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Structure and interstitial iodide migration in
hybrid perovskite methylammonium lead iodide
J.L. Minns1, P. Zajdel2, D. Chernyshov3, W. van Beek3 & M.A. Green1

Hybrid perovskites form an emerging family of exceptional light harvesting compounds.

However, the mechanism underpinning their photovoltaic effect is still far from understood,

which is impeded by a lack of clarity on their structures. Here we show that iodide ions in the

methylammonium lead iodide migrate via interstitial sites at temperatures above 280 K. This

coincides with temperature dependent static distortions resulting in pseudocubic local

symmetry. Based on bond distance analysis, the migrating and distorted iodines are at lengths

consistent with the formation of I2 molecules, suggesting a 2I�-I2þ 2e� redox couple. The

actual formula of this compound is thus (CH3NH3)PbI3� 2x(I2)x where xB0.007 at room

temperature. A crucial feature of the tetragonal structure is that the methylammonium ions

do not sit centrally in the A-site cavity, but disordered around two off-centre orientations that

facilitate the interstitial ion migration via a gate opening mechanism.
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P
erovskite structures, with the general formula, ABO3, form
one of the most important and commercially exploited
family of solids. Hybrid perovskites that contain both

organic and inorganic components are a subset, where the A site
is composed of an organic cation, such as methylammonium
(MA), within a post transition metal halide framework, such as
lead iodide. They have emerged since 2009 (ref. 1) as simple, low
cost solar cell materials, with power conversion efficiencies that
are becoming competitive with silicon2–7. Methylammonium
lead iodide (MAPbI) undergoes a number of structural phase
transitions as a function of temperature, including an
orthorhombic—tetragonal—cubic evolution that is common in
perovskites. Ion mobility and the rotational dynamics of the
non-isotropic MA ion adds further complexity to the structure.
Mobility of all three ions, Pb, I and MA, have been extensively
studied8–12, but, as yet, no definitive mechanism has emerged,
although iodide ions have been shown to play a key role13.
The complex structural features and intrinsic disorder explains
the large number of anomalies in the literature as to the
exact symmetry and structural parameters14, which is suggestive
of localized symmetry variations that is prevalent in solid
electrolytes.

We show that iodide ions migrate through an interstitial (I3)
position. This migration is only possible through a correlated
rearrangement of the MA ions. Furthermore, a substantial local
static distortion of the Pb–I octahedra into a pseudocubic
arrangement produces I–I bond distances consistent with
the formation neutral I2 defects that could effectively act as
electron/hole pairs.

Results
X-ray and neutron diffraction. The maximum entropy method
(MEM) is an analysis technique that can be applied to diffraction
data that generates density maps without prior knowledge of
symmetry and unit cell content, and therefore unbiased towards
any specific structural model. It can provide information on
subtle local distortions even when this scattering is extremely
weak compared to the bulk diffraction15–17.

To gain a deeper insight into the structure of MAPbI we have
performed both powder neutron, single crystal X-ray diffraction,
and powder synchrotron X-ray studies. Details of the structure
determination strategy are given in the Supplementary Note 1.
The structure was solved in I4/m space group with lattice
parameters of a¼ 8.8756(1) Å and c¼ 12.6517(3) Å. The
I4/m symmetry is not an isomorphic subgroup of the high
temperature cubic perovskite Pm�3m space group, so not
a common perovskite symmetry18. However, in the case of
MAPbI the transition from cubic to tetragonal is first order, so
multiple irreducible representations can be adopted. The
principal features of the MAPbI structure derived from the
MEM analysis was found to be considerably more complex than
previous realized (Fig. 1). Supplementary Fig. 1 shows the crystal
structure from positions extracted from MEM analysis of powder
neutron diffraction data (Supplementary Fig. 2). The nuclear
scattering density around the iodide ion at the (� 0.2148(3)
� 0.2851(3) 0.5) position (I2) at room temperature was found
to be localized with typical levels of thermal distribution
(Fig. 1a). However, additional densities with similarly localized
scattering were identified at two positions in close proximity,
demonstrating static disorder of the I2 site, labelled I2A. These
were determined to be at (� 0.252(3) � 0.248(3) 0.453) in
a pseudocubic arrangement, and represent a B0.8 Å shift from
the known I2 position towards the MA ions and lying on
either side of a mirror plane in the tetragonal space group.
Supplementary Fig. 3 shows how the local tilting of the perovskite

is different in I2A and I2 positions. The MEM density maps
surrounding the MA ion for single crystal X-ray and
powder neutron diffraction showed similar scattering for the
C–N that is best described as a 4 atom tetrahedron unit, with the
centre of the tetrahedron in the middle of the A-site cavity
(Fig. 1b,c, respectively). In addition to the scattering for C/N, the
neutron diffraction data showed scattering from 6 hydrogen
positions just over 1 Å from the C/N positions, with considerable
amount of disorder through libration, as well as rotational
disorder, which is consistent with inelastic neutron scattering
results19,20. A model was derived for the MA ion (Fig. 1d), where
there are two orientations for the CH3NH3 molecule, one in the
(220) plane and one in the 2�20ð Þ plane, similar to the
arrangement found from single crystal neutron diffraction21.
These orientations point exactly between the iodide positions, I2,
in the z¼ 0.25 plane. However, whereas the centre of mass of the
two molecule orientations lie also at z¼ 0.25, the two molecules
were found to be at off-centre positions of z¼ 0.221(3) and
0.279(3). The orientation of the MA molecule is an important
component of the structure as it has been found to greatly
influence the electronic properties of MAPbI22.

A further iodide position (I3) was observed in the powder
neutron diffraction, powder synchrotron diffraction and single
crystal X-ray diffraction that sits in an interstitial site in the
zB0.25 plane with Pb and MA ions (Fig. 2a). Determination of
the evolution of structure and composition as a function of
temperature (Fig. 2b) showed a hysteresis effect in the heating
and cooling profiles, demonstrating the phase transition is first
order. Supplementary Fig. 4 shows the temperature dependence
of specific reflection as measured from synchrotron radiation.
The lattice parameters dependence showed a tetragonal to cubic
transition at B335 K, whereas this was suppressed to B320 K on
cooling (Fig. 2b). This 15 K variation is mirrored in the
composition variation (Fig. 2c) where the I1, I2 and I2A sites
were similarly shifted. There was a slight drop in the composition
of I1 sites close to the transition to the cubic phase, but the largest
variation was in the occupancies of the I2 and I2A ions, where a
substantial drop in I2 composition was observed with increases in
I2A, but not to the same extent. The I3 content was difficult to
accurately determine with the short runs of the synchrotron
measurements. However, the total composition was seen to
drop slightly, implying the I3 site were being populated, but
were diffuse and thereby not contributing to the Bragg scattering
to the same extent as the other iodide ions.

Ion migration mechanism. From the isolation of these atomic
positions and variation of compositions, one can propose a
mechanism for ion migration within the cell. The significant drop
in composition of the I2 site at temperatures above 280 K, com-
pared with the increased occupancy of the I2A site, implies that I2
are both populating the ion interstitial site, I3, and well as shifting
to the new I2A locations. A I2 to I3 hop (Fig. 3a–c) would leave
the I3 ions surrounded by three iodide ions all approximately
3.2 Å apart. Given the concomitant increase in the population of
the both the I2A and I3 sites over the same temperature regime,
the nature of the bonding between these two positions is
important. Supplementary Fig. 5 shows the bond distances when
all four iodide positions are populated. Polyiodide ions are well
known to the form multiple low valent iodide chains, where the
I–I bond lengths are extremely sensitive to the nature of the
bonding and charges on the iodine23. Structure of solid I2 is an
orthorhombic zig-zag structure with intramolecular I–I bond
lengths of 2.68 Å, and intermolecular I2 distances of 3.56 Å
(ref. 24). This value of 2.68 Å can be considered as a primary
covalent I–I bond and other forms of iodine chains where I2

donates to the s* antibonding orbital in a charge transfer
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complex have significantly larger bond lengths23,25. For example,
the triiodide ion, [I3]� in orthorhombic CsI3 has I–I bond
lengths of 2.84 Å and 3.04 Å (ref. 26); one slightly higher than
seen in covalent I2 and one longer bond possessing most of the
additional charge. I2 confined within frameworks have similar
bond lengths, such as iodine in formate, Zn3(HCOO)6, has
a bond length of 2.691 Å with a second weakly interacting
molecule at 3.59 Å (ref. 27). In contrast, the [I2]þ ion in I2Sb2F11

has a shorter I–I bond length of just 2.56 Å (ref. 28). The two
I3–I2A bond lengths in MAPbI are at 2.7(1) Å and 2.6(1) Å, so
from these structural considerations it is consistent with the static
disorder and shift from I2 to I2A is the result of covalent I2 bond
formation in MAPbI to produce a neutral diatomic I2 molecule
within the perovskite framework. This would have extensive
implications on the band structure and charge transfer suggests
a redox reaction of 2I�-I2þ 2e� . The resulting structure
(Fig. 4a) shows potential chains of I2 and I� ions along the
z axis. However, the bond distances between I3 and both
orientations of the MA ions are unphysical, which suggests that
the occupancy of I3 can only be achieved with the MA molecule

adopting a perpendicular orientation (Fig. 4b), such that diffusion
of the I3 ions from I2 and I1 only occurs with collective motion
of the MA ions in a gate opening type mechanism. Further
evidence of the dynamical hybrid structure was provided by
Raman spectroscopy, which is shown in Supplementary Fig. 6,
and Supplementary Note 2. All final derived atomic coordinates,
occupancies are provided in Supplementary Tables 1–4.

Iodine, I2, itself is a semiconductor29, although can be highly
conducting in polyiodide structures, or as inclusion in other
frameworks creating charge transfer complexes23. A number of
metal-organic frameworks materials have shown considerable
change to their electronic structure and electrical conductivity
with the inclusion of iodine30,31. Typical dye-sensitized solar cells
require an additional TiO2 layer to act as an electron acceptor.
However, it has been established that the hybrid perovskite itself
acts as a free electron carrier without the need for complex
nanostructures3,5,32, although the underlying mechanism for
such characteristics is not clear. Further studies will be needed
to clarify the presence and role of the I2/I� redox couple and the
implied electron/hole formation within hybrid perovskite, as well
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Figure 1 | Key structural features of MAPbI obtained from MEM analysis. (a) Section of the (100) projection of the nuclear scattering density (yellow) at

room temperature (isosurface level of 0.8 fmÅ� 3) showing main iodide position (I2, purple sphere) is accompanied by two additional scattering densities

(labelled I2A). (b) X-ray scattering and (c) nuclear scattering density map of methylammonium molecules (isosurface level of 1.0 fmÅ� 3), showing C and

N (yellow) and hydrogen scattering (blue) (d) molecular structure extracted from the maxima in the scattering density maps.
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Figure 2 | Structure of MAPbI and variation of occupancy and lattice parameter with temperature. (a) Lead (grey spheres) and iodide positions in the

room temperature I4/m space group, showing four crystallographically inequivalent iodide positions within the unit cell at position I1 and I2 (purple) that

form the regular perovskite PbI6 corner shared octahedra and two additional position I2A (blue sphere) and I3 (green sphere). The methylammonium ions

are omitted for clarity. Powder synchrotron X-ray data shows (b) hysteresis in tetragonal to cubic phase transition, and (c) temperature dependence of the

I1, I2 and I2A iodide ion site occupancy as a function of temperature.
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as the effect on the electronic and ionic conduction and whether
this is related to its solar conversion properties, such as the long
electron-hole diffusion lengths33 and lifetimes34, and photon
recycling35.

Methods
Synthesis and data treatment. Crystals of MAPbI with a volume of B2 cm3 were
grown by slow evaporation of CH3NH3I and PbI2 in g-butyrolactone over a 14-day
period. These crystals were ground to perform the powder neutron and X-ray
studies, and smaller crystals were cleaved to perform the single crystal X-ray stu-
dies. Powder neutron diffraction data were collected on the BT1 diffractometer at
NCNR at the National Institute of Standards and Technology, Gaithersburg, MD,
USA using Cu(311) monochromator (l¼ 1.5401(1) Å). Single crystal X-ray dif-
fraction data was collected on a dual-source Rigaku Oxford Diffraction Supernova
diffractometer. Powder synchrotron diffraction experiments were performed at the
Swiss-Norwegian beamline (SNBL) at the ESRF, France, with an incident wave-
length of l¼ 0.6932 Å. Whole pattern fitting based on MEM was carried out using
PRIMA36 and RIETAN37 with a 96� 96� 128-voxel density map for both the
powder neutron and single crystal X-ray diffraction data. MEM density maps were
analysed using the Vesta program38. The FULLPROF39 suite of programs were
used to perform Rietveld refinement on both the neutron and synchrotron X-ray
powder diffraction data. Refinement of single crystal X-ray diffraction data were
performed using the SHELX program40. Raman spectroscopy was performed with
a Horiba LabRAM S3000 Raman microscope using a near infrared excitation
wavelength of 784.15 nm, and described in more detail in Supplementary Methods.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request. The X-ray crystal-
lographic coordinates for the structure reported in this study have been deposited
at the Cambridge Crystallographic Data Centre (CCDC), under deposition number
1535723. These data can be obtained free of charge from The Cambridge Crys-
tallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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