-

search. This list is not intended to be exhaustive. Also, these shortcomings are

not only intended to highlight potential fallacies of this study; they are also in-

tended as clues on how this and related studies may be improved and extended

in future work, as detailed in the next section.

The boundary problem. As alluded to in many parts of this dissertation,

it is unavoidable for studies of science not to encounter problems of boundary

definition. My efforts to address this issue only scratch the surface of this prob-

lem. Collaboration in modern scientific and scholarly endeavors permeates na-

tional, institutional, and disciplinary boundaries. While a number of methods
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can be employed to define the boundaries of a scientific environment—the peo-

ple, artifacts, relationships, practices that are to be included in the research—it

is important to remember that regardless of the method used and its efficiency,

the choice of a method and the resulting sample greatly affect the outcome of

a study. In this dissertation, I identify the population of interest by including

all individuals indicated as authors on scholarly items submitted to the annual

reports, the official reporting documents published by CENS every year. This

list is then supplemented with individuals found in mailing list logs that are not

part of the coauthorship population, and used as the roster for the social network

survey. Thus, I use exclusively recorded interactions in a bibliographic record and

a mailing list log to delineate the population under study. As such, my methods

fail to include individuals that are possibly directly involved in CENS research,

but whose work does not appear in scholarly and communication interactions.

This group might include members involved with administrative work, knowl-

edge transfer and technical support groups. These individuals are physically

present and actively involved in the CENS collaboratory environment. Despite

being absent from bibliographic and mailing list records, they may be instrumen-

tal to collaboration, in their pivotal role of social routers and catalysts in the

collaboration ecology. In my work, I could have included these individuals in the

population via a number of methods, e.g., via consulting the narratives present

in the project descriptions of the CENS annual reports, via a census survey, via

in situ monitoring, and similar participant observation techniques.

Undocumented interactions and characteristics. This research is based

upon three manifestations of scientific collaboration: coauthorship of scholarly

papers, communication activity on mailing lists, and interpersonal acquaintance-

ship. As such, it is strictly limited to manifestations of collaboration that are ev-

ident from analyses of these interactions. For example, by restricting my analysis
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of coauthorship to scholarly articles only (journal articles, conference papers, and

book chapters), I fail to analyze collaboration activities documented in posters.

As mentioned in Chapter 3, § 3.2.1, posters might include in their author lists

researchers who do not appear as authors in published articles. These include

software developers and technical staff whose work is instrumental to scientific

work and collaboration. Besides being limited to a set of interactions, this re-

search is also limited to a given set of characteristics: for every individual in

the population under study, I collect information about their academic affilia-

tion, academic department, academic position, and country of origin. There are

a number of other node-based characteristics that I could have included in this

study, to provide a richer comparative analysis and interpretation of collaboration

at CENS. Some examples are given below, in the next section, covering future

work.

Lack of exhaustive interpretation. In this research, I interpret the find-

ings of my network research using my knowledge of the CENS community, its

history, and its socio-academic environment. Yet, my interpretation lacks the

fine granularity of most ethnographic studies of science. This is because my re-

search does not include a comprehensive investigation of certain organizational,

political, and financial events that affect the shape and dynamics of the collab-

oration networks. My network analysis results would have benefited enormously

from a parallel ethnographic study, in the format of personal interviews, focus

groups, and/or in-depth content analyses. By simply asking members of the pop-

ulation to describe the network maps of scientific collaboration, or by manually

inspecting the content of CENS Annual Reports—the project descriptions, the

research goals, the funding and management plans—I could have produced more

genuine and exhaustive interpretations of my results.
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Besides being subject to the aforementioned limitations, the methodological

framework developed and utilized in this study also yield clear advantages, when

compared to similar approaches. While the strengths of this research have al-

ready been discussed in the previous chapter, I summarize here two important

methodological assets of this study.

Small network analysis. A great deal of research on scientific collaboration

is performed on large networks, constructed from large bibliographic datasets har-

vested from domain-based and institutional document repositories. These studies

document the organization and growth of large-scale collaborations, such as astro-

nomical surveys, international high-energy physics experiments, and similar “Big

Science” endeavors. Because of this, there is a tendency to think that network

analyses are especially useful to investigate the dynamics of large-scale collabora-

tive efforts only. This research demonstrates that the opposite is also true: net-

work analysis is a convenient platform to document and examine “little sciences”

and research collaborations that operate at small scales and levels. Moreover, I

have argued that working with small-scale networks presents many benefits. For

example, studies of scientific collaboration based on networks of manageable size

can be easily complemented and elucidated by a number of ethnographic and

qualitative methods, rooted in social science research. The relatively small size

of the CENS coauthorship network allowed me to run a social network survey.

Clearly, the use of similar social survey methods would be unfeasible for Big

Science collaborations that involve tens of thousands of researchers.

Embedded social network analysis. As noted in the previous chapter,

many large-scale investigations of scientific collaboration rely on great quantities

of data to study the structure, evolution and similar macroscopic features of scien-

tific collaboration patterns, but often ignore certain contextual and microscopic
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factors, such as the social and academic arrangements in which collaboration

takes place. This is because the bibliographic datasets upon which these studies

are conducted contain detailed publication metadata, but very little or poorly

structured data about the authors writing those publications. In other words,

these datasets contain a lot of information about the links between the nodes,

but no information about the nodes themselves. Thanks to the manageable size

of the networks studied in this dissertation, I was able to research the personal

web pages, biographies, and curricula of the individuals in the population and

collect additional information about a number of socio-academic characterstics.

Working with this level of data granularity not only allowed me to extend and

compare the results of my network analysis to the disciplinary and institutional

arrangements of CENS. I also had advantage of being able to directly manipulate

and validate my data. Manual techniques of data processing and cleaning allow

researchers to gain a deeper understanding of the networks they study. Moreover,

being personally affiliated with CENS, I was myself a node embedded in the net-

works I studied. This privileged position allowed me to gain in-depth knowledge

about the minutiae of scientific collaboration at CENS, and acquire familiarity

with the narratives behind certain collaboration traces. This extensive knowledge

of the CENS human infrastructure was instrumental for the interpretation of my

results.

8.2 Future work

An obvious avenue for potential future research is to deal with the limitations

outlined in the previous section. The second limitation discussed above, in par-

ticular, points to many possibilities for future research. For my dissertation
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research, I could only collect data relative to three interactions. What other col-

laborative activities can be documented to complement and inform the study of

scientific collaboration? The list is potentially endless. Some examples include ci-

tation patterns, epistemic connection, collaborative software coding, and private

email communication. Citation networks can be constructed in which authors

are connected to each other based on the authors they cite in their scholarly

work. Epistemic connection and co-word networks can also be constructed to

depict the intellectual connection among scientists based on the full text of their

scholarly work. In a technology-driven environment like CENS, collaboration is

not limited to traditional scholarly artifacts, however: much work goes into the

development of software to run and collect data from sensor devices. Many soft-

ware coding projects at CENS are collaborative and are handled using version

control systems. Gathering and analyzing these data could provide insights into

software coding collaborative practices. Finally, private email exchange is, natu-

rally, the most revealing form of communication, but also the hardest to obtain,

because of privacy and confidentiality issues. An analysis of email traces could

expose very accurately the effect of email communication on the propagation of

scientific ideas and scientific collaboration.

A similar direction for future research can be postulated with regard to undoc-

umented node characteristics. For this research, I only had resources and time to

collect four characterstics for each node in the collaboration network: academic

affiliation, academic department, academic position, and country of origin. This

collection of characterstics was crucial for understanding the academic arrange-

ment of CENS researchers in their collaborative activities. But there are many

more social, academic, and geographical characteristics that would have improved

my study greatly. One of them is the geographical position of researchers—the

exact location of their workplace. Although a partial analysis of this kind is

234



presented in Chapter 6 (§ 6.7), it is limited to Boelter Hall only, and as such

it fails to provide a comprehensive scenario of the influence of physical distance

on the processes of collaboration. Gender, ethnicity, age, and background of the

researchers are examples of other characteristics that could be included in this,

or related studies, to examine the impact of socio-cultural attributes on scientific

work.

From the above discussion, it becomes clear that studies of scientific networks

would benefit enormously from richly annotated datasets. Network researchers

that avail themselves of these data have the potential to provide a more nuanced

interpretation of their results and frame them in the context of the environ-

ment in which the networks operate. The major barrier to constructing these

rich networks, however, is acquiring the data in the first place: collecting and

making sense of these data can be a tedious and expensive task. Many network

researchers are turning to the Internet, constructing networks from openly avail-

able data collected from the web. Much recent research on scientific collaboration,

for example, is performed on networks extracted from digital library collections

and online repositories. Similarly, much contemporary Internet research employs

data harvested from social networking sites, such as data about online friendship

and communication patterns. There is immense value in aggregating, correlating,

and making sense of these and related online data. Not only would these data

enable a new trend of studies of science, surveying scientific collaboration and

knowledge production over multiple sites and platforms. It would also serve back

scientific communities by providing them with personalized scientific recommen-

dation services. Constructing such an open distributed platform for the study

of scientific work is the mission of the next generation of information scientists

working with cyberinfrastructure initiatives.
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APPENDIX A

Appendix

A.1 Survey invitation letter

Dear [full name],

My name is Alberto Pepe. I am a member of the Statistics and Data Practices

Team at the Center for Embedded Networked Sensing (CENS). I would like to

invite you to take part in an online survey.

The aim of this survey is to collect acquaintanceship data for the purpose of

modeling a social network of scientific collaboration. This is part of my doctoral

research at UCLA. Your input would be greatly appreciated.

To fill in the online survey, please click on the following link:

http://www.lecs.cs.ucla.edu/ apepe/form.php?id=[id]

Completing the survey should take between 5 and 20 minutes of your time.

If you prefer to take this survey on paper or through a personal interview, please

contact me at the address below.

Thank you for your time.

Alberto Pepe
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A.2 Text of the informed consent form

You are asked to participate in a research study conducted by Alberto Pepe,

M.Sc., and Christine Borgman, Ph.D., from the Department of Information Stud-

ies at the University of California, Los Angeles. You were selected as a possible

participant in this study because you appear as a participant in current or past

projects at the Center for Embedded Networked Sensing (CENS). Your partici-

pation in this research study is voluntary.

The aim of this project is to study historical evolution and topological struc-

ture of selected small-scale interactions that mark the process of scientific knowl-

edge production within the CENS collaboratory. In particular, the present survey

measures acquaintanceship interactions, to mine true social contacts of personal,

electronic and formal interaction.

If you volunteer to participate in this study, we would ask you to indicate

individuals at CENS that you are acquainted with and to briefly describe your

relationship to them.

Any information that is obtained in connection with this study and that can

be identified with you will remain confidential and will be disclosed only with

your permission or as required by law. In particular, the data you provide in

this study will only be used to investigate high-level patterns of relationships

among acquaintances, such as structural differences among the acquaintanceship

and other related networks. This will result in the publication of unidentifiable

data (numerical codes) in the form of tables, charts and network diagrams. Con-

fidential and identifiable data will not be published and will be destroyed upon

termination of this dissertation research.

You can choose whether to be in this study or not. If you volunteer to be in
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this study, you may exit the online questionnaire or interview at any time without

consequences of any kind. You will receive no payment for your participation.

If you have any questions or concerns about the research, please feel free to

contact:

Alberto Pepe, 3551 Boelter Hall, UCLA, apepe@ucla.edu

or

Christine Borgman, 235 GSE&IS Building, borgman@gseis.ucla.edu

If you have questions regarding your rights as a research subject, contact the

Office for Protection of Research Subjects, UCLA, 11000 Kinross Avenue, Suite

102, Box 951694, Los Angeles, CA 90095-1694, (310) 825-8714.
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A.3 Online survey instrument

Figure A.1: Screenshot of the first page of the survey instrument.
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Figure A.2: Screenshot of the second page of the survey instrument.
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A.4 Comparative network data

Network n m � C r Ref
b
ib
li
o
g
ra
p
h
ic

Biology 1 520 251 11 803 064 4.92 0.60 0.127 [132, 133]
Mathematics 253 339 496 489 7.57 0.34 0.120 [111, 174]
Neuroscience 209 293 5.7 0.76 [61]
Physics 52 909 245 300 6.19 0.56 0.363 [132, 133]
Astronomy 16 706 4.66 0.41 [157]
Computer Science 11 994 9.7 0.49 [157]
Digital library research 1 567 3 401 6.6 0.89 [53]
CENS coauthorship 391 1747 2.950 0.31 0.013 —

co
m
m

email messages 59 912 86 300 4.95 0.16 [172]
email address books 16 881 57 029 5.22 0.13 0.092 [181]
peer-to-peer 880 1 296 4.28 0.011 −0.366 [173]
CENS communication 119 994 2.095 0.461 -0.057 —

so
ci
al

Hollywood actors 449 913 25 516 482 3.48 0.78 0.208 [115]
company directors 7 673 55 392 4.60 0.88 0.276 [171]
CENS acquaintance 385 4 805 2.427 0.359 -0.060 —

Columns display type of network, total number of nodes n; total number of
edges m; average path length �; clustering coefficient C; and degree assortativ-
ity coefficient, r. The last column gives the citation(s) for the network in the
bibliography. Entries ordered by descending size (number of nodes). Blank en-
tries indicate unavailable data. Entries corresponding to the CENS coauthorship,
communication, and acquaintanceship networks are highlighted, in bold typeface.

Table A.1: Basic statistics for a number of published bibliographic,
communication, and social networks.
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A.5 Description of software code and tools

In order to perform the data collection, manipulations, and analysis presented in

this dissertation, I made extensive use of two programming languages: Python

and R.

Python (http://www.python.org/) is a free, open source high-level program-

ming language. I used Python to perform all the data collection and manipulation

processes described in this dissertation. For example, I developed Python scripts

to convert the author lists contained in the bibliographic database, initially har-

vested in BibTEX format, to a graph-based format (ncol). The entire workflow

of network construction and edge weighting, described in detail in § 4.1 and sub-

sequent sections, was implemented using custom Python scripts. All the other

processes of data collection, filtering, and manipulation were also implemented

using Python: from the extraction of the threaded structure from mailing list

logs, to the conversion of socio-academic properties (academic affiliation, depart-

ment, etc.) to node-based properties in a graph format. The only portion of data

collection that was not performed using Python is the social survey, that was

developed from scratch using simple HTML with a PHP backend. The Python

scripts and HTML code are too long to be included here. However, they are

available upon request, and I plan to bundle them in a suite for social survey

research and network analysis that I will include as part of the supplemental

material when the text of this dissertation is made available online.

R (http://www.r-project.org/) is an open source environment for statistical

computing and graphics, available under the GNU General Public License. I use

the R environment to perform all the network analysis work presented in this

dissertation. In particular, I use the igraph library of R, a package for creating,

manipulating, and visualizing networks. The igraph library includes a number
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of pre-implemented functions for graph theory problems. These include func-

tions to calculate network topology (clustering coefficient, average path length,

cliques, diameter). The library also includes functions to detect community struc-

ture of a network. In this dissertation, I used spinglass (spinglass.community)

and eigenvector (leading.eigenvector.community) algorithms of community

detection. The igraph library lacks, however, functions for some network theory

calculations that are used in this dissertation, especially those involving node-

based socio-academic information. I implemented these missing functions from

scratch and they will be contributed to the igraph library. Some sample R code

that I developed to implement assortativity measures (degree assortativity and

discrete assortativity) is included below.
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degree . a s s o r t a t i v i t y <− function ( graph ){
deg <− degree ( graph )
deg . sq <− degˆ2
m <− ecount ( graph )
num1 <− 0
num2 <− 0
den <− 0
x <− NULL
y <− NULL
edges <− get . e d g e l i s t ( graph )

for ( i in 1 :m) {
x <− append(x , deg [V( graph )$name==edges [ , 1 ] [ i ] ] )

}

for ( i in 1 :m) {
y <− append(y , deg [V( graph )$name==edges [ , 2 ] [ i ] ] )

}

num1 <− sum ( x∗y ) / m
num2 <− (sum( ( x+y)/2) / m)ˆ2
den <− sum( ( xˆ2 + yˆ2)/2) / m

return ( (num1−num2)/ ( den−num2) )
}

R code to compute degree assortativity of a graph, via eq. A.1

r =
M−1

�

i jiki −
�

M−1
�

i
1
2
(ji + ki)

�2

M−1
�

i
1
2
(j2i + k2

i )−
�

M−1
�

i
1
2
(ji + ki)

�2 , (A.1)
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d i s c r e t e . a s s o r t a t i v i t y <− function ( f i l ename ){
tab <− read . csv ( f i l ename , header = FALSE, sep = ” ” )

i f ( length ( levels ( tab$V1))> length ( levels ( tab$V2) ) ){
tab <− table ( factor ( tab$V1 , levels ( tab$V1) ) ,

factor ( tab$V2 , levels ( tab$V1) ) )
}
else i f ( length ( levels ( tab$V2))> length ( levels ( tab$V1) ) ){

tab <− table ( factor ( tab$V1 , levels ( tab$V2) ) ,
factor ( tab$V2 , levels ( tab$V2) ) )

}
else {

tab <− table ( tab$V1 , tab$V2)
}

ptab <− prop . table ( tab )
num1 <− 0
num2 <− 0

for ( i in 1 : length ( ptab [ , 1 ] ) ) {
num1<−num1+ptab [ i , i ]

}

num2 <− sum(margin . table ( ptab , 1 )∗margin . table ( ptab , 2 ) )

return ( (num1−num2)/(1−num2) )
}

R code to compute discrete assortativity of an edge list, via eq. A.2

r =

�

i eii −
�

i aibi
1−

�

i aibi
(A.2)

245



A.6 Seating chart of 3551 Boelter Hall

Figure A.3: Seating chart of the CENS headquarters (3551 Boelter
Hall, UCLA) as of March 2010.
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[108] G. Plickert, R. R. Côté, and B. Wellman, “It’s not who you know, it’s
how you know them: Who exchanges what with whom?,” Social Networks,
vol. 29, no. 3, pp. 405 –429, 2007.

[109] S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp. 60–
67, 1967.

[110] J. Travers and S. Milgram, “An experimental study of the small world
problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969.

[111] R. D. Castro and J. W. Grossman, “Famous Trails to Paul Erdös,” The
Mathematical Intelligencer, vol. 21, 1999.

[112] P. S. Dodds, R. Muhamad, and D. J. Watts, “An experimental study of
search in global social networks,” Science, vol. 301, no. 5634, pp. 827–829,
2003.

[113] P. D. Killworth and H. R. Bernard, “The reversal small-world experiment,”
Social Networks, vol. 1, no. 2, pp. 159–192, 1979.

[114] J. S. Kleinfeld, “Could it be a big world after all? The “six degrees of
separation” myth,” Society, 2002.

[115] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world net-
works.,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[116] J. Davidsen, H. Ebel, and S. Bornholdt, “Emergence of a small world from
local interactions: Modeling acquaintance networks,” Physical Review Let-
ters, vol. 88, p. 128701, 2002.

[117] P. Holme, A. Trusina, B. J. Kim, and P. Minnhagen, “Prisoners’ dilemma
in real-world acquaintance networks,” Physical Review E, vol. 68, no. 3,
p. 030901, 2003.

256



[118] S. T. Tong, B. Van Der Heide, L. Langwell, and J. B. Walther, “Too much of
a good thing? the relationship between number of friends and interpersonal
impressions on Facebook,” Journal of Computer-Mediated Communication,
vol. 13, no. 3, pp. 531–549, 2008.

[119] N. B. Ellison, C. Steinfield, and C. Lampe, “The benefits of facebook
”friends:” social capital and college students use of online social net-
work sites,” Journal of Computer-Mediated Communication, vol. 12, no. 4,
pp. 1143–1168, 2007.

[120] P. Holme, “Structure and time evolution of an internet dating community,”
Social Networks, vol. 26, no. 2, pp. 155–174, 2004.

[121] L. C. Freeman, “The impact of computer based communication on the social
structure of an emerging scientific specialty,” Social Networks, pp. 201–221,
1984.

[122] R. E. Kraut, J. Galegherb, and C. Egidoa, “Relationships and tasks in sci-
entific research collaboration,” Human-Computer Interaction, vol. 3, no. 1,
1987.

[123] S. Liberman and K. B. Wolf, “The flow of knowledge: Scientific contacts
in formal meetings,” Social Networks, vol. 19, no. 3, pp. 271 –283, 1997.

[124] G. Chin, J. Myers, and D. Hoyt, “Social networks in the virtual science
laboratory,” Communications of the ACM, vol. 45, no. 8, pp. 87–92, 2002.

[125] N. Hara, P. Solomon, S.-L. Kim, and D. H. Sonnenwald, “An emerging
view of scientific collaboration: Scientists’ perspectives on collaboration
and factors that impact collaboration,” Journal of the American Society
for Information Science & Technology, vol. 54, no. 10, pp. 952–965, 2003.

[126] D. Stokols, R. Harvey, J. Gress, J. Fuqua, and K. Phillips, “In vivo studies
of transdisciplinary scientific collaboration: Lessons learned and implica-
tions for active living research,” American Journal of Preventive Medicine,
vol. 28, no. 2, Supplement 2, pp. 202–213, 2005.

[127] B. A. Nardi, S. Whittaker, and H. Schwarz, “Networkers and their activity
in intensionalnetworks,” Journal of Computer Supported Cooperative Work,
vol. 11, no. 1-2, pp. 205–242, 2002.

[128] Y. Engeström, R. Engeström, and T. Vähäaho, “When the center doesn’t
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