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The p53 tumor suppressor protein is involved in multiple

central cellular processes, including transcription, DNA

repair, genomic stability, senescence, cell cycle control, and

apoptosis. p53 is functionally inactivated by structural muta-

tions, interaction with viral products, and endogenous cel-

lular mechanisms in the majority of human cancers. This

functional inactivation can, in some circumstances, produce

resistance to DNA-damaging agents commonly used in can-

cer chemotherapy and radiotherapeutic approaches. Cur-

rent research is defining the biochemical pathways through

which p53 induces cell cycle arrest and apoptosis.

Knowledge of these fundamental processes is leading to the

identification of molecular targets toward which multi-

modality cancer therapies, using chemotherapeutic, im-

munotherapeutic, and gene-therapeutic strategies, can be

based. [J Natl Cancer Inst 1996;88:1442-55]

The history of investigations of the p53 (also known as TP53)
tumor suppressor gene is a paradigm in cancer research. Initial-
ly, parallel lines of basic, clinical, and epidemiologic research
on p53 are now converging, and research findings will soon be
translated into medical practice. The knowledge acquired during
this brief history of scientific advancement indicates that the p53
protein is involved in several central cellular processes, includ-
ing gene transcription, DNA repair, cell cycling, genomic
stability, chromosomal segregation, senescence, and apoptosis
(programmed cell death) [reviewed in (7-9)]. Since these com-
plex biochemical processes in themselves are performed by
multicomponent protein machines, it is not surprising that the
p53 protein is included in these molecular machines and that the
multiple effects of oncogenic DNA viruses are mediated in part
by their targeting the p53 protein for binding and perturbing its
functions [reviewed in (2,4,9)] (Fig- 1)- Since the number of p53
molecules per cell is limited, i.e., about 103 to 104 per cell, the
physiologic state of the cell and the post-translational modifica-
tion of p53 must dictate where, when, and how efficiently p53
plays its role as the "guardian of the genome" in response to en-
dogenous and exogenous mutagens (10,11). This review will
discuss the current knowledge of the fundamental cellular path-

ways that involve p53, leading to the identification of molecular
targets for multimodal cancer therapies.

p53 Structure and Function

DNA Damage and Apoptotic Response Pathways

The p53 protein is clearly a component of one of the path-
ways activated in response to DNA damage (Fig. 2) (12-17).

Cell cycle arrest at the Gi and G2 checkpoints prior to DNA
replication and mitosis, respectively, aids the DNA repair pro-
cesses and prevents mutations and aneuploidy, whereas apop-
tosis can be considered a fail-safe mechanism to rid the organism
of cells either with severely damaged DNA or cells with a low
apoptotic threshold. Double-stranded DNA breaks are especially
efficient in causing p53 protein accumulation, possibly by re-
ducing its degradation through the ubiquitin-dependent prote-
olytic pathway (12-14,17-21). The molecular pathway between
DNA damage and p53 protein accumulation is not understood.
p53 protein may be involved as one of the sensors of DNA
damage. The carboxyl-terminus of p53 can bind nonspecifically
to ends of DNA molecules and catalyze DNA renaturation and
strand transfer (22-26). This region of the protein can also bind
to extrahelical regions of DNA damage involved in forming in-
sertion/deletion mismatches (27). It will be interesting to deter-
mine if p53 recognizes other types of DNA damage, including
carcinogen-DNA adducts.

Wild-type p53 protein can transcriptionally transactivate
genes involved in cell cycle arrest [e.g., P21"811, a potent in-
hibitor of most cyclin-dependent kinases (28-30)] and interact
either with the DNA repair and synthetic machinery [e.g.,
proliferating cellular nuclear antigen, GADD45, and p21wllfl

(31^2)] or proteins modulating apoptosis [e.g., Bax and Fas
(33\34)]- Certain other genes generally containing TATA se-
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A. Transactlvatlon
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Sequence Specific

DNA Binding Domain

273
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Fig. 1. Schematic representation of p53 molecule. The
human p53 protein consists of 393 amino acids with
functional domains, evolutionarily conserved do-
mains, and regions designated as mutational hotspots
[reviewed in (4)]. A) Missense or nonsense mutation.
Functional domains include the transactivation region
(diagonally striped block), sequence-specific DNA
binding region (amino acids 100-293), nuclear local-
ization sequence (amino acids 316-325, vertically
striped block), and oligomerization region (amino
acids 319-360, horizontally striped block). Evolu-
tionarily conserved domains (amino acids 17-29, 97-
292, and 324-352; black areas) were determined using
the MACAW (Multiple Alignment Construction and
Analysis Workbench) program. Seven mutational
hotspot and evolutionally conserved regions within
the large conserved domain are also identified (amino
acids 130-142, 151-164, 171-181, 193-200, 213-223,
234-258, and 270-286, checkered blocks). Vertical
lines above the schematic, missense mutations; lines
below schematic, nonmissense mutations. The
majority of missense mutations are in the conserved
hydrophobic midregion of the protein that is required
for the sequence-specific binding to DNA. The non-
missense (nonsense, frameshift, splicing, and silent
mutations) are distributed throughout the protein,
determined primarily by sequence context. B)
Protein-protein interactions: Cellular (e.g., TBP =
TATA binding protein; hsp70 = heat-shock 70
protein; RPA = replicating protein antigen; MDM2 =
multiple double minute protein; XPB = xeroderma pigmentosum group B DNA helicase), or viral oncoproteins (e.g., E1B55K = adenovirus protein E1B55K; SV40
large T ag = SV40 viral large T antigen; HBx = hepatitis B viral X protein) bind to specific areas of the p53 protein. Functional domains and protein binding sites
(white bars underneath) were compiled from references [reviewed in (4)].

EVOLUTIONARILY CONSERVED

] 393

MDM2

quence in their promoter regions, e.g., bcl-2 (55), can be trans-
repressed perhaps by p53 binding to the TATA binding protein
(TBP) and inhibiting its function as a basal transcription factor
(36-39). p53 can also inhibit DNA synthesis by a transcription-
independent mechanism binding to putative origins of DNA
replication and either prevent initiation or early replication fork
unwinding (40,41). p53 forms protein-protein complexes with
cellular proteins involved in DNA synthesis [e.g., replicating
protein antigen (RPA) (42)], DNA repair [e.g., RPA, xeroderma

pigmentosum group B DNA helicase (XPB), xeroderma pigmen-
tosum group D DNA helicase (XPD), p62, topoisomerase I, and
Cockayne's syndrome group B (CSB) (42-47)], and apoptosis [e.g.,
XPB and XPD (48)]. Cellular context determines whether p53 can
induce apoptosis independent of or dependent on its transcripn'on-
transactivan'on function and in the absence of RNA and protein
synthesis (48-53). Of interest, cycloheximide, an inhibitor of
protein synthesis, can induce apoptosis (54-56), and a temperature-
sensitive mutant of a basal transcription factor, GGl/TAFn250,

DNA
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Accumulation

p53 Mutation, MDMX
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Fig. 2. Cell cycle arrest, DNA repair, and apoptosis in-
duced by DNA damage. p53 is a component of a
DNA-damage (e.g., which may involve the ataxia
telangiectasia gene product [ATM]) response path-
way. This simplified model does not consider qualita-
tive or quantitative differences due to either cell type
or microenvironment. p53 accumulation leads the
regulation of cellular genes involved in apoptosis
(e.g., BAX, IGF-1R, IGF-BP3, Fas, and Bcl2), cell
cycle arrest (e.g., p21 , an inhibitor of cyclin-de-
pendent kinases, cdk), and DNA synthesis and repair
(e.g., p21W l f l and GADD45 [growth arrest and DNA
damage factor] binding to PCNA [proliferating cell
nuclear antigen]). MDM2 protein can bind to p53
protein and inhibit its functions in a negative feed-
back loop. p53 can also bind directly to proteins in-
volved in DNA synthesis (e.g., RPA = replicating
protein antigen) and transcription, nucleotide ex-
cision, and apoptosis (e.g., XPD = xeroderma pig-
mentosum group D DNA helicase, XPB = xeroderma
pigmentosum group B DNA helicase, and p62 of the
TFIIH = transcription factor complex I1H). There-
fore, p53 may mediate apoptosis by two inactive
pathways. One dependent on p53 function as a tran-
scription transactivator and transrepressor and a second pathway independent of its transcriptional activities and dependent on p53 protein-protein interactions.
MDMX = X homologue of murine double minute gene; MDM2 = multiple double minute protein; HPV-E6 = human papillomavirus protein E-6; SV-40T =
simian virus-40 large T antigen; HBx = hepatitis B viral X protein; Adeno El A = adenovirus protein E1A.

DNA
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when inactivated at a nonpermissive temperature, induces apop-
tosis {57). Cells from patients with Cockayne's B syndrome,
which are deficient in transcribed strand-specific repair, have in-
creased sensitivity to UV light-induced apoptosis (55). Since the
induction of apoptosis was positively correlated with p53 ac-
cumulation and inhibition of transcription, Ljungman and Zhang
(58) have speculated that blockage of RNA polymerase by UV
damage in the transcribing DNA strand initiates the apoptosis
response to UV. All of these results are consistent with the
hypothesis that the apoptotic protein machinery is constitutively
present in a latent state and does not require the synthesis of ad-
ditional proteins. Nevertheless, p53 regulation of genes, whose
products (e.g., Bax, Bcl2, and p21Wafl) may be involved in
apoptosis, could modulate a cell's sensitivity to inducers of
apoptosis. p53-initiated G^S cell cycle arrest is primarily
mediated by up-regulation (i.e., increased expression) of p21Wsfl

(28-30), but p21Wlfl is not an inducer of apoptosis in that ioniz-
ing radiation induces a p53-dependent apoptosis in p21~'~ cells
from p21Wafl gene knockout mice (59,60). Therefore, p53 may
function by transcription transactivator-dependent and -inde-
pendent mechanisms in interactive, yet distinct, pathways of cell
cycle arrest and apoptosis.

Normal tissue homeostasis is maintained by balancing posi-
tive and negative cell growth regulation. Both external and in-
ternal signals can initiate or inhibit cell proliferation. Negative
regulation also includes entry of cells into a terminally differen-
tiated, senescent, or apoptotic state. During carcinogenesis,
genetic and epigenetic lesions that lead to an imbalance between
these growth-regulator pathways accumulate in dysplastic and
neoplastic cells, leading to clonal selection and expansion, thus
giving rise to clinical tumors (61). In this scenario of tumor
progression, p53 mutations would occur after the initiating
events of carcinogenesis. For example, hypoxia may select
mutant p53 cells that are resistant to hypoxia-induced apoptosis
(62). Dysregulation and overexpression of certain cellular and
viral oncogenes, e.g., myc, E2F, adenovirus El a, or human
papillomavirus E7, stimulate both proliferation and sensitize
cells containing normal p53 and Rb tumor suppressor genes to
apoptosis and, again, select for p53 mutant cells (Fig. 3) (63-66).

Evidence from studies (67,68) of mice with either a homo-
zygous deletion of Rb or a human papillomavirus E7 transgene

indicate that the absence of Rb promotes apoptosis. When Rb is
inactivated, the resultant apoptotic response may be dependent
on a normally functioning p53 [reviewed in (66)]. Therefore, it
is not surprising that (a) oncogenic DNA viruses target both Rb
and p53 for inactivation; (b) retinoblastoma, in which Rb is
deleted and p53 is normal, is generally sensitive to radiotherapy
(69); and (c) p53 is frequently mutated in some human cancer
types, e.g., small-cell lung carcinoma and Burkitt's lymphoma,
which exhibit deregulated myc expression, a p53-dependent
apoptosis inducer [reviewed in (70-72)] (Table 1). In other can-
cer types, the Rb pathway is often dysregulated either by cyclin
Dj overexpression, cyclin-dependent kinase-4 overexpression or
activating mutation, or functional inactivation of p ^ " ^ 4 by
various mechanisms (Fig. 4) [reviewed in (73,74)]. Cancer cells
harboring cellular or viral oncogenes also may be intrinsically
sensitive to the apoptotic response mediated by restored wild-
type p53 function. Whereas loss of Rb and many other inducers
of apoptosis are dependent on p53, physiologic activators of
apoptosis, such as glucocorticoids and the Fas ligand, are inde-
pendent of p53 (Table 1) and can activate apoptosis in p53
mutant cells.

Phosphorylation of p53

The biochemical functions of p53 may be regulated by re-
versible serine phosphorylation [reviewed in (75,76)]. p53
protein can be phosphorylated in vitro by at least seven different
kinases, including cdc2 (77-79), casein kinase II (80), DNA-de-
pendent protein kinase I (81), a casein kinase I-like kinase (82),

protein kinase C (83), mitogen-activated protein kinase (84),

and JNK1 (55). Although the precise role(s) of these kinases in
regulating p53 function is not understood, recent studies are
providing clues. For example, mutation in the casein kinase II
phosphorylation site at serine 392 can reduce the antiprolifera-
tive activity of p53 (52). The S and G2/M cyclin-dependent
kinase complexes, cdk2-cyclin A and cdk2-cyclin B, phos-
phorylate serine 315 of p53 and stimulate its sequence-specific
DNA binding to p21Wofl and GADD45 sites preferentially (86).

The Gi cyclin-dependent kinase complexes, cyclin E/cdk2 and
cyclin Di/cdk6, do not phosphorylate p53, which is consistent
with results indicating that p53 is underphosphorylated at serine

Normal Cell

Oncogene

Tumor
Suppressor
Genes

Differentiation

Apoptosis

Malignancy

Differentiation
and
Growth Factors

Cell Type
Specificity

Fig. 3. Cellular switchpoint in response to cellular oncogenes.
An inappropriately activated proto-oncogene can lead to dif-
ferentiation, e.g., Ha-ras in rat PC 12 cells, apoptosis, e.g., myc
in rodent cells, or neoplastic transformation, e.g., Ha-ras in
murine 3T3 cells.
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Table 1. Examples of inducers of apoptosis*

Inducer

DNA damage
Cisplatin
Etoposide
Ionizing radiation
Mechlorethamine
ADA deficiency
Various agents
P-Lapachone

Oncogene
c-myc
Ela
Ela-289R
Ela-243R
Elb-19K mutant
E2F
R-Ras

Survival factor deprivation
Androgen
Interieukin 3
Interleukin 6
IGF (antisense)
Neuron growth factor

Protein kinase inhibitors
B43-Gen
PKC inhibitors

Cellular membrane receptors
Fas
Tumor necrosis factor
Cytotoxic T-cell killing
Retinoids (HPR and AHPN)
Steroids
TGF-P

Other factors
Okadaic acid
Hypoxia

Cell type

Ovarian cancer, Burkitt's
Burkitt's, leukemia
Burkitt's, lymphoid
Burkitt's, lymphoid
T cells
p53-null T-lymphoma
Human prostate

MEF, leukemia, CHO, HCC
BRK,MEF
BMK.MEF
BMK.MEF
Saos-2, rat kidney
MEF
Jurkat

Mouse prostate
Lymphoid
Munne myeloma
Vascular muscle
Neurons

Burkitt's
HL-60, B-cell

Fetal liver, breast cancer, HeLa
Breast cancer, lymphoma
Mice B cell
Breast cancer
Mouse T cells
Ovarian cancer, other cell types

Lymphoid
Fibroblasts

p53 dependent

Yes
Yes/not
Yes
Yes
Yes
No
No

Yes/no
No/yest
No
Yes
No
Yes
No

Enhanced
Yes
Unknown
Unknown
No

No
No

No
Yes

No
No
No

No
Yes

bcl-2 antagonists

Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
Unknown
Unknown
Yes
Unknown
Yes

Yes
Yes
Yes
Yes

Unknown
Yes

Yes
Yes
Yes
Yes
Yes
Unknown

No/yest
Unknown

Reference No(s).

(241242)
(241243)
(220241)
(241244)
(245)
(246)
(247248)

(51,163249250)
(160251-255)
(252)
(252)
(256)
(254257258)
(259260)

(261)
(184244262)
(263)
(264)
(265-268)

(269)
(269-272)

(273-276)
(273277278)
(279)
(280281)
(246)
(282-284)

(285286)
(62)

*MEF = mouse embryo fibroblast; CHO = Chinese hamster ovary; HCC = hepatocellular carcinoma; BRK = baby rat kidney; BMK = baby mouse kidney; IGF =
insulin-like growth factor; TGF-p = transforming growth factor-beta.

jCell class and type specificity.

315 in the Gi phase of the cell cycle (77,79). These data also are
consistent with a hypothetic negative feedback loop in which in-
creased cdk2 activity would generate a transcriptionally ac-
tivated p53 that would increase p21w*fl expression, an inhibitor
of cdk2, and consequently reduce cdk2 phosphorylation of p53

and, thus, reduce p53 transcription-transactivation function.
Protein kinase C also is likely to regulate p53 function as a
transcription transactivator. In vitro protein kinase C phosphoryl-
ates serine residue at position 378 in the carboxyl-terminal
region of p53 that contains the epitope recognized by the

Cdk-4
CAK

Amplification*"
Overexpresslon
Activating Mutation

D1 Cyclin

Cyclin - Cdk - =

Amplification
Overexpression
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•Other
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Fig. 4. G| cell cycle checkpoint. CAK = cyclin-ac-
tivating kinase; CDK-4 = cyclin-dependent kinase-4;
Rb = retinoblastoma tumor suppressor protein; TGF-
Pi = transforming growth factor-betal; and TGFPRU
= TGFB receptor type II; DPI and E2F = transcription
factors.
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monoclonal antibody (Pab421) and the domain for negative regula-
tion of p53 transcription transactivation [reviewed in (57)]. Phos-
phorylation of this domain blocks Pab421 binding to p53 (88,89),

and Pab421 nonreactivity with p53 correlates with growth arrest
(75 £0). Activation of protein kinase C by phorbol 12-myristate 13-
acetate also induces growth arrest at the G, checkpoint (89$1).

Both cdk2 and protein kinase C can participate in apoptosis (Table
1). The biochemical intersection among these kinases and proteins
involved in apoptosis, including p53, remains to be defined.

Molecular Archaeology of p53 Mutations

Mutations can arise by either endogenous mutagenic mech-
anisms or exogenous mutagenic agents and are archived in the
spectrum of p53 mutations found in human cancer (2-4,92,93).

Errors introduced during DNA replication, RNA splicing, DNA
repair, and DNA deamination are examples of endogenous
mutagenic mechanisms. The DNA sequence context is an im-
portant factor determining these events. Almost all short dele-
tions and insertions occur at monotonic runs of two or more
identical bases or at repeats of 2- to 8-base-pair DNA motifs,
either in tandem or separated by a short intervening sequence
(94). The mechanism that has been most studied is called
slipped mispairing, a misalignment of the template DNA strands
during replication that leads to either deletion, if the nucleotides
excluded from pairing are on the template strand, or insertion, if
they are on the primer strand. When direct repeat sequences
mispair with a complementary motif nearby, the intervening
oligonucleotide sequence may form a loop between the two
repeat motifs and be deleted (95,96). More lengthy runs and se-
quence repeats are more likely to generate frameshift mutations.
The deletions and insertions in the p53 gene found in human
tumors also may be biologically selected from the broad array of
such mutations occurring in human cells. When compared with
the distribution of missense mutations, these types of mutations
occur more frequently in exons 2-4 (54%) and 9-11 (77%) than
in exons 5-8 (20%). The N-terminus of the p53 protein (encoded
by exons 2-4) [reviewed in (37,97-99)] has an abundance of
acidic amino acids that are involved in transcriptional function
of p53 (100,101); it binds to transcription factors such as TBP in
the basal transcription multiprotein complex, TFIID (36-

38,102,103), and experimental studies have shown that multiple
point mutations are required to inactivate its transcription-trans-
activation function (104). The carboxy-terminus (encoded by
exons 9-11) of the p53 protein is enriched in basic amino acids
that are important in the oligomerization and nuclear localiza-
tion of the p53 protein [reviewed in (87,105-107)], recognition
of DNA damage (22,108), and induction of apoptosis (48). Mul-
tiple point mutations are infrequently found in the p53 gene,
which is consistent with the target theory; i.e., exogenous
mutagens target the p53 gene within the context of the entire
human genome. Therefore, deletions and insertions would be a
more efficient mutagenic mechanism than single-point muta-
tions in disrupting these N-terminal and C-terminal functional
domains.

The p53 mutational spectrum of hepatocellular carcinoma is
an example of a molecular linkage between carcinogen exposure
and cancer. In liver tumors from persons living in geographic
areas in which aflatoxin Bi and hepatitis B virus (HBV) are can-

cer risk factors, most p53 mutations are at the third nucleotide
pair of codon 249 (109-112). A dose-dependent relationship be-
tween dietary aflatoxin Bj intake and codon 249^ p53 muta-
tions is observed in hepatocellular carcinoma cases from Asia,
Africa, and North America [reviewed in (113)]. The mutation
load of 2491" mutant cells in nontumorous liver also is positive-
ly correlated with dietary aflatoxin Bj exposure (114). Exposure
of aflatoxin Bj to human liver cells in vitro produces 249*"
(AGG to AGT) p53 mutants (115) (Mace K, Aguilar F, Harris
CC, and Pfeifer A: unpublished results). These results indicate
that expression of the 249*" mutant p53 protein provides a
specific growth and/or survival advantage to liver cells and are
consistent with the hypothesis that p53 mutations can occur
early in liver carcinogenesis.

Since cellular context may influence the pathobiologic effects
of specific mutants of p53, the 249ser mutant may be especially
potent in hepatocytes. The enhanced growth rate of p53-null
HEP-3B cells by transfected 249SCT-mutant p53 indicates a gain
of oncogenic function and is consistent with this hypothesis
(116). The 249ser-mutant p53 also is more effective than other
p53 mutants (143"1', m " 5 , 248D1\ and 2 8 2 ^ in inhibiting wild-
type p53 transcriptional transactivation activity in human liver
cells (117). One hypothesis concerning generation of liver can-
cers with 249ser mutation is: (a) aflatoxin B i is metabolically ac-
tivated to form the promutagenic N7dG adduct; and (b)

enhanced cell proliferation due to chronic active viral hepatitis
allows both fixation of the G:C to T:A transversion in codon
249 of the p53 gene and selective clonal expansion of the cells
containing this mutant p53 gene.

In addition to producing chronic active hepatitis, HBV also
has other important pathobiologic effects. For example, hepatitis
B viral gene products may form complexes with cellular
transcription factors, e.g., ATF2 (118), up-regulate transcription
of cellular and viral genes (119-123), or activate the ras-raf-
MAP kinase signaling cascade (124). Inactivation of p53 tumor
suppressor gene functions including DNA repair and apoptosis
may be another consequence of cellular protein-HBV on-
coprotein complex formation. Since the HBVX gene is fre-
quently integrated and expressed in human hepatocellular
carcinomas from high-risk geographic areas (125,126), the X
protein has been found to bind p53 (44,127,128) and to inhibit
its sequence-specific DNA binding and transcriptional activity
(44). HBVX protein also inhibits p53-dependent apoptosis (48).

On the basis of the above results, we have speculated that
HBVX protein may modulate p53 function in nucleotide ex-
cision DNA repair (43), including repair of AFBi-DNA ad-
ducts, and we are currently testing this hypothesis. HBV
integration also could increase genomic instability, including
abnormal chromosomal segregation, and increase rates of DNA
recombination (129,130). Therefore, a second hypothesis of
liver carcinogenesis emerges in which integration of the HBVX
gene is the initial event in these high cancer risk geographic
areas and AFB,-mediated 249*^53 mutation is the second
genetic lesion that leads to further genomic instability.

Structure-Function Relationship of p53

The mutation spectrum can also provide clues to the critical
functional regions of the gene, that, when mutated, contribute to
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the carcinogenic process. Since about 80% of the missense
mutations are in the sequence-specific DNA binding midregion
of the protein (2-4), investigators have focused on the transcrip-
tion transactivator function of p53. However, these missense
mutations and the resultant amino acid substitutions can cause
aberrant protein conformations (131) that also may alter other
functional domains, including those in the carboxyl-terminus of
the p53 protein. This positively charged region contains the
putative major nuclear localization signal (amino acids 316-
325), the oligomerization domain (amino acids 319-360), and a
DNA damage-binding domain (amino acids 318-393)
(23,86,132,133). p53 sequence-specific DNA binding and
transcriptional transactivation can also be modulated by post-
translational mechanisms, including serine phosphorylation
(86,134) and the redox regulation of the cysteine residues
responsible for binding zinc to p53 (135-137). The structure-
function relationship revealed by the analysis of the p53 mu-
tation spectrum (3,4), its nuclear magnetic resonance and
crystallographic three-dimensional structure (105,106,138) (Fig.
5), and functional studies of wild-type versus mutant p53 ac-
tivity [reviewed in (97)] have generated both hypotheses for fur-
ther study and strategies for the development of rational cancer
therapy.

Molecular Diagnosis of Cancer

In the near future, oncologists will require both knowledge of
the traditional TNM criteria used for cancer staging and the
genetic and epigenetic lesions in the cancer before initiating ra-
tional cancer therapy. Advances in molecular diagnosis of can-
cer and micrometastasis currently are being translated into
clinical practice [reviewed in (139-143)], and issues of
bioethics, quality assurance, economics, and timeliness of the
molecular diagnosis are important considerations (144-147).

Since the strategies to target p53 are all unproven in the clinical
setting, the following discussion reviews the rationale for and

Fig. 5. Ribbon model from the crystal structure DNA-binding domain and its in-
terface with DNA [reprinted with permission (138)].

current developmental state of such strategies and does not en-
dorse any one in particular.

Strategies for Rational Cancer Therapy

Biochemical Pathways Involving p53

When considering strategies that target a specific gene or its
protein for cancer therapy, one should also consider the target as
a component of a critical biochemical pathway(s) in cancer cells
carrying this defective gene product, so that downstream ele-
ments of the pathway also become possible targets. Although
the intricate web of interactive pathways controlling cell growth
and death complicates this simplistic concept, one can predict
that one defective element alone is sufficient to inactivate each
pathway. Gene products at the intersection of two or more path-
ways such as p5 3 are most likely to be inactivated as a result of
selective pressure for clonal growth during the molecular patho-
genesis of cancer.

The development of drugs to mimic the tumor suppressor
function of p53 and to target other components of the path-
way^) is a challenging task that is being aided by advances in
studies of p53 molecular mechanisms (discussed above). Strate-
gies to screen potential drugs are suggested by the development
of assays reflecting biologic functions of the p53 protein: its
binding to specific DNA sequences, its function as a transcrip-
tion factor, its function as an inducer of apoptosis, and its ability
to form complexes with cellular or viral oncoproteins (Fig. 1).
Since certain p53 missense mutants demonstrate an increase in
potential oncogenic function (148-153), the identification of
drugs inhibiting this acquired activity is a second and com-
plementary strategy to those focusing on the restoration of its
tumor suppressor function.

Tumors With Wild-Type p53

Apoptosis is a cell death pathway that can be enhanced in
tumors by anticancer therapies [reviewed in (754-759)]. Ioniz-
ing radiation or drugs such as doxorubicin, etoposide, or
cisplatin produce DNA damage and a p53-dependent apoptotic
tumor cell response in laboratory studies (160-164). However,
these therapeutic agents can also induce apoptosis by a p53-in-
dependent pathway in certain cells, notably p53-null HL60 cells
(165). Anecdotal evidence from the clinic has also emerged, in-
dicating that the status of p53 in the tumor is an important prog-
nostic and therapeutic response indicator. p53 mutation is
generally associated with a poorer prognosis in the most com-
mon types of human cancer [reviewed in (7,759)]. In addition,
Wilms' tumor, retinoblastoma, testicular cancer, neuroblastoma,
and acute lymphoblastic leukemia, which are some of the most
curable cancers, rarely contain p53 mutations, and Burkitt's
lymphoma, containing p53 mutations at the time of diagnosis or
occurring during a relapse following therapy, generally responds
poorly to therapy (166-174). Clinical studies (175-180) testing
the hypothesis that these anticancer therapies mediate their
apoptotic response by a p53-dependent mechanism have so far
provided equivocal results, which may indicate cell type and
agent differences and that anticancer therapies can also activate
a p53-independent apoptotic pathway (181). Both retrospective
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and prospective clinical studies are needed to test further these
hypotheses.

Other inducers of apoptosis are dependent on p53 (Table 1)
and could be used in novel anticancer strategies. For example,
certain growth factors may act as survival factors of cancer cells
so that their depletion or reduced activity would produce apop-
tosis (182-185). The use of anti-EGF-receptor monoclonal an-
tibodies, which block the EGF-mediated growth signal cascade,
have been shown to act synergistically with anticancer drugs in
killing cancer cells in laboratory studies [reviewed in (186)].

Apoptosis activated by tumor necrosis factor (TNF) can be de-
pendent on wild-type p53 (187,188), a fact that suggests that
cancers with wild-type p53 would be more sensitive to TNF
therapy. p53 may down-regulate the expression of survival fac-
tors including interleukin 6 (IL-6) (189) or it may inhibit the cel-
lular response to survival factors, such as insulin-like growth
factor (IGF), by up-regulating IGF-binding protein-3 (190).

Overexpression of certain survival factors, e.g., Steel factor, a
ligand of the kit receptor tyrosine kinase, can inhibit p53-
mediated apoptosis without affecting the G] checkpoint function
of p53 (191). Overexpression of the transcription factors E2F-1
and DP-1 that are sequestered by hypophosphorylated Rb (192-

195) can override the inhibitory effect of the interleukin 3 sur-
vival factor in p53-mediated apoptosis and provide a functional
link between p53 and Rb tumor suppressors (196). As discussed
above, phosphorylation of the carboxyl terminus of p53 by
serine kinases, e.g., cdk2 and protein kinase C, may regulate the
transcription transactivator function of p53, including up-regula-
tion of p21Wafl that encodes a G| checkpoint protein. Enhanced
phosphorylation of the carboxyl terminus of p53, either by ac-
tivation of these kinases or by inhibition of the protein phos-
phatases responsible for the dephosphorylation of p53, may
have an anticancer effect. These interactive apoptotic pathways
suggest novel strategies for anticancer therapy on the basis of
modulating survival factors, the survival factor pathway includ-
ing their cellular receptors and inhibitory proteins, and the phos-
phorylation of p53.

Tumors With Inactivated Wild-Type p53

Certain DNA viruses have oncoproteins that bind to p53 and
inactivate its functions. The E6 protein of the oncogenic strains
of human papillomaviruses binds to p53 via E6-AP, a specific
ubiquitin protein ligase (197), and enhances the proteolytic
digestion of p53. Drugs that inhibit either the formation of this
protein complex or the digestion of p53 might have therapeutic
benefit in tumors associated with human papillomavirus infec-
tions, including cervical, penile, and rectal carcinomas. Since
p53 mutations in cervical carcinomas are associated with ag-
gressive cancer and occur late in tumor progression [reviewed in
(4)], these chemopreventive agents may be efficacious in early
cancers and may inhibit preinvasive lesions. Alternatively, inac-
tivation of p53 by the E6 protein can lead to the enhanced sen-
sitivity to chemotherapeutic agents in a model system using
human fibroblasts (198).

p53 can also be inactivated by cellular proteins. The proto-
typic example is mdm-2, which is overexpressed and amplified
in a subset of sarcomas (199). One approach would be to target

the mdm-2 gene directly by antisense or triple DNA helix
therapy (200-203). A second strategy could involve drugs that
specifically inhibit mdm-2 from binding to p53.

Tumors With Mutant p53

Human cancers frequently harbor p53 mutations [reviewed in
(3,4)]. Of the approximately 6.5 million new cancer cases
worldwide each year, 2.4 million are estimated to involve p53
mutation (1). In the most common types of lethal cancers found
in the U.S. population, it is estimated that more than 300 000
cancer cases per year involve p53 mutations (Table 2). These
are crude estimates because the mutation frequency differs
among populations because of dissimilar exposures to carcino-
gens and, perhaps, ethnic differences in cancer susceptibility
genes [reviewed in (4)]. The high frequency of p53 mutations in
human cancers attests to its importance as a target of rational
cancer therapy. Furthermore, one can select tumors with p53
mutations for therapeutic agents, e.g., antimicrotubular agents,
such as paclitaxel (Taxol) or vincristine, that mediate apoptosis
by a p53-independent pathway (O'Connor P, Fan S: personal
communication). Novel strategies using a combination of agents
can be envisioned: e.g., a low dose of a DNA-damaging agent to
arrest normal cells in G[ of the cell cycle and a delayed dose of
an antimitotic agent to target the mutant p53 tumor cells that
continue to progress into S phase, G2, and mitosis.

Healing the Mutant p53 Protein

Tumor-derived p53 mutations target amino acid residues that
contact either the DNA or residues that are important for the
structural integrity of the core domain of p53. Failure of mutant
proteins to bind to DNA has been attributed to the loss of criti-
cal DNA contacts, whereas failure by structural mutants to bind
to DNA has been attributed to structural defects in the proteins,
such as structural rearrangements, local unfolding of the struc-
ture, or denaturation of the core domain (138). Therefore,
mutant p53 can have altered sequence-specific DNA binding
and function as a transcription factor either by inhibiting its
transactivator activity or by changing its specificity of DNA
binding and the repertoire of genes transcriptionally transac-
tivated [reviewed in (4,138)]. On the basis of biophysical prin-
ciples, it would seem difficult to reverse mutant conformations
to the wild type. However, laboratory studies have provided

Table 2. Incidence of some common cancers in the United States: estimated
number of cases with p53 mutations*

Cancer

Lung
Prostate
Colorectal
Breast
Head and neck
Lymphoma
Pancreatic
Stomach
Melanoma

No. of new cases

169 900
244 000
138 000
183 400
40 000
24 000
24 000
22 800
34 000

No. of estimated cases
with p53 mutations

95 000
73 000
68 000
44 000
18000
10400
10400

9500
3000

•American Cancer Society, U.S. Estimates, 1995 (.287).
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results warranting continued effort to develop this strategy.
First, certain p53 mutant proteins have temperature-sensitive
phenotypes, including increased transcription-transactivator and
growth-inhibition activities at the lower permissive temperature,
e.g., 32 *C when compared with the nonpermissive higher
temperature, e.g., 37.5 'C [reviewed in (6)]. Second, microinjec-
tion of certain monoclonal antibodies, e.g., Pab421, recognizing
the carboxyl-teiminus of p53, can restore the transcriptional
transactivator activity of the 273his mutant of p53 (204). Third,
certain peptide drugs can alter the conformation of mutant p53
in cells (205206). Fourth, certain p53 mutants can still form
tetramers and cooperate with transfected wild-type p53 in the
transcriptional transactivation of reporter gene constructs
(117207). The p53 missense mutants most likely to assume a
wild-type protein conformation appear to be those with a sub-
stituted amino acid in the sequence-specific DNA binding site
(Fig. 3). Examples include the amino acid residues 273 and 248
in the mutant proteins of p53, which are among the most com-
monly occurring in human cancer (Fig. 1). Mutations resulting
in amino acid substitutions in the interior of the p53 protein may
be a thermodynamically less stable folded structure and require
other strategies. Tumors carrying these interior p53 mutations
may be candidates for p53 gene therapy (208) (discussed
below). Last, certain p53 mutants also bind to cellular proteins
(43,44), which could lead to either dominant negative or gain of
oncogenic activities. Therefore, strategies such as targeting the
mutant gene by triple DNA helix and antisense approaches
[reviewed in (200-203209)] could result in diminishing these
activities and have a therapeutic benefit.

Apoptosis

Many of the currently successful cancer therapeutic agents in-
hibit tumor growth by increasing the rate of tumor cell death by
apoptosis [reviewed in (154-158210-215)]. Cells exposed to
agents that produce DNA damage, such as double-strand breaks,
frequently use the p53-mediated pathway of apoptosis (Fig. 2).
However, other pathways of apoptosis exist, and normal cell
types differ in their sensitivity to inducers of apoptosis (216).

This cell-type variation in sensitivity may be determined by the
balance between enhancers and inhibitors of apoptosis. In addi-
tion, cells of the same type may physiologically alter the balance
of enhancers and inhibitors. As discussed above, p53 may
mediate apoptosis by both transcriptional transactivation of
genes that enhance apoptosis and transcription transrepression
of genes that inhibit apoptosis. These genes and their encoded
proteins can be considered targets for therapeutic strategies. In
addition, components of the p53-independent apoptotic path-
way^) are viable targets in combination with targets in the
p53-dependent apoptotic pathway. For example, enhanced ex-
pression of the bcl-xs gene, an enhancer of apoptosis in cancer
cells, can either increase their sensitivity to the cytotoxicity of
etoposide or paclitaxel (217) or directly induce apoptosis in cell
lines with either wild-type or mutant p53 (218). Decreasing the
activities of inhibitors of apoptosis that may be overexpressed in
cancer cells, such as raf (219), IL-3 (220), or IL-6 (221), is a
second strategy for combined rational cancer therapy. Because
p53 may also mediate apoptosis by a transcription transac-
tivator-independent pathway through protein—protein interac-

tions (48-5057222), the identification of these protein partners
of wild-type p53 and the respective binding sites could lead to
the development of small molecules that mimic wild-type p53
functions.

Immiinotherapy

Tumor rejection in mice has been shown to be mediated
predominantly by cytotoxic T lymphocytes (CTL), which recog-
nize peptides derived from a variety of proteins expressed by the
tumor cells and presented on the tumor cell surface in associa-
tion with class I MHC molecules (223224). In recent years, a
series of CTL-defined human tumor antigens has been identified
as peptides derived from ectopically expressed or lineage-
specific wild-type (nonmutated) cellular proteins that are over-
expressed by tumors relative to their normal counterparts, and
efforts are being made to develop peptide-based vaccines for
cancer immunotherapy (225). The ideal cancer vaccines would
target a CTL-defined tumor antigen, which commonly occurs in
human cancers and can be presented by a class I MHC
molecule expressed in large patient populations. In this regard,
the missense mutations in the p53 gene represent attractive can-
didates for therapy (161226227) applicable to a wide range of
patients, and an immunotherapy trial to test this hypothesis is in
progress (Carbone D: personal communication).

The potential for targeting p53 mutations, however, resides in
the ability of a peptide containing the missense mutation to be
processed and presented by a particular class I MHC molecule.
Unfortunately, an immunoselection process against'tumors ex-
pressing mutations capable of being processed and presented by
HLA-A2.1 limits the potential of targeting p53 mutations for
immunotherapy (228). Important consequences of p53 mutation,
however, are overexpression and the potential for enhanced
presentation of peptides derived from nonmutated regions of the
mutated p53 molecule. Such antitumor therapy would be inde-
pendent of the particular p53 mutation in an individual and de-
pendent solely on the identification of naturally processed and
presented wild-type sequence p53-derived peptides. The ef-
ficacy of p53 wild-type sequence peptide-based immunotherapy
has recently been demonstrated in mice. A vaccine consisting of
bone marrow-derived dendritic cells pulsed with H-2Kd-binding
wild-type sequence pSSgj^-Mo peptide has been shown to in-
duce rejection of a murine sarcoma expressing a p53 mutation
outside the region encoding the wild-type sequence p53 epitope
(229). The translational potential of this immunotherapy is en-
hanced by the identification of a naturally processed wild-type
sequence human p53-derived peptide that can be presented by
HLA-A2.1 molecules (230). A second strategy has used canary
pox virus vectors expressing p53 as a cancer vaccine in mice
(231). The immunoprotective response was not dependent on
any particular p53 mutation, and either wild-type or mutant p53
was equally effective in the live virus vaccine.

Gene Therapy

Laboratory studies have demonstrated the efficacy of p53
gene therapy in human cancer cells in vitro [reviewed in
(1232)] or as a xenograft in athymic nude mice (233-235). The
p53 gene, i.e., a p53 complementary DNA expression vector,
was successfully transferred by transfection or infection using
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Table 3. Approved and pending p53 gene therapy protocols*

Human gene
transfer protocol
(status) Cancer type p53 delivery vehicle

Route of
administration Institution

9403-031 (approved)t Non-small-cell lung cancer

9406-079 (approved)

9412-096 (approved)

9412-097 (pending)

Non-small-cell lung cancer

Head/neck squamous cell carcinoma

Hepatic metastasis of colon and
other types of cancer

Retroviral

Adenovirus serotype 5

Adenovirus serotype 5

Adenovirus serotype 5

Intratumor

Intratumor

Intratumor

Hepatic artery infusion

The University of Texas M. D.
Anderson Cancer Center,
Houston; University of
Alabama at Birmingham

The University of Texas M. D.
Anderson Cancer Center

The University of Texas M. D.
Anderson Cancer Center

University of California at
San Francisco

•Office of Recombinant DNA Activities, National Institutes of Health, Bethesda, MD 20892. Status of approved and pending protocols, June 1, 1996.
ISce (288).

either a replication-defective retroviral or an adenoviral vector,
and tumor cell growth was inhibited. A phase I, retrovirus-
mediated wild-type p53 gene therapy of lung cancer has recent-
ly been reported {288). No clinically significant vector-related
toxicity was noted. Whereas local tumor regression was reported
in three of nine lung cancer patients who had previously failed
conventional therapy, the efficacy of p53 gene therapy will be
determined in studies designed to address this issue. p53 gene
therapy can be coupled with either cancer chemotherapeutic
agents or ionizing radiation. The mechanism of cell death
mediated by p53 was shown in some studies to occur via the
apoptotic pathway [reviewed in (232234-236)]. Da Costa et al.
(237) have devised a novel strategy of gene therapy in which the
mutant p53 in tumor cells binds to exogenously introduced gene
products, resulting in transcriptional activation of a toxic gene.

The results of these successful laboratory studies using retro-
viral and adenoviral p53 expression vectors have led to the ap-
proval of phase I protocols in humans (Table 3). Whereas gene
therapy is conceptually simple and the laboratory results are en-
couraging, significant obstacles, e.g., incomplete targeting of the
tumor cell population, may limit the success of the current
human trials [reviewed in (238-240)]. Nevertheless, improve-
ments in the biotechnology of gene therapy can be anticipated,
and the strategy of combining p53 gene therapy with other
therapeutic modalities may be more efficacious.
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