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Abstract

Oxygenic photosynthesis, the principal converter of sunlight into

chemical energy on earth, is catalyzed by four multi-subunit

membrane-protein complexes: photosystem I (PSI), photosystem II

(PSII), the cytochrome b6f complex, and F-ATPase. PSI generates

the most negative redox potential in nature and largely determines

the global amount of enthalpy in living systems. PSII generates an

oxidant whose redox potential is high enough to enable it to oxidize

H2O, a substrate so abundant that it assures a practically unlimited

electron source for life on earth. During the last century, the so-

phisticated techniques of spectroscopy, molecular genetics, and bio-

chemistry were used to reveal the structure and function of the two

photosystems. The new structures of PSI and PSII from cyanobac-

teria, algae, and plants has shed light not only on the architecture

and mechanism of action of these intricate membrane complexes, but

also on the evolutionary forces that shaped oxygenic photosynthesis.
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INTRODUCTION

Photosynthetic O2 production and carbon
cyt: cytochrome

Chl: chlorophyll
dioxide assimilation established the composi-

tion of the biosphere and provide all life forms

with essential food and fuel. Oxygenic photo-

synthesis in plants is accomplished by a se-

ries of reactions that occur mainly, but not

exclusively, in the chloroplast. Early biochem-

ical studies showed that chloroplast thylakoid

membranes oxidize H2O, reduce NADP, and

synthesize ATP. These reactions are catalyzed

by two photosystems [photosystem I (PSI)

and photosystem II (PSII)], an ATP synthase

(F-ATPase) that produces ATP at the expense

of the protonmotive force (pmf ) formed by

light-driven electron-transfer reactions, and

the cytochrome (cyt) b6f complex, which me-

diates electron transport between PSII and

PSI and converts the redox energy into part of

the proton gradient used for ATP formation.

The knowledge obtained from biophysical,

biochemical, and physiological research dur-

ing the twentieth century set the stage at the

beginning of the twenty-first century for the

determination at high resolution of the struc-

tures of most of the proteins involved in oxy-

genic photosynthesis (219). This review at-

tempts to capture the excitement generated by

the determination of the three-dimensional

structures of the chlorophyll (Chl) contain-

ing complexes that catalyze oxygenic photo-

synthesis. Several reviews have been published

that contain detailed discussions and list orig-

inal references to earlier work (18, 44, 60, 62,

110, 121, 125, 137, 238, 246, 273). In this re-

view, we focus on the photosystems of higher

plants but also refer to the wealth of structural

information that is available on the photosys-

tems of the thermophilic cyanobacteria, espe-

cially in the case of PSII, for which a plant

crystal structure is currently unavailable.

Molecular Architecture of Thylakoid
Membranes

In eukaryotes, most of the reactions of photo-

synthesis occur in the chloroplast. The four

protein complexes required for the light-

driven reactions of photosynthesis reside in a

membrane continuum of flattened sacs called

thylakoids (219). Thylakoids form a physically

continuous three-dimensional network en-

closing an aqueous space called the lumen and
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are differentiated into two distinct physical

domains: cylindrical stacked structures (called

grana) and interconnecting single membrane

regions (stroma lamellae). The protein com-

plexes that catalyze electron transfer and en-

ergy transduction are unevenly distributed in

thylakoids: PSI is located in the stroma lamel-

lae, PSII is found almost exclusively in the

grana (Figure 1), the F-ATPase is located

mainly in the stroma lamellae, and the cyt b6f

complex is found in grana and grana margins

(3, 13, 14, 154, 161).

Low-resolution models of thylakoid struc-

ture resulted from reconstituting serial thin

sections, freeze etching, immuno-gold la-

beling, and biochemical and spectroscopic

analyses (232). For example, fractionation

of membrane fragments by aqueous poly-

mer two-phase separation (3–5, 73) revealed

five domains: grana surface, core, margins,

stroma lamellae, and stroma lamellae Y-100

(Figure 1). A calculation of the total number

of Chl associated with PSI and PSII suggested

that more Chl (approximately 10%) are asso-

ciated with PSI than with PSII, in agreement

with results showing that PSI absorbs approx-

imately 20% more photons than PSII (3, 5,

149, 150). Two distinct photosystem subtypes

(PSIα, PSIβ and PSIIα, PSIIβ) were iden-

tified by biophysical experiments. Assuming

an antenna size for PSIIβ in stroma lamel-

lae of 100 Chl, the other antenna sizes are

(a) PSIα (grana margins), 300 Chls; (b) PSIβ

(stroma lamellae), 214 Chl; and (c) PSIIα

(grana core), 280 Chl (73). These complexes

were not characterized by biochemical meth-

ods, and the PSI results are inconsistent with

those from an analysis of the recent structure

of plant PSI (28). Moreover, the cyt b6f com-

plex and the F-ATPase were not quantified

in these domains. Future studies of compo-

nents of the thylakoid membrane must em-

ploy a concerted biochemical and structural

approach, using current methods and avail-

able high-resolution structures. Used alone,

any of the current methods runs the risk of

producing artifacts. For example, treatment

of thylakoid membranes with 0.5% dodecyl

Stroma lamellae

Grana

Y 100

Margin
Surface

Core

Figure 1

A schematic model
of domains of the
thylakoid membrane.
Mechanically
disrupted thylakoids
were separated into
various fractions by
differential
centrifugation and
phase separation (3).

RC: reaction center

maltoside releases most of the F-ATPase, and

surprisingly, PSII with very little contamina-

tion by PSI (9, 32). The current model for

defined domains in the thylakoid membrane

cannot explain this phenomenon.

Thylakoid Membrane-Protein
Complexes: Definitions and Limits

Resolution-reconstitution biochemistry and

molecular genetics have identified the func-

tions of individual proteins in many mem-

brane complexes, which are defined as the

minimal structures that catalyze specific bio-

chemical reactions. Analysis by sodium do-

decyl sulfate (SDS) gels of the first isolated

thylakoid membrane complexes revealed a

shocking number of subunits (12, 26, 27,

84, 165, 193, 214). By biochemical stan-

dards, these preparations were reasonably

pure, but this criterion alone cannot estab-

lish a polypeptide as a genuine subunit (218).

An authentic subunit must be present in stoi-

chiometric amounts, be necessary for activity,

and also be required for assembly and/or sta-

bility of the holoenzyme (305). Even purified

preparations may contain irrelevant polypep-

tides or may lose genuine subunits during iso-

lation without a detectable effect on activity.

Because eukaryotic and prokaryotic PSI and

PSII reaction centers (RCs) are almost identi-

cal in their subunit composition, Synechocystis

genetics has been invaluable for determina-

tion of the subunit structure and function of

both photosystems (62, 291) and has also iden-

tified special properties of individual subunits.
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LHC:
light-harvesting,
chlorophyll-binding
protein

CP:
chlorophyll-binding
protein

EM: electron
microscopy

Sequencing of the Synechocystis genome ended

the race for discovery of new genes in this

cyanobacterium and opened up the post-

genomic era (62, 146, 324).

The PSI subunit composition is now de-

fined by the polypeptides identified in the

detergent-isolated, highly active complex and

by the subunits detected in the crystal struc-

ture of plant PSI (28, 142, 258). Thus, PsaA-

PsaL and light-harvesting, Chl-binding pro-

tein (LHC) LHCa1, LHCa2, LHCa3, and

LHCa4 were proven to be genuine subunits

of plant PSI. The PsaN and O proteins that

were not detected in the structure are likely

to be genuine subunits, but this hypothesis is

not certain at the present time (142, 143, 167).

Several other proteins may function as assem-

bly factors (211, 212, 278, 316).

The subunit composition of PSII is much

more complex than that of PSI. Identifi-

cation of polypeptides in the highly active

detergent-isolated preparations from spinach

(33, 179), coupled with stepwise removal of

various subunits (48), defined the minimum

protein complex capable of O2 evolution ac-

tivity. Intrinsic light-harvesting proteins, such

as LHCII, LHCb4 [Chl-binding protein (CP)

29], LHCb5 (CP26), and LHCb6 (CP24)]

are easily removed with minimal activity loss;

the remaining subunits cannot be extracted

from the plant enzyme without affecting activ-

ity. These biochemical results, combined with

mutagenesis experiments carried out in Syne-

chocystis 6803 (291), defined the major intrinsic

proteins as Psb A (D1), B (CP47), C (CP43),

D (D2), and E and F, the polypeptides that

donate axial His ligands to the heme iron of

cyt b559. Nuclear-encoded extrinsic proteins

(PsbO, P, and Q) are required for O2 evolu-

tion activity under physiological conditions.

Cyanobacterial PSII contains PsbO (53), but

a cyt (c550, PsbV) and a 12 kDa polypeptide

(PsbU) replace the PsbP and Q subunits in eu-

karyotes (269). The other polypeptides found

in PSII are authentic subunits that are not di-

rectly involved in light harvesting or electron

transfer reaction. The PsbS subunit (162, 299)

is unique to eukaryotes and is required for

nonphotochemical quenching (185). A report

that it binds Chl (112) has not been substanti-

ated (91). Of the other polypeptides (Psb H-L,

N, R, T, and W-Z) associated with PSII, the

functions of PsbN (4.7 kDa) and R (10.2 kDa)

are unclear at the present time. The other sub-

units are discussed below.

Formation of Supercomplexes

Photosystems interact with other membrane

complexes such as light-harvesting proteins or

soluble proteins that mediate electron trans-

port. Whereas PSI and PSII form supercom-

plexes with light-harvesting proteins (LHCI,

LHCII), PSI also forms complexes with sol-

uble electron donors and acceptors (82). The

plant PSI structure (28, 32) revealed two dis-

tinct complexes: the RC and LHCI (see be-

low and Figure 1). Models of the interac-

tions between PSI and its soluble electron

donors and acceptors are discussed in detail

below. Because PSII utilizes a bound inor-

ganic ion cluster of four Mn, one Ca2+, and

one Cl− to oxidize H2O and produce the elec-

trons for reduction of plastoquinone, it has

no soluble proteinaceous electron donors or

acceptors (48, 89, 90). Nevertheless, PSII ex-

hibits extensive protein-protein interactions

in thylakoids. The plant RC is a dimer sur-

rounded by tightly bound trimeric primary

LHCII complexes (18); this supercomplex can

interact with different numbers of additional

LHCII units depending on light intensity and

quality (57, 82, 140, 250). Barber & Nield

(19) constructed detailed models using data

on individual subunits, subcomplexes, two-

dimensional projection maps, and electron

microscopy (EM) single particle analyses; the

high-resolution structure of the cyanobacte-

rial PSII dimer and single particle images of

intact PSII were then used to model the inter-

action between plant PSII and LHCII (18, 36,

82, 126). These models contain useful details,

but three-dimensional structures of the plant

PSII RC, both alone and with as many at-

tached LHCII units as possible, are still highly

desirable goals.
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Information about the evolution of PSII-

LHCII interactions comes from recent stud-

ies on bacteria and algae (20, 59). The Chl d

light-harvesting system of Acaryochloris ma-

rina is composed of Pcb proteins, which as-

sociate with the PSII RC to form a gi-

ant supercomplex (approximately 2300 kDa)

(59) composed of two PSII-RC core dimers

arranged end-to-end and flanked by eight

symmetrically-related Pcb proteins on each

side. The pcb genes encoding these antenna

proteins are present in multiple copies in low-

light strains but as a single copy in high-light

strains (35). Therefore, it is possible that adap-

tation of Acaryochloris to low-light environ-

ments triggered a multiplication and special-

ization of Pcb proteins comparable to that

found for Chl a- and Chl b-binding antenna

proteins in eukaryotes (35). If so, then at-

tempts to regulate light absorption by modu-

lating light-harvesting complexes are ancient

and are probably necessary for efficient light

harvesting and protecting RCs.

Higher-Order Interactions: Fact
and Fiction

The PSI and PSII supercomplexes that form

with variable amounts of membrane-bound

peripheral antenna complexes also associate

into megacomplexes or even semicrystalline

domains (82). Whether these associations

are physiological or preparative artifacts is

debatable. Biochemical methods for detect-

ing complex association use mild detergent

solubilization, followed by size analysis us-

ing sucrose-density gradient centrifugation

or electrophoresis on blue native gels and

analysis of the subunit composition or spec-

troscopic properties of an individual band.

For example, biochemical experiments on

digitonin-solubilized thylakoids subjected to

2D blue native polyacrylamide gel elec-

trophoresis resolved two high-molecular-

weight PSI complexes (approximately 1060

and 1600 kDa), which were assigned to dimers

and trimers (130). Whereas the evidence for

these supercomplexes is quite convincing,

their origin and nature is unclear. A second

method of analysis, using a combination of

mild detergents and EM, identified similar ag-

gregates: Dimers and larger aggregates of PSI

were observed in spinach PSI preparations

(40). However, a closer inspection of these

particles revealed that they are composed of

dimers and trimers that could not exist in na-

tive membranes, so it was concluded that these

particles were formed during detergent treat-

ment (173). It was also concluded that high-

molecular weight bands detected on blue na-

tive gel electrophoresis, like the PSI dimers

and trimers, do not constitute proof of the ex-

istence of native particles in the membrane.

EM investigations of the PSI–LHCI com-

plex from spinach had already indicated that

the LHCI subunits bind in one cluster at the

side of the core complex occupied by PSI-F

and PSI-J (38) when the plant PSI crystal

structure revealed that it is a supercomplex

containing an RC and a LHCI complex com-

posed of four LHCa proteins (28). In contrast,

Chlamydomonas is reported to contain consid-

erably more LHCa polypeptides and is much

larger than plant PSI (114, 156). One pro-

teomics approach revealed up to 18 different

LHCa proteins (134), but biochemical studies

and a more recent proteomic analysis yielded

9 to10 different subunits (277). Single particle

analysis of EM projections revealed two par-

ticles (21 and 18 nm), on which 18 and 11

LHCa proteins, respectively, were modeled

(114, 156). Modeling of the pea PSI struc-

ture into that of Chlamydomonas suggested

nine bound LHCa proteins, a result consistent

with recent biochemical studies (282). Eight

or nine LHCa polypeptides would occupy the

PsaF side of the complex and one would be

found between PsaL, A and K (82). How-

ever, recent observations suggest that only one

row of four LHCa is bound on the PsaF side,

and the extra density is attributed to a de-

tergent layer ( J. Neild, personal communica-

tion). Also, the number of Chl molecules per

Chlamydomonas PSI was reduced to approxi-

mately 215 to agree with the LHCI structure

of plant PSI, with the addition of two or three

www.annualreviews.org • Structure/Function of Oxygenic Photosystems 525
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PC: plastocyanin

Fd: ferredoxin

additional LHCa, bound proximal to PsaK

and G. These results emphasize the facts that

single particle analysis must be viewed with

some caution if x-ray structural data are un-

available.

BIOCHEMISTRY OF
PHOTOSYSTEM I AND II

Biochemical Preparations of P700
Containing Complexes

Although Bessel Kok discovered the PSI RC

Chl, P700, in the 1950s (169, 170), isola-

tion of a well-defined PSI complex required

the advent of SDS-polyacrylamide gel elec-

trophoresis (181, 298). This technique, which

is probably as important to membrane bio-

Figure 2

Subunit structure of photosystem I (PSI) preparations capable of
light-induced P700 oxidation. Preparations of P700 RC and PSI RC were
analyzed on cylinder SDS-gels (26). The PSI complex is the pea
preparation used for crystallization. The probable subunit identities are
indicated.

chemistry as the PCR reaction is to molecular

biology, gave relatively precise identifications

of proteins in membrane complexes. Initial

studies with Chl-protein complexes separated

from chloroplast thylakoids (26, 27) indicated

that the photosystems are much more com-

plex than bacterial RCs, which consist of three

polypeptides, four bacteriochlorophylls, two

bacteriopheophytins, and a nonheme iron (66,

228). Three well-defined biochemical prepa-

rations that catalyze light-induced oxidation

of P700 have been isolated. As shown in

Figure 2, the minimal structure that cat-

alyzes this reaction, the P700 RC, contains

two homologous polypeptides (PsaA and B)

and approximately 80 Chl molecules (26, 27).

The PSI RC, isolated from eukaryotes and

cyanobacteria, catalyzes light-induced plasto-

cyanin (PC)-ferredoxin (Fd) oxido-reduction

and contains multiple protein subunits, ap-

proximately 100 Chl molecules and up to 14

different polypeptides (142, 143, 258). The

largest complex, the PSI RC and LHCI, con-

tains approximately 200 Chl molecules (17,

23, 210, 214, 218). The plant PSI structure

identified 12 subunits in the RC and four dif-

ferent subunits in LHCI (28). Two subunits

(PsaN and O) were not detected in the crys-

tal structure. Future studies should determine

whether they are genuine subunits or assem-

bly factors.

Biochemical Preparations of
O2-Evolving PSII

The pioneering efforts to isolate plant PSII

used Triton X-100 (292) or digitonin (11);

the resulting preparations retained some PSI

and had low O2-evolution activity. A surpris-

ing insight into the complexity of the bio-

chemical composition of PSII was provided by

Akerlund et al. (2), who showed that

“inside-out” thylakoids contained an extrin-

sic polypeptide that was required for O2-

evolution activity. Lastly, Izawa et al. (254)

discovered artificial electron acceptors (i.e.,

p-phenylenediamines and p-benzoquinones)

that provided an unambiguous assay of PSII

526 Nelson · Yocum
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activity. These discoveries facilitated the iso-

lation of highly active PSII preparations (33,

179) and demolished the myth that the O2-

evolving reaction was an “Inner Sanctum’’

(171) that was impervious to biochemical ma-

nipulations. Isolation of cyanobacterial PSII

from Synechocystis 6803 was much more chal-

lenging (226), and His tagging has been used

to facilitate rapid isolation (49). Like PSI,

analysis of the composition of spinach PSII re-

quired SDS polyacrylamide slab gels. Unlike

PSI, the final subunit count exceeded 20 (125),

excluding the major light-harvesting polypep-

tides mentioned earlier. Cyanobacteria con-

tain a comparable number of subunits, several

of which have been resolved in the cyanobac-

terial crystal structures discussed below. The

largest intrinsic membrane proteins of PSII

(PsbB, 56.3 kDa) and C (CP 43, 51.8 kDa)

bind Chl a and function as antennas. Isolation

of PsbA and D in a complex with cyt b559 set-

tled the early debates about the identity and

composition of the PSII RC (256); PsbA (38.8

kDa) and PsbD (38.4 kDa) provide the ligands

for the cofactors [i.e., 6 Chl a, 2 pheophytin a

(Pheo a) molecules], 2 plastoquinones, a non-

heme iron, the redox active tyrosines (YZ, YD),

and the inorganic ions that catalyze H2O oxi-

dation] that make up the PSII electron trans-

fer chain. Roles of the small intrinsic subunits

of PSII are reviewed in detail by Thornton

et al. (284). These subunits of PSII are gen-

uine components of the multisubunit mem-

brane complex, although they do not lig-

ate electron transfer cofactors. Instead, they

are required for assembly and stability of the

enzyme complex.

The extrinsic proteins of plant PSII are

PsbO (the manganese stabilizing protein,

26.5 kDa), PsbP (called the 23 kDa subunit,

which is actually 20 kDa) and PsbQ (the

17 kDa subunit) (261). Cyanobacterial PSII

contains PsbO; PsbV (cyt c550, 17 kDa) and

PsbU (12 kDa) replace PsbP and Q (269). The

PsbP and Q subunits, along with PsbO, form a

structure that facilitates retention of inorganic

cofactors (Ca2+, Cl−) of the O2-evolving reac-

tion (115, 187, 205, 261). As PsbP and Q can

be removed without significant loss of Ca2+

(302), some reevaluation of their functions

may be necessary. The plant subunits also pro-

tect the manganese atoms from damage from

reductants such as plastohydroquinone (116).

In cyanobacteria, the small extrinsic subunits

also appear to play a role in cofactor reten-

tion (268, 270). In addition, Kashino et al.

(157) identified a protein in PSII from Syne-

chocystis 6803 with some sequence identity to

PsbQ. Thornton et al. (283) described site-

directed mutations that eliminate the putative

PsbQ subunit and a polypeptide that bears

a sequence similarity to the PsbP subunit.

The phenotypes of both mutants display a de-

fect in O2-evolution activity when the cells

are grown on medium deficient in Ca2+ and

Cl−. PsbQ is stoichiometric with other PSII

polypeptides but the PsbP homolog is present

at much lower levels. The authors conclude

that these subunits have a regulatory role in

cyanobacteria and are required during the as-

sembly of cyanobacterial PSII to produce a

fully active enzyme system.

All oxygenic photosynthetic organisms

contain PsbO [the manganese stabilizing pro-

tein (MSP)]. Extraction of PsbO from PSII

lowers the rate of O2 evolution and the resid-

ual activity requires unphysiologically high

concentrations of Cl− (261); PsbO-depleted

PSII slowly loses Mn atoms and activity upon

dark incubation, phenomena that are reversed

by high Cl− concentrations (206). Deletion of

PsbO by mutagenesis in Synechocystis produces

a phenotype that assembles PSII and grows

photoautotrophically (53). Eukaryotic PSII is

quite different: A Chlamydomonas mutant lack-

ing PsbO could not assemble PSII (194), and a

recent study using RNAi to suppress MSP lev-

els in Arabidopsis produced a very similar result

(313). There are other differences between

eukaryotic and bacterial PsbO. The crystal

structures of Thermosynechococcus elongatus and

T. vulcanus contain one copy of PsbO (95, 155,

322). Low resolution EM structures of plant

PSII were interpreted to indicate a similar

stoichiometry. However, reconstitution stud-

ies (184, 306) and the effects of site-directed
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mutagenesis on the ability of PsbO to bind

to PSII (34) support the hypothesis that two

copies of PsbO are present, as does the ab-

sence from cyanobacterial PsbO of one of two

N-terminal amino acid sequences in spinach

PsbO that are necessary for binding of two

copies of the protein to spinach PSII (239,

240). One PSII-PsbO interaction site is the

latter’s N terminus (92), which was localized

by crosslinking to the large extrinsic domain

of PsbB, between E364 and D440 (227). Spe-

cific N-terminal PsbO sequences required for

binding have been identified (239, 240). In

plant PSII, PsbO provides binding sites for

attachment of PsbP and PsbQ, probably by

electrostatic interactions or salt bridges (47,

285). The results of these experiments provide

useful information on protein-protein inter-

actions among the extrinsic and intrinsic sub-

units of PSII, but a complete understanding

of such interactions requires high-resolution

structural data that would be provided by crys-

tals of plant PSII.

STRUCTURAL STUDIES ON
PHOTOSYSTEM I AND II

The past two years have brought major ad-

ditions to the steadily growing collection of

molecular pictures of the components of the

photosynthetic apparatus (Figure 3) (201,

218, 221). New structural work on PSII (37,

95, 160) and on LHCII (188, 276) has pro-

vided higher resolution structures than were

previously available (155, 166, 175, 322). A

portrait of the first membrane supercomplex

of a plant PSI RC associated with its antenna

LHCI also became available (Figure 4) (28).

The similarity in composition and arrange-

ment of cofactors in complexes that are sepa-

rated by a billion years of evolution is striking

(29, 220, 221), and the differences in protein-

protein interactions and new features added

during the long-term evolution of eukaryotic

complexes emphasize the unique biological

adaptations to ecological niches and environ-

mental variation of these complex enzyme sys-

tems (220, 221). At the mechanistic level, the

new structures place restrictions on theoret-

ical speculations and suggest experiments to

support or reject old and new hypotheses.

The Structure of Plant Photosystem I

PSI is a remarkable nano-photoelectric ma-

chine that operates with a quantum yield

close to 1.0 (219, 222). Theoretical quantum-

mechanics solutions for such a mechanism ex-

ist (87, 105, 251, 311, 312), but no synthetic

systems have approached this efficiency. This

efficiency is why structural biologists who like

to solve intricate structures were attracted to

RCs (8, 80). The complexity of plant PSI is

one of these challenges (262); as it is composed

of a RC and LHCI, the resulting supercom-

plex presents an even bigger challenge than

the bacterial RC (139, 219). It is therefore not

surprising that the first PSI structure to be

solved was that of the thermophilic cyanobac-

terium T. elongatus (111, 152, 260). The 2.5 Å

structure (152), which contains a model of 12

protein subunits and 127 cofactors (96 Chl, 22

carotenoids, 2 phylloquinones, 3 Fe4S4 clus-

ters, and 4 lipids), is a landmark achievement

that provided the first detailed insights into

the molecular architecture of PSI. The co-

factor orientations and their interactions with

protein subunits and other cofactors were de-

termined (152). In crystals and in vivo, T. elon-

gatus PSI is a trimer with a diameter of 210 Å

and a maximum height of 90 Å. In contrast,

plant PSI is a monomer, which, at 4.4 Å reso-

lution, contains the models of 16 protein sub-

units, 167 Chl, 2 phylloquinones, and 3 Fe4S4

clusters (28). The main features of cyanobac-

terial and plant PSI are summarized in

Table 1.

A stromal view of plant PSI (Figure 4)

reveals two distinct, loosely-associated moi-

eties: the RC and LHCI, which are sepa-

rated by a deep cleft. The four LHCI sub-

units form two dimers arranged in series to

create a half-moon-shaped belt docked on the

F subunit side of the RC. This belt is the most

prominent addition to the plant PSI struc-

ture. The RC retains the same location and
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Figure 3

The architecture of thylakoid membrane complexes and soluble proteins based on high-resolution
structures. Available structural data on membrane-protein complexes and soluble proteins have been
adjusted to the relative size of plant photosystem I (PSI). The structural data were obtained from Protein
Data Bank (PDB): PSI – 1QZV, 1YO9 (theoretical model); Fd – 1A70; PC – 1AG6;
ferredoxin-NADP-reductase – 1QG0. The structure of chloroplast F-ATPase was constructed from data
on mitochondrial and bacterial F-ATPase-PDB 1H8E (catalytic) and 1YCE (membranal) (O. Drory,
unpublished communication). The insert presents a schematic depiction of the segment of the thylakoid
that was modeled with the structures.

orientation of electron transfer compo-

nents and transmembrane helices found in

cyanobacterial PSI, except for those of sub-

units X and M, which were either lost during

chloroplast evolution or added to cyanobac-

terial PSI after it diverged from eukaryotic

PSI (29, 220). Two additional subunits (PsaG

and H) are present in plant PSI (Figure 4).

PsaH, located adjacent to PsaL, has a sin-

gle transmembrane helix followed by a 20 Å

long helix that lies on the stromal side of the

membrane and coordinates one Chl molecule.

PsaG is homologous to PsaK (230); it is sit-

uated on the opposite side of PsaK and con-

tributes most of the contact surface area for

association with LHCI (Figure 4). The two

transmembrane helices of PsaG are connected

by a relatively long loop that was assigned

to the stromal side of the membrane (28),

in agreement with recent biochemical data
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Figure 4

A view of the structure of plant photosystem I from the stromal side. The structural coordinates were
taken from the theoretical refinement (PDB) of original structural data (PDB 1QZV) (26, 151). The Chl
molecules (green) and the calculated positions of carotenoids and lipids (red ) are shown. The protein
backbone of the 16 subunits is in the background. The positions of PsaG, PsaH, PsaK, and LHCa1-4
subunits are shown.

(252). Although PsaK is so flexible in its po-

sition near PsaA that its loop was not ap-

parent, even in the high-resolution structure

of cyanobacterial PSI (152), PsaG is firmly

bound to PsaB and also has helix-helix inter-

actions with LHCa1 (Figure 4). Also on the

stromal side, the general structure of the pe-

ripheral subunits PsaC, D, and E is almost

identical to that of cyanobacterial PSI except

for an N-terminal extension of PsaD that is

unique to the eukaryotic subunit (Figure 5).

We attribute the greater resistance of this do-

main of chloroplast PSI to chaotropic agents

to this PsaD extension. On the lumenal side,

the most noticeable distinction between plant

and cyanobacterial RCs is the helix-loop-helix

motif contributed by the longer N-terminal

domain of plant PsaF (28), which facilitates

more efficient PC binding. As a result, elec-

tron transfer from this copper protein to P700
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Table 1 Chlorophylls and transmembrane

helices in PSI of cyanobacteria and higher

plants
∗

Transmembrane

helices Chlorophylls

Subunits Cyano Plant Cyano Plant

A 11 11 40 40

B 11 11 39 39

F 1 1 — —

I 1 1 — —

J 1 1 3 2

K 2 2 2 2

L 3 3 3 3

M 1 — 1 —

X 1 — 1 —

G — 2 1

H — 1 1

Lhca1 — 3 — 13

Lhca2 — 3 — 13

Lhca3 — 3 — 12

Lhca4 — 3 — 13

RC 7 13

Linker

(Chl)

— 5

Gap

(Chl)

— 10

32 45 96 167

∗

About eight additional densities in plant PSI are likely

to be Chl molecules, giving a total of about 175 Chl

molecules in plant PSI. The subunit-specific Chs

coordinate the polypeptide chain. RC: Chls present in

the reaction center with no apparent contact to specific

subunit. Linker: Chls connecting the LHCa units. Gap:

Chls situated between the reaction center and LHCI.

is two orders of magnitude faster than in

cyanobacteria (135, 231).

In summary, the crystal structure of plant

PSI reveals not only its architecture but

also the possible mode of interaction with

LHCI that causes supercomplex formation.

The structure also provides new insights into

the nature of the sites of interaction between

PSI and PC, Fd, ferredoxin-NADP-reductase

(FNR), and LHCII. As such, the structure

provides a framework for investigating the

mechanism of light harvesting and energy

FNR:
ferredoxin-NADP-
oxidoreductase

conversion, as well as the evolutionary forces

that shaped the photosynthetic apparatus of

terrestrial plants.

Electron Donors

PC is the universal PSI electron donor,

although a cytochrome can replace it in

cyanobacteria and algae; under certain physi-

ological conditions, cyt c6 can alternate with

PC as an electron carrier between cyt f and

P700 (159, 245). Reports that plants contain

an equivalent of cyt c6 that can function as

electron donor to PSI (123, 296) were called

into question by results showing that Ara-

bidopsis plants mutated in both PC genes but

with a functional cyt c6 could not grow pho-

toautotrophically (208, 300, 301). The com-

plete block in light-driven electron transport

in these mutants, even in the presence of an

increased dosage of the gene encoding the cyt

c6-like protein, makes it highly likely that PC

is the only mobile electron donor to higher

plant PSI.

Information on the PSI-PC interaction

came from PsaF-depleted PSI RCs that ex-

hibited impaired P700+ reduction by PC and

slowed photo-oxidation of cyt c552 (a PC ana-

log from green algae) (27). Although this re-

sult suggested that PsaF provided the PC

binding site (27, 135, 231), a null mutation

in PsaF in Synechocystis grew photoautotroph-

ically at nearly wild-type rates (61). This

enigma was resolved by the cyanobacterial PSI

structure and by studies in Chlamydomonas that

demonstrated the presence of a hydrophobic

binding site shared by PsaA and B that ex-

poses a conserved tryptophan residue to the

lumen surface (152, 275). A Chlamydomonas

PsaA mutation (W651F) abolished formation

of a first-order electron transfer complex be-

tween PC and PSI (274). Thus, the PC bind-

ing site comprises mainly a hydrophobic in-

teraction with PsaA and B and is facilitated

and controlled by charge-charge interactions

with PsaF. As a result, electron transfer from

PC to PSI is two orders of magnitude faster in

plants than in cyanobacteria, and the release of
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Figure 5

A side view of the structure of plant photosystem I. This figure was constructed as in Figure 4. The Chl,
carotenoids, and lipids were eliminated. The cofactors involved in light-induced electron transport, i.e.,
P700, A0, A1, FX, FA, and FB, are shown along with the backbones of the 16 subunits. The positions of
PsaB, PsaC, PsaD, PsaE, and PsaF are shown. In the electron transport chain, the P700 Chl (red ) and
the other Chl ( green) are indicated. The quinones (blue) and, in the iron-sulfur clusters, the iron (red )
and the sulfur ( yellow) are also indicated.

oxidized PC limits the electron-transfer rates

(99, 119, 132, 133, 135). This effect was at-

tributed to more efficient PC binding in plants

that was mediated by the extra 18 amino acid

residues in the plant PsaF N terminus. In the

plant PSI structure, this extra N-terminal do-

main forms an amphipathic helix-loop-helix

motif on the lumenal side of the thylakoid

membrane (28), which, in comparison to the

cyanobacterial structure (152), is the only al-

teration in the PC binding pocket. A model for

the interaction of plant PC and PSI positions

PC so that it interacts with the hydrophobic

surface on PsaA and B and a positively charged

site on PsaF (28). Superfluous degrees of free-

dom have been resolved by bringing a clus-

ter of negatively charged conserved residues

(i.e., Asp42, Glu43, Asp44, and Glu45) of

PC into contact with the positively charged

N-terminal domain of PsaF, which contains

a few lysine residues that are missing in

cyanobacteria (61, 135, 231, 246). The model

in Figure 6 suggests that the additional

charges are responsible for more efficient

PC binding in chloroplasts. One wonders

whether this new interaction might generate
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Figure 6

A side view model of putative interactions between plant photosystem I (PSI), plastocyanin, and the
ferredoxin-ferredoxin-NADP-reductase complex. The four light-harvesting proteins (LHCa1-4) are
shown ( green). Novel structural elements within the RC (core) absent from cyanobacterial PSI (red ) and
the conserved features of both RC (black) are indicated. The Fe (red balls) and S (green balls) of the Fe-S
clusters are shown. PC ( green), its copper atom (blue), Fd (magenta), FNR (orange), and its FAD (blue), as
well as the positions of the PsaB, PsaD, PsaF, and PsaH subunits, are also shown. The cofactors involved
in light-induced electron transport from P700 to FX are indicated (blue). The crystallographic data were
from PDB: PSI – 1QZV, PC – 1AG6, and Fd-FNR complex – 1GAQ.

a constraint that restricts donor flexibility and

therefore evolutionary loss of functional cyt

c6 in vascular plants (201).

Electron Transport Chain

The components of the PSI electron trans-

port chain (ETC), P700, A0, A1, FX, FA, and

FB, were first identified spectroscopically dur-

ing the last half-century (44). Light-induced

charge separation oxidizes the primary elec-

tron donor P700 (Redox potential E′
m +

430 mV), a Chl a/a′ heterodimer, and re-

duces the primary electron acceptor A0 (E′
m ∼

–1000 mV), a Chl a monomer. The elec-

tron is transferred to A1 (E′
m ∼ –800 mV),

a phylloquinone in most organisms; to FX

(E′
m –705 mV), an interpolypeptide (4Fe-4S)
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Figure 7

Structural model of
the pathway for
light-induced
electron transport
from P700 to FB in
photosystem I
(PSI). The
cofactors involved
in light-induced
electron transport
in PSI are
presented using the
same color scheme
as in Figure 5.
PsaA and PsaB
indicate the
sidedness of the
model.

cluster; and finally to FA (E′
m − 520 mV)

and FB (E′
m − 580 mV), which are 4Fe-

4S clusters bound to the extrinsic subunit

PsaC (Figures 7 and 8). The high-resolution

structure of PSI established the spatial ar-

rangement among these cofactors but also

raised questions about their mode of action

and the possible involvement of neighbor-

ing molecules in their activity (120, 152,

317). The ETC is arranged in two quasi-

symmetrical branches consisting of six Chl,

two phylloquinones (A1), and three Fe4S4

clusters (FX, FA, and FB). P700 is com-

posed of a Chl pair, Chl a and Chl a′,

that are not identical and therefore devi-

ate from perfect symmetry. A pair of Chl a

molecules situated symmetrically approxi-

mately 16 Å from P700 were assigned to the

spectroscopically-characterized primary ac-

ceptor A0. To complicate matters, another pair

of Chl a monomers is located approximately

halfway between P700 and A0 (Figures 7

and 8) that are assigned as accessory Chl

that may participate in excitation and/or elec-

tron transfer (see below). From A0, the elec-

tron is transferred to one of two clearly re-

solved quinones and from there to FX. The

quinones are placed on a pseudo-twofold-

symmetry axis, but their angles and interac-

tions with the protein are clearly not identical.

The presence of two symmetrical cofactor

branches in PSI (Figures 7 and 8) raised the

question of whether one or both are active in

electron transport under physiologically rele-

vant conditions (43, 45, 74). By analogy to the

RC in purple bacteria, it was proposed that

electron transfer in PSI occurs preferentially

along one branch. Alternatively, the fact that
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PSI is related to the green bacterial type I

RC, which is a homodimer (29, 54, 55, 93,

108, 128, 129, 186, 220), and the nearly per-

fect symmetry of the PSI ETC suggested that

electron transfer should occur along either

branch (243). Electron-nuclear double reso-

nance (ENDOR) studies of PSI mutations in

the residues binding P700 showed that the

Chl on the PsaB side carries most of the elec-

tron spin density of P700+ (174, 297); this ob-

servation indicates that there are differences

in the electronic characteristics of the two

branches. Low-temperature Electron Param-

agnetic Resonance (EPR) experiments on the

accumulation or reoxidation of the quinone

acceptor A1 detected a single quinone, but the

identity of the active branch was unclear (213,

247).

In cyanobacterial PSI, site-directed muta-

tions on the PsbA branch markedly alter the

kinetics of the first steps of electron trans-

fer and the spectral properties of the primary

electron acceptor A0, whereas mutations on

the PsaB-branch yield kinetics and spectral

properties that are essentially undistinguish-

able from the wild-type (68, 308, 309). It was

therefore concluded that most of the electron

transfer takes place on the PsaA branch in

prokaryotes. Studies on eukaryotes, however,

find evidence of significant PsaB-branch ac-

tivity (41, 94, 122, 148, 213, 241, 242). Pi-

cosecond optical spectroscopy showed that

the replacement of the Met axial ligand to

Chl a (either eC-A3 or eC-B3) (152) by His

in C. reinhardtii PSI partially blocked elec-

tron transfer; this observation indicates that

both branches are active in electron transfer

(243). However, these data were challenged by

a low-temperature transient EPR study (197).

This result raises the point that, although site-

directed mutants are useful tools for mecha-

nistic research, studies of the mutants have to

be complemented by high-resolution struc-

tures; small changes due to a slight movement

in one of the polypeptides that bind cofactors

could lead to erroneous conclusions.

At the present time, the most convincing

studies on the sidedness of electron trans-

Figure 8

Structural model of the pathway for light-induced electron transport from
plastocyanin to ferredoxin in photosystem I. Chls (blue), quinines (black),
the copper atom of PC (blue), and Fe (red balls) and S (green balls) of the
three Fe4-S4 clusters and the Fd Fe2-S2 are depicted. Two tryptophan
residues (light-blue and light-pink space-filling structures) that might be
involved in electron transport from PC to P700 are also shown in the
context of their secondary structural environment.

port in PSI come from optical spectroscopy

in wild-type organisms (148); these studies

suggest that fast absorption changes are as-

sociated with PsaB quinone reoxidation. This

hypothesis was based on the observation that

mutations in the PsaA quinone-binding site

have substantial effects only on the ∼200 ns
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reoxidation rate, whereas symmetrical muta-

tions in the PsaB quinone-binding site affect

only the ∼20 ns reoxidation rate (122). In

a very recent discussion of the sidedness in

PSI electron transfer with the phylloquinones

bound to either the PsaA or the PsaB sub-

units (255), the partial reaction in the electron

transfer chain that could not be simulated is

the phylloquinone (A1) reoxidation reaction.

In order to simulate measured rates of the

biphasic decay (approximately 20 and 200 ns),

a novel model was presented that suggests that

the redox potentials of the quinones are al-

most isoenergetic with that of the iron sulfur

center, FX. Therefore, the only substantially

irreversible electron-transfer reactions would

be the reoxidation of A0 on both electron

transfer branches and the reduction of FA by

FX. This hypothesis, along with future ultra-

fast measurements and high resolution stud-

ies of wild-type and mutated PSI, are likely to

elucidate the mechanism of electron transfer

in PSI.

Electron Acceptors

Fd’s function as the principle PSI electron-

acceptor plays a significant role in determin-

ing the enthalpy on earth. Fd reduces NADP+

via FNR for various reductive biosynthetic

pathways, thioredoxin via Fd-thioredoxin re-

ductase for redox regulation, and also enzymes

such as acyl carrier protein (ACP) desaturase,

nitrite reductase, and glutamic acid synthase.

Fd also reduces the cyt b6f complex or plasto-

quinone in a cyclic electron transfer pathway

around PSI that generates a proton gradient

and, hence, ATP synthesis (52, 141, 153, 195,

196) (see below). Fd is a soluble protein with

one 2Fe-2S cluster that accepts electrons from

the FB cluster on the stromal side of the PSI

complex. In certain organisms, this reaction

takes place under extreme conditions such as

high temperature (103, 217). The Fd-PSI in-

teraction involves the PsaC, D, and E subunits

(10, 190, 204). The reduction of Fd by FB in-

volves three first-order components with t1/2

values of 500 ns, 13–20 µs, and 100–123 µs

(266, 267). The 500 ns phase corresponds to

electron transfer from FA/FB to Fd. Based on

kinetic arguments, it has been proposed that

a PsaE-dependent, transient tertiary complex

containing PSI, Fd, and FNR forms during

linear electron transport (288). Figure 6 de-

picts a model of such a tertiary complex that

is based on the structures of plant PSI (28),

the Fd-FNR complex (177), and cross-linking

data (101, 102, 183, 265). The Fd-FNR struc-

ture was fitted to the most likely contact sites

that (a) obey the structural constraints and (b)

place the electron carrier at distances that al-

low for the observed kinetics of electron trans-

port (Figure 6). Although the two structures

could not be fitted in a way that places Fd

close enough to FB to obtain the necessary rate

of electron transfer between them, the model

allows oxidized Fd to toggle towards FB and

close the gap between them. Upon reduction,

Fd returns to its initial position, close enough

to the FNR flavin for efficient electron trans-

fer. Obviously, the actual structures of PSI-Fd

and PSI-Fd-FNR supercomplexes are needed

to better understand the mechanism of elec-

tron transport between FB and NADP+. The

recent report of a cyanobacterial crystal of

a 1:1 PSI:Fd complex (109) that diffracts to

7–8 Å may be the first step in this direc-

tion. Fd-mediated electron transport is not

the only reaction that can occur on the reduc-

ing side of PSI. Cyanobacteria grown under

iron-depleted conditions synthesize a flavo-

protein (flavodoxin) that replaces Fd function-

ally in most, but not all, reactions (199, 225).

Light-Harvesting and Excitation
Migration in Plant Photosystem I

PSI maintains a quantum yield of approxi-

mately one in all its forms in various organ-

isms (219, 220). This efficiency persisted for

3.5 billion years of evolution and survived

an enormous number of potential mutations.

Not surprisingly, the sequences of genes en-

coding PsaA and B exhibit very high amino

acid sequence conservation, in particular for

the amino acids that are likely to coordinate
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Chl (29, 30, 151, 262). Other factors are

also important for Chl binding, however. The

plant PSI structure revealed that only 3 of the

96 Chl molecules reported in the model of

the cyanobacterial PSI RC are missing: two

bound to PsaM and PsaX, and one bound to

PsaJ (Table 1). Of the remaining 93 Chl, 92

are found at the same position in the plant RC;

these Chls include 15 that have their Mg2+

coordinated by H2O (28). Only one of these

(B33) had a significantly changed position;

this change was due to the insertion in plant

PSI of a three-amino-acid loop that coordi-

nates this Chl, whose novel position resulted

in loss of the long wavelength (730 nm) “red

trap” of cyanobacterial PSI. A few other minor

alterations, mainly in chromophore orienta-

tion, were also observed (28). Thus, to adapt

the plant RC to utilize energy from the LHCI

antenna required the addition of only 10 Chl

molecules at three contact regions (17, 210). It

is not clear whether the exact position and co-

ordination of each Chl molecule contributes

to the almost perfect quantum yield of the sys-

tem, and, if so, how a deleterious mutation in

the system would be detected and corrected

(220).

Structural information on the geometry

of the Chl molecules in PSI permits the

construction of microscopic models for an

excitation-transfer network of PSI (56, 72,

118, 158, 200, 263, 264, 310). Once the lo-

cation and orientation of pigments are de-

termined, excitation-transfer rates between

pigments are described by Forster theory

(105, 251), or, for strong couplings and fast

timescales, by Redfield theory (310). Thus,

excitation-transfer pathways among the pig-

ments of cyanobacterial and plant PSI can

be defined as an excitation-transfer network

(262). This approach yielded computations

of kinetic parameters (average excitation life-

times, overall quantum efficiency) to a rea-

sonable accuracy, as well as the construction of

stochastic models whose robustness (error tol-

erance) and optimality (high relative fitness)

allow probing of the network by comparing

the pigment network geometry with alterna-

tive geometries (289). These models must ul-

timately be verified experimentally.

Structure of Photosystem II

In the case of plant PSII, a three-dimensional

model of the plant PSII supercomplex ob-

tained by cryoelectron microscopy and single

particle analysis is available (223), but the only

available crystal structures are of the PsbP and

PsbQ extrinsic subunits, at 1.6 and 1.95 Å res-

olution, respectively (58, 138) These struc-

tures are presented in Figure 9. The larger

subunit is composed mainly of β-sheets, and

does not appear to have any structural features

in common with its cyanobacterial counter-

part (PsbV). The structure of PsbQ likewise

has no counterpart among cyanobacterial sub-

units. The core of this protein is a four-helix

bundle, but the N-terminal 45 residues are

mobile and are not resolved in the structure

shown in the figure. This flexible domain of

PsbQ is believed to be involved in binding

to PSII (261). Attempts to crystallize PsbO

failed, possibly because it is intrinsically disor-

dered (191). Attempts to produce diffraction

quality crystals of intact plant PSII were dif-

ficult (107) due to proteolysis of samples dur-

ing crystallization (D.F. Ghanotakis, personal

communication). This problem was not en-

countered in attempts to crystallize PSII from

thermophilic cyanobacteria (i.e., T. elongatus,

T. vulcanus) (95, 155, 322). The protein com-

plex forms dimers in the crystals, and the res-

olution of the structures ranges from 3.8 to

3.5 Å; a more recent report gave a resolution

of 3.2 Å (37), and further improvements may

appear before this review is published.

Stromal and sideview models of PSII struc-

ture based on the data presented by Fer-

riera et al. (95) are shown in Figures 10

and 11. Such models are satisfying because

many of their features coincide with predic-

tions derived from biochemical and spectro-

scopic probing experiments; however, they

also provide enhanced structural details re-

garding placement of the individual subunits

and the orientations of pigments associated

www.annualreviews.org • Structure/Function of Oxygenic Photosystems 537

A
n
n
u
. 
R

ev
. 
P

la
n
t 

B
io

l.
 2

0
0
6
.5

7
:5

2
1
-5

6
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 T

E
L

-A
V

IV
 U

N
IV

E
R

S
IT

Y
 o

n
 0

8
/1

4
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Figure 9

Structures of the
smaller extrinsic
polypeptides of
photosystem II
(PSII). The plant
PSII subunit
structures are taken
from crystals of the
isolated proteins
(58, 138).
Structural data are
from PDB:
PsbQ-1NZE and
PsbP - 1V2B. The
cyanobacterial
structure shows the
interaction
between PsbU and
PsbV, taken from
the T. elongatus
structure (PDB:
PSII-1S5L) (95).

with the RC and its antenna system. In all of

the structures now available, it can be seen

that membrane-spanning helices of the PsbA

and PsbD RC subunits are in close proximity

to one another. RC chromophores (compris-

ing six Chl, two Pheoa, the plastoquinones QA

and QB, and the redox-active tyrosines YZ and

YD) are bound to these subunits, as expected.

The PsbC subunit is close to PsbA, and PsbD

is in close proximity to PsbB. The disposition

of Chl molecules in PsbB and C are now bet-

ter resolved; 14 Chl a are bound to PsbB, and

16 are bound to PsbC. For 23 Chl, the ligand

to the central Mg2+ atom of the chlorin ring is

a His-imidazole nitrogen. Seven β-carotenes

are resolved in the structure; one of these con-

nects cyt b559, ChlzD1, and P680, the RC Chl of

photosystem II (37). The large extrinsic loops

of PsbB and C are readily visible as significant

protrusions into the lumenal space above the

membrane-spanning α-helices of these large

subunits. Accessory subunits (i.e., PsbH, I, J,

K, L, M, N, T, X, and Z) are modeled into the

structure; L, M, and T are suggested to be in-

volved in formation of PSII dimers, whereas

I and X are proposed to stabilize binding of

the fifth and sixth Chl molecules, ChlZD1 and

ChlZD2, that are bound to PsbA and D, re-

spectively. The PsbJ, K, N, and Z subunits

are clustered near PsbC, and are hypothesized

to be involved in carotenoid binding (95). On

the stromal side of the structure, the QA bind-

ing site is composed of amino acid residues

contributed by PsaD; for the QB site, the lig-

ands are donated by PsbA. A nonheme iron

ligated between these sites completes a struc-

ture that is quite similar, but not identical,

to the quinone sites in photosynthetic bac-

teria (160). A summary of this information,

including the proposed subunit-cofactor in-

teractions, is presented in Table 2.

As predicted from biochemical and muta-

genesis experiments (46), the large extrinsic

loops of PsbB and C provide binding sites for
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Figure 10

A stromal side view of the structure of the cyanobacterial photosystem II (PSII) dimer. The polypeptide
chains are shown at lower contrast to reveal the chromophores; PsbB (PsbB) and PsbC (PsbC) are labeled,
and the boundary between the monomeric RCs is indicated (dashed arrow). Chl a (green), carotenoids
(red), and plastoquinones (blue) are also shown. The structure is based on PSII PDB-1S5L.

attachment of PsbO, which is visible on the

lumenal side of the complex as an elongated

structure containing β-sheets, consistent with

predictions from physical characterizations of

the soluble protein (34, 191, 192, 272, 307,

323). In the structural model, the N termi-

nus of the protein is bound to the extrinsic

loop of PsbC, whereas a loop in the PSbO

structure makes contact with the extrinsic do-

main of PsbB. The structure gives no evidence

for the interaction detected in plant PSII be-

tween the PsbO N terminus and the extrin-

sic loop of PsbB (227). The presence of two

copies of PsbO in plants (306) may be respon-

sible for the extra PsbO-PsbB interaction in

spinach. Although PsbO stabilizes the inor-

ganic ion cluster, the 3.5 Å model predicts that

no PsbO ligands bind to the Mn atoms. How-

ever, a loop in PsbO extends in the direction

of the Mn cluster, and this loop is proposed

to function as a hydrophilic pathway between

the lumen and the inorganic ion cluster (95).

The smaller extrinsic subunits of cyanobacte-

rial PSII appear to bind through interactions

with PsbO and with one another; a model of

the PsbU-PsbV subunits is given in Figure 9.

A comparison of this structure with that of

the two plant subunits, as shown in Figure 9,

points to the substantial differences between

these pairs of proteins. The plant subunits ei-

ther contain a four-helix bundle (PsbQ) or are

rich in β-sheets (PsbP), features that are ab-

sent from the structures of PsbU and V. The

presence of a heme in PsbV gives further evi-

dence for the marked differences between the

prokaryotic and eukaryotic subunits.
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Figure 11

Side view of the structure of cyanobacterial photosystem II. Positions of the extrinsic polypeptides are
indicated, along with the intrinsic subunits PsbA-D and the small intrinsic accessory subunit, PsbZ. The
chromophore colors are as given in Figure 10; the c550 and b559 hemes (red) and the Mn cluster (blue) are
highlighted. The pseudo-C2-symmetry axis between the monomeric subunits of the homodimer is also
indicated (vertical dashed arrow).

Caution is advisable in drawing firm con-

clusions about the structure of PSII from

the available structures. Limited resolution

(3.8–3.2 Å) requires some interpretive mod-

eling to build structures as, for example, with

the amino acid side chains (37). A major is-

sue concerns the structure of the inorganic

ion cluster itself. All models to date propose

a monomer-trimer arrangement of the Mn

atoms in the cluster, in agreement with spec-

troscopic experiments (236). In the detailed

model of Ferreira et al. (95), three Mn atoms

and an atom of Ca2+ form a distorted cube-

like structure; an isolated Mn atom may be

positioned to play a role in H2O oxidation,

which we discuss below. Unfortunately, high

X-ray energies and exposure times used to

obtain diffraction data resulted in radiation

damage that reduced the Mn atoms, probably

to all Mn2+, in contrast to the native Mn3+

and Mn4+ oxidation states (164, 248). It is

likely that Mn2+ has dissociated from native

ligands, causing some rearrangement of the

amino acid residues in the binding site (76).

This possibility is also suggested by Fourier

Transfer Infra Red spectoscopy (FTIR) exper-

iments on Synechocystis 6803 PSII that showed

that the carboxyl terminus of PsbA (Ala344)

is a ligand to the Mn cluster (63, 207, 279).

The most detailed model based on the crys-

tal structure places this residue near the Ca2+

atom but not as a Mn ligand. These reserva-

tions should not detract from the enormous

achievement of obtaining a crystal structure

of PSII; however, more data, obtained at

shorter exposure times, are required to val-

idate current models of the inorganic ion

cluster.
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Electron Transport in
Photosystem II

Characterizations of PSII by a variety of

methods summarized in References 78, 89, 90,

117, and 203 identified the electron transport

cofactors in PSII, including Mn, Ca2+, and

Cl− in H2O oxidation and their stoichiome-

tries (i.e., four Mn, one Ca2+, and one Cl−

per RC) (1, 179, 187, 271, 315). The identifi-

cation of redox-active tyrosines, one of which

(YZ) mediates electron transfer from the in-

organic ion cluster to P680 in the RC, was

a significant advance in understanding PSII

electron transfer (21). A functional analogy

between PSII and the bacterial RC formed the

basis for the current model of electron trans-

fer (89). Therefore, the pathway of electron

transfer in PSII is generally agreed to be as fol-

lows: H2O → [Mn4CaCl] →Yz/YZ
•
→ P680/

P680+
→ Pheoa/Pheoa

−
→ QA/QA

−
→

QB/QB
−. Double reduction and protonation

of QB
− releases QBH2 from its PSII bind-

ing site in exchange for an oxidized quinone

(89). It is now clear from mutagenesis of the

heme-binding pocket of cyt b559 that it is not

required for O2-evolution activity (209), al-

though cyt b559 is necessary for assembly of

stable PSII complexes and may function in a

cyclic reaction around PSII (290).

The estimated redox potentials of inter-

mediates in the PSII electron transfer path-

way depend on the potential (E′
m) of the

primary oxidant, P680+/P680, which was set

at +1.12 V based on a potential of −0.64 V

for the Pheo a/Pheo a- couple (90). Other po-

tentials are as follows: (a) O2/H2O, +0.93V;

(b) YZ
•/YZ, +0.97 V; (c) QA

−/QA, −0.03 V;

and (d ) QB/QB
−, +0.030V (89, 287). A reeval-

uation of the P680 and Pheoa reduction po-

tentials are in order (71, 244), based on new

results that suggest a more positive potential

(+1.27 V) for P680+/P680 and therefore for

Pheo a/a- and for intermediate redox states in

the H2O-oxidizing reaction as well. The ki-

netics of electron-transfer reactions have been

worked out in detail. The rate-limiting step

in H2O-oxidation is approximately 1.4 ms;

Table 2 Chlorophylls, transmembrane helices, and

cofactors of O2-evolving PSII RCs from cyanobacteria and

plants1

Transmembrane

helices Chlorophylls

Subunits Cyano Plant Cyano Plant

Other

cofactors

A 5 5 3 3 YZ, 4Mn,

Pheo a,

QB

B 6 6 16 16 (?)

C 6 6 14 14 (?)

D 5 5 3 3 YD, QA

E 1 1 Cyt b559

heme

F 1 1 Cyt b559

heme

H 1 1

I 1 1

J 1 1

K 1 1

L 1 1

M 1 1

O 0 0

P2 — 0

Q2 — 0

S — 4

T 1

U3 0 —

V3 0 — Cyt c550

heme

X 1 1

Y 1 1

Z 2 2 —

˙˙˙ ˙˙˙ ˙˙˙ ˙˙˙˙

35 38 (?) 36 36 (?)

1The number given for transmembrane helices in cyanobacteria is taken

from the models constructed from crystallographic data (95, 155, 160,

322), but should be viewed as provisional until higher-resolution data

become available (37). For higher plants, hydropathy plotting was used to

predict the number of transmembrane helices.
2An extrinsic subunit unique to plant PSII.
3Extrinsic subunits unique to cyanobacteria.
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Figure 12

Structure of the photosystem II (PSII) electron transfer chain. The direction of electron transfer down
the right (D1 or PsbA) side from P690 to QA is indicated (arrows). The following cofactors are shown:
Chl a ( green), Pheo a (light blue), plastoquinones ( purple), cyt b559 heme and reducing-side nonheme iron
(red ), carotenoids (orange), Ca2+ (magenta), and Mn atoms (blue); one Mn atom is obscured in the
structure. The structure is based on PDB: PSII-1S5L.

electron transfer from YZ to P680+ occurs

in the ns to µs time domain, and electron

transfer from P680 to Pheoa occurs in ap-

proximately 3 ps. Reduction of QA by Pheo

a- occurs in 250–300 ps, and the QA
−

→ QB

reaction has a half-time of approximately

100 µs (89, 90).

The crystal structures of PSII have re-

vealed more exact details of the organization

of electron transfer cofactors (95, 155, 322);

a model is presented in Figure 12 in which

the accessory Chls (ChlZD1 and ChlZD2) are

omitted for clarity. The bifurcated electron

transfer pathway comprised of Chl a, Pheo a,

and plastoquinones is similar to the arrange-

ment of cofactors of the RC of purple photo-

synthetic bacteria (80). A notable difference is

the spacing of the two Chl molecules that are

presumed to make up P680. In PSII this dis-

tance is estimated to be 8.3 Å (95) rather than

the 7.6 Å in bacteria. The longer distance is

in accord with the proposal that, in PSII, the

entire array of RC pigments might be able to

function as a multimeric RC (83), even though

a localized Chl cation radical is present in

the charge-separated state (90). The structural

model shows that the cofactors are separated

by relatively short distances: 10.6 Å for P680-

Chl a [PsbA(D1)] and for Chl a [PsbA (D1)]-

Pheo a, and 14 Å for Pheo a -QA (160). These

distances are consistent with the rapid rates

of electron transfer that have been measured.

The two carotenoids shown in the model

presented in Figure 12 include the pigment

that, along with the accessory Chl molecule

(ChlZD1) and cyt b559, may be involved in a

cyclic electron-transfer pathway from b559 on

the reducing side of PSII back to the ox-

idizing side (90, 290). The YZ-Mn cluster

complex is shown at the bottom of the figure.
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The model, a monomer-trimer arrangement

of Mn atoms, is similar to the structure derived

from magnetic resonance experiments (236,

281). The distance between the tyrosine and

the metal center is approximately 7 Å; this ob-

servation is in agreement with the distance de-

rived from magnetic resonance experiments

(50, 182). Mn ligands proposed in the model

(D170, E189, E333, E354, H337, H332, and

D342) (95) are all donated by PsbA. These

ligands include residues identified as possi-

ble ligands by either site-directed mutagenesis

(79, 88) or pulsed-magnetic-resonance spec-

troscopy (51). All models based on either crys-

tal structures or on spectroscopic measure-

ments (64, 163) predict a close interaction

(3.5–4.5 Å) between Mn atoms and the Ca2+

in the metal cluster.

Mechanism of O2 Evolution

The model for O2 evolution invokes a set of

oxidation states (“S” states) (172) to explain

the period-four release of O2 from thylakoids

exposed to short (<10 µs) flashes of light. The

reaction is a linear sequence of photocatalyzed

oxidations, beginning in dark-adapted mate-

rial from the S1 state; the S4 state decomposes

spontaneously to release O2 and form the S0

state. The entire sequence may be written as:

2H2O + S0 → S1→S2 → S3→ S4 →S0 +

O2 + 4 H+. Because Mn is the only redox-

active metal in the site of H2O oxidation, con-

siderable effort has gone into probing its be-

havior. Spectroscopic experiments (164, 236,

248) as well as reductive titrations (176) give

Mn oxidation states for S1 of 2 Mn3+/2 Mn4+.

Results of several spectroscopic experiments

(75, 81, 233, 236) point to Mn oxidation on

each S-state advancement up to S3. The rapid

decay of the S4 state (t1/2 = ∼1.4 ms) pro-

hibits characterization of the step in which

O2 is formed and released from PSII. Spec-

ulations about the identity of the terminal ox-

idant in the mechanism include YZ
• and a

Mn5+ species as possible candidates (136, 235,

294, 295). The identity of the terminal oxidant

is a critical issue that must be resolved for a

full understanding of the chemistry of H2O

oxidation.

The roles of Cl− and Ca2+ in H2O oxi-

dation are also topics of great interest. Re-

moval of either ion from PSII blocks S-state

advancement at S2 (42, 187, 234). In the case

of Cl−, it has been shown that the anion is

required for the S4 → S0 transition and that

its binding to the oxygen-evolving complex

(OEC) is weaker in the higher S-states (302,

303). Evidence for a close proximity of Cl− to

the Mn cluster has also been presented (67,

182), and some models of the OEC show it as

a ligand to Mn (286, 295), although this status

has not been definitively confirmed by spec-

troscopic methods (127). Calcium has been

shown to stabilize the ligand environment of

the Mn cluster (198, 249); however, the re-

quirement for Ca2+ to advance the S-states

beyond S2 suggests that it may play a more

direct role in the mechanism of H2O oxida-

tion as well.

Critical questions about the mechanism of

H2O oxidation focus on (a) the steps at which

substrate oxidation occurs and (b) the roles of

Mn, Ca2+, and Cl− in this process. Exper-

iments employing time-resolved mass spec-

trometry and isotopically-labeled H2O indi-

cate that the substrate binds in S0 and S3 (131).

Advancements of the S-states are accompa-

nied by H+ release; the prevailing notion is

that H+ release follows a 1:0:1:2 pattern start-

ing from S0 (259). The origin of the protons

released into the medium continues to be a

subject of debate (see Reference 90); H2O is

the ultimate source, but the phenolic H+ of

YZ may form part of a H+-transfer network.

Another question concerns the pathway(s) by

which H+ exits the site of H2O oxidation. Ev-

idence that His190 of the PsbA subunit is in-

volved, perhaps by hydrogen-bonding to the

phenolic proton of YZ as a first step in H+

transfer network, has been presented, but this

observation has not been confirmed by spec-

troscopic methods (79). A proposal, based on

the 3.5 Å structure, suggesting that some lu-

menal residues of PsbA participate in a proton

transfer pathway (95), has not been tested
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experimentally. Regardless of the pathway,

proton transfer coupled to electron transfer

from the Mn cluster to YZ
• is an essential

component of H2O-oxidation chemistry. An

uncompensated positive charge increase on

the Mn cluster would generate an energetic

barrier to subsequent oxidation reactions; this

would be avoided by coupling of electron and

H+ transfer, or by the transfer of H-atoms.

The latter mechanism is the basis of the pro-

posal that the mechanism of H2O oxidation

proceeds by H-atom transfer (136, 286). This

hypothesis provided the impetus for renewed

interest in electron-transfer mechanisms on

the oxidizing side of PSII. The YZ-Mn dis-

tance (∼7 Å) measured in PSII crystals is too

long for H-atom transfer (95), but this obser-

vation needs to be reevaluated in light of the

evidence that the Mn cluster in these crystals

is damaged.

The complexity of the H2O-oxidation site

in PSII has presented an enormous challenge

to the development of hypothetical mecha-

nisms for the reaction. A real chemical inter-

mediate in S3 has been detected at high O2

pressures (20 bar) (65). Three substrate bind-

ing sites for such an intermediate are the two

redox-active Mn atoms and Ca2+, which has

been proposed to be a H2O-binding site be-

cause it generally accommodates two or more

bound H2O molecules as ligands in other pro-

tein systems (253, 314). This aspect of Ca2+

chemistry forms the basis for including the

metal in proposed mechanisms for H2O oxi-

dation (235, 295). These mechanisms utilize

Ca2+ as a Lewis acid to deprotonate a bound

H2O; the resulting Ca2+-bound OH− is used

as a nucleophile to attack an O==Mn+5 to form

the O-O bond that leads to O2 formation and

reduction of the cluster to S0. Of all of the

metals that can occupy the PSII Ca2+ site, only

Sr2+ can restore O2-evolution activity in place

of Ca2+, but at much lower rates (314). This

observation correlates with the Lewis acidity

of both Sr2+and Ca2+, both of which have

higher acidities than other metals that bind

to PSII but are ineffective in restoration of

activity (295).

Although many questions remain, substan-

tial progress has been made towards a better

understanding of the mechanism of H2O ox-

idation. The role of Mn as a redox-active cat-

alyst has been established in all but the final

step of the mechanism, and there are ratio-

nal proposals for the function of Ca2+ in the

mechanism. What is now required is a struc-

ture of the undamaged inorganic ion cluster at

higher resolution, as well as additional exper-

iments to characterize both possible reaction

intermediates and the oxidation states of Mn

in S4.

Light Harvesting and Excitation
Transfer in Photosystem II

Isolated plant PSII supercomplexes retain the

light harvesting apparatus, which comprises

trimeric LHCII complexes (82); the num-

ber of LHC per RC is reported to vary be-

tween two and four trimers (38, 39), whereas

core dimers of PSII contain approximately

eight LHC trimers (237). Monomeric LHCII

contains 8 Chl a and 6 Chl b, so approx-

imately 170 Chl per monomeric PSII RC

are associated with this protein (188, 276).

Less abundant Chl a-binding proteins such

as LHCb4, LHCb5, and LHCb6 are also

present as monomers in PSII. A summary of

the structural evidence to date indicates that

LHCb4 is located close to PsbB, LHCb5 is

near PsbC, and LHCb6 makes contact with

LHCb4. Strongly bound LHCII trimers are

in close contact with the RC polypeptides of

PSII whereas a second population of these

complexes makes contact with LHCb4 and

LHCb6 (82). Based on structural models, the

pathway of energy transfer in PSII can be

formulated as follows: Direct energy trans-

fer from strongly-bound LHCII and from

LHCb5 to PsbC is to be expected from the

proximity of these subunits to one another and

to the RC. Energy transfer to PsbB is believed

to occur by a pathway from a less-tightly-

bound population of LHCII to LHCb6, and

then through LHCb4, which is in close con-

tact with PsbB. The exact size of the pool
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of LHCII associated with each PSII super-

complex is fluid due to state transitions (304),

which we discuss in the next section.

Exciton transfer from the Chl a bound to

PsbB and PsbC to the RC itself constitutes

the final step in energy transfer. In this case,

the recent crystal structures have been use-

ful in providing estimates of the distance (ap-

proximately 20 Å) between the RC Chl and

the nearest antenna pigments in PsbB and

PsbC. This placement has the advantage of

protecting the antennae Chl from oxidation

by P680+, but also has little effect on fast-

excitation transfer to the RC, which in the

case of PsbB has been estimated to occur in

approximately 20 ps (15). Competing mod-

els for the kinetics of energy transfer pro-

pose that either (a) exciton transfer is rapid,

and formation of the charge separated state is

rate limiting, or (b) energy transfer between

antennae and the RC is slow and constitutes

the rate-limiting step (77, 202). There is evi-

dence to support either model at the present

time (90).

MOLECULAR BIOLOGY AND
PHYSIOLOGY OF
PHOTOSYSTEMS I AND II

Cyclic Electron Transport and State
Transitions

Cyclic electron transport around PSI, first de-

scribed 50 years ago by Arnon et al. (16), re-

quired relatively high Fd concentrations. The

early evidence for cyclic activity was demon-

strated first under nonphysiological condi-

tions in isolated chloroplasts and then in vivo

(106). It was later shown that cyclic electron

flow might be induced by CO2 depletion,

drought, and other stress conditions (for re-

view, see Reference 25). Cyclic electron flow

was also observed in dark-adapted leaves at

the onset of illumination (147, 149, 150) and

also on the basis of measurements of PSI-

dependent energy storage by photoacoustic

methods (144). Two parallel paths of cyclic

electron transport have been identified by dif-

ferences in antimycin sensitivity, saturation

characteristics, and substrate specificity (257).

A mutation in the PGR5 protein causes de-

creased PSI cyclic activity (216); PGR5 is

membrane bound, but has no extensive hy-

drophobic sequence. PGR5 is therefore un-

likely to be intrinsic to the thylakoid or to

fulfill the function of a Fd-cyt b6f or Fd-

plastoquinone oxidoreductase. Nevertheless,

PGR5 is thought to have a role in electron

transport from FNR to the cyt b6f complex

(216) [FNR was proposed to be a genuine

subunit of the complex (320), but this pro-

posal is not supported by the cyt b6f structure

(280)]. It was shown that Fd reduction of plas-

toquinone is PGR5 dependent (216); this re-

duction could be direct (through an unknown

Fd- plastoquinone oxidoreductase), or indi-

rect (through the cyt b6f complex). An Ara-

bidopsis mutant with a conditional defect in

Q-cycle activity, pgr1, showed no difference

in PGR5-dependent plastoquinone reduction

by Fd; this observation suggests direct reduc-

tion of plastoquinone (229). This result forces

one to reconsider direct reduction by Fd of

the cyt b6f complex. The recent structures of

cyt b6f revealed a unique heme, termed heme

x, that is high-spin five-coordinate with no

strong field ligand. It is positioned close to

the intramembrane heme b(n) that is occu-

pied by the n-side bound quinone in the cyt

bc1 complex of the mitochondrial respiratory

chain. Thus, heme x could function in Fd-

dependent cyclic electron transport (70, 178,

280). Tight binding of FNR to the cyt b6f

complex would provide a possible Fd-binding

site for FD and would provide a pathway for

electron flow from the acceptor side of PSI to

plastoquinone via Fd, FNR, and heme x in the

cyt b6f complex. From plastoquinone, elec-

trons would follow the normal pathway (i.e.,

via cyt f and PC) to P700. At the present time

there is no experimental evidence for such a

pathway, so the structural basis for cyclic elec-

tron transport remains unknown.

Cyclic photophosphorylation is an essen-

tial component of state transitions, which are

used by photosynthetic organisms to adapt to
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changes in light quality by redistributing exci-

tation energy between the two photosystems

to enhance photosynthetic yield (24). At high

light intensities, LHCII migrates from PSII

to PSI (7). This movement is correlated with

protein phosphorylation and an increase in

the 77 K fluorescence signal from PSI at 735

nm relative to that at 685 nm from PSII (180).

It was concluded that phosphorylation of a

population of granal LHCII caused migration

of these pigment proteins from the PSII-rich

appressed membranes into the PSI-enriched

unstacked regions. Numerous experiments,

including single particle analysis (69), con-

ducted in higher plants supported this model,

but the detailed mechanism of state transi-

tions was unclear (113, 318, 319). The exis-

tence of LHCII migration at high light inten-

sity was challenged by experiments using pea

plants (168), but isolation of photoautotrophic

Chlamydomonas mutants that were deficient in

state transitions moved the debate to firmer

grounds (96, 104). The stt7 mutant cannot un-

dergo state transitions and is blocked in state

I. This mutant displays the same deficiency

in LHCII phosphorylation as cyt b6f mutants

that cannot undergo state transitions (100).

A thylakoid-associated serine-threonine pro-

tein kinase, Stt7, has been identified (86) and

was shown to be required for phosphorylation

of the major light-harvesting protein (LHCII)

and for state transitions (293). Arabidopsis state

transitions and light adaptation require a thy-

lakoid protein kinase STN7 (24), so a protein

kinase governs state transitions in both algae

and higher plants.

Crosslinking experiments to analyze PSI-

LHCII interactions showed that LHCII is sit-

uated in close proximity to the PsaI, L, and

H subunits (189, 321). However, attempts to

fit LHCII monomer or trimer structures into

PSI in a way that satisfied the crosslinking

data were only partially successful (31). None

of the configurations tested would fit LHCII

into the supercomplex so that it would be

in simultaneous contact with the three sub-

units and also provide efficient energy trans-

fer to the RC. A model for the binding of a

LHCII trimer on the PsaA side of plant PSI

was proposed (31), but it is not clear whether

trimeric, rather than monomeric LHCII, ac-

tually binds to PSI, or if phosphorylated

LHCII is even needed for binding (124, 321).

It is nevertheless clear that supercomplexes of

PSI-LHCII form under stress, and a high-

resolution structure of such a supercomplex

will clarify the nature of PSI-LCHII interac-

tions.

State transitions in higher plants are lim-

ited. In state II, additional light harvesting

by PSI does not exceed 20% (6). In contrast,

PSI light harvesting in Chlamydomonas almost

doubles; approximately 80% of the LHCII

associates with PSI (85), and, as a result,

PSI of Chlamydomonas has to accommodate a

greater number of LHCII complexes in state

II. Whereas addition of a single LHCII trimer

could explain the 20% increase in state II light

harvesting of plant PSI, a much larger number

is required for the state II capacity in Chlamy-

domonas. The model proposed for binding of

a LHCII trimer on the PsaA side of plant PSI

(31) was supported by a single particle analy-

sis of state II-enriched PSI (173). In addition,

several observations using single particle anal-

ysis of PSI in Chlamydomonas demonstrated

the presence of additional LHCII trimers, and

probably monomers as well, attached to PSI

(114, 156, 282, 224).

State transitions and cyclic phosphoryla-

tion activity are mutually regulated in ways

that are unique to organisms inhabiting dif-

ferent ecological niches (6, 24, 145). For

example, under state II conditions, a large

fraction of ATP synthesis is coupled to cyclic

electron transport, whereas, under state I con-

ditions, no evidence for cyclic flow has been

obtained (97). In Chlamydomonas, the State I-

State II transition induces a switch from lin-

ear to cyclic electron flow; this switch reveals

a strict cause-and-effect relationship between

the redistribution of antenna complexes and

the onset of cyclic electron flow (98). In C4

plants, in which PSII is largely absent from

bundle sheath cells, cyclic electron transport

is dominant (22). In C3 plants, the existence of
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simultaneous cyclic and linear electron trans-

port reactions was questioned, even after one

component of the cyclic electron flow path-

way was characterized (216). Now it has been

shown that cyclic electron transport not only

occurs in C3 plants, but is essential for growth

(215). A mutant that lacks both the principal

pathways of cyclic electron transport is grossly

impaired in growth and development. Thus,

cyclic electron transport in conjunction with

state transitions constitutes a vital mechanism

for adaptations to a changing environment.

CONCLUDING REMARKS

At an earlier point in our careers, we were

privileged to work at the same time in the

laboratory of Ephraim Racker at Cornell

University. Ef was justifiably famous for his

groundbreaking work on membrane-protein

complexes of the mitochondrial inner mem-

brane, among many other significant accom-

plishments. This research had given him a

world-wise view of this branch of science.

Ef was also famous for his brief aphorisms,

which were liberally applied to his research

team, particularly complaining postdocs. One

of the most famous of these was “Troubles are

good for you,” which was handed out when

a preparative procedure went bad or a tricky

reconstitution experiment failed to yield the

expected result. Indeed, troubles lie in the

path of anyone who takes on the challenges of

working with the intricate membrane-protein

complexes that catalyze the reactions of oxy-

genic photosynthesis. Isolation of active en-

zymes, the discovery of double-digit polypep-

tide contents, and crystals that grow slowly, if

at all, are at the head of a long list of diffi-

culties. And yet, here we are, at the start of

a new century with the structures of all the

membrane complexes laid out before us. This

scenario would have delighted Ef, who spent

his career cleaning up enzymes. Perhaps his

most famous aphorism was “Don’t waste clean

thoughts on dirty enzymes.” Now, with struc-

tures, techniques, and models proliferating at

an incredible rate, we think that it is time for a

revised aphorism: Don’t use your dirty thoughts

on clean enzymes!
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