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Structure and inference in annotated networks
M.E.J. Newman1,2,3 & Aaron Clauset3,4,5

For many networks of scientific interest we know both the connections of the network

and information about the network nodes, such as the age or gender of individuals in a

social network. Here we demonstrate how this ‘metadata’ can be used to improve our

understanding of network structure. We focus in particular on the problem of community

detection in networks and develop a mathematically principled approach that combines a

network and its metadata to detect communities more accurately than can be done with

either alone. Crucially, the method does not assume that the metadata are correlated with the

communities we are trying to find. Instead, the method learns whether a correlation exists

and correctly uses or ignores the metadata depending on whether they contain useful

information. We demonstrate our method on synthetic networks with known structure and on

real-world networks, large and small, drawn from social, biological and technological domains.
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N
etworks arise in many fields and provide a powerful and
compact representation of the internal structure of a wide
range of complex systems1. Examples include social

networks of interactions among people, technological and
information networks such as the Internet or the World Wide
Web, and biological networks of molecules, cells, or entire species.
The last two decades have witnessed rapid growth both in the
availability of network data and in the number and sophistication
of network analysis techniques. Borrowing ideas from graph
theory, statistical physics, computer science, statistics and
other areas, network analysis typically aims to characterize a
network’s structural features in a way that sheds light on the
behaviour of the system the network describes. Studies of social
networks, for instance, might identify the most influential or
central individuals in a population. Studies of road networks
can shed light on traffic flows or bottlenecks within a city or
country. Studies of pathways in metabolic networks can lead to a
more complete understanding of the molecular machinery
of the cell.

Most research in this area treats networks as objects of pure
topology, unadorned sets of nodes and their interactions. Most
network data, however, are accompanied by annotations or
metadata that describe properties of nodes such as a person’s age,
gender or ethnicity in a social network, feeding mode or body
mass of species in a food web, data capacity or location of nodes
on the Internet and so forth. (There can be metadata on the edges
of a network as well as on the nodes2, but our focus here is on the
node case.) In this paper, we consider how to extend the analysis
of networks to directly incorporate such metadata. Our approach
is based on methods of statistical inference and can in principle
be applied to a range of different network analysis tasks. Here we
focus specifically on one of the most widely studied tasks, the
community detection problem. Community detection, also called
node clustering or classification, searches for a good division of a
network’s nodes into groups or classes3. Typically, one searches
for assortative structure, groupings of nodes such that
connections are denser within groups than between them. This
structure is common in social networks, for example, where
groups might correspond to sets of friends or co-workers, but it
also occurs in other cases, including biological and ecological
networks, the Web, transportation and distribution networks, and
others. Less common, but no less important, is disassortative
structure, in which network connections are sparser within
groups than between them, and mixtures of assortative and
disassortative structure can also occur, where different groups
may have varying propensities for within- or between-group
connections.

In some cases, the groups identified by community detection
correlate meaningfully with other network properties or
functions, such as allegiances or personal interests in social
networks3,4 or biological function in metabolic networks5,6. Some
recent research, however, has suggested that these cases may be
the exception rather than the rule7,8, an important point that we
address later in this paper.

A large number of methods have been proposed for detecting
communities in unannotated networks3. Among these, some of
the most powerful, both in terms of rigorously provable
performance and of raw speed, are those based on statistical
inference. Here we build on these methods to incorporate node
metadata—either categorical or real-valued—into the community
detection problem in a principled and flexible manner.
(For real-valued metadata we restrict ourselves to the scalar or
one-dimensional case, but multi-dimensional metadata, such as
locations in physical or latent space9–11, would be a natural focus
for future extensions of our approach.) The resulting methods
have several attractive features. First, they can make use of

metadata in arbitrary format to improve the accuracy of
community detection. Second, and crucially for our goals, they
do not assume a priori that the metadata correlate with the
communities we seek to find. Instead, they detect and quantify
the relationship between metadata and community, if one exists,
then exploit that relationship to improve the results. Even if the
correlation is imperfect or noisy, the method can still use what
information is present to return improved results. Conversely, if
no correlation exists the method will automatically ignore the
metadata, returning results based on network structure alone.

Third, our methods allow us to select between competing
divisions of a network. Many networks have a number of different
possible divisions12. For example, a social network of
acquaintances may have meaningful divisions along lines of
age, gender, race, religion, language, politics or many other
variables. By incorporating metadata that correlate with a
particular division of interest, we can favour that division over
others, steering the analysis in a desired direction. (Approaches
like this are sometimes referred to as supervised learning
techniques, particularly in the statistics and machine-learning
literature.) Thus, if we are interested for instance in a division of a
social network along lines of age, and we have age data for some
fraction of the nodes, we can use those data to steer the algorithm
towards age-correlated divisions. Even if the metadata are
incomplete or noisy, the algorithm can still use them to guide
its analysis. However, if we hand the algorithm metadata that do
not correlate with any good division of the network, the method
will decline to follow along blindly, and will inform us that no
good correlation exists.

Finally, the correlation between metadata and network
structure learned by the algorithm (if one exists) is interesting
in its own right. Once found, it allows us to quantify the
agreement between network communities and metadata, and to
predict community membership for nodes for which we lack
network data and have only metadata. If we have learned, for
example, that age is a good predictor of social groupings, then we
can make quantitative predictions of group membership for
individuals about whom we know their age and nothing else.

A number of other researchers have investigated ways to in-
corporate metadata into community detection calculations13–19,
though they have typically made stronger assumptions about the
nature of the communities or metadata, assuming, for example,
that communities are always assortative, or that the metadata
represent locations in physical space. Perhaps closest to our
approach are semi-supervised learning methods17,20–22, where it
is assumed that we are given the exact community assignments of
some fraction of the nodes and the goal is to deduce the reminder.
A variant of this approach is active learning, in which the
community membership of some nodes is given, but the known
nodes are not specified a priori, being instead chosen by the
algorithm itself as it runs23,24. Another vein of research,
somewhat further from our approach, considers the case where
we are told some pairs of nodes that are either definitely in or
definitely not in the same community, and then assigns
communities subject to these constraints25,26.

Our approach, which is described in detail in the Methods
section, takes as input a network accompanied by a set of node
metadata, which may be, for instance, numerical values or
arbitrary textual or alphanumeric labels, and produces as output a
division of the nodes of the network into a specified number k
of groups or communities. The method does not (as some
methods do) assume a particular pattern of connections among
communities—such as denser connections within groups than
between them—and it is numerically efficient, making use of a
so-called belief propagation scheme to perform rapid inference of
the optimal group assignments making possible applications to
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very large networks. The largest network we have analysed using
the method has over 1.4 million nodes.

In the following sections we give results showing that our
method is able to recover known communities in benchmark data
sets with higher accuracy than algorithms based on network
structure alone, that we can select between competing community
divisions in both real and synthetic tests, that the method is able
accurately to divine correlations between network structure and
metadata, or determine that no such correlation exists, and that
learned correlations between structure and metadata can be used
to predict community membership based on metadata alone.

Results
Synthetic networks. Our first tests are on computer-generated
(synthetic) networks that have known community structure
embedded within them. These networks were created using the
stochastic block model, a standard model of network structure in
which n nodes are assigned to groups then edges are placed
between them independently with probabilities that are a function
of group membership only27,28. After the networks are created,
we generate discrete-valued node metadata that match the true
community assignments of nodes a given fraction of the time, and
are chosen randomly from the non-matching values otherwise.
This allows us to control the extent to which the metadata
correlate with the community structure and hence test the
algorithm’s ability to make use of metadata of varying quality.

Figure 1a shows results for a set of such networks having two
communities of equal size, with edge probabilities pin¼ cin/n
and pout¼ cout/n for within-group and between-group edges,
respectively, where n is the number of nodes as before and cin and
cout are constants whose values we choose. When cin is much
greater than cout the communities are easy to detect from network
structure alone, but as cin approaches cout the structure becomes
weaker and harder to detect. Each curve in the figure shows the
fraction of nodes classified into their correct groups by our
algorithm, as we vary the strength of the community structure,

measured by the difference cin� cout. Individual curves show
results for different levels of correlation between communities
and metadata.

When metadata and community agree for exactly half of the
nodes (bottom curve) there is no correlation between the two,
and the metadata cannot help in community detection.
It thus comes as no surprise that this curve shows the lowest
success rate. At higher levels of correlation the metadata contain
useful information and the algorithm’s performance improves
accordingly.

Examining the figure, a clear pattern emerges. For large
cin� cout the network contains strong community structure and
the algorithm reliably classifies essentially all nodes into the
correct groups, as we would expect of any effective algorithm. As
the structure weakens the fraction of correct nodes declines, but it
remains higher in all the cases where the metadata are useful than
in the lowest curve where they are not. Moreover, the algorithm’s
success rate appears to improve monotonically with the level of
correlation between metadata and communities.

When there are no metadata, it is known that the belief
propagation algorithm we use gives optimal answers to the
community detection problem in the sense that no other
algorithm will classify a higher fraction of nodes correctly on
average29. The fact that our algorithm does better when there are
metadata thus implies that the algorithm with metadata does
better than any possible algorithm without metadata.

Furthermore, it has previously been shown that below
the so-called detectability threshold, which occurs at
cin � cout¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cin þ coutð Þ
p

(indicated by the vertical dashed line
in the figure, and aligning with the sharp transition in the bottom
curve), community structure becomes so weak as to be
undetectable by any algorithm that relies on network structure
alone29,30. Well below this threshold, however, our algorithm still
correctly classifies a fraction of the nodes roughly equal to the
fraction of metadata that match the communities, meaning that
the algorithm does better with metadata than without it even
below the threshold. Figure 1a also shows that the fraction of
correctly classified nodes beats this baseline level for values of
cin� cout somewhat below the threshold, suggesting that the use
of the metadata shifts the threshold downward or perhaps
eliminates it altogether.

In short, our method automatically combines the available
information from network structure and metadata to do a better
job of community detection than any algorithm based on network
structure alone. And when either the network or the metadata
contain no information about community structure the algorithm
correctly ignores them and returns an estimate based only on
the other.

Figure 1b shows a different synthetic test, of the algorithm’s
ability to select between competing divisions of a network. In this
test, networks were generated with four equally sized commu-
nities but the algorithm was tasked with finding a division into
just two communities. There are eight ways of dividing such a
network in two if we are to keep the four underlying groups
undivided. We imagine a situation in which we are interested in
finding a particular one out of these eight. A conventional
community detection algorithm might find a reasonable division
of these networks, but there is no guarantee it would find the
‘correct’ one—some fraction of the time we can expect it to find
one of the competing divisions. But if our algorithm is given a set
of metadata that correlate with the division of interest, even if the
correlation is poor, then that division will be favoured over the
others.

In our tests the desired division was one that places two of the
underlying four groups in one community and the remaining two
in the other. Two-valued metadata were generated that agree with
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Figure 1 | Tests on synthetic benchmark networks with n¼ 10,000

nodes. (a) Fraction of correctly assigned nodes for networks with two

planted communities with mean degree c¼8, as a function of the

difference between the numbers of within- and between-group

connections. The five curves show results for networks with a match

between metadata and planted communities on a fraction 0.5, 0.6, 0.7, 0.8

and 0.9 of nodes (bottom to top). The vertical dashed line indicates the

theoretical detectability threshold, below which no algorithm without

metadata can detect the communities. (b) Fraction of 100 four-group test

networks where the algorithm selects a particular two-way division, out of

several competing possibilities, with and without the help of metadata that

are weakly correlated with the desired division. A run is considered to find

the correct division if the fraction of correctly classified nodes exceeds

85%. Network parameters are cout¼4 and cin¼ 20.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11863 ARTICLE

NATURE COMMUNICATIONS | 7:11863 | DOI: 10.1038/ncomms11863 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


this division 65% of the time, a relatively weak level of correlation,
not far above the 50% of completely uncorrelated data.
Nonetheless, as shown in Fig. 1b, this is enough for the algorithm
to reliably find the correct division of the network in almost every
case—98% of the time in our tests. Without the metadata, by
contrast, we succeed only 6% of the time. Some practical
applications of this ability to select among competing divisions
are given in the next section.

Real-world networks. In this section we describe applications of
our method to a range of real-world networks, drawn from social,
biological and technological domains.

For our first application we analyse a network of school
students, drawn from the US National Longitudinal Study of
Adolescent Health. The network represents patterns of friend-
ship, established by survey, among the 795 students in a medium-
sized American high school (US grades 9–12, ages 14–18 years)
and its feeder middle school (grades 7 and 8, ages 12–14 years).

Given that this network combines middle and high schools, it
comes as no surprise that there is a clear division (previously
documented) into two network communities corresponding
roughly to the two schools. Previous work, however, has also
shown the presence of divisions by ethnicity31. Our method
allows us to select between divisions by using metadata that
correlate with the one we are interested in.

Figure 2 shows the results of applying our algorithm to the
network three times. Each time, we asked the algorithm to divide
the network into two communities. In Fig. 2a, we used the six
school grades as metadata and the algorithm readily identifies a
division into grades 7 and 8 on the one hand and grades 9–12 on
the other—that is, the division into middle school and high
school. In Fig. 2b, by contrast, we used the students’ self-identified
ethnicity as metadata, which in this data set takes one of four
values: white, black, hispanic, or other (plus a small number of
nodes with missing data). Now the algorithm finds a completely
different division into two groups, one group consisting
principally of black students and one of white. (The small
number of remaining students are distributed roughly evenly
between the groups.)

One might be concerned that in these examples the algorithm
is mainly following the metadata to determine community
membership, and ignoring the network structure. To test for this
possibility, we performed a third analysis, using gender as
metadata. When we do this, as shown in Fig. 2c, the algorithm
does not find a division into male and female groups. Instead,
it finds a new division that is a hybrid of the grade and ethnicity
divisions (white high-school students in one group and everyone
else in the other). That is, the algorithm has ignored the
gender metadata, because there was no good network division
that correlated with it, and instead found a division based on
the network structure alone. The algorithm makes use of the
metadata only when doing so improves the quality of the network
division (in the sense of the maximum-likelihood fit described in
the Methods section).

The extent to which the communities found by our algorithm
match the metadata (or any other ‘ground truth’ variable) can
be quantified by calculating a normalized mutual information
(NMI)32,33, as described in the Methods section. NMI ranges in
value from 0 when the metadata are uninformative about the
communities to 1 when the metadata specify the communities
completely. The divisions shown in Fig. 2a,b have NMI scores of
0.881 and 0.820, respectively, indicating that the metadata
are strongly though not perfectly correlated with community
membership. By contrast, the division in Fig. 2c, where gender
was used as metadata, has an NMI score of 0.003, indicating that

the metadata contain essentially zero information about the
communities.

Our next application is to an ecological network, a food web of
predator–prey interactions between 488 marine species living in
the Weddell Sea, a large bay off the coast of Antarctica34,35. A
number of different metadata are available for these species,
including feeding mode (deposit feeder, suspension feeder,
scavenger and so on), zone within the ocean (benthic, pelagic
and so on) and others. In our analysis, however, we focus on one in
particular, the average adult body mass. Body masses of species in
this ecosystem have a wide range, from microorganisms weighing
nanograms or less to hundreds of tonnes for the largest whales.

White

Middle

High

Black Hispanic Other Missing
Male

Female

a

b

c

Figure 2 | Communities found in a high school friendship network with

various types of metadata. Three divisions of a school friendship network,

using as metadata (a) school grade, (b) ethnicity and (c) gender.
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Conventionally, in such cases one often works with the logarithm
of mass, which makes the range more manageable, and we do so
here. Then we perform k-way community decompositions using
this log-mass as metadata, for various values of k.

Figure 3a shows the results for k¼ 3. Nodes are coloured
according to their role in the ecosystem—carnivores, herbivores,
primary producers and so forth. The division found by the
algorithm appears to match these roles quite closely, with one
group composed almost entirely of primary producers and
herbivores, one of omnivores and a third that contains most of
the carnivores. Node sizes in the figure are proportional to
log-mass, which increases as we go up the figure, indicating that
the algorithm has recovered from the network structure the well-
known correlation between body mass and ecosystem role36. This
point is further emphasized by the probabilities of membership in
the three groups, which are an incidental, but often useful,
additional output of the algorithm we use (see Methods). These
probabilities, plotted as a function of body mass in Fig. 3b, show
that low-mass organisms are overwhelmingly likely to be in the
first group, and high-mass ones in the third group. Organisms of
intermediate mass have a broader distribution, but are
particularly concentrated in the second group.

The membership probabilities are also of interest in their own
right. If, for instance, we were to learn of a new species, previously
unrepresented in our food-web data set, then even without
knowing its pattern of network connections we can make a
statement about its probability of belonging to each of the
communities, as well as its probability of interaction with other
species, so long as we know its body mass. For instance, a low
body mass of 10� 12 g would put a species with high probability
in group 1 in Fig. 3, meaning it is almost certainly a primary
producer or a herbivore, with the interaction patterns that
implies.

Community detection is widely studied precisely because
network communities are believed to be correlated with network
function. More specifically, it is commonly assumed that
communities correlate with some underlying functional variable,

which may or may not be observed. This assumption, however,
has been challenged by recent work that compared communities
in real-world networks against ‘ground truth’ metadata variables
and found little correlation between the two7,8. This is a striking
discovery, but there is a caveat. As we have seen, there are often
multiple meaningful community divisions of a network (as in the
school friendship network of Fig. 2, for example), and the fact
that one division is uncorrelated with a given metadata variable
does not rule out the possibility that another could be.

Our third real-world example application illustrates these
issues using one of the same networks studied in ref. 8,
a 46,676-node representation of the peering structure of the
Internet at the level of autonomous systems. The ‘ground truth’
variable for this network is the country in which each
autonomous system is located. The analysis of ref. 8 found
there to be little correlation between community structure and
countries.

We first analyse this network without metadata, performing a
traditional ‘blind’ community division, into five groups using
standard methods. We then repeat the analysis using the
algorithm of this paper, with the countries as metadata. Recall
that, in doing this, we do not force the algorithm to find a
community division that aligns with the metadata if no such
division exists, but if a division does exist it will be favoured over
competing divisions that do not align with the metadata. There
are 173 distinct countries in the data set, a significantly larger
number of metadata values than for any of the other networks we
have considered, but by no means beyond the capabilities of our
method.

As before, we assess the results using the normalized mutual
information. If indeed there are many competing divisions of the
network, only some of which correlate with the particular
metadata we are given, then we would expect our blind analysis to
return a range of NMI values on different runs, some low and
(maybe) some higher. This is indeed what we see, with the NMI
in our calculations ranging from a high of 0.626 to a relatively low
0.398, the latter being in agreement with results quoted in ref. 8.
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Figure 3 | Results of the application of the method of this paper to the food web of marine species in the Weddell Sea. (a) Three-way decomposition of

the marine food web described in the text, with the logarithm of mean body mass used as metadata. Node sizes are proportional to log-mass, and colours

indicate species role within the ecosystem. (b) Learned probabilities of belonging to each of the communities as a function of body mass. We use log mass

as the metadata variable in our calculations, but the horizontal axis here is calibrated to read in terms of the original mass in grams using a logarithmic

scale. The blue, green and red curves correspond, respectively, to the communities labelled 1, 2 and 3 in a.
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Conversely, when the algorithm of this paper is applied with
countries as metadata, we find an NMI score significantly higher
than any of these figures, at 0.870, which would conventionally be
interpreted as an indication of strong correlation.

These results emphasize that an apparent lack of correlation
between network communities and metadata could be the result
of the presence of competing network divisions, which are not
correlated with the particular metadata we have at hand. The
algorithm of this paper allows us to select among divisions and
hence find ones that correlate with the variable of interest.

Our fourth example is drawn from the FB100 data set of Traud
et al.37, which is a set of friendship networks among college
students at the US universities compiled from friend relations on
the social networking website Facebook. The networks date from
the early days of Facebook when its services were available only to
universities and each university formed a separate and
unconnected subgraph in the larger network. The nodes in
these networks represent the participants, who are mainly though
not exclusively students, the edges represent friend relations on
Facebook, and in addition to the network structure there are
metadata of several types, including gender, college year (that is,
year of college graduation), major (that is, principal subject of
students’ study, if known) and a numerical code indicating which
dorm students lived in.

The primary divisions in these networks appear to be by age, or
more specifically by college year. For instance, we have looked in
some detail at the network for Harvard University, the birthplace
of Facebook, which has 15,126 nodes. Most of these represent
undergraduate students, who span college years 2003–2009, but
there are also a small number of alumni (that is, former students),
primarily those recently graduated (graduation years 2000–2002),
as well as grad students, summer students, and some faculty
and staff.

Figure 4a shows results from a five-way division of the network
using our algorithm with year as metadata. This calculation
provides another example of the usefulness of the learned
probabilities of group membership in shedding light on the
structure of the network. The figure shows a visualization of the
probabilities as a function of year, with the colours showing
the relative probability of belonging to each of the communities.
Each of the bars in the plot has the same height of 1 since the
probabilities are required to sum to 1, while the balance of colours
shows the distribution over communities. Examination of the top
panel in the figure shows clearly a division of the network along
age lines. Two groups, in orange and yellow at the right of the
plot, correspond to the most recent two years of students at the
time of the study (graduation years 2008 and 2009) and the next,
in red, account for the two years before that (2006 and 2007).
The purple community corresponds to the next three years,
2003–2005, while the sixth group, shown in blue, corresponds to
the alumni. Finally, students for whom year was not recorded are
shown in the column marked ‘None,’ which is a mixture of all five
groups.

These results align well with the original analysis of the same
data by Traud et al.37, who performed a traditional community
division of the network and then carried out post hoc statistical
tests to measure correlations between communities and metadata.
They found strong correlations with college year metadata, in
agreement with our results. With the benefit of hindsight the
results may appear unsurprising—anyone who has been to college
knows that a large number of your friends are in the same year as
you—but one could certainly formulate competing hypotheses.
One alternative that Traud et al. considered was that friendship
might be influenced by where students live, with students living in
the same dormitory more likely to be friends, regardless of what
year they are in. Traud et al. found that there was some evidence

for this hypothesis, but that the effect was weaker than that for
age, and our analysis confirms this. The bottom panel in Fig. 4
shows a plot of the priors for a division with dorm as the
metadata variable and there is a clear correlation between dorm
and community membership, but it is not as clean as in the case
of age. There appear to be two groups that align strongly with
particular sets of dorms (coloured red and purple in the figure)
while the rest of the dorms are a mix of different communities
(the region in the middle of the figure). The impression that the
community structure is more closely aligned with graduation year
than with dormitory is also borne out by the normalized mutual
information values for the two divisions, which are 0.668 for
graduation year but 0.255 for dormitory.

Our final real-world network example is drawn from a gene
recombination network for the human parasite Plasmodium
falciparum, which causes malaria. Malaria is endemic in tropical
regions and is responsible for roughly a million deaths annually,
mostly children in sub-Saharan Africa38. During infection,
parasites evade the host immune system and prolong the
infection by repeatedly changing a protein camouflage displayed
on the surface of an infected red blood cell. To enable this
behaviour, each parasite has a repertoire of roughly 60
immunologically distinct proteins, each of which is encoded by
a var gene in the parasite’s genome39. These genes undergo
frequent recombination, producing novel proteins by shuffling
and splicing substrings from existing var genes.

The process of recombination induces a natural bipartite
network with two types of nodes, var genes on the one hand and
their constituent substrings on the other, where each gene node is
connected by an edge to every substring it contains40,41.
Recombination in these genes occurs mainly within a number
of distinct highly variable regions (HVRs) and each HVR
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Figure 4 | Learned prior probability of community membership for two

five-way divisions of the Harvard Facebook friendship network described

in the text. The horizontal axis is (a) year of graduation and (b) dormitory,

and the colours represent the learned prior probabilities of membership in

each of the communities.
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represents a distinct set of edges among the same nodes. Here we
focus on the one-mode gene–gene projections of the HVR 5 and
HVR 6 subnetworks, which have previously been analysed using
community detection methods without metadata40,41. Each of
these one-mode networks consists of 297 genes.

We analyse these networks using as metadata the Cys labels
derived from the HVR 6 sequence and the Cys-PoLV (CP)
labels derived from the sequences adjacent to HVRs 5 and 6
(refs 39,42,43). Both types of labels depend only on the sequences’
characteristics: Cys indicates the number of cysteines the HVR 6
sequence contains (2 or 4) while CP subdivides the Cys
classifications into six groups depending on particular sequence
motifs. Thus, each node has two metadata values, a Cys label and
a CP label. The Cys labels are biologically important because
cysteine counts have been implicated in severe disease
phenotypes39,42.

In our calculations we use the six CP labels as metadata for a
two-way community division of the network and then evaluate
the degree to which the inferred communities correlate with the
Cys metadata. Figure 5 shows the results for the HVR 6 network
with and without the CP labels as metadata. Without metadata,
the Cys labels are mixed across the inferred groups (Fig. 5a), but
with metadata we obtain a nearly perfect partition (Fig. 5b). This
indicates that the CP label correlates well with the network’s
community structure, a fact that was obscured in the analysis
without metadata. Furthermore, the inferred communities
correlate strongly with the coarser Cys labels, which were not
shown to the method: observing that a gene has two cysteines
is highly predictive (96% probability) of that gene being in
one group, while having four cysteines is modestly predictive
(67% probability) of being in the other group. Thus, the method
has discovered by itself that the motif sequences that define the

CP labels, along with their corresponding network communities,
correlate with cysteine counts and their associated severe disease
phenotypes39,42.

The communities in the HVR 6 network represent highly non-
random patterns of recombination, which are thought to indicate
functional constraints on protein structure. Previous work has
conjectured that common constraints on recombination span
distinct HVRs40. We can test this hypothesis using the methods
described in this paper. There is no reason a priori to expect that
the community structure of HVR 6 should correlate with that of
HVR 5 because the Cys and CP labels are derived from outside
the HVR 5 sequences—Cys labels reflect cysteine counts in HVR
6 while CP labels subdivide Cys labels based on sequence motifs
adjacent to, but outside of, HVR 5. Applying our methods to
HVR 5 without any metadata (Fig. 6a), we find mixing of the
HVR 6 Cys labels across the HVR 5 communities. By contrast,
using the CP labels as metadata for the HVR 5 network, our
method finds a much cleaner partition (Fig. 6b), indicating that
indeed the HVR 6 Cys labels correlate with the community
structure of HVR 5.

Discussion
There are a number of possible extensions of this work. At the
simplest level one could include more complex metadata types,
such as combinations of discrete and continuous variables,
or vector variables such as spatial coordinates. Metadata could
also be incorporated into methods for detecting other types
of structure, such as hierarchies44, motifs45, core-periphery
structures46, rankings47 or latent-space structures48. And the
resulting fits could form the starting point for a variety of
additional applications, such as the prediction of missing links or
missing metadata in incomplete data sets. These and other
possibilities we leave for future work.

a

b

Figure 5 | Inferred communities for the malaria HVR 6 gene

recombination network. Communities inferred (a) without metadata and

(b) with metadata for the HVR 6 network of the human malaria parasite

P. falciparum, where metadata values are the CP labels for the genes and

nodes are coloured according to their biologically relevant Cys label.

a

b

Figure 6 | Inferred communities for the malaria HVR 5 gene

recombination network. Communities inferred (a) without metadata and

(b) with metadata for the HVR 6 network of the human malaria parasite

P. falciparum, where metadata values are the CP labels for the genes and

nodes are coloured according to their biologically relevant Cys label.
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Methods
Our method makes use of techniques of Bayesian statistical inference in which we
construct a generative network model possessing the specific features we hope to
find in our data, namely community structure and a correlation between that
structure and node metadata, then we fit the model to an observed network plus
accompanying metadata and the parameters of the fit tell us about the structure of
the network.

The model we use is a modified version of a stochastic block model. The original
stochastic block model, proposed in 1983 by Holland et al.27, is a simple model for
generating random networks with community structure in which nodes are divided
among some number of communities and edges are placed randomly and
independently between them with probabilities that depend only on the
communities to which the nodes belong. We modify this model in two ways. First,
following ref. 28, we note that the standard stochastic block model does poorly at
mimicking the structure of networks with highly heterogeneous degree sequences
(which includes nearly all real-world networks), and so we include a ‘degree-
correction’ term that matches node degrees (that is, the number of connections
each node has) to those of the observed data. Second, we introduce a dependence
on node metadata via a set of prior probabilities. The prior probability of a node
belonging to a particular community becomes a function of the metadata, and it is
this function that is learned by our algorithm to incorporate the metadata into the
calculation.

Unordered data. Consider an undirected network with n nodes labelled by
integers u¼ 1 y n, divided among k communities, and denote the community to
which node u belongs by suA1 y k. In the simplest case, we consider metadata
with a finite number K of discrete, unordered values and we denote node u’s
metadata by xuA1y K. The choice of labels 1y K is arbitrary and does not imply
an ordering for the metadata or that the metadata are one-dimensional. If a social
network has two-dimensional metadata describing both language and race, for
example, we simply encode each possible language/race combination as a different
value of x: English/white, Spanish/white, English/black and so forth. If a network
has nodes that are missing metadata values, we just let ‘missing’ be another
metadata value.

Given metadata x¼ {xu} and degree d¼ {du} for all nodes, a network is
generated from the model as follows. First, each node u is assigned to a community
s with a probability depending on u’s metadata xu. The probability of assignment
we denote gsx for each combination s,x of community and metadata, so the full
prior probability on community assignments is P s G; xjð Þ¼

Q

i gsi ;xi , where C

denotes the k�K matrix of parameters gsx. (More complex forms of the prior are
appropriate in other cases, as we will see.) Once every node has been assigned to a
community, edges are placed independently at random between nodes, with the
probability of an edge between nodes u and v being

puv¼dudvysu ;sv : ð1Þ

where yst are parameters that we specify, with yst¼ yts. The factor dudv allows the
model to fit arbitrary degree sequences as described above. Models of this kind
have been found to fit community structure in real networks well28.

Community detection then consists of fitting the model to observed network
data using the method of maximum likelihood. Given an observed network, we
define its adjacency matrix A to be the n� n real symmetric matrix with elements
auv¼ 1, if there is an edge between nodes u and v and 0 otherwise. Then the
probability, or likelihood, that this network was generated by our model, given the
parameters and metadata, is

P A H;C; xjð Þ ¼
P

s

P A H; sjð ÞP s C; xjð Þ

¼
P

s

Q

uov
pauvuv 1� puvð Þ1� auv

Q

u
gsu ;xu ;

ð2Þ

where H is the k� k matrix with elements yst and the sum is over all possible
community assignments s.

Fitting the model involves maximizing this likelihood with respect to H and C

to determine the most likely values of the parameters, which we do using an
expectation-maximization (EM) algorithm. Typically, rather than maximizing (2)
itself, we maximize instead its logarithm,

logP A H;C; xjð Þ ¼ log
X

s

P A H; sjð ÞP s C; xjð Þ; ð3Þ

which gives the same answer for H and C but is often more convenient. The most
obvious approach for performing the maximization would be simply to
differentiate with respect to the parameters, set the result to zero, and solve the
resulting equations. This, however, produces a complex set of implicit equations
that have no easy solution. Instead, therefore, we make use of Jensen’s inequality,
which says that for any set of positive quantities xi the log of their sum obeys

log
X

i

xi �
X

i

qi log
xi

qi
; ð4Þ

where qi is any correctly normalized probability distribution such that
P

iqi¼ 1.

Note that the exact equality is recovered by the particular choice

qi ¼
xi

P

i

xi
: ð5Þ

Applying Jensen’s inequality to equation (3), we find that

logP A H;C; xjð Þ �
X

s

q sð Þlog
P A H; sjð ÞPðs C; xj Þ

qðsÞ

¼
X

s

q sð Þlog P A H; sjð Þ þ
X

s

q sð Þlog P s C; xjð Þ �
X

s

q sð Þlog q sð Þ;

ð6Þ

where q(s) is any distribution over community assignments s such that
P

sq(s)¼ 1.
The maximum of the right-hand side of this inequality with respect to possible
choices of the distribution q(s) coincides with the exact equality, which, following
equation (5), is when

q sð Þ ¼
P A H; sjð ÞP s C; xjð Þ

P

s

P A H; sjð ÞP s C; xjð Þ
: ð7Þ

Thus, the maximization of the left-hand side of (6) with respect to H, C to give the
optimal values of the parameters is equivalent to a maximization of the right-hand
side both with respect to q(s) (which makes it equal to the left-hand side) and with
respect to H, C. A simple algorithm for performing such a double maximization is
to repeatedly maximize with respect to first q(s) and thenH, C until we converge to
an answer. In other words:

1. Make an initial guess about the parameter values and use them to calculate the
optimal q(s) from equation (7).

2. Using that value, maximize the right-hand side of (6) with respect to the
parameters, while holding q(s) constant.

3. Repeat from step 1 until convergence is achieved.

Step 2 can be performed by differentiating with q(s) fixed and subject to the
normalization constraint

P

sgsx¼ 1 for all x. Performing the derivatives and
assuming that the network is large and sparse so that puv is small, we find to leading
order in small quantities that

yst ¼

P

uv

auvq
uv
st

P

uv

dudvq
uv
st

; gsx ¼

P

u

dx;xuq
u
s

P

u

dx;xu

; ð8Þ

where

qus ¼
X

s

q sð Þdsi ;s; quvst ¼
X

s

q sð Þdsu ;sdsv ;t : ð9Þ

In addition, for a large sparse network, the community assignments of distant
nodes will be uncorrelated and hence we can write quvst ’ qus q

v
t in the denominator

of (8) to get

yst ¼

P

uv
auvq

uv
st

P

u

duqus
P

v

dvq
v
t

; ð10Þ

which reduces the denominator sums from n2 terms to only n and considerably
speeds the calculation. (We cannot make the same factorization in the numerator,
since the terms in the numerator involve quv

st
on adjacent nodes u, v only, so the

nodes are not distant from one another.)
Equation (7) tells us that once the iteration converges, the value of q(s) is

q sð Þ ¼
P A H; sjð ÞP s C; xjð Þ

P

s

P A H; sjð ÞP s C; xjð Þ
¼

P A; s H;C; xjð Þ

P A H;C; xjð Þ
¼ P s A;H;C; xjð Þ: ð11Þ

In other words q(s) is the posterior distribution over community assignments s, the
probability of an assignment s given the inputs A, H, C, and x, and qus is the
marginal posterior probability that node u belongs to community s. Normally, in
fact, qus is the object of primary interest in the calculation, as it tells us to which
group each node belongs. That is, it tells us the optimal division of the network into
communities. As discussed in the Results section, the prior probabilities gsx may
also be of interest, since they tell us how and to what extent the metadata are
correlated with the communities. If the metadata are uncorrelated with the network
communities, the prior probabilities become constant, independent of the
metadata, and thus have no impact on the posterior probabilities of the
communities. Similarly, if the network is large and has strong community structure
(as in the region on the right of Fig. 1a where cin� cout is large), the prior
probabilities will have little effect on the results and the algorithm will find the
structure embedded in network with or without help from the metadata.

Computationally, the most demanding part of the EM algorithm is calculating
the sum in the denominator of equation (7), which has an exponentially large
number of terms, making its direct evaluation intractable on all but the smallest of
networks. Traditionally one gets around this problem by approximating the full
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distribution q(s) by Monte Carlo importance sampling. In our calculations,
however, we instead use a recently proposed alternative method based on belief
propagation29, which is significantly faster, and fast enough in practice for
applications to very large networks.

Final likelihood value. The EM algorithm always converges to a maximum of the
likelihood but is not guaranteed to converge to the global maximum—it is possible
for there to be one or more local maxima as well. To get around this problem we
normally run the algorithm repeatedly with different random initial guesses for the
parameters and from the results choose the one that finds the highest likelihood
value. In the calculations presented in this paper we did at least 10 such ‘random
restarts’ for each network. To determine which run has the highest final value of
the likelihood we calculate the log-likelihood from the right-hand side of (6) using
P(A|H, s) and P(s|C, x) as in equation (2), the final fitted values of the parameters
H and C from the EM algorithm, and q(s) as in equation (7). (As we have said, the
right-hand side of (6) becomes equal to the left, and hence equal to the true log-
likelihood, when q(s) is given the value in equation (7).)

Putting it all together, our expression for the log-likelihood is

logP A H;C; xjð Þ ¼
X

s

q sð Þ
X

uov

auv log dudvysu ;sv

� �

þ 1� auvð Þlog 1� dudvysu ;sv

� �� �

þ
X

s

q sð Þ
X

u

log gsu ;xu �
X

s

q sð Þlog q sð Þ:

ð12Þ

Neglecting terms beyond first order in small quantities, the first sum can be
rewritten as

1
2

X

uv

X

st

quvst auv log du þ log dv þ log ystð Þ� quvst dudvyst
� �

¼ 1
2

X

u

du log du þ
X

v

dv log dv þ
X

st

log yst
X

uv

auvq
uv
st �

X

st

yst
X

uv

dudvq
uv
st

" #

;

ð13Þ

where we have made use of
P

st q
uv
st ¼1 and

P

v

auv¼du .
The first two terms in (13) are constant for any given network and hence can be

neglected—they are irrelevant for comparing the likelihood values between
different runs on the same network. The final term can be rewritten using
equation (8) as

X

st

yst
X

uv

dudvq
uv
st ¼

X

st

X

uv

auvq
uv
st ¼

X

uv

auv ; ð14Þ

which is also a constant and can be neglected. Thus, only the third term in (13)
need be carried over.

The second sum in (12) is
P

s

q sð Þ
P

u

log gsu ;xu
¼

P

su

qus log gs;xu ¼
P

su

qus
P

x

dx;xu log gsx ¼
P

usx

dx;xu gsx log gsx

¼
P

su

gs;xu log gs;xu ;

ð15Þ

where we have used equation (8) again in the third equality.
The final sum in (12) is the entropy of the posterior distribution q(s), which is

harder to calculate because it requires not just the marginals of q but the entire
distribution. We get around this by making the so-called Bethe approximation49:

q sð Þ ¼

Q

uov quvsu ;sv

h iauv

Q

u qus
� �du � 1 ; ð16Þ

which is exact on trees and locally tree-like networks, and is considered to be a
good working approximation on other networks. Substituting this form into the
entropy term gives

X

s

q sð Þlog q sð Þ ¼ 1
2

X

uv

auv
X

st

quvst log q
uv
st �

X

u

du � 1ð Þ
X

s

qus log q
u
s : ð17Þ

Finally, combining equations (13)–(17) and substituting into equation (12), our
complete expression for the log-likelihood, neglecting constants, is

log P A H;C; xjð Þ ¼1
2

X

st

log yst
X

uv

auvq
uv
st þ

X

u

X

s

gs;xu log gs;xu

� 1
2

X

uv

auv
X

st

quvst log q
uv
st þ

X

u

du � 1ð Þ
X

s

qus logq
u
s :

ð18Þ

The run that returns the largest value of this quantity is the run with the highest
likelihood and hence the best fit to the model.

Ordered metadata. We also consider cases in which the metadata are ordered and
potentially continuous variables, such as age or income in a social network, which
require a different algorithm. The prior probability P(s|x) of belonging to com-
munity s given metadata value x now becomes a continuous function of x. In most
cases the metadata have a finite range and for convenience we normalize them to
fall in the range xA[0, 1]. (In the rarer case of metadata with infinite range a
transformation can be applied first to bring them into a finite range.) One

immediate question that arises is what limitations should be placed on the form of
the probability P(s|x). We cannot allow it to take any functional form, such as ones
that vary arbitrarily rapidly, for (at least) two reasons. First, it would be
unphysical—there are good reasons in most cases to believe that nodes with
infinitesimally different metadata x have only infinitesimally different probabilities
of falling in a particular group. In other words, P(s|x) should be smooth and slowly
varying in some sense. Second, a function that can vary arbitrarily rapidly can have
arbitrarily many degrees of freedom, which would lead to overfitting of the model.

To avoid of these problems, we enforce a slowly varying prior by writing the
function P(s|x) as an expansion in a finite set of suitably chosen basis functions.
In our work we use the Bernstein polynomials of degree N:

Bj xð Þ ¼
N
j

� �

xj 1� xð ÞN � j
; j ¼ 0 . . . N: ð19Þ

(There is an interesting model selection problem inherent in the choice of the
degree, which we do not tackle here but which would be a good topic for future
research.)

Bernstein polynomials have three particular properties that make them useful
for representing probabilities:

1. They form a complete basis set for polynomials of degree N.
2. They fall in the range 0rBj(x)r1 for all xA[0, 1] and all j.
3. They satisfy the sum rule

X

N

j¼0

Bj xð Þ ¼ 1 ð20Þ

for all xA[0, 1].
The first of these implies that any degree-N representation of the probability

P(s|x) can be written in the form

P s xjð Þ ¼
X

N

j¼0

gsjBj xð Þ ð21Þ

for some choice of coefficients gsj. Moreover, if gsjA[0, 1] for all s,j then
P(s|x)A[0, 1] for all xA[0, 1], meaning it is a well-defined probability within this
domain. To see this observe first that P(s|x)Z0 when gsjZ0 since all Bj(x)Z0, and
second that for gsjr1 we have

P s xjð Þ ¼
X

N

j¼0

gsjBj xð Þ �
X

N

j¼0

Bj xð Þ ¼ 1; ð22Þ

where we have made use of equation (20).
Finally, the normalization condition

P

sP(s|x)¼ 1 can be satisfied for all x by
requiring that

X

s

gsj ¼ 1; ð23Þ

so that

X

s

P s xjð Þ ¼
X

s

X

N

j¼0

gsjBj xð Þ ¼
X

N

j¼0

Bj xð Þ ¼ 1: ð24Þ

We now employ the form (21) to represent the prior probabilities in our EM
algorithm, writing

Pðs jC; xÞ ¼
Y

u

Pðsu jxuÞ: ð25Þ

The only change to the algorithm from the previous case arises when we maximize
the right-hand side of equation (6). Instead of maximizing with respect to the prior
probabilities directly, we now maximize with respect to the coefficients gsj of the
expansion. The optimal values of the coefficients are given by

gsj ¼ argmax
fgsjg

X

ut

qut log
X

k

gtkBkðxuÞ; ð26Þ

subject to the constraint (23). One can derive conditions for the maximum by
direct differentiation, but the equations do not have a closed-form solution, so
instead we once again employ Jensen’s inequality (4) to write

X

ut

qut log
X

k

gtkBk xuð Þ �
X

ut

qut

X

k

Qtu
k log

gtkBk xuð Þ

Qtu
k

; ð27Þ

which is true for any Qsu
j satisfying

P

j

Qsu
j ¼1 for all u, s. The exact equality is

achieved when

Qsu
j ¼

gsjBj xuð Þ
P

k

gskBk xuð Þ
; ð28Þ

and the maximum of equation (26) can be computed by first maximizing over Qsu
j

in this way and then over gsj. This leads to an iterative algorithm analogous to the
EM algorithm in which one computes the Qsu

j from (28) and then, using those
values, computes the maximum with respect to gsj by differentiating the right-hand
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side of (27) subject to the condition (23), which gives

gsj ¼

P

u

qusQ
su
j

P

tu

qut Q
tu
j

: ð29Þ

Iterating (28) and (29) alternately to convergence now gives us the coefficients gsj of
the optimal degree-N polynomial prior. Note that (29) always gives gsj in the range
from zero to one, so that, as discussed above, the resulting prior P(s|x) also lies
between zero and one and is thus a lawful probability.

Implementation. The calculations for this paper were implemented in the C
programming language for speed. The code is included as a Supplementary
Software file. We also used a number of additional techniques to improve speed
and convergence. We find that the majority of the running time of the algorithm is
taken up by the belief propagation calculations, and this time can be shortened by
noting that highly converged values of the beliefs are pointless in early steps of the
EM algorithm. The parameter values used to calculate the beliefs in these steps are,
presumably, highly inaccurate since the EM algorithm has not converged yet, so
there is little point waiting for the beliefs to converge to high accuracy when there
are much bigger sources of error in the calculation. In the calculations of this paper,
we limited the belief propagation to no more than 20 steps at any point. In the early
stages of the EM algorithm this gives rather crude values for the beliefs, but these
values would not be particularly good under any circumstances, no matter how
many steps we used, because of the poor parameter values. In the later stages of the
EM algorithm, 20 steps are enough to ensure good convergence (and indeed we
often get good convergence after many fewer steps than this).

We also place a limit on the total number of iterations of the EM algorithm,
discarding results that fail to converge within the allotted time. In the calculations
in this paper, this second limit was set at either 20 or 100 steps. We have performed
some runs with higher limits (up to 1,000 EM steps) but, paradoxically, we find this
often gives poorer results, for instance in our tests on synthetic networks. This
seems to be because the EM algorithm sometimes converges (as we have said) to
the wrong solution and empirically when it does so it also often converges more
slowly. By discarding runs that converge slowly, therefore, we tend to discard
incorrect solutions and improve the average quality of our results.

Normalized mutual information. In our calculations we make use of normalized
mutual information to measure the quality of our results. NMI is a widely used
measure of the level of agreement between community divisions and ‘ground truth’
variables, proposed by Danon et al.32. Given a community division represented by
an n-element vector s of group labels and discrete metadata represented by x, the
conditional entropy of the community division is50

H s xjð Þ ¼ �
X

x

P xð Þ
X

s

P s xjð Þlog P s xjð Þ; ð30Þ

P(x) is the fraction of nodes with metadata x and P(s|x) is the probability that a
node belongs to community s if it has metadata x. Traditionally the logarithm is
taken in base 2, in which case the units of conditional entropy are bits. The
conditional entropy is equal to the amount (in bits) of additional information one
would need, on top of the metadata themselves, to specify the community
membership of every node in the network. If the metadata are perfectly correlated
with the communities, so that knowing the metadata tells us the community of
every node, then the conditional entropy is zero. Conversely, if the metadata are
worthless, telling us nothing at all about community membership, then the
conditional entropy takes its maximum value, equal to the total entropy of the
community assignment H(s)¼ �

P

sP(s)log P(s). In our case we already know the
value of P(s|x): it is equal to the prior probability gsx of belonging to community s,
one of the outputs of our algorithm. Hence

H s xjð Þ ¼ �
P

x

P xð Þ
P

s

gsx log gsx ¼ �
P

x

n xð Þ
n

P

s

gsx log gsx

¼ � 1
n

P

su

gs;xu log gs;xu ;

ð31Þ

where n(x)¼ nP(x) is the number of nodes with metadata x and n is the total
number of nodes in the network, as previously.

Alternatively, if we want a measure that increases (rather than decreases) with
the amount of information the metadata give us, we can subtract H(s|x) from H(s),
which gives the (unnormalized) mutual information

I s; xð Þ ¼ H sð Þ�H s xjð Þ; ð32Þ

This quantity has a range from zero to H(s), making it potentially hard to
interpret, so commonly one normalizes it, creating the normalized mutual
information. There are several different normalizations in use. As discussed by
McDaid et al.33, it is mathematically reasonable to normalize by the larger, the
smaller or the mean of the entropies H(s) and H(x) of the communities and
metadata. Danon et al.32 originally used the mean, while Hric et al.8 in their work
on lack of correlation between communities and metadata (discussed in the Results
section) used the maximum. In the present case, however, we contend that the best
choice is the minimum.

The largest possible value of the mutual information is H(s), which sets the scale
on which the mutual information should be considered large or small. Thus, one

might imagine the correct normalization would be achieved by simply dividing
I(s;x) by H(s), yielding a value that runs from zero to one. This, however, would
give a quantity that was asymmetric with respect to s and x—if the values of the
two vectors were reversed the value of the mutual information would change.
Mutual information, by convention, is symmetric and we would prefer a symmetric
definition. Dividing by min[H(s), H(x)] achieves this. In all the examples we
consider, the number of communities is less than the number of metadata values,
in some cases by a wide margin. Assuming the values of both to be reasonably
broadly distributed, this implies that the entropy H(s) of the communities will be
smaller than that of the metadata H(x) and hence min[H(s), H(x)]¼H(s). Thus if
we define

NMI ¼
I s; xð Þ

min H sð Þ;H xð Þ½ �
; ð33Þ

we ensure that the normalized mutual information lies between zero and one, that
it has a symmetric definition with respect to s and x, and that it will achieve its
maximum value of one when the metadata perfectly predict the community
membership. Other definitions, normalized using the mean or maximum of the
two entropies, satisfy the first two of these three conditions but not the third, giving
values smaller than one by an unpredictable margin even when the metadata
perfectly predict the communities. We use the definition (33) in the calculations
presented in this paper.

Data availability. Additional materials are available online. The US National
Longitudinal Study of Adolescent Health data referenced in this study are available
from Add Health, Carolina Population Center, 123W. Franklin Street, Chapel Hill,
NC 27516-2524 (addhealth@unc.edu).

References
1. Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).
2. Aicher, C., Jacobs, A. Z. & Clauset, A. Learning latent block structure in

weighted networks. J. Complex Networks 3, 221–248 (2015).
3. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
4. Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S.

election: divided they blog. In Proceedings of the 3rd International Workshop on
Link Discovery, 36–43 (2005).

5. Holme, P., Huss, M. & Jeong, H. Subnetwork hierarchies of biochemical
pathways. Bioinformatics 19, 532–538 (2003).
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