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Abstract

Background: The gut microbiome influences myriad host functions, including nutrient acquisition, immune

modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we

age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S

rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the

healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7–12 years). We

compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same

region (Houston, TX, USA).

Results: Although healthy children and adults harbored similar numbers of taxa and functional genes, their

composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp.,

Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of

Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative

abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and

triggering mucosal inflammation. Children’s gut communities were enriched in functions which may support

ongoing development, while adult communities were enriched in functions associated with inflammation, obesity,

and increased risk of adiposity.

Conclusions: Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the

first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and

functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more

prolonged development than previously suspected.
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Background

The gastrointestinal (GI) tract is home to one of the

largest, most diverse human-associated bacterial commu-

nities. More than “fellow travelers,” our gut microbiota are

essential to digestion and nutrient acquisition, intestinal

development and motility, and modulation of the immune

system [1–3]. Further, emerging research suggests that the

gut microbiome may be intimately linked to brain devel-

opment and behavior [4].

The human GI microbiome is dynamic and shaped by

multiple factors, including the aging process. Previously

thought to be sterile until birth, the human microbiome

may be seeded in utero [5, 6]. The GI microbiome

changes rapidly during infancy and early childhood and

may be shaped by delivery mode, diet, antibiotics, and

other exposures [7, 8]. Although many of these factors

continue to influence GI communities as we age, the

healthy adult gut microbiome is generally considered to

be stable until older age (e.g., 65–100 years), which is
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characterized by declines in microbiome stability and

function [9–11].

Despite recognition that the gut microbiome plays im-

portant roles in development, immunity, and health out-

comes later in life [12, 13], information regarding the

structure and function of the gut microbiome during

childhood is limited and has focused mainly on stark

comparisons related to diet and/or biogeography [14, 15].

Although it has been suggested that the gut microbiome

reaches a relatively stable, adult-like state after the first 1

to 3 years of life [15, 8, 16], other evidence indicates that it

continues to develop into the teenage years [13, 17, 18].

It is thought that childhood may provide opportunities

for microbiome interventions to promote health or pre-

vent disease [12]. As such, it is vital to establish a base-

line understanding of pediatric GI microbiome structure

and function, the degree to which these vary among

healthy children, and the extent to which specific micro-

bial features are unique to childhood, as opposed to in-

fancy, when digestive function is immature [19, 20], or

adulthood, when presumed to be mature. The goals of

this study were to describe gut microbial composition

and functional potential in healthy, pre-adolescent chil-

dren and compare them with healthy adults. Thus, we

compared matched 16S rRNA gene and shotgun meta-

genomic profiles of healthy children from Houston, TX,

and adults recruited at the Human Microbiome Project’s

(HMP) [21] Houston-based clinical site.

Results

Pediatric and adult subject characteristics

Thirty-seven healthy children were included in our 16S-

based analysis, and a subset of these (n = 22) were ana-

lyzed via shotgun metagenomics (WGS). Stratifying the

HMP for adults who fit our inclusion criteria provided 43

and 22 subjects for our 16S- and WGS-based analyses,

respectively. Subject demographics are described in

Additional file 1: Table S1, and sequence accession num-

bers and quality metrics are described in Additional file 2:

Table S2, Additional file 3: Table S3, and Additional file 4:

Table S4. Our pediatric cohort included one Asian and

two subjects of mixed/unknown ancestry, limiting our

analysis of race to black versus white.

16S rRNA gene profiles

We found that, as previously reported for healthy

adults, the healthy, pediatric gut microbiome is com-

posed largely of bacteria belonging to the Bacteroidetes

and Firmicutes, and the ratio of these two phyla varies

considerably across subjects (Fig. 1a). In contrast to

adults, the average healthy child’s gut community con-

tains significantly lower abundances of Bacteroidetes

and significantly greater abundances of Firmicutes and

Actinobacteria (White’s non-parametric t-test, q < 0.01

for each). At the genus level, members of the

Bacteroides accounted for nearly 40 % of the average

healthy child’s gut microbiome, with Faecalibacterium,

Alistipes, Ruminococcus, Roseburia, and other genera

composing the balance (Fig. 1b). Although the average

healthy child’s gut microbiome harbors a large variety

of operational taxonomic units (OTUs), neither rich-

ness nor diversity (Additional file 5: Table S5) or overall

community structure (Additional file 6: Figure S1A, C,

D) varied significantly as a function of sex, ethnicity, or

body mass index (BMI) status. Similarly, neither rich-

ness nor diversity differed according to race, but

marginally significant differences (Adonis test, F = 1.59,

p = 0.05) were detected with respect to race and vari-

ation in community structure among children (Additional

file 6: Figure S1B), as well as in a combined analysis of

children and adults (Additional file 7: Figure S2C).

In contrast to these results, age group (i.e., child vs.

adult) appears to have a strong and significant influence

on gut microbial community diversity and structure. Al-

though the gut communities of healthy children and

adults harbor similar numbers of OTUs, significant dif-

ferences were detected between the two groups with re-

spect to the Shannon and Simpson diversity indices

(Mann-Whitney U-test, p < 0.05) (Additional file 8:

Table S6). Despite many taxa being shared between

children and adults, their distribution differed substan-

tially. Members of the genus Bacteroides were the most

frequently encountered taxa in both children and

adults, but Bacteroides spp. accounted for a greater

proportion of the 16S reads in adult gut communities

(White’s non-parametric t-test, q < 0.01). Children’s gut

communities featured significantly greater abundances

of bacteria belonging to the genera Faecalibacterium,

Dialister, Roseburia, Ruminococcus, and Bifidobacter-

ium (White’s non-parametric t-test, q < 0.05, Fig. 1b). A

full list of genera differing between children and adults

is provided in Additional file 9: Table S7.

On a global level, the gut communities of children and

adults tended to be more similar to those from their re-

spective age groups than they were to one another

(Fig. 2a, c). The average within-group dissimilarities of

children’s gut communities were significantly lesser than

those observed among the gut communities of adults,

and they are significantly lesser than those observed be-

tween adults and children (Student’s t-test, with 1000

permutations, q < 0.05, Fig. 2c). An accompanying Ado-

nis analysis confirmed that age, either as a continuous

or categorical variable, accounted for a significant propor-

tion of the variation among subjects (continuous: F = 5.25,

p < 0.001; categorical: F = 7.04, p < 0.001). The general

differentiation of child and adult profiles, and the sig-

nificance of age group via Adonis analysis, was consist-

ent across distance metrics, including the weighted

Hollister et al. Microbiome  (2015) 3:36 Page 2 of 13



UniFrac (F = 15.47, p = 0.001), unweighted UniFrac

(F = 3.25, p = 0.001), and the Hellinger (F = 5.55, p = 0.001)

metrics (Additional file 10: Figure S3A–C). And, without

exception, age accounted for a greater proportion of the

variability observed among subject profiles than any other

variable examined (Additional file 7: Figure S2A–D).

Random Forests analysis further validated the differen-

tiation of child and adult gut communities. With an out-

of-bag error rate of 15 % (versus a baseline error rate of

46 %), a subset of OTUs which correctly classified most

subjects (68 of 80) was identified. Misclassification was

not explained by known subject variables; these subjects

included individuals from both sexes, all BMI classes,

and multiple races, ethnicities, and subject ages. OTUs

contributing to the differentiation of gut communities,

according to their Random Forests importance scores,

included members of the genera Bifidobacterium, Faeca-

libacterium, and Bacteroides (Table 1).

Taxonomic characterization of the metagenomic profiles

MetaPhlAn profiling of WGS libraries was used to gen-

erate genus- and species-level profiles of our healthy gut

communities. Despite differences inherent between the

16S- and WGS-based approaches, we found broad

agreement between the two techniques with respect

to microbiome composition and its relationship with

clinical variables, including age (e.g., Figs. 1b, c and

2a, b; Additional file 6: Figure S1A–H). On average,

16S and WGS libraries from the same individual

shared >70 % concordance with respect to genus-level

relative abundances (n = 44 paired specimens, average

Pearson r = 0.71), and in many cases, these values

Fig. 1 Distribution of taxa in healthy child and adult GI communities. a Variation in bacterial relative abundances at the phylum level via 16S rRNA gene

sequencing (n= 37 children, 43 adults). Mean genus-level relative abundances as detected by b 16S sequencing (n= 37 children, 43 adults) and c shotgun

metagenomic profiling (n= 22 children, 22 adults)
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exceeded 90 %. Similar taxa were differentially abun-

dant between groups (Additional file 9: Table S7 and

Additional file 11: Table S8), and age consistently ex-

plained a greater proportion of the variation than

other known variables (Fig. 2a, b; Additional file 7:

Figure S2A-H).

The number of detectable species in WGS-based pro-

files did not vary among children according to sex or

BMI, but significant differences were observed with

respect to species richness and race and ethnicity

(Mann-Whitney U-test, p < 0.05, Additional file 5:

Table S5). Greater numbers of species were detected

in the gut communities of black versus white children and

non-Hispanic versus Hispanic children. Despite differ-

ences in species richness, we did not find that ethnicity

contributed significantly to the overall variation in commu-

nity composition when viewed through the lens of WGS-

based species profiles (Additional file 6: Figure S1E, G). The

marginally significant relationship observed with

respect to 16S community structure and race was reca-

pitulated with the WGS-based species data (F = 1.61,

p = 0.06; Additional file 6: Figure S1F), and marginally

significant results were observed with respect to BMI

(Additional file 6: Figure S1H). Despite these findings,

race and BMI accounted for less variation than did

age, either as a continuous (F = 3.56, p < 0.001) or

categorical variable (F = 4.18, p < 0.001) (Fig. 2b). And,

neither race nor BMI accounted for significant levels

of variation when considered among all subjects, in-

dependent of age (Additional file 7: Figure S2F, H).

Adults and children differed significantly with respect

to the number of species detected (WGS) and the diver-

sity of those profiles (Mann-Whitney U-test, p < 0.05,

Additional file 8: Table S6), with greater numbers of spe-

cies and greater diversity detected in children. As

observed among the 16S profiles, children’s gut commu-

nities contained a greater number of genera (Fig. 1c,

Mann-Whitney U-test, p > 0.05), and the relative abun-

dances of 13 species differed between children and adults

(White’s non-parametric t-test, q < 0.10, Additional file 11:

Table S8). Faecalibacterium prausnitzii, Bifidobacterium

longum, and Eubacterium rectale were enriched in children,

Fig. 2 PCoA of adult and child fecal communities. Plots are based on Bray-Curtis dissimilarities of a 16S-based OTUs (n = 37 children, 43 adults)

and b species detected via WGS (n = 22 children, 22 adults). The percent variation captured by each axis is indicated in parenthesis. Adonis test

results related to age group are also presented. c Bray-Curtis dissimilarity within and between healthy children and adults, as a function of 16S-based

OTUs or WGS-based species. **q < 0.01 by two-tailed Student’s t-test with 1000 permutations and Bonferroni multiple testing correction
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while Bacteroides vulgatus and Bacteroides xylanisolvens

were enriched in adults.

Within- and between-group dissimilarities of WGS-

based species profiles also suggest that the gut com-

munities of children share a significantly greater

degree of similarity (i.e., less dissimilarity) with one

another than they do with those of adults (Student’s

t-test with 1000 permutations, Bonferroni correction,

p < 0.05, Fig. 2c). As with 16S, Random Forests ana-

lysis of the WGS-based species profiles correctly clas-

sified the majority of subjects by age group. With an

overall error rate of 13.64 % (versus a baseline error rate

of 50 %), three children and three adults were misclassi-

fied. Species contributing to the differentiation of children

and adults are provided in Table 1 and include members

of many of the same genera identified in our 16S analysis.

Functional characterization of the metagenomic profiles

A total of 5820 Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) ortholog groups (KO) were detected

among the 44 gut community profiles analyzed, and

46 % of these ortholog groups (2693 KO) were detected

in all subjects. Gut communities of children were signifi-

cantly enriched with respect to the average number of KO

detected (Student’s two-tailed t-test, p = 0.02). The average

healthy child’s gut metagenome contained 4446 KO, while

the average adult’s contained 4201 KO.

Children shared approximately 90 % similarity (me-

dian value, 10 % Bray-Curtis dissimilarity) with one

another in terms of their KO profiles, a level similar

to that observed among adults (median value: 87 %

similarity) and slightly greater than that observed be-

tween children and adults (median value: 87 % simi-

larity). Given such a high degree of similarity among

children, no significant differences in KO abundances

were detected with respect to sex, race, or ethnicity.

Likewise, neither sex nor race or BMI explained a sig-

nificant proportion of the variation among subject

KO profiles, but marginally significant differences

were detected with respect to the effects of ethnicity

(F = 1.39, p = 0.07) (Additional file 6: Figure S1I–L). In

contrast, the relative abundances of 1513 KO differed

between healthy children and adults (White’s non-

parametric t-test, q < 0.10, Additional file 12: Table S9).

Table 1 Taxa contributing to the classification of child versus adult gut communities

Analysis type Taxon identity (OTU or species) Random forests
importance score

Mean relative abundance (%)a White’s non-parametric t-test

Child Adult p value q value

16S OTU_1555 Anaerovorax 6.77 0.23 0.16 9.99E−04 0.028

16S OTU_1412 Bifidobacterium 6.07 0.34 0.01 9.99E−04 0.028

16S OTU_1015 Faecalibacterium 5.28 8.26 3.52 9.99E−04 0.028

16S OTU_411 Collinsella 4.79 0.20 0.01 9.99E−04 0.028

16S OTU_2162 Lachnospiraceae Incertae Sedis 4.74 0.93 0.28 9.99E−04 0.028

16S OTU_2956 Porphyromonadaceae 4.69 0.01 0.08 9.99E−04 0.028

16S OTU_3384 Bacteroides 4.24 0.08 0.20 9.99E−04 0.028

16S OTU_4352 Lachnospiraceae 4.04 3.52 1.65 1.99E−03 0.053

16S OTU_1928 Ruminococcaceae 3.60 0.38 0.08 9.99E−04 0.028

16S OTU_987 Ruminococcaceae 3.53 0.57 0.09 9.99E−04 0.028

WGS Bifidobacterium longum 6.01 6.54 0.24 9.99E−04 0.018

WGS Eggerthella lenta 5.44 0.06 0.01 1.00 1.000

WGS Porphyromonas asaccharolytica 5.13 6.30E−03 0.03 4.92E−01 0.888

WGS Clostridium asparagiforme 5.13 1.24E−02 6.67E−03 1.00 1.000

WGS Streptococcus sanguinis 4.64 0.01 4.09E−04 1.00 1.000

WGS Faecalibacterium prausnitzii 4.63 7.39 1.31 9.99E−04 0.018

WGS Faecalibacterium cf 4.56 4.47 0.68 9.99E−04 0.018

WGS Bifidobacterium catenulatum 4.37 0.33 0.02 8.40E−03 0.069

WGS Gordonibacter pamelaeae 3.94 0.21 0.01 6.30E−02 0.313

WGS Granulicatella adiacens 3.76 1.00E−03 6.36E−06 1.00 1.000

Taxa were identified as a function of their Random Forests permutation importance values. OTU identities were generated using the RDP Classifier with a

confidence threshold of 50 %, and species identities were generated from the shotgun metagenomic libraries using MetaPhlAn. Differences in the relative

abundance of each taxon were evaluated using two-tailed White’s non-parametric t-test, and Storey’s false discovery rate estimator was used to correct for

multiple testing corrections within each data set (i.e., 16S, WGS)
a
n = 37 children and 43 adults in the OTU-based analysis and 22 children and 22 adults in the WGS-based analysis
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Notable differences included the enrichment of genes in-

volved in vitamin B12 synthesis (Fig. 3a) and the de novo

synthesis of folate (e.g., K03342, K11754, K02619, K03639)

among children and genes involved in oxidative phosphor-

ylation and lipopolysaccharide biosynthesis among adults.

At the pathway level, 163 KEGG pathways were de-

tected among all profiles, and 70 % of these (114 path-

ways) were present in all subjects. Children shared 96 %

similarity (median value, 4 % Bray-Curtis dissimilarity)

with one another in terms of their KEGG pathway pro-

files, a level similar to that which is observed among

healthy adults (median value, 95 % similarity) and be-

tween children and adults (median value, 95 % similar-

ity). We found that neither pathway relative abundances

nor overall variation with respect to functional profiles

at the pathway level (Additional file 6: Figure S1M–P)

differed significantly as a function of sex, race, or ethni-

city among children. In contrast, we found that the

relative abundances of 59 pathways differed between

healthy children and adults (White’s non-parametric t-test,

q < 0.10, Additional file 13: Table S10). These included

pathways involved in amino acid metabolism, lipopoly-

saccharide biosynthesis, flagellar assembly, steroid hor-

mone biosynthesis, RNA degradation, and oxidative

phosphorylation (Fig. 3b), and many provided high dis-

criminatory value between the profiles of children and

adults in a Random Forests analysis. Our classification

error rate of 17.39 % (versus a baseline error rate of

50 %) suggests that KEGG pathway profiles can be used

to distinguish the gut microbiomes of most healthy

children and adults from one another.

Discussion

Although it is recognized that the gut microbiome has the

potential to change along with the development of its host,

information regarding the structure and function of the gut

microbiome in healthy children remains limited. Previous

studies have focused mainly on bacterial composition in the

context of diet and/or biogeography [15, 14], and these

have relied heavily on 16S data. Likewise, other adult versus

pediatric comparisons have emphasized the stark contrasts

of infant and adult GI communities [15, 16] rather than the

more subtle contrasts of adults versus older children, have

been limited to a single family [22], or have included teen-

agers [15, 23], despite evidence of microbiome shifts at

other body sites during puberty [24, 25].

Our results suggest that the gut microbiome of

healthy, pre-adolescent children is species rich and

Fig. 3 a The abundances of genes involved in vitamin B12 metabolism differed significantly between children and adults. Enrichment of KO groups

(White’s non-parametric t-test, q < 0.10) is indicated by color (green: children; blue: adults). b Child and adult metagenomic profiles could be differentiated

from one another at the pathway level. KEGG pathways with the greatest Random Forests importance scores are highlighted here
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functionally complex. At the phylum level, it is domi-

nated by Bacteroidetes and Firmicutes and, on average,

harbors significantly greater abundances of Firmicutes

and Actinobacteria than are generally observed in

healthy adults (Fig. 1). As in adults, the pediatric gut

microbiome is characterized by gradients in the abun-

dance of Bacteroidetes (B) and Firmicutes (F) and ex-

hibits wide variation in the B:F ratio. While the B:F ratio

tends to be lower in children than in adults, both groups

display substantial variability in its values, which suggests

that it may not be a particularly meaningful parameter

with respect to the healthy pediatric gut microbiome.

The gut communities of healthy children share 35 to

46 % similarity (54 to 65 % dissimilarity) with one another

when compared taxonomically (Fig. 2c), but they share far

greater similarity when compared functionally. At the

ortholog group level, children share approximately 90 %

similarity with one another, and at the pathway level, they

share >96 % similarity. Consistent with the high degree of

functional conservation observed among healthy adults

[21], this suggests that there is not likely to be a single,

ideal taxonomic formulation for a healthy pediatric gut

microbiome. Rather, healthy pediatric gut communities

may be defined by ranges of taxon abundances, combina-

tions of which yield highly similar functional potential.

A variety of factors, including diet, sex, race, ethnicity,

and obesity, are known to shape and modify the micro-

bial communities comprising the human microbiome

[14, 21, 26]. Neither we nor the HMP specifically captured

dietary information from our subjects. As such, we are

unable to address the effects of diet on the pediatric gut

microbiome or its comparison between children and adults.

Likewise, it is possible that other unknown or unrecorded

factors may have influenced our findings. However, with

respect to factors known to influence the human micro-

biome, we did not find that sex contributed significantly to

variation in gut microbiome structure or function among

children. This is consistent with observations among

healthy adults [27], as well as in a combined analysis of

adults and children (Additional file 7: Figure S2). We found

that race and ethnicity had small, but statistically signifi-

cant, effects on gut community richness, as well as margin-

ally significant effects on community composition and

functional gene content. As observed in the HMP [21, 27],

our results suggest that race and ethnicity may contribute

to variation in the gut microbiome among children. The

effects of race and ethnicity were smaller than those of age

group, and given the limited distribution of our study par-

ticipants among racial and ethnic groups, caution in the

interpretation of these results is warranted.

Data from human and animal studies suggest that gut

community structure and function may be influenced by

obesity status [26, 28]. Our evaluation of BMI on the

pediatric gut microbiome was limited by the number of

underweight, overweight, or obese children in our study

(Additional file 1: Table S1). Combined analysis of adults

and children failed to find that BMI accounted for a sig-

nificant proportion of the variation observed with respect

to 16S-based OTUs, WGS-based species composition,

KO groups, or KEGG pathways (Additional file 7: Figure

S2). These results mirror those reported by Finucane

et al. [29] who suggest that, at scales other than the

phylum level, simple signatures of obesity may not be

detectable in the human microbiome.

Because the adult microbiome data we used were pro-

duced independently of our pediatric data, it is possible

that technical artifacts may have influenced the results

reported here. As a precaution against this, we specific-

ally utilized identical DNA extraction methods, 16S

primers, sequencing protocols, and the same sequencing

center as the HMP, as each of these factors may contrib-

ute to technical bias in 16S-based studies [30]. Although

these steps may not have eliminated technical bias com-

pletely, we feel that the biological signals present in the

data outweigh potential artifacts, particularly given that

our 16S-based results were largely and independently

confirmed by WGS; our results agree broadly with previ-

ous comparisons of adult and child gut microbial com-

munities [13, 15, 17, 22], and the functional gene-based

differences we observed mirror those reported in a pre-

vious comparison of younger versus older adults [11].

Our results support and extend a growing body of

evidence suggesting that GI microbial communities

undergo succession in concert with the maturation and

development of their human hosts. Perhaps more im-

portantly, our results also indicate that, although the

pediatric gut microbiome is characterized by levels of

taxonomic and functional richness that rival those

found in healthy adults, both taxonomic and functional

differences distinguish the gut microbial communities

of healthy children and adults from one another.

Whether evaluated on the basis of 16S-based OTUs or

species detected in WGS libraries, similar or signifi-

cantly greater numbers of taxa were found in the gut

communities of children relative to adults (Additional

file 8: Table S6). Differences detected with respect to

Shannon diversity index values suggest that children’s

gut communities were significantly more complex than

those of adults, which may reflect ongoing development.

In contrast, adult communities were characterized by

greater evenness (i.e., Simpson 1/D), which may reflect

increased relative stability of the adult gut microbiome [9].

As reported in the study of a single family [22], we

found that, on average, the gut communities of children

shared a greater degree of similarity with those of other

children than they did with those of adults (Fig. 2c).

Likewise, the gut communities of healthy adults were

more similar to those of other adults than they were to
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those of children. Contributing to these differences

were the enrichment of Faecalibacterium spp. and

Bifidobacterium spp. in children and the enrichment of

Bacteroides spp. in adults. This particular pattern is fre-

quently observed in studies of the human gut and aging

[9, 13, 17, 31] and has also been described in the context

of metabolic dysfunction and inflammation, where adults

with poorer relative health tend to harbor fewer Faecali-

bacterium spp. and Bifidobacterium spp. and greater

abundances of Bacteroides spp. [32] in their GI com-

munities. Although the genus Bacteroides is often asso-

ciated with leanness and other desirable health traits

[26, 28], some of its members, including strains of Bac-

teroides fragilis, Bacteroides vulgatus, and Bacteroides

dorei, have been linked to abdominal infections, meta-

bolic disease, and inflammation in the context of celiac

disease and other GI disorders [33, 34].

Beyond microbial composition, the gut microbiomes

of healthy children also differ from those of adults in

terms of functional potential. Although no single KO or

pathway occurred uniquely among children or adults,

we detected a small, but significant, enrichment (~6 %)

in the number of gene families detected in children

relative to adults. Aggregated at the pathway level, the

relative abundances of approximately 25 % of KEGG

pathways differed between children and adults, including

some (Fig. 4b, c) previously linked to host development,

metabolic syndrome, and inflammation. The gene enrich-

ment detected among children mirrors the high versus

low gene count paradigm described by Le Chatelier et al.

[32], and the differential distribution of functional gene

families and pathways suggests the presence of a develop-

mental gradient with respect to microbiome functional

potential and relative maturity, akin to that described in

the context of healthy versus malnourished, underdevel-

oped children in Bangladesh [35].

In previous work describing the human microbiome

and development, the gut communities of infants and

adults were found to differ with respect to dietary acqui-

sition versus de novo synthesis of nutrients by gut

microbes [15]. Infant communities were significantly

enriched in genes involved in the de novo synthesis of

folate (vitamin B9), an important nutrient supporting

DNA synthesis, replication, and repair [36], and the

maintenance of regulatory T cells [37], while adult com-

munities were enriched in genes directed toward dietary

utilization of folate [15]. Our results suggest that by the

time children reach school age, their gut communities

are still significantly enriched in genes involved in folate

biosynthesis, but they do not differ with respect to the

abundance of genes related to dietary folate utilization.

Adult communities have also been described as having

greater potential than infants [15] to produce vitamin

B12 (cobalamin), a microbially synthesized compound

with anti-inflammatory and anti-oxidant benefits and

essential for neurological function [38–40]. In contrast,

we found that many genes involved in cobalamin biosyn-

thesis were significantly enriched in children (Fig. 3a).

Despite the fact that vitamin B12 is essential at all life

stages [38, 39], its concentration in the body varies with

age. Although adult blood concentrations of cobalamin

exceed those found in infants, cobalamin reaches its life-

time peak around 7 years of age [41]. The coordinated

peaks in potential gut microbiome cobalamin production

and blood cobalamin levels during childhood suggest the

potential for the gut microbiome to support host devel-

opment, particularly given the importance of cobalamin

for neurological function [41, 40].

As with cobalamin, we also observed that the gut com-

munities of children were enriched with respect to the

metabolism of the amino acids tyrosine, lysine, cysteine,

and methionine. These amino acids serve as substrates

for the production of biogenic amines and neurotrans-

mitters, both of which function as critical links along the

gut-brain axis. Evidence from animal models highlights

the importance of the gut microbiome in brain develop-

ment, learning, and behavior [4], and although increased

potential for amino acid metabolism in pediatric GI

communities may play into multiple aspects of host

and/or microbiome function, it may also reflect the

influence of the gut microbiome on brain development

and plasticity [42].

In adults, gut communities were significantly enriched

with genes involved in oxidative phosphorylation, lipo-

polysaccharide biosynthesis, flagellar assembly, and ster-

oid hormone biosynthesis (Fig. 3b, Additional file 13:

Table S10), pathways which have been described previ-

ously in the context of inflammation. This enrichment

may be a function of the gut microbiota priming the

immune system [43]. It may signal increased likelihood

of obesity, adiposity, and/or metabolic disease [32, 44].

Or, it may be a sign of aging, as the development of

chronic, low-grade inflammation occurs both in con-

junction with adiposity-related co-morbidities and as a

part of the aging process [45].

Multiple gene families and functions associated with the

gut microbiome affect the balance between pro- and anti-

inflammatory processes. Mirroring results described by Le

Chatelier et al. [32], we found that the gut microbial com-

munities of healthy children shared traits with those from

“high gene count” (i.e., healthy) individuals and were sig-

nificantly enriched or showed trends toward enrichment of

functions associated with anti-inflammatory properties,

including vitamin B12 synthesis (a key component of the

KEGG pathway for porphyrin and chlorophyll metabolism)

and methane metabolism (Fig. 4b). In contrast, healthy

adult gut communities shared many traits with “low gene

count” individuals (i.e., those with low-grade inflammation
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and increased incidence of metabolic disorders [32]) and

were significantly enriched in genes and gene families asso-

ciated with inflammation and exposure to oxidative stress,

including lipopolysaccharide biosynthesis, the tricarboxylic

acid (TCA) cycle, and oxidative phosphorylation (Fig. 4c).

These results extend previous work [11] describing the gut

microbial communities of younger adults as possessing

fewer pro-inflammatory traits than those of older adults

and suggest that healthy children fall even lower on the

pro-inflammatory scale. Further, they imply that “inflam-

maging” [9, 45] may not be limited to the later adult years.

Conclusions

As with other developmental processes, childhood appears

to represent a unique transitional stage with respect to the

gut microbiome. Although the healthy pediatric gut micro-

biome harbors several adult-like features, it also retains

many of its own distinct compositional and functional

qualities. Such characteristics could contribute to age-

adjusted definitions of the healthy gut microbiome, serve

as diagnostic biomarkers to delineate life stage and direct

appropriate medical treatment, and be important to

consider in the development of microbiome-directed

therapies, particularly those targeted toward micro-

biome restoration.

Methods

Subject recruitment and enrollment

As previously described [46], healthy children (7–12 years

of age) were recruited from a large healthcare network

based in Houston, TX. Informed consent was obtained

from parents and assent was obtained from children. All

recruitment and study procedures were approved by the

Baylor College of Medicine Institutional Review Board.

Fig. 4 Differences in KEGG pathway profiles contribute to the differentiation of children and adults. a PCoA of KEGG pathway profiles from healthy

children and adults (n = 22 children, 22 adults; Bray-Curtis dissimilarity). The percent variation captured by each axis is indicated in parenthesis, and an

Adonis test of age group is presented. b KEGG pathways associated with anti-inflammatory properties were significantly enriched or trended toward

enrichment in children. c KEGG pathways associated with pro-inflammatory processes, adiposity, and aging were significantly enriched in adults

(White’s non-parametric t-test)
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Exclusion criteria included, but were not limited to,

abdominal pain with or without organic cause, recent

major dietary changes, use of antibiotics within the

prior month, probiotics within the past 6 months, and,

in girls, menarche. Detailed inclusion and exclusion cri-

teria and subject metadata are archived at dbGaP

(accession phs000265.v3.p1).

Pediatric stool collection, extraction, and sequencing

Following a research study coordinator’s instructions, par-

ticipants collected stool specimens at home. Samples were

stored in a sterile cup, at −20 °C, until courier transfer to

the Texas Children’s Microbiome Center. Upon receipt,

samples were stored at −80 °C. DNA was extracted using

the PowerSoil DNA Isolation kit (MO BIO Laboratories,

Carlsbad, CA, USA) with modifications to the manufac-

turer’s protocol [27]. DNA quality and yield were evalu-

ated via agarose gel, Nanodrop 1000 spectrophotometer

(NanoDrop, Wilmington, DE, USA), and Qubit fluorometer

(Life Technologies Corporation, Carlsbad, CA, USA). Both

the 16S rRNA gene and WGS libraries were generated and

sequenced by the Human Genome Sequencing Center

(HGSC) at Baylor College of Medicine. The 16S libraries

were generated using the V3-V5 (357F/926R) primer region

[46, 47]. The WGS libraries were generated using 101-bp

paired-end libraries with 200-bp inserts on the HiSeq 2000

platform (Illumina Inc., San Diego, CA, USA).

Adult microbiome data

Although the HMP recruited >240 participants, we specif-

ically included those who were recruited at the HMP’s

Houston-based clinical site and whose stool-based 16S

sequence data were produced at the HGSC. This was done

to limit the influence of potential sequencing-center-

related biases [30, 47]. Likewise, emulation of DNA ex-

traction and amplicon generation protocols was employed

to minimize additional potential sources of bias. Forty-

three HMP volunteers met the criteria described above

and were included in our analysis. Stool WGS sequence

data were available for 22 of the participants described

above, and their WGS libraries were utilized regardless

of where the data were produced. Sequence data were

obtained from the NCBI Sequence Read Archive

[PRJNA43017, PRJNA48479], and metadata were ob-

tained from dbGaP [phs000228].

Sequence analysis and community comparisons

The 16S rRNA sequence libraries were sorted by barcode

and quality filtered using the Genboree Microbiome

Toolset [48]. Sequences shorter than 200 bp, having

average quality scores <20, including ambiguous base

calls, or containing mismatches to barcode or sequencing

primer were removed. After trimming barcodes and

primers, all remaining reads were clustered into OTUs at

a 97 % similarity threshold using QIIME (v1.3.0) [49].

OTUs were clustered using CD-Hit [50], and reads were

screened for chimeras using ChimeraSlayer [51]. Potential

chimeras were excluded from further analysis. OTU iden-

tities were assigned using the Ribosomal Database Project

Classifier [52] with RDP training set 9 and confidence

scores ≥50 %.

WGS reads were processed using a customized work-

flow incorporating removal of host-derived sequence,

pre-assembly normalization, assembly, gene calling, and

annotation steps. Bowtie2 [53] was used to map se-

quence reads to a reference copy of the human genome

(hg19) using the “sensitive” flag. Reads with a mapped

hit or mapped (paired-end) mate were removed from

downstream analysis. Taxonomic profiles were gener-

ated using MetaPhlAn v1.7.7 [54], with bowtie2’s “sen-

sitive” setting. Prior to assembly, shotgun sequence

libraries were processed using digital normalization

[55], a technique which removes redundant reads,

reduces computational complexity, and improves as-

sembly quality in complex metagenomes. The velvet as-

sembler [56] (veveth, hash size 45) was used to

construct contigs. Open reading frames (ORF) were

identified using MetaGeneMark as implemented in

MetAMOS [57]. Usearch (v5.2) [58] was used to anno-

tate ORFs and unassembled reads with the KEGG data-

base (v54) [59]. E-value cutoffs of 1e−2 and 9e−46 were

utilized for ORFs and unassembled reads, respectively.

Hits were integrated into ortholog, module, and pathway

abundances using HUMAnN (v0.98) [60]. Additional de-

tails regarding the 16S rRNA gene and WGS analysis

workflows are provided in Additional file 14.

Prior to calculating diversity metrics or comparing

across subjects, all 16S libraries were randomly subsam-

pled to 3700 sequences per library; the results presented

here are based on subsampled data. All other taxonomic

and functional data were converted to relative abun-

dances prior to analysis. Alpha diversity metrics, includ-

ing the number of species detected, the Shannon

diversity index (H′), and Simpson evenness (1/D) were

calculated using QIIME and compared among pediatric

subgroups and between age groups. Normality was eval-

uated using the Shapiro-Wilk test. Student’s t-tests were

performed, but in cases where data failed normality as-

sumptions, Mann-Whitney U-tests were utilized instead.

Concordance between 16S and WGS profiles was evalu-

ated using Pearson correlations of genus-level relative

abundance estimates.

Similarity among gut community profiles was evalu-

ated with respect to sex, BMI, race, ethnicity, and/or age

group using principal coordinates analysis (PCoA) of

OTU data, WGS-based species abundances, KO, and

KEGG pathway data. PCoA was conducted using

Bray-Curtis dissimilarities, but other metrics, including

Hollister et al. Microbiome  (2015) 3:36 Page 10 of 13



weighted and unweighted UniFrac and the Hellinger

distance, were also explored. Adonis tests, with 1000

permutations, were conducted in the vegan package for R

(v 2.0-7) [61] to evaluate the contribution and significance

of clinical variables to variation among subjects with re-

spect to taxonomic and functional potential profiles.

Two-tailed White’s non-parametric t-tests [62], with

Storey’s false discovery rate (FDR) corrections, were con-

ducted in STAMP [63] and used to evaluate differences in

the relative abundances of microbial taxa (including

OTUs), functional gene families, and pathways with re-

spect to age group and other subject variables. In compar-

isons exceeding two categories, Kruskal-Wallis H-tests

were performed with Tukey-Kramer post hoc compari-

sons and Storey’s FDR corrections. q values <0.05 were

considered to represent statistically significant differences,

but q values up to 0.10 are presented for reference. Any

taxon, functional gene group, or pathway which occurred

in <10 % of subjects was excluded. Random Forests, a su-

pervised learning technique which performs well with

high-dimensional data and in the presence of many irrele-

vant features [64], was used to evaluate whether GI com-

munities could be classified by age class and identify

features differentiating children from adults. The random-

Forest package for R (v 4.6-7) [65] was used with the

default settings. Baseline error rates were calculated as

previously described [15].

The data sets supporting the results of this article

are available in the NCBI Sequence Read Archive

[PRJNA46339, PRJNA43017, PRJNA48479] and dbGAP

[phs000228, phs000265.v3.p1].

Additional files

Additional file 1: Table S1. Demographic and clinical features of study

participants. (DOCX 16.7 kb)

Additional file 2: Table S2. Subject and SRA sequence identifiers for the

16S rRNA gene data (V3-V5 region) used in this study. (XLSX 18.5 kb)

Additional file 3: Table S3. Subject and SRA sequence identifiers for the

shotgun metagenomic sequence data used in this study. (XLSX 14.5 kb)

Additional file 4: Table S4. Sequence and assembly metrics for the

shotgun metagenomic sequence libraries used in this study. (XLSX 23.0 kb)

Additional file 5: Table S5. Healthy pediatric GI community richness

and diversity according to 16S-based OTUs, WGS species, and subject

traits. Values are presented as median with inter-quartile ranges. Within a

column and clinical variable, differing letters indicate statistically significant

differences (p< 0.05). Kruskal-Wallis H-tests with Dunn’s correction for multiple

comparisons were used with BMI and race, and Mann Whitney U-tests were

used with respect to sex and ethnicity. (DOCX 16.7 kb)

Additional file 6: Figure S1. Evaluating the effects of known subject traits

on pediatric GI community structure and function. PCoA of the GI microbial

communities of healthy children as a function of Bray-Curtis dissimilarities and

16S-based OTUs (A–D), WGS-based species (E–H), KO groups (I–L), and KEGG

pathway profiles (M–P). Variation among profiles was evaluated with respect

to known traits, and the percent variation captured by each axis is indicated in

parenthesis. Adonis analysis results describe the significance of each trait to

overall community variation. (TIF 1.58 kb)

Additional file 7: Figure S2. Evaluating the effects of known traits on

community structure and function in children and adults. PCoA of the GI

microbial communities of healthy children and adults as a function of

Bray-Curtis dissimilarities and 16S-based OTUs (A–D), WGS-based species

(E–H), KO groups (I–L), and KEGG pathway profiles (M–P). Profiles were

evaluated with respect to known traits, and the percent variation explained

by each axis is indicated in parenthesis. Adonis analysis results describe the

significance of each trait to overall community variation. (TIF 752 kb)

Additional file 8: Table S6. Healthy adult and child GI community

richness and diversity according to 16S-based OTUs and WGS-based species.

Values are presented as medians with inter-quartile ranges. Within a single

column, a double asterisk indicates significant differences between

adults and children (Mann-Whitney U-test, p < 0.05). A single asterisk

indicates differences at p < 0.10. (DOCX 15.2 kb)

Additional file 9: Table S7. Genera differing in the 16S profiles of

healthy child and adult GI communities. Between-group differences were

evaluated with two-tailed White’s non-parametric t-tests with Storey’s

FDR corrections. (XLSX 14.6 kb)

Additional file 10: Figure S3. Application of alternative distance

metrics. PCoA of (A) unweighted UniFrac, (B) weighted UniFrac, and (C)

Hellinger distances depicts the relative separation of the GI communities

of healthy children and adults. The percent variation captured by each

axis is indicated in parenthesis, and Adonis analysis results based on age

group are provided for each metric. (TIF 3.38 mb)

Additional file 11: Table S8. Species abundances which differed in the

WGS-based profiles of healthy child and adult GI communities. Between-

group differences were evaluated with two-tailed White’s non-parametric

t-tests with Storey’s FDR corrections. (XLSX 11.1 kb)

Additional file 12: Table S9. KEGG ortholog groups (KO) differing in the

GI communities of healthy children and adults. Between-group differences

were evaluated with two-tailed White’s non-parametric t-tests with Storey’s

FDR corrections. N/A indicates KO without Enzyme Commission (EC) numbers.

(TIF 155 kb)

Additional file 13: Table S10. KEGG pathways differing in the functional

metagenomic profiles of GI communities from healthy children and adults.

Between-group differences were evaluated with White’s non-parametric t-tests

and Storey’s false discovery rate corrections. (TIF 15.5 kb)

Additional file 14: Supplemental methods. (DOCX 19.5 kb)
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