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Abstract— The development of medical imaging tech-
niques has greatly supported clinical decision making.
However, poor imaging quality, such as non-uniform il-
lumination or imbalanced intensity, brings challenges for
automated screening, analysis and diagnosis of diseases.
Previously, bi-directional GANs (e.g., CycleGAN), have been
proposed to improve the quality of input images without
the requirement of paired images. However, these methods
focus on global appearance, without imposing constraints
on structure or illumination, which are essential features
for medical image interpretation. In this paper, we propose
a novel and versatile bi-directional GAN, named Structure
and illumination constrained GAN (StillGAN), for medical
image quality enhancement. Our StillGAN treats low- and
high-quality images as two distinct domains, and intro-
duces local structure and illumination constraints for learn-
ing both overall characteristics and local details. Extensive
experiments on three medical image datasets (e.g., corneal
confocal microscopy, retinal color fundus and endoscopy
images) demonstrate that our method performs better than
both conventional methods and other deep learning-based
methods. In addition, we have investigated the impact of
the proposed method on different medical image analysis
and clinical tasks such as nerve segmentation, tortuosity
grading, fovea localization and disease classification.

Index Terms— Bi-directional GAN, Illumination regular-
ization, structure loss, medical image enhancement.

I. INTRODUCTION

Recently, the rapid development of medical imaging tech-

nology has brought about a revolution in the field of clinical
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Fig. 1: Examples of different low-quality (top row) and high-

quality (bottom row) medical images.

medicine [1]. Medical images usually provide clinicians with

a great deal of information related to biological or anatomical

tissues; this plays a crucial role in effective diagnosis and

treatment. However, whether acquired by the same or different

devices, medical images tend to exhibit large variations in

quality - exhibiting defects such as intensity inhomogeneity,

low contrast, noticeable blur or noise, all of which can

occur during the image acquisition process. Fig. 1 illustrates

one low-quality and one high-quality examples, captured by

confocal microscopy, color fundus cameras and endoscopy

respectively. For the high-quality examples (the bottom row of

Fig. 1), almost all details can be easily identified by clinicians.

For the low-quality images (the top row of Fig. 1), however,

it is difficult to observe with clarity the complete structure of

corneal nerve fibers, blood vessels, digestive tract or other

tissues and lesions of interest. By contrast with natural or

scenery images, most medical images result from a specialized

imaging process with unique degradation factors, which may

lead to a variety of low-quality appearance artifacts and ad-

ditional challenges to clinical applications. A screening study

by Philip et al. [2] demonstrated that about 12% of fundus

images from 5,575 consecutive patients were unreadable by

ophthalmologists due to lack of adequate quality. Another

study based on UK BioBank also showed that about 30% of

retinal images were not of sufficiently high quality for accurate

diagnosis [3]. In addition, these obstacles also impair the

performance of many subsequent image analysis tasks, such

as specific structure segmentation [4] and lesion detection [5],

or other computer-aided diagnosis [6]. Consequently, fully

automatic and reliable medical image enhancement techniques
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have long been deemed worthwhile as the preceding step

of clinical applications, as they are crucial for achieving

high-quality images with comprehensive details and adequate

contrast.

In recent decades, many conventional methods have been

proposed for image enhancement. These include histogram

equalization (HE) [7], dark channel prior (DCP) [8], filtering-

based [9], [10] and Retinex-based methods [11]–[13]. How-

ever, they are usually sensitive to a few parameters [14],

which are not sufficiently adaptive and usually require manual

adjustment. Recently, due to the increase in the amount of data

and the availability of computing capabilities, deep learning

techniques have also revealed their superiority in low-level

image processing and computer vision tasks, where image

enhancement can be treated as a task of image-to-image

translation. The most common deep learning-based methods

are fully supervised learning methods [15], [16], which require

aligned image pairs in the training phase. For medical images,

it is however difficult to obtain such low/high-quality image

pairs in real scenarios for training. Therefore, a few unsuper-

vised learning frameworks have also been proposed [14], [17]–

[20], but they are usually unstable, and sometimes amplify

noise, or suffer from halo artefacts.

As a popular unpaired learning architecture of image-to-

image translation, a Cycle-consistent Generative Adversarial

Network (CycleGAN) [18] has the advantage of learning

knowledge represented with typical images in one domain, and

transferring it to the other domain, without the need for aligned

image pairs. However, most existing bi-directional GANs are

usually under-constrained. For example, CycleGAN focuses

primarily on learning intra-domain global appearance and

inter-domain cycle-consistency, and is thus often ineffective

in capturing local details. In medical images, local details

are particularly important for decision-making. A high-quality

medical image usually should exhibit uniform illumination and

clear structural details.

Taking all of the above into consideration, we propose

a novel framework for medical image enhancement, called

Structure and illumination constrained GAN (StillGAN). To

this end, we develop two novel constraints - illumination

regularization and structure loss, and incorporate them into the

objective function of a bi-directional GAN, in order to obtain

images with better illumination condition and structural details

for clinical interpretation and subsequent analysis. Illumina-

tion regularization aims at improving illumination uniformity

via minimizing the difference of illumination distribution in

the enhanced images, while structure loss is introduced to

preserve structural details as much as possible by reducing

the dissimilarity in terms of structure between the low-quality

image and its enhanced version. Compared with other deep

learning approaches, the proposed StillGAN achieves overall

better performance in various metrics for enhancing multi-

modality images. The proposed method extends considerably

our previous work published in MICCAI-2020 [21], which was

verified only on two medical imaging modalities. In this work,

medical image enhancement is regarded as a transformation

task from a low-quality image domain to a high-quality image

domain. Our contributions are summarized as follows:

• A novel bi-directional GAN called StillGAN has been

proposed to improve the readability of poor quality medical

images. The new model introduces illumination regularization

and structure loss to improve illumination conditions and to

preserve structural details, respectively.

• The proposed method has undergone rigorous quantitative

and qualitative evaluation using three different medical image

modalities - confocal microscopy, color fundus and endoscopy

images. For each medical image modality, we adopt differ-

ent image quality assessment approaches, according to their

respective imaging characteristics and clinical interests. We

have released the source code of our StillGAN and the corneal

confocal microscopy dataset, CORN-2 [21] (containing both

low- and high-quality image sets) online available to the public

at https://imed.nimte.ac.cn/CORN.html

II. RELATED WORKS

Many methods have been proposed for a variety

of image enhancement tasks. Examples of well-known

global enhancement methods include histogram equalization

(HE) [7] and contrast limited adaptive histogram equalization

(CLAHE) [22]. They enhance images by stretching their dy-

namic ranges, and have been widely used in medical imaging

community. Recently, some methods [23], [24] have produced

high-quality results by applying dehazing methods [8], [25] to

the inverted low-quality images. In addition, some filtering-

based methods [9], [10] and Retinex-based methods [11]–

[13] have been proposed to improve image quality either by

filtering, or by decomposing the given image into illumination

and reflectance components. However, these methods usually

process foreground and background indiscriminately, and as a

result sometimes amplify noise, or oversmooth regions close

to flat, and in consequence struggle to preserve fine details.

In recent years, deep learning approaches have been widely

used in computer vision, which has also enabled the rapid

advancement of image enhancement. Most deep learning

approaches are fully supervised, which attempt to learn a

mapping between a low-quality image and its reference high-

quality one. Lore et al. [15] utilized synthetically darkened and

noise-added images to train a deep stacked-sparse denoising

autoencoder, aiming at achieving both low-light enhancement

and denoising. Tai et al. [26] proposed a persistent mem-

ory network, MemNet, for image restoration. Interestingly, a

few works have also appeared that combine deep networks

with Retinex theory. Inspired by multi-scale Retinex, Shen et

al. [16] designed MSR-Net for low-light image enhancement.

Wei et al. [27] proposed a two-stage framework, Retinex-Net,

for low-light image enhancement.

Although achieving impressive results in image enhance-

ment, fully-supervised learning methods have shortcomings.

These methods require rigorously aligned low/high-quality

image pairs for training, and their performance depends largely

on the quality of the training set. For medical images in

particular, such image pairs are usually not available, and

synthetic image pairs cannot fully characterize low- and high-

quality images in clinical scenarios: this is likely to lead to

unexpected visual results such as color shift and intensive

https://imed.nimte.ac.cn/CORN.html


PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 3

Fig. 2: The overall structure diagram of StillGAN. It comprises two generator (G)/discriminator (D) pairs (GLQ→HQ/DHQ,

GHQ→LQ/DLQ) and two types of cycle consistency: (a) forward cycle consistency; (b) backward cycle consistency. Variables a
and b represent real images from the low-quality (LQ) and high-quality image domain (HQ) respectively. Other variables are

defined as follows: b̃ = GLQ→HQ(a), â = GHQ→LQ(b̃), a
′ = GHQ→LQ(a); ã = GHQ→LQ(b), b̂ = GLQ→HQ(ã), b

′ = GLQ→HQ(b).
Lcyc and Lidt represent the cycle consistency term and the identity mapping loss. The proposed illumination regularization and

structure loss are represented as Lill and Lst, respectively.

noise. In consequence, unsupervised learning models like

CycleGAN [18] were proposed recently. Most of these models

attempt to learn knowledge represented with typical images in

one domain and transfer it to the other without the requirement

of paired images. Gatys et al. [17] proposed a neural transfer

algorithm (NST) for unpaired image transformation. Zhang et

al. [19] introduced a multi-style generative network (MSG-

Net) to achieve real-time image style translation. Chen et

al. [14] proposed a two-way GAN with several improvements

for photograph enhancement. By contrast, Jiang et al. [20]

proposed EnlightenGAN, a one-way GAN with a global-

local discriminator structure, a self-regularized perceptual loss

fusion and an attention mechanism, for low-light image en-

hancement. Nevertheless, compared with supervised learning,

it is difficult for these unsupervised learning methods to

precisely learn characterization of one domain and produce

stable results in the other (i.e., amplifying noise or generating

halo artefacts).

III. PROPOSED METHOD

In our work, we treat the medical image enhancement as

a translation of general knowledge from low-quality (LQ)

domain to high-quality (HQ) domain. Then we propose a novel

unpaired learning framework, StillGAN, for medical image

enhancement. It learns a suitable mapping from domain LQ to

domain HQ without requiring paired images in the training

phase, as shown in Fig. 2. StillGAN also introduces two

new loss terms - illumination regularization and structure loss,

which aim at achieving illumination uniformity and restoring

structural details in the enhanced images.

A. Network Architecture

Our StillGAN adopts two generator/discriminator pairs

(GLQ→HQ/DHQ, GHQ→LQ/DLQ), where GLQ→HQ (GHQ→LQ)

Fig. 3: The network structure of the generators (left) and dis-

criminators (right). The generators adopt an encoder-decoder

architecture with skip connections and several residual blocks,

and the discriminators utilize PatchGAN [29] with five con-

volutional layers.

learns to translate an image from domain LQ (HQ) into domain

HQ (LQ), and DLQ (DHQ) is trained to distinguish between real

samples from domain LQ (HQ) and the generated images from

domain HQ (LQ). Generators GLQ→HQ and GHQ→LQ adopt an

encoder-decoder architecture, with residual blocks similar to

ResU-Net [28]. The constructed generative network consists

of eight encoder layers and the symmetric decoder layers

with skip connections, as shown in Fig. 3. For each encoder

layer, we use a residual block followed by a max pooling

layer; while for each decoder layer, we adopt an upsampling

layer using bilinear interpolation followed by a residual block

with the same structure. The residual block takes the form of

two stacked 3 × 3 Convolution-BatchNorm-LeakyReLU with

shortcut connection between the input and output.

For both discriminators DLQ and DHQ, we utilize Patch-

GAN [29] for the classification of an image as real or

fake based on image patches rather than the whole image:
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this differentiates PatchGAN from traditional discriminators.

PatchGAN contains five 4 × 4 convolutional layers, with a

stride of 2 in the first three layers and a stride of 1 in the

last two layers, as illustrated on the right hand side of Fig. 3.

Leaky ReLU with a slope of 0.2 is applied in the first four

layers. Batch normalization is applied in the middle three

layers. For the above settings, we set the receptive field of

PatchGAN, or the patch of the input image to be identified as

70× 70, which makes PatchGAN more lightweight and faster

than traditional discriminators, but still guides the generator to

produce realistic results [30]. Finally, the Sigmoid activation

function is adopted in the output layer to identify each patch of

the input image. In consequence, each output pixel represents

the probability that the corresponding 70 × 70 patch of the

input image is from one real sample.

B. Objective Function

As a kind of bi-directional GAN framework, the basic

objective function of StillGAN contains three terms, including

adversarial loss, cycle consistency loss and identity mapping

loss. In addition, StillGAN introduces two novel terms, illumi-

nation regularization and structure loss, to further constrain the

bi-directional GAN framework in order to achieve illumination

uniformity and preserve subtle structural details for medical

image enhancement.

• Transfer Loss Transfer loss is defined as the basic objec-

tive function of StillGAN, represented by the summation of ad-

versarial loss, cycle consistency loss and identity mapping loss.

In StillGAN, the adversarial loss Ladv is applied to both the

generator/discriminator pairs (GLQ→HQ/DHQ, GHQ→LQ/DLQ).

It is defined as:

Ladv

(

GLQ→HQ, GHQ→LQ,DLQ,DHQ

)

= Eb∈HQ [logDHQ(b)] + Ea∈LQ

[

log
(

1− DHQ(GLQ→HQ(a))
)]

+ Ea∈LQ [logDLQ(a)] + Eb∈HQ

[

log
(

1− DLQ(GHQ→LQ(b))
)]

,

(1)

where GLQ→HQ (GHQ→LQ) attempts to convert an image from

domain LQ (HQ) into domain HQ (LQ), and DLQ (DHQ) tries

to identify differences between real samples from domain LQ

(HQ) and the generated images from domain HQ (LQ).

In order to achieve interconversion and reconstruction be-

tween the two domains via two generators, StillGAN contains

both the forward and backward cycle consistency, as shown

in Fig. 2. For the forward cycle consistency, each a ∈ LQ

is expected to be recovered as well as possible, which is

denoted as a → b̃ = GLQ→HQ(a) → â = GHQ→LQ(b̃) ≈ a.

This holds for the backward cycle consistency as well: b →
ã = GHQ→LQ(b) → b̂ = GLQ→HQ(ã) ≈ b. Thus the cycle

consistency loss Lcyc is defined as:

Lcyc

(

GLQ→HQ, GHQ→LQ

)

= Ea∈LQ

[

‖GHQ→LQ(GLQ→HQ(a))− a‖1
]

+ Eb∈HQ

[

‖GLQ→HQ(GHQ→LQ(b))− b‖1
]

.

(2)

In addition, two generators are regularized as an identity

mapping separately when real samples from LQ (HQ) are

applied to GHQ→LQ (GLQ→HQ): a′ = GHQ→LQ(a) ≈ a and

b′ = GLQ→HQ(b) ≈ b. The identity mapping loss Lidt is thus

defined as:

Lidt

(

GLQ→HQ, GHQ→LQ

)

= Eb∈HQ

[

‖GLQ→HQ(b)− b‖1
]

+ Ea∈LQ

[

‖GHQ→LQ(a)− a‖1
]

.
(3)

Therefore, the transfer loss is finally defined as:

Ltransfer

(

GLQ→HQ, GHQ→LQ, DLQ, DHQ

)

= Ladv

(

GLQ→HQ, GHQ→LQ,DLQ,DHQ

)

+ λ1Lcyc

(

GLQ→HQ, GHQ→LQ

)

+ λ2Lidt

(

GLQ→HQ, GHQ→LQ

)

,

(4)

where parameters λ1 and λ2 represent positive weighted

coefficients of the cycle consistency loss and the identity

mapping loss, respectively.

Although it is possible to achieve inter-domain image trans-

lation, this bi-directional GAN framework with the transfer

loss only has two drawbacks when applied to medical im-

ages. Firstly, it is difficult to guarantee the generation of

stable results due to its under-constraints in the adversarial

training process. More specifically, the existing bi-directional

GAN framework lacks adequate supervision information only

based on the global adversarial loss and cycle consistency

constraints. Secondly, for medical image enhancement, it is

difficult to make sure that GLQ→HQ and GHQ→LQ capture

important low-level features without extra detailed constraints

being provided. On one hand, it is a challenge to remove

excessively dark or bright regions so as to achieve a more

uniform appearance consistent with human visual characteris-

tics. On the other hand, subtle details of great significance to

clinical analysis, such as the curvilinear structures of corneal

nerve fibers or blood vessels, and the complete morphology

of the digestive tract, might be blurred or even lost in the

translated images. To address these drawbacks, we propose

two novel terms - illumination regularization and structure loss

(as shown in the purple arrows of Fig. 2), to guide the gen-

erator GLQ→HQ in reaching a balance between illumination

uniformity and structural restoration.

• Illumination Regularization The illumination regulariza-

tion is proposed to improve overall illumination uniformity. It

is realised as minimizing the illumination difference between

local patches and the whole image. It represents a correcting

factor that reflects the non-uniformity of illumination in the

enhanced image, and can serve as prior knowledge of human

vision. Calculation of the illumination correcting factor of a

given image I is performed in the following steps:

1) Calculate the global average intensity of I;

2) Divide the image into n×m patches of the same size;

then calculate the average intensity of each patch to

obtain the illumination matrix D;

3) Subtract the average intensity of I from each element of

D to form the illumination difference matrix E;

4) Rescale E into the illumination distribution matrix R of

the same size as I via bicubic interpolation;

5) Calculate the average absolute value of elements in R.

A brief explanation of the above steps is given here. Global

average intensity calculated in Step 1 represents the overall

illumination level in the input image. Average intensity of each

divided patch in Step 2 aims at achieving local illumination

distribution in the input image. From Step 3 to Step 4, we ob-

tain the illumination error distribution map of the input image.

Note that both the matrices E and R represent the illumination

distribution of the given image, and R is the rescaled version of

E. Finally, we calculate the average illumination error in Step
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5, in order to measure the illumination non-uniformity of the

input image. The smaller the average illumination error, the

more uniform the illumination of the given image. According

to the above, the illumination regularization Lill is defined as:

Lill

(

GLQ→HQ

)

= Ea∈LQ

[

Eglobal

[

|upsampling
{

E
p×p
local

[

GLQ→HQ(a)
]

−Eglobal

[

GLQ→HQ(a)
]}

|
]]

,

(5)

where Eglobal [·] denotes the global mean of the input image;

E
p×p
local [·] aims at calculating the illumination matrix D based on

each p×p patch divided in the input image; and upsampling {·}
is intended to resize the illumination difference matrix E to

the size of the original input image via bicubic interpolation.

Note that the proposed illumination regularization is applied

to GLQ→HQ(a) only in that enhanced images generated from

GLQ→HQ should satisfy the constraints of illumination reg-

ularization. When generating low-quality images from high-

quality ones, it is unnecessary to impose any constraint, as

they may be caused by various unpredictable factors such as

poor lighting or imaging noise.

• Structure Loss Although it is favorable to improving

illumination uniformity, the using of illumination regulariza-

tion alone might also lead to excessively low contrast, or

even complete loss of vital details. The low-quality image

and its enhanced version should exhibit similar structural

features in spite of great differences in intensity and contrast

distribution. Structural SIMilarity (SSIM) [31] provides a

relatively appropriate measurement of this degree of similarity.

Compared with mean squared error (MSE), SSIM can effec-

tively characterize structural similarity between two images

in three aspects: luminance, contrast and structure. Motivated

by the structure comparison function in SSIM, we propose

a kind of structure-aware prior - structure loss, based on the

dissimilarity between the low-quality image and its enhanced

version. Mathematically, it is formulated as:

Lst

(

GLQ→HQ, GHQ→LQ

)

= Ea∈LQ

[

1−
1

M

M
∑

i=1

σai,GLQ→HQ(a)i
+ c

σai
σGLQ→HQ(a)i

+ c

]

+ Eb∈HQ

[

1−
1

M

M
∑

i=1

σbi,GHQ→LQ(b)i
+ c

σbiσGHQ→LQ(b)i
+ c

]

,

(6)

where ai, bi, GLQ→HQ(a)i and GHQ→LQ(b)i are the i-th

local window in the images a and b and the corresponding

generated images GLQ→HQ(a), GHQ→LQ(b) respectively; M
is the number of local windows in each image; σai,GLQ→HQ(a)i

and σbi,GHQ→LQ(b)i are the covariance between ai and

GLQ→HQ(a)i and that between bi and GHQ→LQ(b)i re-

spectively; σai
, σbi , σGLQ→HQ(a)i and σGHQ→LQ(b)i are the

standard deviations of ai, bi, GLQ→HQ(a)i and GHQ→LQ(b)i
respectively; and c is a small positive constant used to avoid

numerical instabilities.

Thus the overall objective function of the proposed Still-

GAN for medical image enhancement is defined as:

L
(

GLQ→HQ, GHQ→LQ, DLQ, DHQ

)

= Ltransfer

(

GLQ→HQ, GHQ→LQ, DLQ, DHQ

)

+ αLill

(

GLQ→HQ

)

+ βLst

(

GLQ→HQ, GHQ→LQ

)

,

(7)

where α and β are the positive parameters controlling the

weights of the illumination regularization and structure loss

respectively.

IV. EXPERIMENTS

A. Datasets

Three different medical imaging modalities, confocal mi-

croscopy, color fundus and endoscopy, were used to validate

the proposed StillGAN method.

• CORN-2 (CORneal Nerve Database) The dataset was

constructed for confocal image enhancement, which is based

on a publicly-available corneal confocal microscopy (CCM)

dataset [4]. The CORN-2 dataset contains a total of 688

confocal images of size 384×384 acquired using a Heidelberg

Retina Tomograph equipped with a Rostock Cornea Module

(HRT-III) microscope. Low quality in this confocal dataset

manifests as low contrast, speckle noise and non-uniform

intensity. Accordingly, one image expert and one clinician

were invited to grade the confocal image quality based on [13],

and they come to a consensus to divide the CORN-2 dataset

into 340 low-quality images and 288 high-quality images for

training, with the remaining 60 low-quality images reserved

for testing. In addition, all visible nerve fibers in confocal

images were manually annotated at centerline level.

• Fundus Multi-disease Diagnosis (iSee) Dataset for

enhancement The iSee dataset [32] was collected by a lo-

cal hospital for research on automated disease analysis and

diagnosis in clinical applications. This dataset contains a total

of 10000 color fundus images of size 1942 × 1940, and

includes instances of some common eye diseases, such as

age-related macular degeneration (AMD), pathological myopia

(PM), glaucoma and diabetic retinopathy (DR). There are

large variations of image quality in the iSee dataset, including

examples of under/over exposure, blur/noise and artifacts. To

evaluate the performance of enhancement approaches on color

fundus images, our image experts and clinicians were also

invited to select 1,520 color fundus samples from this dataset

based on [6]: 733 low-quality images and 637 high-quality

images for training, and the remaining 150 low-quality images

for testing. Note that all the samples showing normal eyes and

the various eye diseases were distributed uniformly in low-

and high-quality image subsets. In addition, two experienced

clinicians annotated foveal locations of these selected samples

for quantitative assessment. Firstly, clinicians manually labeled

the foveal centre point in each color fundus image. Then we

generated a bounding box centered at the annotated point as

the final ground truth of the foveal region. Following our

experts’ observation of these color fundus images and their

suggestions, we set the size of the bounding box as 150×150.

• EASE (Endoscopy Automated Scene Enhancement)

The EASE dataset is an endoscopy dataset collected from

the public CVC-EndoSceneStill dataset [33] for endoluminal

scene enhancement. Specular highlights and dark shadows also

degrade the visual quality of these endoscopy images. Through

careful selection based on [34], two clinicians selected 267

low-quality images and 123 high-quality endoscopy images as

the training set and 70 low-quality images as the testing set.

All the images in the EASE dataset have a size of 384× 288.
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B. Implementation Settings

The proposed StillGAN was implemented with PyTorch

library, and the experiments were conducted on a single

NVIDIA GPU (Tesla P40 with 24 GB). All training images

were resized to 512×512, and a random flipping in the lateral

or vertical direction was applied for data augmentation. For our

StillGAN, we selected two patch sizes - 48× 48 and 96× 96
respectively, to obtain the illumination regularization and then

the average of these two options was computed as the final one,

and set local windows of 11 × 11 for the calculation of the

structure loss. Adam optimization was applied to train the two

adversarial pairs, with the initial learning rate of 0.0002 and a

batch size of 1. The weighted parameters in the final objective

function were experimentally set as: λ1 = 10, λ2 = 5, α = 1,

β = 5. Note that even though these hyperparameters need

fine-tuning carefully, their settings do follow certain principles.

The weighted coefficient λ1 of the cycle consistency loss in

fact controls the content consistency between a low-quality

image and its high-quality version in one cycle mapping.

Thus λ1 should be large enough to ensure the correspondence

before and after enhancement. The identity mapping loss

enforces invariance of intra-domain translation. In particular,

one real high-quality image should remain unchanged after

enhancement. To this end, the weighted coefficient λ2 should

also hold a certain proportion. For illumination regularization,

too large a value of α often leads to low contrast in the

whole image or even loss of local details, while too small

a value of α often makes it difficult to attain the expected

uniform illumination. In general, the weighted parameter β of

the structure loss should be large enough, but too large a value

of β usually results in amplifying noise or producing artifacts.

All above settings were consistent in applying each dataset.

In order to validate our proposed StillGAN, the following

state-of-the-art approaches were selected for comparison on

each dataset: three conventional methods, including contrast

limited adaptive histogram equalization (CLAHE) [22], dark

channel prior (DCP) [8], and low-light image enhancement

(LIME) [35], and three deep learning methods, including neu-

ral style transfer (NST) [17], multi-style generative network

(MSG-Net) [19], and EnlightenGAN [20]. The parameters in

the conventional methods were set to the default values as in

the corresponding articles. For each deep learning method, the

same training datasets and data augmentation were adopted,

with the hyperparameters tuned to achieve a relatively satisfied

performance. Furthermore, we also conduct ablation studies on

the illumination regularization and structure loss and see how

they affect the performance of our proposed StillGAN. Finally,

we investigate the clinical impact of image enhancement

on three tasks: image reclassification, nerve fibre tortuosity

grading and disease diagnosis.

C. Evaluation over Corneal Confocal Microscopy

Firstly, we validate the proposed StillGAN on the CORN-

2 dataset. In addition to making visual comparisons, we also

evaluate it in the following metric and task: by calculating

signal-to-noise ratio (SNR) based on regions of nerve fibers

TABLE I: SNR (unit: dB) of the original and enhanced corneal

confocal microscopy images using different approaches. (S:

structure loss; I: illumination regularization)

Methods r=3 r=5 r=7

Original 17.47±1.09 17.61±1.14 17.65±1.18
CLAHE [22] 16.56±0.59 16.73±0.62 16.79±0.65
DCP [8] 14.59±1.03 14.88±1.13 14.99±1.21
LIME [35] 16.43±1.43 16.78±1.51 16.89±1.57

NST [17] 16.61±1.23 16.89±1.27 17.01±1.28
MSG-Net [19] 19.12±0.61 19.92±0.57 20.22±0.54
EnlightenGAN [20] 18.40±1.13 19.26±1.10 19.70±1.10

Baseline 19.55±0.85 20.14±0.84 20.41±0.87
Baseline + I 20.30±0.89 20.93±0.80 21.22±0.77
Baseline + S 20.11±1.05 20.75±0.97 21.04±0.93

StillGAN 20.35±0.93 21.06±0.88 21.41±0.88

r = 3 r = 5 r = 7

StillGAN

Original

Fig. 4: An example to show the regions selected as background

so as to calculate the SNR. The background (green color)

was determined by a disk-shaped dilation operation on the

manually traced fibers (red color) with a radius of 3, 5 and 7

pixels, respectively. Top row: an original image; Bottom row:

the example enhanced by our StillGAN.

and by comparing the performance of nerve fiber segmentation

guided by enhancement.

1) Evaluation in SNR: For quantitative assessment of con-

focal image quality, we first calculated signal-to-noise ratio

(SNR) based on manual annotations of nerve fibers, which

is calculated as: SNR = 10 log10
(

max(Is)
2/σ2

b

)

, where

max(Is) denotes the maximum intensity of signal regions Is
(centerline-level regions of the manually traced nerve fibers) in

the image, and σb is the standard deviation of the background

regions. In our experiments, we defined the regions (except

signal regions) after a disk-shaped dilation operation on signal

regions with a radius (r) of 3, 5 and 7 pixels, respectively

as background regions. Fig. 4 shows one example with signal

regions (marked in red) and three kinds of background regions

(marked in green). The SNR results of different enhancement

methods are shown in Table I. As illustrated in the table,

our StillGAN achieves the highest SNR when compared with

all the selected state-of-the-art methods. It indicates that the

proposed StillGAN is more successful in eliminating uneven

intensity in background regions and highlighting signal re-

gions. Furthermore, its enhanced results demonstrate a huge

advantage over the original images by an improvement in

SNR of 2.88 dB, 3.45 dB and 3.76 dB for r = 3, 5, and 7,

respectively. The significant improvement in SNR is confirmed
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TABLE II: Segmentation performance of the original and enhanced corneal confocal microscopy images using different

approaches. (S: structure loss; I: illumination regularization)

Methods AUC ACC SEN G-mean Kappa Dice

Original 0.735±0.107 0.969±0.013 0.421±0.186 0.628±0.159 0.528±0.182 0.541±0.182
CLAHE [22] 0.777±0.087 0.970±0.010 0.488±0.160 0.685±0.122 0.570±0.139 0.584±0.139
DCP [8] 0.899±0.034 0.964±0.007 0.708±0.084 0.830±0.050 0.615±0.093 0.633±0.093
LIME [35] 0.895±0.033 0.960±0.009 0.698±0.080 0.823±0.048 0.585±0.102 0.606±0.102

NST [17] 0.777±0.080 0.958±0.016 0.490±0.148 0.686±0.108 0.494±0.167 0.515±0.162
MSG-Net [19] 0.754±0.086 0.964±0.009 0.441±0.167 0.647±0.133 0.495±0.160 0.512±0.160
EnlightenGAN [20] 0.853±0.037 0.960±0.010 0.671±0.072 0.807±0.046 0.580±0.104 0.601±0.103

Baseline 0.900±0.052 0.971±0.006 0.748±0.112 0.854±0.069 0.673±0.113 0.688±0.112
Baseline + I 0.918±0.042 0.977±0.006 0.776±0.098 0.873±0.060 0.735±0.084 0.747±0.084
Baseline + S 0.908±0.054 0.971±0.007 0.769±0.114 0.865±0.073 0.680±0.118 0.695±0.117

StillGAN 0.922±0.041 0.977±0.006 0.788±0.096 0.879±0.058 0.736±0.090 0.748±0.090

Fig. 5: An example of corneal confocal microscopy and its

enhancement using different approaches (the top and third

row), and their guided nerve fiber segmentation results via

CS-Net (the second and bottom row).

by the statistical analysis (all p < 0.05).

2) Evaluation in nerve fiber segmentation: In order to con-

firm the impact of image enhancement on subsequent analysis

tasks, we further performed corneal nerve fiber segmentation

and compared segmentation results guided by enhancement

with that of the original images. To this end, we employed

a pre-trained CS-Net [4], which had been trained on high-

quality corneal confocal microscopy images with manually

traced nerve fibers, for corneal nerve fiber segmentation in

the low-quality and the enhanced images via enhancement

approaches. For assessment of the segmentation performance,

we calculated the following metrics between the predicted cen-

terlines and ground truth: area under the ROC curve (AUC),

accuracy (ACC), sensitivity (SEN), G-mean score [36], Kappa

score, and Dice coefficient (Dice). Note, a three-pixel tolerance

region around the manually-traced nerves is considered as true

positive [37] for the calculation of these metrics.

The top row and the third row of Fig. 5 show an original

image and its the enhancement results using different methods,

TABLE III: High-quality score and fovea localization per-

formance (mean ± standard deviation) on the original and

enhanced color fundus images via different enhancement ap-

proaches. (S: structure loss; I: illumination regularization)

Methods sHQ d

Original 0.0940±0.0760 129.00±358.19
CLAHE [22] 0.1906±0.1668 76.16±249.69
DCP [8] 0.1156±0.0802 339.54±542.34
LIME [35] 0.1140±0.0855 95.57±273.09
NST [17] 0.0978±0.1165 200.31±426.20
MSG-Net [19] 0.0709±0.0477 115.37±292.47
EnlightenGAN [20] 0.0920±0.0535 191.91±389.62

Baseline 0.2426±0.1767 74.38±239.29
Baseline + I 0.3164±0.2428 64.30±198.01
Baseline + S 0.3103±0.2610 67.13±227.17

StillGAN 0.3487±0.2437 62.87±205.59

while the second row and the bottom row depict enhancement-

guided fiber segmentation results obtained using CS-Net. It can

be seen that more completed fibers have been identified in the

sample enhanced by our StillGAN, whose location is indicated

by the red arrows, since the contrast between the nerve fibers

and the background regions has been significantly improved,

and more uniform responses in both the regions have been

achieved. With the guidance of our StillGAN, CS-Net is more

sensitive in detecting small fibers with low contrast. This find-

ing is also confirmed by the segmentation results in Table II:

our StillGAN achieves the best segmentation performance

and outperforms the state-of-the-art EnlightenGAN and the

baseline framework by 17.44% and 5.35% in SEN, 26.90%

and 9.36% in Kappa, 8.92% and 2.93% in G-mean, 24.46%

and 8.72% in Dice respectively. Paired t-tests were conducted

on AUC, and all p < 0.05 demonstrate that our method can

significantly improve nerve fiber segmentation performance,

especially in reducing missing rate, which is more useful for

monitoring and diagnosing nerve-related diseases.

D. Evaluation over Color Fundus Images

Two different experiments have been conducted, so as to

verify the effectiveness of our StillGAN on color fundus

images.

1) Evaluation in retinal image quality assessment score:

We adopted a state-of-the-art classification network called
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Fig. 6: An example of color fundus enhanced using different approaches, and their guided fovea localization results (including

the bounding box and its center). Ground truth: green box and cross; Prediction: yellow box and cross.

MCF-Net [6], which was proposed for retinal image quality

assessment. We employed the pre-trained MCF-Net to predict

the high-quality score (denoted as sHQ) of those low-quality

images and their enhanced ones using different approaches.

The high-quality score mainly measures the overall percep-

tual quality of color fundus images in terms of different

color-spaces. It is apparent that sHQ of the original low-

quality image is usually lower; the higher the metric sHQ

of the enhanced image, the better the performance of the

enhancement approach. Table III provides sHQ of the original

images and their enhanced results using different methods.

The proposed StillGAN has achieved the highest high-quality

score among these competing methods. Compared with the

original images, our method increases the high-quality score

by over 2.7 times, which demonstrates that our StillGAN can

significantly improve the overall visual perception of the color

fundus images.

2) Evaluation in fovea localization: We conducted fovea

localization of the enhanced fundus images to verify the

localization performance gains brought about by the proposed

method and the others. We utilized a pre-trained fovea lo-

calization framework based on Faster R-CNN [38], which had

been trained on high-quality color fundus images with manual

fovea localization, for fully automatic fovea localization on

the low-quality images, with and without application of image

enhancement approaches. To measure the precision of fovea

localization, we used the Euclidean distance (denoted as d)

between the predicted box center and the box center of the

ground truth following [38] as the fovea localization error.

Fig. 6 shows the fovea localization results achieved by

different enhancement approaches. For their comparison, the

predicted foveal region and its center are marked in the

yellow box and cross respectively, while the ground truths

are marked in the green box and cross instead. It can be seen

that the original image of the example in Fig. 6 exhibits poor

exposure around the foveal region, which leads to imprecise

localization. It is worth noting that fovea localization based

on the result of DCP is entirely wrong, though it shows the

overall homogeneous appearance. By visual inspection, we

found that it amplifies the noise and even produces some color

distortion in the image, especially in the foveal region. This

is because its dehazing method changes the characteristics of

the foveal region and makes the enhanced image far different

from those in the real high-quality domain. EnlightenGAN

tends to oversmooth the image including the foveal region,

leading to certain localization deviations. Although our base-

line framework is able to achieve the comparatively better

overall visual effects, it still produces some artifacts around the

foveal region which reduces its localization accuracy. In sharp

contrast, for our StillGAN, these artifacts are almost entirely

removed, and higher fovea localization accuracy is achieved.

The fovea localization error is also presented in Table III. We

can see that enhanced images using our StillGAN have yielded

the smallest error in fovea localization.

E. Evaluation over Endoscopy

Finally, the proposed StillGAN was verified over the EASE

dataset. For quantitative evaluation, we adopted three no-

reference image quality assessment metrics: Natural Image

Quality Evaluator (NIQE) [39], Blind/Referenceless Image

Spatial Quality Evaluator (BRISQUE) [40] and Perception

based Image Quality Evaluator (PIQE) [41]. Note that the

lower the score achieved using these no-reference assessments,

the better the endoscopy image quality.

Table IV shows the results of endoscopy images enhanced

using different approaches. When the proposed StillGAN is

compared with the competing methods - it achieves the best

performance in NIQE and PIQE, and similar performance to

EnlightenGAN in BRISQUE, where the former is only 0.17

lower than the latter. The statistical analysis also indicates that

differences found were not statistically significant between

EnlightenGAN and StillGAN in terms of BRISQUE (p =
0.85 > 0.05).

The top row of Fig. 7 illustrates the enhancement results

achieved by two conventional (CLAHE and DCP) and one

deep learning-based (EnlightenGAN) enhancement method,
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Fig. 7: An example of endoscopy enhancement using different

approaches.

TABLE IV: No-reference assessment results (mean ± standard

deviation) of different enhancement approaches. (S: structure

loss; I: illumination regularization)

Methods NIQE BRISQUE PIQE

Original 4.40±0.67 36.70±5.42 37.27±11.50
CLAHE [22] 4.52±0.89 30.76±3.88 29.52±4.89
DCP [8] 4.13±0.64 35.45±5.59 35.09±6.37
LIME [35] 4.27±0.69 30.74±4.89 34.95±7.20
NST [17] 9.42±1.96 30.28±3.64 25.48±6.17
MSG-Net [19] 7.26±0.55 56.72±2.29 93.43±11.96
EnlightenGAN [20] 4.38±0.88 24.35±4.18 33.07±6.47

Baseline 4.38±0.62 27.81±7.70 29.54±5.28
Baseline + I 4.33±0.61 27.70±6.71 25.25±9.35
Baseline + S 4.27±0.60 26.00±6.59 28.12±6.01

StillGAN 3.84±0.64 24.52±5.38 23.48±6.42

respectively. CLAHE demonstrates limited improvement in

dark regions. It can be seen that DCP improves the overall

illumination conditions of the image, but also amplifies noise

in extremely dark regions, and even leads to some color

distortions. This might be because our endoscopy image does

not meet the assumption of the reverse dehazing method.

EnlightenGAN generates universally over-smoothed images

with many details blurred. In contrast, the proposed StillGAN

produces visually satisfactory results with both more uniform

illumination and clearly perceivable structural details, espe-

cially in poorly-illuminated regions. These results show that

the proposed StillGAN is powerful in enhancing images with

uniform illumination conditions and preserving local details.

F. Ablation studies

In this paper, the proposed StillGAN incorporates two novel

terms - illumination regularization and structure loss, into our

bi-directional GAN framework for medical image enhance-

ment. In order to investigate their contributions, we carry out

the following ablation studies on the baseline bi-directional

GAN framework in conjunction with different combinations

of these two terms.

1) Illumination regularization.: To discuss the effectiveness

of the proposed illumination regularization, we compared the

performance of the baseline method and that with illumination

regularization only over the three medical imaging modalities.

The experimental results in Fig. 5-Fig. 7 and Table I-Table IV

show that the illumination regularization brings significant im-

provements of overall illumination uniformity to the baseline

GAN framework. In particular for some degradation factors,

such as intensity inhomogeneity or speckle noise in confocal

microscopy, and uneven exposure or other light disturbance

in color fundus photography, the illumination regularization

usually works well. For corneal confocal microscopy, we

found that our bi-directional GAN framework using the illu-

mination regularization had higher SNR with different back-

ground regions. This indicates that non-uniform intensity and

noise in the background regions could be further suppressed

by introducing the illumination constraint. In addition, better

nerve fiber segmentation could be achieved via enhancement

using the illumination term, indirectly confirming that the

illumination regularization is conducive to eliminating the

influence of non-uniform illumination on the nerve fiber

segmentation task. For color fundus images, the illumination

regularization also helped our baseline method to improve both

its high-quality score and fovea localization. Especially for

those samples with under-exposure or slight over-exposure,

it could lead to great improvement in overall visual quality

that is well aligned to human perception, resulting in a better

high-quality score. Some fundus degradation factors, such as

light transmission disturbance [42] and absence of exposure,

could impair observation and fovea localization. The illumi-

nation regularization is an appropriate way for overcoming

degradation factors to a large extent, thereby improving fovea

localization. However, it alone can also over-smooth regions

of interest or even blur vital details: as we can see in Fig. 7,

that the severely dark region in the endoscopy image becomes

brighter but also appears blurry or even loss of its texture.

2) Structure loss.: Furthermore, we also verified the impact

of the proposed structure loss on the enhancement performance

of our bi-directional GAN framework. By contrast with the

illumination regularization, the structure loss attempts to mine

and retain structural information from the original images. In

corneal confocal microscopy images, the topology of nerve

fibers is the most important structural information. As shown

in Tables I and II, the application of the structure loss also

resulted in a slightly higher SNR and better nerve fiber seg-

mentation compared to the baseline method. This demonstrates

that this structure-aware prior could assist the bi-directional

GAN framework in focusing on and highlighting the structural

details, leading to improvement of contrast between signal and

background regions. For color fundus images, the structure

loss could spotlight structural features of some important

retinal biomarkers, such as the fovea, optic disc and vessels.

Thus both the high-quality score and fovea localization are

achieved by the structure constraint. In addition, it also guides

the bi-directional GAN framework in producing clearer diges-

tive tract imagery and thus improves endoscopy quality. Even

though the proposed structure loss would help to reduce the

risk of missing structural details, it may be sensitive to noise or

other interferences. For example in Fig. 5, the corneal confocal

microscopy image enhanced by Baseline + S seems inadequate
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TABLE V: Nerve fiber tortuosity classification results before

and after enhancement using our StillGAN (w/o enhancement).

ACC PRE F1-score

Level 1 95.33%/89.67% 93.94%/61.11% 81.58%/68.04%
Level 2 90.67%/77.67% 87.01%/61.84% 82.72%/58.39%
Level 3 91.00%/83.00% 76.92%/57.97% 78.74%/61.07%
Level 4 93.67%/87.00% 86.40%/85.15% 91.91%/81.52%

Average 92.50%/83.91% 85.70%/69.48% 85.10%/68.81%

in the elimination of non-uniform background intensity.

The above ablation studies show that both the illumination

regularization and structure loss have their own advantages

and drawbacks. The former focuses on overall illumination

uniformity at the risk of oversmoothing or blurring, while the

latter tends to preserve some vital structural details rather than

eliminate those low-quality factors. Thus, a combination of

both the terms could reach a balance between illumination

uniformity and structural preservation to avoid either blurring

or other excessive degradation.

G. Clinical impact of enhancement

To further evaluate the clinical impact of image enhance-

ment, we carry out three experiments on image reclassification,

objective nerve fibre tortuosity grading and subjective disease

diagnosis as follows.

1) Impact on image reclassification: In order to further

validate the clinical impact of our method, we conducted a

simple experiment of image quality re-classification for each

dataset. We asked the same clinicians to re-classify all the

images including the low-quality images from testing subsets

(60 corneal confocal images, 150 retinal color fundus images,

and 70 endoscopy images) after enhancement. In order to

avoid bias from the experts, we did not disclose that these

images had already been enhanced. As expected, 42 out of

60 corneal confocal images, 145 out of 150 retinal color

fundus images, and 58 out of 70 endoscopy images have

been identified as high-quality ones by the same experts under

the same assessment protocol. These results show that the

proposed method have successfully improved the quality of

most images from the clinical point of view.

2) Impact on nerve fiber tortuosity grading: Previous studies

have shown that corneal nerve tortuosity is related to hy-

pertensive retinopathy [43], dry eye disease [44] or diabetic

neuropathy [45], so the tortuosity level grading is of great

importance in clinical practice. We employed a state-of-the-

art tortuosity grading method [13], to estimate the nerve fiber

tortuosity levels of 300 confocal images from an in-house

dataset, with and without applying our enhancement method.

These images were categorized into four groups based on

fiber tortuosity levels by two experts based on a previously

published protocol [46], and these labels were used as ground

truth for objective tortuosity level evaluation. Finally, these

images consist of 43, 85, 62 and 110 images at tortuosity

levels 1 to 4 respectively.

Table V shows the nerve fiber tortuosity classification

results. It demonstrates that our StillGAN promotes the per-

formance of nerve tortuosity analysis, especially the average

TABLE VI: Diagnosis results on the original and enhanced

color fundus images via our StillGAN.

ACC PRE SEN SPE F1-score

Original 75.00% 71.93% 82.00% 68.00% 76.64%
StillGAN 81.50% 80.00% 84.00% 79.00% 81.95%

accuracy, precision and F1-score of four tortuosity levels

have increased by 10.24%, 23.34% and 23.67% respectively

after having applied our StillGAN on the original images.

These objective results show that the quality improvement

of confocal images can promote the nerve fibre tortuosity

grading, which further confirms the clinical values of our

StillGAN.

3) Impact on disease diagnosis: In order to verify the

usefulness in clinical decision-making, we invited an ophthal-

mologist to diagnose diabetic retinopathy from images with

and without enhancement. To this end, we constructed a new

dataset, and it includes 200 low-quality color fundus images

from 100 healthy eyes and 100 eyes with diabetic retinopathy.

All the 200 low-quality images were selected from the ‘usable’

grade of Eye-Quality (EyeQ) dataset [6], with their pathology

condition provided, i.e., with or without diabetic retinopathy.

Then these images were enhanced using our StillGAN. The

ophthalmologist was invited to complete the diagnostic task

over the original images first, and to review the enhanced ones

two days later in order to avoid subjective factors.

The diagnostic performances on the original and enhanced

images are shown in Table VI. It can be seen that our StillGAN

improves the diagnosis performance of the ophthalmologist by

8.67% in ACC, 11.22% in PRE, 2.44% in SEN, 16.18% in

specificity (SPE) and 6.93% in F1-score respectively. These

results clearly verify the effectiveness of image enhancement

using the proposed StillGAN in clinical practice.

V. DISCUSSION AND CONCLUSION

As a pre-processing step of automatic analysis and diag-

nosis, medical image enhancement is crucial to produce high-

quality versions of captured images for the tasks. However, it is

still challenging to obtain high-quality images due to diversity

in illumination conditions across different medical imaging

devices. Low-quality images not only inhibit clinicians from

observation of important tissues or lesions, but also degrade

the performance of subsequent automatic analysis methods.

A. Limitations

We further analyze the unsatisfactory enhancement cases.

Fig. 8 illustrates three examples from different datasets. For

the corneal confocal microscopy image, some regions with

non-uniform intensity, e.g., corneal scar, as the red arrow

indicated in Fig. 8 (a), appear as nerve-like structure after

image enhancement (Fig. 8 (b)). Such structure may falsely be

recognized as nerve fibers by computer or even clinicians. This

implies that our structure loss needs to be further improved -

for those objects with similar structures, it is difficult for the

loss term to distinguish between our concerning biological

tissues and low-quality factors. Faculae may exist in some
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Fig. 8: Three typical cases with unsatisfactory enhancement

results using our StillGAN: low-quality images (top row) and

the corresponding enhanced ones (bottom row). From the left

to the right: corneal confocal microscopy, color fundus and

endoscopy, respectively.

color fundus images due to different imaging conditions, as

shown by the red arrow of Fig. 8 (c). Unfortunately, it is hard

for our StillGAN to remove this artifact, and may further lead

to a lesion-like appearance. Thus, the structure loss needs to

be improved for more adaptability. As the case of Fig. 8 (e-

f), part of the intestinal mucosa appears artificially red after

having been enhanced by our StillGAN, which might mislead

clinicians to diagnose it as hemorrhage or inflammation. This

is partly caused by color diversity of those training samples,

which might bring a risk of color transfer to the training of our

StillGAN. We would consider introducing color consistency

constraints to alleviate such color transfer in future.

From the above unsatisfactory enhancement cases, we can

see that there is a risk of incorrect translation (e.g., change

color or create lesion-like artifacts) for image enhancement

using most GANs including our StillGAN. That is because our

model may not capture enough heterogeneity from different

diseases or conditions during the training, and it may be

encountered in clinical practice in both the low- and high-

quality domains. This may be mitigated when a training set

contains sufficient healthy and unhealthy samples in both

the low- and high-quality domains, the generators could then

learn to distinguish more accurately between imaging quality

factors and disease conditions, and thus finally achieve reliable

translation.

The complicated procedure of hyperparameter adjustment

is another limitation of our method. Apart from the weighted

coefficients of the loss terms, the improper setting of the patch

size for the proposed illumination regularization may lead to a

risk of altering the image. Structural details would be partly or

even completely lost with a small patch size. Especially in the

case where the patch size is 1, all the pixels of the generated

high-quality image will tend to have the same global average

intensity value. On the contrary, if the patch size is too large,

the illumination term will play a limited role in improving

the overall illumination uniformity. In the extreme case where

the patch size is the same as the image size, the calculated

illumination term will be zero and will have no impact on

improving overall illumination uniformity during training.

B. Conclusion

In this paper, we have proposed an unpaired learning

framework called StillGAN for medical image enhancement,

where low- and high-quality images are treated as being in

two different domains. The primary advantage of our StillGAN

is that it learns to migrate the characteristics of high-quality

images into low-quality ones via unpaired training, and thus

has an advantage of easy implementation. Furthermore, by

incorporating constraints on illumination and structure, overall

illumination uniformity and well-restored structural details

could be achieved in the enhanced images. Experimental

results demonstrate that the performances of nerve fiber seg-

mentation, nerve tortuosity grading, fovea localization, and

disease diagnosis could be improved via our StillGAN.

Most existing bi-directional GANs such as CycleGAN

primarily focus on learning intra-domain global appearance

and inter-domain cycle-consistency, and are thus ineffective

in capturing local details. In medical images, local details are

particularly important for clinical interpretation. While the bi-

directional GAN is usually under-constrained, in this paper,

two novel constraints including illumination regularization and

structure loss are developed and incorporated into its objective

function, in order to obtain better illumination condition and

clearer structural details for clinical interpretation and sub-

sequent analysis. The former aims at improving illumination

uniformity via minimizing the difference of illumination dis-

tribution in the enhanced images, while the latter is introduced

to preserve structural details as much as possible by reducing

the dissimilarity in terms of structure between the low-quality

and enhanced images. Compared with other state-of-the-art

methods, the StillGAN achieves overall better performance in

various metrics for enhancing multi-modality images.

In clinical practice, we often cannot tell whether images

show disease or not. It is difficult for clinicians to describe

the appearance and identify the location of lesions, or even

to judge whether a sample is normal or pathological from a

low-quality medical image. Improvement of medical image

quality and contrast is crucial to improve the interpretation of

clinicians about the appearance of biological tissues, and thus

the accuracy of decision making, which is of great clinical

concern for diagnosis and therapy planning. The purpose of

image enhancement is to help clinicians to more easily identify

diseases from images. By visual inspection, many lesions

existing in the most low-quality images could be easily spotted

after enhancement by our StillGAN. With cycle consistency

and identity constraints, the generators are well positioned to

acquire the knowledge necessary for translating the input im-

age to an output one, while maintaining the overall appearance

of the images before and after translation. In addition, our

structure loss further constrains the appearance. Last but not

least, a training set with a certain heterogeneity from different

disease or conditions that may be encountered in clinical

practice in both the low-quality and high-quality domains

could help to reduce the risk of changing lesions or generating

lesion-like artifacts. In the end, clinicians can more easily

judge from an enhanced image whether the sample is normal

or pathological, and examine the appearance of and localize
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lesions if pathological. In the future, we would consider further

adapting our StillGAN to other medical imaging modalities,

and apply the resulting enhanced images in the real-world

clinical scenarios to assist in disease diagnosis.
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