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Abstract: Lipoxygenases (LOXs) are non-heme iron containing dioxygenases involved in the oxygenation of polyunsaturated fatty acids 
(PUFAs) such as arachidonic acid (AA). Depending on the position of insertion of oxygen, LOXs are classified into 5-, 8-, 9-, 12- and 
15-LOX. Among these, 5-LOX is the most predominant isoform associated with the formation of 5-hydroperoxyeicosatetraenoic acid (5-
HpETE), the precursor of non-peptido (LTB4) and peptido (LTC4, LTD4, and LTE4) leukotrienes. LTs are involved in inflammatory and 
allergic diseases like asthma, ulcerative colitis, rhinitis and also in cancer. Consequently 5-LOX has become target for the development 
of therapeutic molecules for treatment of various inflammatory disorders. Zileuton is one such inhibitor of 5-LOX approved for the 
treatment of asthma.  

In the recent times, computer aided drug design (CADD) strategies have been applied successfully in drug development processes. A 
comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article. 
Since the crystal structure of 5-LOX has been recently solved, efforts to develop 5-LOX inhibitors have mostly relied on ligand based 
rational approaches. The present review provides a comprehensive survey on these strategies in the development of 5-LOX inhibitors. 
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INTRODUCTION TO DRUG DESIGN 

5-LOX and its Importance 

Arachidonic acid (AA) is normally found esterified to cell 
membrane glycerophospholipids. Activation of phospholipase A2 
(PLA2) results in the release of AA from membrane phospholipids 
and makes it available for oxidative metabolism by several enzyme 
systems. AA can be metabolized by three pathways: 
cyclooxygenase (COX), lipoxygenase (LOX) and epoxygenase 
(EPOX) as depicted in Fig. (1). 

COXs (prostaglandin-endoperoxide synthase, EC 1.14.99.1) 
catalyze the production of prostaglandins (PGs), prostacyclins and 
thromboxanes (TXs). The COX activity introduces two molecules 
of oxygen into AA to form the cyclic hydroperoxy endoperoxide 
(PGG2), which is subsequently reduced by the peroxidase to the 
hydroxy endoperoxide, PGH2 [1]. There are three isoforms COX-1, 
COX-2, and COX-3 [2]. COX-1, constitutively expressed in most 
tissues and involved in the synthesis of prostaglandins (PGs) at low 
levels, is presumed to function primarily in the maintenance of 
physiological functions [3-5]. COX-2, the inducible isoform of 
COX, is induced by several mitogenic and proinflammatory stimuli 
and plays a direct role in tumor cell growth and various other 
diseases. COX-3 is recently identified isozyme and is a splice 
variant of COX-1. 

LOXs (linoleate: oxygen oxido reductase, EC 1.13.11.12) are a 
group of closely related non-heme iron containing dioxygenases. 
These enzymes catalyze the addition of molecular oxygen into Poly 
Unsaturated Fatty Acids (PUFAs) containing cis, cis 1-4 pentadiene 
structures to give their hydroperoxy derivatives [6]. All LOXs have 
a two domain structure, the small N-terminal �-barrel domain and 
larger catalytic domain containing non-heme iron atom. They 
contain a ‘‘non-heme’’ iron per molecule in the active site as high-
spin Fe(II) in the native state, and high-spin Fe(III) in the activated 
state [7-8]. Iron is ligated in an octahedral arrangement by three 
conserved histidines, one His/Asn/Ser, and a conserved isoleucine 
at the C-terminus of the protein [9]. LOX proteins have a single 
polypeptide chain with a molecular mass of 75–80 kDa in animals 
and 94–104 kDa in plants and the highest sequence identity  
 
 

*Address correspondence to this author at the National Institute of Animal 
Biotechnology, Hyderabad, India; Tel: +91 40 23134542, +91 40 23012425; Fax: +91 
40 23010745; E-mail: prsl@uohyd.ernet.in, preddanna@niab.org.in 

between these LOXs is in the portion of the catalytic domain near 
the iron atom [10].  

LOXs are classified on the basis of site of arachidonate 
oxygenation into 5-, 8-, 9-, 11-, 12- and 15-LOX. Though most of 
the lipoxygenases insert molecular oxygen stereospecifically at ‘S’, 
recently ‘R’ lipoxygenases also have been reported [11-15]. The 
prominent animal LOXs are 5-LOX, 8-LOX, 12-LOX and 15-LOX, 
while the plant LOXs are mostly 5-LOX and 15-LOX. Among 
these, 5-LOX is the most predominant isoform associated with the 
formation of 5-hydroperoxyeicosatetraenoic acid (5-HpETE) and 
other bioactive lipid mediators [16]. Cellular activation by immune 
complexes and other inflammatory stimuli result in an increase in 
intracellular calcium and the translocation of Cytosolic 
Phospholipase A2 (cPLA2) and 5-LOX from the cytosol to the 
nuclear membrane and association with 5-lipoxygenase activating 
protein (FLAP), an 18-kDa integral membrane protein essential for 
Leukotriene (LT) biosynthesis in intact cells. FLAP selectively 
transfers AA to 5-LOX and enhances the sequential oxygenation of 
AA to 5-HpETE and dehydration to LTA4 [17-21]. LTA4 can be 
further metabolized to LTB4 by LTA4 hydrolase or to LTC4 by 
conjugation of glutathione at the sixth carbon by the action of LTC4 
synthase [20]. Additional studies established that LTC4 and its 
extracellular metabolites LTD4 and LTE4 are the constituents of 
slow-reacting substance of anaphylaxis, but they are now more 
properly termed as cysteinyl leukotrienes. The cysteinyl 
leukotrienes have been recognized to mimic many of the clinical 
manifestations of asthma. LTE4 is further metabolized to inactive 
LTF4 by the action of c-glutamyl transpeptidase. Studies have also 
shown that LTF4 was formed directly from LTC4 by the action of 
carboxypeptidase [22]. LTB4 is a potent chemotactic and 
chemokinetic agent for a variety of leukocytes, the cysteinyl 
leukotrienes C4, D4 and E4 cause vascular permeability and smooth 
muscle contraction [23]. 

LTs are involved in a variety of inflammatory and allergic 
diseases such as asthma, ulcerative colitis and rhinitis [14]. 5-LOX 
pathway is also associated with gastroesophageal reflux disease 
(GERD) and Crohn's disease [24]. The potential role of leukotrienes 
in atherosclerosis, another chronic inflammatory disease has been 
recently discussed [25]. 5-LOX plays an important role in distinct 
types of cancers like colon, esophagus, prostate, lung, etc. [26-
30]. Recently it has also been shown that 5-LOX (ALOX5) is 
critical regulator for leukemia cancer stem cells (LSCS) in chronic 
myeloid leukemia (CML) [31].  
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It plays role in tumorigenesis, mainly in stimulating cell 
proliferation; genotoxicity; inhibition of apoptosis and in increased 
metastasis and angiogenesis [32]. There are numerous reports on 
over expression of 5-LOX in cancer cells and the protective role of 
its inhibitors. Hong et al. [33] have shown that 5-LOX and 5-LOX 
activating protein (FLAP) were universally expressed in epithelial 
cancer cell lines. Further in another study, Hennig et al. [34], 
demonstrated over expression of 5-LOX in human pancreatic 
cancer cells. Gupta et al. have reported overexpression of 5-LOX 
protein in malignant tissue in patients with prostate carcinoma. 
They reported 2.2 fold greater levels of 5-HETE in malignant 
tumor tissue compared with benign tissue suggesting the clinical 
importance of 5-LOX inhibitors in patients with prostate carcinoma 
[35]. MK591, a specific inhibitor of 5-LOX activity was shown to 
induce apoptosis in prostate cancer cells via down-regulation of 
PKC�, a pro-survival serine/threonine kinase [36-37].  

Studies have shown that both 5-LOX and 12-LOX mRNA and 
protein are expressed in human pancreatic cancer cell lines but not 
in normal human pancreatic ductal cells [38]. In another study 
MK886, a selective inhibitor of 5-LOX which does not inhibit 
COX-2 and 12-LOX, was shown to inhibit celecoxib-induced 
increase in 5-LOX gene expression and Erk1/2 activation in 
pancreatic cell line SW1990 cells. It was observed that combined 
use of the COX-2 inhibitor, celecoxib and 5-LOX inhibitor, MK886 
is a highly effective way to suppress the growth of human 
pancreatic cancer cell line SW1990 [39]. 

Hoque et al. have demonstrated that 5-LOX protein expression 
is increased in esophageal cancer and that 5-LOX inhibitors caused 
a dose- and time-dependent induction of apoptosis [40]. Zou et al. 
have reported significantly higher levels of 5-LOX mRNA and 
protein in gastric cancer than in non-tumor tissues and have shown 
that 5-LOX selective inhibitor AA861 induces apoptosis in human 
gastric cancer AGS cell line [41]. Recently, Melstrom et al. have 
shown that 5-LOX is upregulated in adenomatous colon polyps and 
cancer when compared with normal colonic mucosa and they have 
revealed that the inhibition of 5-LOX in an in vivo colon cancer 
xenograft inhibited tumor growth [42], showing the importance of 

5-LOX inhibitors in colon cancer patients. In our recent reports, we 
demonstrated anti proliferative effects of 5-LOX inhibitors in 
various cancer cell lines [43-44]. 

Recent studies have shown that the adverse reactions in patients 
taking COX inhibitors are due to the shunting of LT synthesis 
through 5-LOX pathway [45-48]. Studies have also shown that 
treatment with 5-LOX inhibitor MK886 increases prostaglandin E2 
production in colon cancer cells [49], suggesting that blocking one 
metabolic pathway can shunt the AA metabolism toward the other 
pathway. Earlier reports suggested that the macrophages from 5-
LOX knockout mice compensate for the inability to synthesize 
leukotrienes by upregulating prostaglandins and thromboxane 
biosynthesis [50]. In another study, 5-LOX knockout mice 
exhibited significantly greater levels of PGE2 than WT mice in lung 
lavage fluid of bleomycin-treated mice but this was observed only 
at Day 7 and later time points [51]. Since blocking one of the AA 
metabolizing pathways (e.g., COX-2) may activate other pathways 
(e.g., 5-LOX) or vice versa additive effects of these inhibitors is 
also of great interest. There is evidence that combined use of COX-
2 and 5-LOX inhibitors produce additive antitumor effects in colon 
cancer [49-52]. Li et al. [53] have shown over expression of 5-LOX 
and COX-2 in hamster and human oral cancer and demonstrated 
synergistic effects of zileuton and celecoxib, inhibitors of 5-LOX 
and COX-2 pathways respectively. Previously additive effect of 
these inhibitors was shown in human esophageal adenocarcinoma 
[54]. Licofelone, a potent COX-2/5-LOX inhibitor was shown to 
induce apoptosis in both androgen-dependent and androgen-
independent prostate [55] and colon [56] cancer cells. Recent 
reports have shown that Licofelone-nitric oxide donors exhibit high 
antiproliferative potency in breast cancer as well as in colon cancer 
cells [57]. In our recent study, Chebulagic acid, a COX-LOX dual 
inhibitor was isolated from the fruits of Terminalia chebula Retz. It 
showed antiproliferative activity against HCT-15, COLO-205, 
MDA-MB-231, DU-145 and K562 cell lines [58-59]. 

There is increasing evidence of role of 5-LOX products in 
various diseases, the inhibitors of 5-LOX therefore have great 
therapeutic potential. 5-LOX inhibitors belong to four distinct 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Overview of Arachidonic acid metabolism in mammalian systems. AA can be metabolized via three major pathways, namely the Lipoxygenase 
pathway, Epoxygenase pathway and the Cyclooxygenase pathway. 
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classes, namely, (1) redox inhibitors (2) iron chelators (3) 
competitive reversible inhibitors, and (4) inhibitors of FLAP. In his 
review, Young has discussed the status of 5-LOX inhibitors and 
stated that despite intensive efforts towards 5-LOX inhibitor 
development, only the iron chelating inhibitors of 5-LOX have been 
successful so far [60]. Of the many 5-LOX inhibitors identified 
only zileuton (1-(1-benzothiophen-2-ylethyl)-1-hydroxy-urea) 
could enter the market in 1996 as 5-LOX inhibitor for the treatment 
of asthma [61]. However, it is not widely prescribed for asthma 
because of a high dose regimen (600 mg q.i.d. or 1200 mg b.i.d.), 
low but significant hepatotoxicity [62-64]. Most of the other potent 
inhibitors of 5-LOX in cellular level often markedly lost efficacy or 
showed toxic side effects in whole blood, animal studies or human 
clinical trials. Selective inhibitors of 5-LOX inhibitor, AA-861 and 
ZD2138 have been discontinued in Phase II clinical trials [64]. In 
their respective review articles, Young [60] and Steele [64] have 
discussed the fate of various 5-LOX inhibitors in clinical trials.  

Some of the 5-LOX inhibitors developed are in clinical trials 
for various diseases. PEP03, developed by PharmaEngine is a new 
chemical entity developed as a highly selective, potent, and orally 
active 5-LOX inhibitor and studies to assess the efficacy and safety 
of treatment with PEP03 in patients with chronic obstructive 
pulmonary disease (COPD) is going on. A new 5-LOX inhibitor, 
derived from a herb, has undergone a phase II trial in osteoarthritis 
with promising results [65]. VIA-2291, a selective and reversible 
inhibitor of 5-LOX is in phase III for its effects on atherosclerotic 
plaque, an underlying cause of heart attack, stroke and other 
vascular diseases [66]. Apart from these, the efficacy of addition of 
adjuvant from Boswellia serrata, a selective anti-inflammatory 
herbal medicine and 5-LOX Inhibitor identified by The Cleveland 
Clinic and National Cancer Institute (NCI) is in Phase II of trail as 
an adjuvant therapy in newly diagnosed and recurrent high-grade 
gliomas.  

The association of products of 5-LOX in numerous diseases 
makes it a very promising therapeutic target. Consequently an 
emerging strategy consists of creating molecules with specific 5-
LOX inhibition activity and fewer or no side effects. 

Types of Drug Design 

Drug discovery and development is very expensive and time 
consuming process. Traditional approaches to drug discovery rely 
on a step-wise synthesis and screening of large number of 
compounds to identify a potential candidate. Over the past ten to 
twenty years, there is an increased effort to apply computational 
power to the combined chemical and biological space in order to 
streamline drug discovery, design, development and optimization 
[67]. Computational methods are expected to play an imperative 
role in understanding the specific molecular recognition events of 
the target macromolecule with candidate hits leading to the design 
of improved leads for the target [68]. Computer Aided Drug Design 
(in silico) approaches have been widely employed in Lead 
Identification and Lead Optimization stages of drug development 
against various targets over the years. In comparison to traditional 
drug discovery methods rational drug design methods bring down 
the time and cost involved in drug development process. It can be 
used to identify/design new inhibitors de novo or for optimization 
of absorption, distribution, metabolism, excretion and toxicity 
profile of identified molecules from various sources. Advances in 
computational techniques and hardware have facilitated the 
application of in silico methods in the discovery process. Drug 
Design can be categorized as two types: Structure based drug 
design (SBDD) and Ligand based drug design (LBDD). 

Structure Based Drug Design 

SBDD is the approach where the structural information of the 
drug target is exploited for the development of its inhibitor. 

Receptor structure(s) is a prerequisite for this method. Most 
commonly the structure of the receptor is determined by 
experimental techniques such as X-ray crystallography or NMR. If 
the structure of the protein drug target is not available, protein 
structure can be predicted by computational methods like threading 
and homology modeling. Threading (also called as fold) is a 
modeling approach used to model proteins that do not have 
homologous proteins with known structure. During threading, a 
given amino acid sequence is searched for compatibility with the 
structures in a database of known folds. The structure of the query 
protein is built from these folds. Homology modeling (also called as 
comparative) is an approach that relies on a clear relationship or 
homology between the sequence of the target protein and at least 
one known structure [69]. The process of homology modeling of 
proteins consists of the following steps: Identification of 
homologous protein with known 3D structure(s) that can serve as 
template; sequence alignment of target and template proteins; 
generation of model for the target based on the 3D structure of the 
template and the alignment; model refinement and validation [70-
71]. Over the years, homology modeling has become the main 
alternative to get a 3D representation of the target in the absence of 
crystal structures. 

De Novo Drug Design 

De novo is a Latin expression meaning "from the beginning". 
Active site of drug targets when characterized from a structural 
point of view will shed light on its binding features. This 
information of active site composition and the orientation of various 
amino acids at the binding site can be used to design ligands 
specific to that particular target. Computational tools that can 
analyze protein active site and suggest potential compounds are 
extensively used for de novo design methods. Many promising 
approaches with the goal of ligand design have been reported. In his 
book chapter, Murcko [72] provided a detailed analysis of computer 
aided ligand design methods and distinguished them as six major 
classes as shown in Fig. (2): 

i. Fragment location methods: To determine desirable 
locations of atoms or small fragments within the active site. 

ii. Site point connection methods: To determine locations 
(“site points”) and then place fragments within the active 
site so that those locations are occupied by suitable atoms. 

iii. Fragment connection methods: Fragments are positioned 
and “linkers” or “scaffolds” are used to connect those 
fragments and hold them in a desirable orientation. 

iv. Sequential buildup methods: Construct a ligand atom by 
atom, or fragment by fragment. 

v. Whole molecule methods: Compounds are placed into 
active site in various conformations, assessing shape and/or 
electrostatic complementarity. 

vi. Random connection methods: A special class of techniques 
combining some of the features of fragment connection and 
sequential buildup methods, along with bond disconnection 
strategies and ways to introduce randomness. 

Over the years various de novo methods especially whole 
molecule methods like docking have become integrated within 
disciplines that include chemistry, pharmacology, molecular 
biology and computer modeling. Electrostatic and solvation terms 
critical for evaluating correct binding energies, are difficult and 
slow to calculate. Advances in algorithm sophistication are 
providing better and better approximations for these parameters 
[73]. Finally, it is clear from the recent literature that the drug 
design process has become an essential part of drug discovery 
projects. 

Structure Based Virtual Screening 

Structure based virtual screening is one of the commonly used 
approaches in lead identification step and is seen as a 
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complementary approach to experimental high throughput 
screening (HTS) to improve the speed and efficiency of the drug 
discovery and development process [74]. This involves explicit 
molecular docking (process to predict binding mode) of each ligand 
to the binding site of the target and scoring (process to measure 
binding affinity). The compounds in the databases screened are 
ranked with a view to selecting and experimentally testing a small 
subset for biological activity considered to be appropriate for a 
given receptor [69,75-76]. Many successful applications have been 
reported in the field of molecular docking based virtual screening 
[77-83]. Although the energy calculations involved are crude, the 
compounds in the library are readily available, making 
experimental testing easy and false positives tolerable [76]. 

Ligand Based Drug Design 

Ligand based drug design is an approach used in the absence of 
the receptor 3D information and it relies on knowledge of 
molecules that bind to the biological target of interest. 3D 
quantitative structure activity relationships (3D QSAR) and 
pharmacophore modeling are the most important and widely used 
tools in ligand based drug design. They can provide predictive 
models suitable for lead identification and optimization [84]. 
Further information on these methods and their application to 5-
LOX inhibitor design and development are presented elsewhere in 
the review. 

APPLICATION OF SBDD IN 5-LOX INHIBITOR DEVELO-

PMENT  

Structure based methods have not played a major role when 
compared to other drug targets in the discovery of 5-LOX inhibitors 
as the crystal structure of 5-LOX has been solved very recently 
[85]. Various research groups have used homology modeling 
technique for the generation of reasonable 3D model of 5-LOX 
which were in turn used to understand the binding site features and 
SAR of known inhibitors. Du et al., (2006) developed 3D model of 
5-LOX using rabbit 15-LOX as the template and performed 

molecular docking simulation analyses to predict binding free 
energies for the inhibitors [86]. AutoDock 3.0.3 was used for 
docking and to calculate the binding free energy between ligand 
and receptor and estimate Ki value through it’s empirically 
calibrated score function. KD values were measured by SPR and 
values obtained correlated very well with the biological activities 
with a high correlation (R2) of 0.814. The binding energies obtained 
from docking studies were also in agreement with experimental 
data hence supporting the correctness of the constructed 3D model. 
The molecular docking methodology applied provided a reasonable 
and reliable 5-LOX/inhibitor binding model which has potential for 
application in the structure-based discovery of novel 5-LOX 
inhibitors. Docking studies of the inhibitors have shown that 
hydrogen bonds and hydrophobic interactions play a key role in 
inhibitor binding at the enzyme active site. They attributed the lack 
of a hydrophobic body to the low affinity of phenidone towards 5-
LOX. 

In their studies, Charlier et al., (2006) generated the 3D 
structure of human 5-LOX based on the crystal structure of rabbit 
15-LOX and studied the binding modes of a set of competitive 
inhibitors of 5-LOX [87]. They pointed out that the modeled active 
site of human 5-LOX is more spacious than that of rabbit 15-LOX 
and consists of a deep bent-shaped cleft containing the non-heme 
iron cofactor. It was identified that the main binding cleft extends 
from Phe177 and Tyr181 in the upper part to Trp599 and Leu420 at 
the bottom. Arg411, Tyr181, Leu414, Asn425, Arg411, and Phe421 
were shown to be important, capable of strong interactions with the 
ligand at active site. 

There are limitations in obtaining sufficient quantity of the 
purified 5-LOX in stable form from mammalian sources. As a result 
potato tuber 5-LOX, with similar catalytic activity, is frequently 
employed as the abundant source [88] and in screening specific 
inhibitors. Hence we developed 3-D model of potato 5-LOX based 
on the known structure of soybean lipoxygenase-3 complexed with 
4-nitrocatechol (PDB ID:1NO3 [89]) [90]. The conserved structural 
pattern of all LOXs, mainly at the catalytic site, provided an 
advantage for building up an accurate homology model. In our 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Basic principles and types of drug design. The term SBDD explicates various approaches wherein the structural knowledge of the drug target is 
exploited and LBDD explains the strategies wherein the information from existing ligands of a drug target is utilized. 
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study, we modeled 5-LOX, performed flexible docking with 
already reported inhibitors and further calculated relative binding 
energies of docked inhibitors using energy minimization 
calculations. Polar residues like Gln521, Glu787, His530, His525, 
His271, His783, Thr784, Arg782, Asp276, Arg559, Asp560, 
Asn563, Asn565, Asn720, Ser567, Ser863 and Thr279 were found 
distributed along the 5-LOX active site channel. Charged amino 
acids Asp276, Asp560, His525 and His530 are present in the active 
site channel and may play vital role in ligand binding [91]. Docking 
studies have shown that the inhibitors bind firmly to the open cavity 
that is in the sixth coordination of the iron atom and may thus 
prevent the access of the substrate to the catalytic site of 5-LOX. 
The relative binding energy results correlated well with the 
experimental data and supported the model.  

In another study, we designed mono- and di-O-prenylated 
chalcone derivatives using the homology model of 5-LOX [45]. 
The molecules were docked using GOLD (Genetic Optimization of 
Ligand Docking), a docking program based on genetic algorithm 

[92]. After docking, the individual binding poses of each ligand 
were observed and their interactions with the protein were studied. 
The best and the most energetically favorable conformation of each 
ligand were selected and complexed with 5-LOX model. A four-
stage protocol was set up for energy minimizations of the protein-
inhibitor complex using AMBER [93]. After four stage protocol 
energy minimizations, relative binding energies were calculated.  

The LUDI scoring method [94] of interactions between a 
protein and its ligand was also used in this study to quantify the 
binding affinity of the compounds to 5-LOX. LUDI score is 
calculated using Eq. 1. 

LUDI Score = -73.33 mol/kcal �G           (1) 

�G = �Go + �Ghbf(�R)f(�a) + �Gionf(�R)f(�a) + �GlipoAlipo + 
�GrotNR �G; 

�Go represents the contribution to the binding energy that does 
not directly depend on any specific interactions with the receptor,  

�Ghb and �Gion represent the contribution from an ideal 
hydrogen bond and unperturbed ionic interactions respectively,  

�Glipo represents the contribution from lipophilic interactions 
which is proportional to the lipophilic surface Alipo ,  

�GrotNR represents the contribution due to freezing of internal 
degrees of freedom in the fragment,  

NR is the number of acylic bonds, �R is the deviation of the 
hydrogen bond length from the ideal value of 1.9 Å,  

�a is the deviation of the hydrogen bond angle from the ideal 
value of 180o. 

In general, a higher LUDI score (0-1100 in range) represents 
higher affinity and stronger binding of a ligand to the receptor. The 
di-O-prenylated chalcones were predicted to be more effective than 
their mono-O-prenylated analogues. A comparison of SAR data 
showed that the LUDI score increased with increase in the number 
of hydrogen bonds increase. In the case of the most highly scored 
compound, Mol-1, most of the functional groups interacted 
favorably with the 5-LOX active site. Strong hydrogen bond 
interactions were observed between 3-methoxy of, Mol-1 and Thr 
784 (O…..HO, 3.7 Å), 4-methoxy and His 271 (O…..HN, 2.4 Å) and 
5-methoxy and Asp 560 (O…..HO, 2.3 Å) respectively. The prenyl 
group of the 2´O-prenyl group formed strong hydrophobic 
interactions with Leu 255 and Lys 283 along with strong hydrogen 
bond interactions between oxygen atom of 2´O-prenyl and Ser 567. 
The theoretical findings were validated by in vitro enzyme assays. 
Mol-1 showed potent inhibition of 5-LOX with an IC50 value of 4 
�M. The overall trend for the binding energies calculated and LUDI 
scores was in good qualitative agreement with the experimental 
data. The inhibitory activity of the inhibitor, Mol-1 was further 
analyzed and confirmed by analysis of products on SP-HPLC. Mol-

1 also showed potent anti proliferative effects on MCF-7 cell line 
(breast cancer) with GI50 of 9 �M. 
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In a recent study, we utilized the crystal structure of human 5-
LOX [85]. The availability of reliable structure of 5-LOX 
encouraged us to perform Structure Based Lead Optimization study 
of analogs of benzyl propargyl ether, a known class of 5-LOX 
inhibitors. Mol-2, having IC50 of 760 �M [95] was used as the 
initial molecule for the design studies [44]. The interactions of Mol-
2 with 5-LOX active site residues were thoroughly studied to 
understand the 5-LOX structure better. GOLD docking program 
was used to dock the inhibitors. After docking, the 5-LOX-Mol-2 
complex was analyzed and important amino acids at the active site 
were identified. Lead optimization studies were manually 
performed employing Site point connection method. In this study, 
only the site points corresponding to hydrophobic interactions were 
considered. As discussed earlier, Du et al. (2006) identified that 
hydrophobic tail plays the very pivotal role in 5-LOX inhibitors 
along with polar groups. Hence, four site points corresponding to 
Leu368, Ile 415, Phe421 and Thr364 with potential of forming 
strong hydrophobic interactions were identified. Modifications were 
proposed such that all the hydrophobic amino acids can be 
exploited. The designed molecules were synthesized and further 
tested in vitro for their inhibitory properties against 5-LOX enzyme 
using the assay described by Reddanna et al. (1990) [96]. The 
number of hydrogen bonds and hydrophobic interactions of the 
molecules with 5-LOX showed inverse correlation with the 
experimental IC50 values. The most active molecule, Mol-3 
inhibited 5-LOX with an IC50 value of 8 �M. The molecules also 
showed good anti-proliferative effects on three different human 
cancer cell lines; COLO-205 (colonic), HepG2 (hepatoma) and 
MDA-MB-231 (breast). Mol-3 also showed good anti-inflammatory 
effects in vivo. Studies demonstrated the protective effect of Mol-3 
in mouse Acute Lung Injury (ALI) model induced by 
lipopolysaccharide (LPS).  
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This study is a successful example reported for of 5-LOX 
inhibitor design using the de novo design strategy. There are 
various other reports employing docking studies to understand 
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structure activity relationship of a class of 5-LOX inhibitors [97-
100].  

APPLICATION OF LBDD IN 5-LOX INHIBITOR DEVELO-

PMENT  

Quantitative Structure Activity Relationship Studies 

In the absence of reliable structural information, quantitative 
structure activity relationship (QSAR) is an alternative approach 
and one of the widely used ligand based drug design approaches. 
QSAR is the name given to methods which correlate molecular 
structure with properties like in vitro or in vivo biological activity. 
When applied to toxicological data these methods are termed 
quantitative structure toxicity relationship (QSTR) and termed 
quantitative structure property relationship (QSPR) when modeling 
physicochemical properties [101]. QSAR is based on the 
assumption that the structure of a molecule (i.e. its geometric, steric 
and electronic properties) must contain the features responsible for 
its physical, chemical, and biological activities [102]. QSAR is 
defined as a process that quantitatively correlates structural 
molecular properties (descriptors) with functions (i.e. physico-
chemical properties, biological activities, toxicity, etc.) for a set of 
similar compounds [103]. The recent advances of QSAR and their 
applications in drug discovery process have been nicely described 
by Eleni et al. (2003) [102] and Dudek et al. (2006) [104]. 
Flowchart for QSAR methodology has been depicted in Fig. (3). 

QSAR Case Studies 

In our recent studies, we performed 3D-QSAR study using 
CoMFA (Comparative Molecular Field Analysis) and CoMSIA 
(Comparative Molecular Similarity Index Analysis) techniques on 
2-substituted 5-hydroxyindole-3-carboxylate derivatives to 
determine the influence of steric, electrostatic and hydrophobic 
fields on their 5-LOX inhibitory activity [105]. Forty compounds 
with IC50 values ranging from 0.031 to 13.4 �M for 5-LOX were 
selected from the literature [106]. The IC50 values were converted 

into corresponding pIC50 values by the formula in Eq. (2). The 
calculated pIC50 values ranged from 4.87 to 7.50. 

pIC50 = - log IC50              (2) 

The initial set of compounds was randomly divided into 
training set (30 compounds) and test set (10 compounds). All 
molecular modeling calculations were performed using SYBYL 
program package version 8.0 (Tripos Associates Inc.) on a Linux 
operating system [107]. Two datasets of the compounds with 
different partial charges were prepared; first dataset with charges 
calculated by the Gasteiger-Hückel method and the second dataset 
with more advanced methods, the ESPFIT (Electrostatic potential) 
charges. GAUSSIAN 03 package was used for the generation of 
second dataset. All the molecules were optimized using HF/6-31G* 
basis set and the partial atomic charges for each of them were 
obtained with ESP fitting (HF/6-31G* OPT ESP). CoMFA and 
CoMSIA models were generated for both the datasets and the 
results were analyzed. The 3D QSAR models of CoMFA and 
CoMSIA descriptors were derived using PLS regression method as 
implemented in the SYBYL package. The cross-validated 
coefficient, q2, was calculated using Eq. 3. 

q2
= 1�

(Ypredicted � Yobserved)2
�

(Yobserved � Ymean)�
            (3) 

Where Ypredicted, Yobserved, and Ymean are predicted, actual, and 
mean values of the target property (pIC50), respectively. 

(Ypredicted � Yobserved)2
� is the predictive sum of squares (PRESS).  

The LOO cross-validated correlation coefficient q2 was 
obtained with an optimal number of components (N) of six. Among 
the two datasets with different partial atomic charges, the dataset 
with ESPFIT charges yielded higher noncross validated r2 values 
(r2

ncv) and cross-validated q2 values (q2
cv). The results clearly 

showed that the partial atomic charges derived by ESPFIT charges 
produced better CoMFA and CoMSIA models than the Gasteiger-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). General methodology of a QSAR study. QSAR is the process of studying a series of molecules of different structure and properties and attempting 
to find empirical relationship between structure and property.  
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Huckel charges. The models derived from ESPFIT atomic charges 
model were further analyzed.  

In the CoMFA electrostatic contour of Mol-4, the hydrogen 
bond acceptor favored region is present corresponding to the amino 
acid Gln 557. This corresponded well to the docking interactions. 
The steric contours showed that steric bulk is favored at the 3´ and 
4´ of the phenyl group. The reduced activity of Mol-5 was 
attributed to the phenyl group on the indole ring. It has been 
observed that bulky amino acid Phe 421 is present very close, 
which may be the cause why bulky groups are not favored in that 
region. The steric contours complemented very well with the 
docking results. In the CoMSIA contours, hydrogen bond donor 
unfavorable regions were seen. This correlated well with the 
pharmacophore model of 5-LOX reported by Aparoy et al. recently 
[108]. The statistical significance of the generated 3D-QSAR 
models were confirmed using an external set of 10 test set 
molecules. The predictive correlation coefficient r2

pred was based 
only on molecules not included in the training set and is computed 
using the following Eq. 4. 
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rpred
2

=
SD � PRESS

SD
             (4) 

Where SD is the sum of the squared deviations between the 
biological activity of molecules in the test set and the mean 
biological activity of the training set molecules and PRESS is the 
sum of the squared deviations between predicted and actual activity 
values for every molecule in the test set.  

The predicted activity values of the test set compounds showed 
good correlation with experimental values, with r2

pred of 0.661 and 
0.713 for CoMFA and CoMSIA models respectively. It indicated 
that the CoMFA and CoMSIA models of both the datasets could be 
reliably used to design novel and more potent 5-LOX inhibitors. 
Hence, the QSAR models were further used to design novel 5-
hydroxyindole-3-carboxylate derivatives. Compounds, Mol-6 and 
Mol-7 are two of the 15 proposed derivatives which may possess 
higher inhibitory activity towards 5-LOX. In another study, Zheng 
et al. [109] also developed 3D-QSAR model for the same 2-
substituted 5-hydroxyindole-3-carboxylates using CoMFA and 
CoMSIA. They also suggested that hydrogen-bond donor fields can 
be negligible around the 5-OH of indole ring. They proposed that 
introduction of bulky groups like isopropyl and t-butyl at 7, 8 
positions and electron withdrawing groups like nitro and t-

butylamine at the 6-position may further enhance the activity of 
Mol-4. They also designed few substituents with electron-donating 
groups such as hydroxymethyl, methoxyl, aminomethyl or 
methylamine at 5th position. They designed 20 compounds which 
showed good predicted activity towards 5-LOX inhibition.  
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Choudhary et al. [110] studied QSAR approach of 4-
oxotiazolidines and 5-arylidine derivatives to explore the important 
physicochemical properties for 5-LOX inhibition. A training set of 
22 compounds reported by Yadav R et al. [111] were used in the 
study. From the models developed, they have studied four models 
which they quoted as best models based on their statistical values. 
They observed that the steric descriptors, molar refractivity (MR) 
and connolly accessible area (CAA) and the topological parameters, 
Balaban index (BI), cluster count (CC), molecular topological index 
(MTI) and total valence connectivity (TVC) play an important role 
in 5-LOX inhibition. They concluded that incorporation of bulky 
groups on thiazolidine nucleus will decrease the binding affinity of 
4-oxothiazolidines and increase in branching and presence of hetero 
atom favors the 5-LOX inhibitory activity.  

Vijay Agrawal et al. [112] studied the QSARs for set of 60 1-
phenyl [2H]-tetrahydro-triazine-3-one analogues reported by Kim 
KH et al. [113] by using distance-based topological indices. Based 
on the generated models they suggested the modifications to be 
made and important features necessary on parent molecule in order 
to inhibit 5-LOX. It was observed that the lipophilic electron 
withdrawing substituents at the meta position increased the activity. 
They concluded that with the increase in size of R2 substituent they 
observed a decrease in the inhibitory activity, the absence of 
hydrogen at R5 and R5�, presence of C=O group at R4, size, shape 
and branching are favorable for the 5-LOX inhibition. 

In another study, Revathi et al. [114] employed QSAR 
approach on 1, 5-diarylpyrazole analogs, a class of COX-2/5-LOX 
dual inhibitors. They have taken a set of 10 compounds reported by 
Pommery et al. [115] and ZD-2138 [116] for their studies. From 
their studies, they demonstrated that the physicochemical properties 
Hy (hydrophilic factor) and Mor17v (3D molecular representation 
of structure based on electron diffraction code) are important for 
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more dual COX-2/5-LOX inhibitory activity. Further Mukesh 
Doble and his group developed QSAR model of seventeen 
propenone derivatives [117], which were reported to be COX-2/5-
LOX dual inhibitors [98]. A training set of 13 compounds was used 
in their study. The regression model of 5-LOX showed correlation 
with SC-1, ADME_Absorbtion_T2_ 2D and S_dO. SC-1, which 
showed positive correlation with 5-LOX inhibition, specifies the 
number of bonds in the molecule. ADME_Absorbtion_T2_2D also 
showed positive correlation and indicates the hydrophobicity of the 
molecule. On the other hand, S_dO specifies number of oxygen 
atoms with one double bond and it showed negative correlation 
with 5-LOX inhibition. The developed models showed reasonable 
predictive capability.  

Arockia Babu et al. developed 3D-QSAR model [118] of a 
series 51 derivatives of chalcones reported by Sogawa et al. [119] 
to identify essential structural and physicochemical sites required 
for binding to 5-LOX. APEX-3D system was used for their study. 
In their study, two models with three biophoric sites and four 
secondary sites showed good correlation. They concluded their 
study proposing various substitutions that can further increase 5-
LOX inhibitory activity. 

In an earlier study in 1990, Summers et al. [120] performed 
QSAR studies for 111 hydroxamic acids and identified that 
hydrophobicity of the molecule influences the in vitro 5-LOX 
inhibitory potencies of the compounds. In their study, they 
developed four models by dividing the compounds into four 
structural groups, namely arylhydroxamic acids, 
arylacrylohydroxamic acids, (arylalkyl) hydroxamic acids and 
[(aryloxy)alkyl] hydroxamic acids. They observed a good 
correlation between the octonal-water partition coefficient of the 
group attached to the carbonyl of the hydroxamate and the potency 
for 5-LOX inhibition. Importantly, they revealed that hydrophobic 
groups close to the hydroxamic acid functionality do not contribute 
to increased inhibition and the hydrophobicity of fragments beyond 
approximately 12 Å from the hydroxamate do not influence 
potency. They also demonstrated that inhibitory activity was 
enhanced in cases where there was an alkyl group on the 
hydroxamate nitrogen, electron-withdrawing substituents and when 
the hydroxamate was conjugated to an aromatic system. These 
results provided a simple and a very reasonable description of the 
hydroxamic acid binding site in 5-LOX. 

Pharmacophore Modeling Strategies 

Paul Ehrlich introduced the pharmacophore concept in the early 
1900s and Ehrlich suggested the term pharmacophore to refer to 
the molecular framework that carries (phoros) the features that are 
essential for the biological activity of a drug (pharmacon) [121]. 
Later in 1977, Peter Gund defined it as “a set of structural features 
in a molecule that are recognized at the receptor site and is 
responsible for that molecule’s biological activity” [122]. Recently, 
pharmacophore based virtual screening has become a very useful 
tool for hit identification stage of drug development. It has become 
the major tool in drug design studies where the three-dimensional 
(3D) structure of the target is unknown. The main advantage of this 
approach is rapid screening of millions of compounds for 
identification of potential candidates. Pharmacophore mapping/ 
modeling involves three processes: (i) finding the features required 
for a particular biological activity (ii) determining the molecular 
conformation required (i.e. the bioactive conformation); and (iii) 
developing a superposition or alignment rule for the series of 
compounds. The process of pharmacophore based virtual screening 
encompasses sequential computational steps: drug target selection, 
database preparation, pharmacophore model generation, 3D 
screening [123-127]. Automated pharmacophore mapping is now 
available in programs like Catalyst [128], LigandScout [129], 
DISCO [130], GASP [131], Phase [132], MOE [133], etc. The 

typical types of interaction sites recognized by pharmacophore 
software include hydrogen bond acceptor (A), hydrogen bond donor 
(D), hydrophobic (H), negative ionic/ionizable (N), aromatic rings 
(R) and positive ionic/ionizable (P). All these methods use activity 
for development of pharmacophore models that can distinguish 
actives and inactives, while discarding those that do not. 

Pharmacophore Modeling Case Studies 

There are various reports where pharmacophore modeling was 
employed to understand the important features for 5-LOX 
inhibitors. Charlier et al. (2006) have combined ligand based and 
target based approaches to elucidate the structural insights of 
human 5-LOX [87]. In their study, a pharmacophore model was 
generated and was explained together with homology model of 5-
LOX. The pharmacophore model was generated using the non 
redox class of inhibitors. These active-site directed inhibitors have 
been shown to be more potent and selective towards 5-LOX [134]. 
Till to date, there are few limited reports on non-redox inhibitors of 
5-LOX. As the range of 5-LOX inhibition activities of the inhibitors 
of these classes was limited the authors did not generate 
quantitative structure-activity relationships. The selected molecules 
represent a pool of potent inhibitors acting on the same target with a 
similar mechanism (non redox). Therefore, they applied the 
HipHop process from Catalyst software, which compares diverse 
and highly active inhibitors to derive 3D hypotheses based on 
common chemical features identified on the superposition of active 
compounds, without considering biological activities.  

The pharmacophore model of 5-LOX developed using HipHop 
process from Catalyst software, is comprised of two hydrogen bond 
acceptors, two hydrophobic groups and an aromatic ring. The 
model was based on non-redox inhibitors of the following chemical 
families (i) the thiopyranindole derivatives [135], (ii) the biaryls 
[136] and finally (iii) imidazole [137] compounds. Structures of 
five of the training set molecules are shown as Mol-8 to Mol-12. 
Further, in their study, they developed the 3D structure of 5-LOX 
by homology modeling based on the crystal structure of rabbit 15-
LOX [138]. In agreement with mutagenesis studies, the modeled 
active site of human 5-LOX was found to be more spacious than 
that of rabbit 15-LOX [139]. The 5-LOX active site was then 
characterized from a structural point of view and used to study the 
docking of selected representative inhibitors. The pharmacophore 
was fitted into the active site of 5-LOX and the important 
interactions were explained. The important anchoring points 
identified inside the binding cavity include Tyr181, Leu414, 
Asn425, Arg411 and Phe421 that could form favorable interactions 
with ligands. The study was a first step towards the characterization 
of human 5-LOX and its interaction with ligands. 

As discussed earlier Catalyst/HipHop generates hypotheses 
based on only the identification and overlay of common features 
using known active ligands, and not activity data whereas the 
Catalyst/HypoGen pharmacophore model identifies chemical 
functional features that are typical of active compounds, thus 
facilitating their differentiation from inactive compounds [128]. 
Hence, HypoGen is regarded as a quantitative pharmacophore 
modeling approach and HipHop is regarded as a qualitative 
approach. The HypoGen modeling requires a training set with 
structural diverse inhibitors covering a wide range of activities of at 
least four orders of magnitude whereas in the case of the HipHop 
pharmacophore modeling, a small ligand set with highly active 
compounds is sufficient to get a reasonable model. However, a 
HipHop model cannot be further applied to predict the activity 
value of the virtual hit; generally a large number of false positive 
hits are observed in the case of HipHop pharmacophore-based 
virtual screening [140]. 

In an attempt to develop a reasonable pharmacophore model 
which can be successfully applied to virtual screening we generated 
a 5-LOX pharmacophore model using Catalyst/HypoGen approach 
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along with Catalyst/HipHop (Aparoy et al, 2010) [110]. All the 
pharmacophore modeling calculations were carried out by using the 
Catalyst 4.11 software package (Accelrys, San Diego, USA) on SGI 
workstation. 89 reported 5-LOX inhibitors from 18 different studies 
were considered in the study. The pharmacophore model was 
developed using HypoGen module from a training set of 24 
compounds with IC50s ranging from 0.003 �M to 41 �M for 5-
LOX. Before performing the quantitative pharmacophore modeling, 
the qualitative HipHop model was generated based on the five most 
active compounds in training set, the purpose of which was to 
identify pharmacophore features necessary for potent 5-LOX 
inhibitors. The HipHop pharmacophore hypothesis indicated the 
importance of hydrogen-bond acceptor, hydrogen-bond acceptor 
lipid, hydrogen-bond donor, hydrophobic moiety, hydrophobic 
aliphatic moiety, hydrophobic aromatic moiety and ring aromatic 
feature. 

Furthermore, we developed a quantitative pharmacophore 
model using the HypoGen module of Catalyst which can be used to 
correlate the observed biological activities for a series of 
compounds with their chemical structures. The generated HypoGen 
models were evaluated according to Debnath in terms of cost 
functions and statistical parameters. Three cost parameters, namely, 
null cost, fixed cost and total cost are generated during 
pharmacophore modeling. A pharmacophore model should have a 
high correlation coefficient, lowest total cost and RMSD (Root 
Mean Square Deviation) values. The total cost should be close to 
the fixed cost and away from the null cost. The total cost of each 
pharmacophore is computed by the sum of three costs: weight, error 
and configuration. The total cost parameter results in a ranking of 
generated hypothesis. This parameter takes into account the 
correlation of the training set molecules, tested activities with the 
activity estimated by the hypothesis. The fixed cost parameter 
assumes all training set molecules fit the simplest possible 
hypothesis perfectly. This cost parameter has the smallest numerical 
value of all the hypotheses cost parameters. The null cost parameter 
assumes that all training set molecules have the same activity, so 

that there is no statistically significant structure in the training set. 
This cost parameter has the highest numerical value of all the cost 
parameters. The difference between the cost of the generated 
hypothesis and the cost of the null hypothesis signifies the 
reliability of a pharmacophore model. A value of 40–60 bits 
between them for a pharmacophore hypothesis may indicate that it 
has 75–90% probability of correlating the data.  

The 5-LOX pharmacophore model developed by Aparoy et al., 
2010 [110] was characterized by the lowest total cost value 
(108.338), the highest cost difference (58.281) and contains four 
features, namely, two hydrogen-bond acceptor, one hydrophobic 
and one ring aromatic feature. A ‘measured’ versus ‘estimated’ 
activity for the training set exhibited a correlation coefficient (r) of 
0.974978 with RMSD of 0.6025. The good score value indicated a 
reliable ability to predict activities within the training set. The 
model was validated by Fischer randomization test method by using 
the CatScramble program implemented in Catalyst [141].  

The ability of the pharmacophore model generated to predict 
activities of 5-LOX inhibitors was evaluated using an independent 
test set which contains 65 external compounds. The experimental 
and predicted activities of the test set compounds were compared 
and a fairly good correlation coefficient of 0.85 was observed for 
regression analysis of the experimental and predicted inhibitory 
activity values. The validation results proved the accuracy of the 
model generated and hence it was further used for virtual screening 
process. The best quantitative pharmacophore model generated was 
used as a 3D query to screen several commercial databases 
comprising of compounds. The virtual screening procedure applies 
has been well depicted in Fig. (4). Three chemical databases 
(Enamine, NCI, Maybridge) containing two million compounds in 
total were screened utilizing the 5-LOX pharmacophore model 
developed as a query and 15,162 unique structures (8% of all 
virtually screened compounds) were able to match the 
pharmacophore model. The top 5000 molecules were further 
docked into 5-LOX active site using GOLD software. Most of the 
molecules showed positive Gold Score and were ranked using 
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GoldScore function. The top 1000 molecules were complexed with 
5-LOX and the protein-ligand interactions were scored using LUDI 
and Ligandfit in Accelrys Discover Studio [142]. Since there is no 
generally accurate and reliable scoring function so far, the 
compounds which were commonly scored top by various 
applications were ranked higher. After screening by visualization of 
protein–ligand interactions, hundreds of potential compounds were 
identified. Five compounds which were readily available were 
procured and tested for their 5-LOX inhibitory activity. Two 
compounds, Mol-13 and Mol-14 showed inhibition with IC50 values 
14 �M and 35 �M respectively. The biological evaluation further 
supported the model generated and illustrated its importance in 
identification/development of novel 5-LOX inhibitors. It should be 
noted here that the tested compounds were not the best among the 
hits identified in the screening. As the compounds were readily 
available they were given preference in the study. The anti-cancer/ 
anti-proliferative effects of the Mol-13 and Mol-14 were further 
estimated in cancer COLO-205 (colon cancer) cell line. Both 
compounds showed anti-proliferative effects in a dose dependent 
manner, with GI50 of 46.5 �M and 67.0 �M respectively [91]. 

In another study, Sukesh Kalva et al. [143] also employed 
pharmacophore/docking based virtual screening approach and 
proposed 6 compounds which may inhibit 5-LOX. They have taken 
102 structurally diverse compounds from literature and divided 

them into a training set of 22 compounds and a test set of 80 
compounds. Training set of 22 compounds was used to develop the 
pharmacophore model using HypoGen module present in Catalyst. 
The best model has two hydrogen bond acceptors and two 
hydrophobic groups. They have used their model to screen the 
database and retrieved 3000 compounds which they further narrow 
downed to 220 based on cluster analysis. The inhibitors were 
docked into the modeled 5-LOX to understand the binding 
interactions of proposed compounds and to correlate these 
interactions with pharmacophore features. The identified 
compounds can be used further for biological validation studies. 

In all the pharmacophore models of 5-LOX reported it has been 
identified that two hydrogen bond acceptors, hydrophobic and 
aromatic are common, hence, it can be concluded that these 
interactions play important role in 5-LOX inhibition. The 
pharmacophore methods proposed showed good promise and can 
be further applied in lead identification process. 

Scaffold Hopping Case Studies 

Scaffold hopping is a technique which aims to find compounds 
that are structurally diverse and share a particular biological activity 
[144] that is, preserving the 3D interaction properties of a scaffold 
while changing the structural skeleton [145]. If structurally diverse 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Virtual screening methodology employed by Aparoy et al. [104]. Example of a typical a combined Pharmacophore/Docking based virtual 
screening approach wherein the advantages of both docking based and pharmacophore based virtual screening can be fully utilized. 
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compounds are identified, this would help in finding new classes of 
compounds against the target protein [146]. It has been described 
by Renner and Schneider as “finding isofunctional but structurally 
dissimilar molecular entities” [147]. There are few automated 
methods available for perform scaffold hopping. Gisbert Schneider 
and his group have applied this technique effectively in the 
development of novel inhibitors of 5-LOX. Some of their findings 
are reviewed in this article. 
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Hofmann et al. (2008) have applied Scaffold-Hopping to yield 
potent inhibitors of 5-LOX. Ligand-based virtual screening methods 
were used in an iterative fashion to identify new inhibitors [148]. 
The study consisted of four subsequent cycles of virtual screening, 
including 3D- and 2D-based methods and substructure searching. 
Eleven dual 5-LOX/COX reference inhibitors were selected from 
the literature. In this study, low energy conformers of the 11 
molecules were generated using CORINA and partial atomic 
charges were computed with PETRA (both from Molecular 
Networks GmbH, Erlangen, Germany). The low energy conformer 
of each molecule was further used for descriptor calculation. 
Scaffold hopping technique was applied to retrieve isofunctional 
chemotypes with different backbone architecture from a large 
compound collection. Two similarity search methods, “Charge3D” 

and “TripleCharge3D” were used to perform alignment-free 
similarity searches against Asinex Gold (November 2005: 231,812 
compounds) and Platinum (132,250 compounds) collections 
(Asinex Ltd., Moscow, Russia) for each of the 11 queries. Two 
virtual screens applying Charge3D and TripleCharge3D were 
performed using each of the 11 reference molecules. The ten top-
ranked compounds of each of the 22 virtual screens were shortlisted 
and compounds detected by both methods were further tested for 
their in vitro activity. Out of the top virtual screen hits 6 molecules 
showed good activity of IC50 less than 15 �M. Further, in a second 
selection round, one of the virtual screening hit, compound Mol-15 
(IC50 of 6 �M) was used for a similarity search using MACCS 
substructure keys of Molecular Operating Environment (MOE) 
molecular modelling software package [133]. The MACCS 
structural fingerprints have 166 bits each indicating the presence of 
a predefined substructure or functional group. The degree of 
similarity of two structures is thereafter established by calculating 
the Tanimoto coefficient. Again, the Asinex Gold compound 
collection was screened, and compounds with a Tanimoto 
coefficient > 0.85 (indicating high structural similarity to 
compound, Mol-15) were identified. From the potential hits 
retrieved twelve commercially available compounds were manually 
selected and tested in whole cell assays. Among the pyridine-
imidazoles tested, compounds Mol-16 and Mol-17 were most 
potent, with IC50 of 1.3 and 0.9 �M respectively. In third selection 
round, the influence of various substitutions on pyridine-imidazole 
ring was studied retaining the phenyl-dimethylamino-motif. Again, 
the Asinex Gold compound collection was screened using 
compounds Mol-16 and Mol-17 as query. Five potential hits were 
obtained out of which one molecule, compound Mol-18, had IC50 of 
0.6 �M. The position of the methyl group on the imidazole ring did 
not significantly affect ligand potency. Finally, in fourth round of 
virtual screening the scaffold of the pyridine–imidazole structure 
was replaced. The shape- and“fuzzy” pharmacophore-based 
technique SQUIRREL [149] was applied to find candidates in the 
Asinex Platinum compound collection. From the potential 
candidates identified 5 compounds were evaluated in vitro. In the 
study, Schneider and co-workers demonstrated that single round of 
pharmacophore-based compound ranking is insufficient to identify 
potent hits and a multistep virtual screening procedure methods 
including structure based similarity searching is more accurate and 
productive in retrieving new scaffolds and potential 5-LOX 
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inhibitors. One of the hits obtained from the study, Mol-19 was 
further employed for scaffold hopping and a novel potential 
inhibitor of 5-LOX, Mol-20 (IC50 of 0.09 �M) was developed and 
the study has been recently published [150].  

In one of their earlier reports in 2007, Schneider and coworkers 
identified natural product derived inhibitors of 5-LOX by ligand 
based virtual screening. A diverse set of known 5-LOX inhibitors 
was used as query in a database scan for alternative chemotypes 
with 5-LOX inhibitory activity [151]. This ligand-based virtual 
screening approach consisted of two consecutive steps: First, 43 
queries taken from a collection of published bioactive compounds 
(COBRA collection, version 4.1) [152] were used for screening 
natural products and natural product derived combinatorial 
compound collections from the AnalytiCon Discovery compound 
repository. Software speedCATS was used in the study [153-154]. 
From the promising hits obtained, 18 molecules were randomly 
selected and tested for their inhibitory activity towards 5-LOX. The 
two most active molecules from round 1 (with IC50 of 1-10 �M) 
were further used as queries for similarity searching in second 
round of virtual screening. 4 different virtual screening methods 
were used (three variants of the CATS approach [153] and MACCS 
keys with the Tanimoto index [155]). 17 compounds were selected 
and screened. The study resulted in the identification of two novel 
chemotypes with nanomolar range activity in intact 
polymorphonuclear leukocytes (PMNL). Compounds, Mol-21 and 
Mol-22 are some of the inhibitors identified.  
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Pseudoreceptor Modeling Case Studies 

Pseudoreceptor modeling is a new concept in computer aided 
drug design which allows the reconstruction of the three-
dimensional structure of an unknown target based on the structures 
of its ligands (known bioactive compounds). It combines the 
present techniques but significantly extends their possibilities by 
the generation of an explicit receptor model. This model may 
subsequently be used for affinity prediction and other receptor-
based modeling tasks [156]. Pseudoreceptor models bridge the gap 
of ligand- and receptor-based drug design. Pseudoreceptor models 
fall into the class of 3D QSAR methods in computational 
chemistry. A recent comprehensive review by Schneider et al. [157] 
has covered the theoretical background and described the examples 
of pseudoreceptor model based drug design studies.  

Pseudoreceptor modeling has been successfully applied by 
Hofmann and his colleagues for the identification of novel 
inhibitors of 5-LOX [158]. A series of imidazo-[1,2a]-pyridines 
identified as highly potent 5-LOX inhibitors from Scaffold Hopping 
studies were used for the development of pseudoreceptor model of 

5-LOX binding site. “Flexible alignment” routine of MOE 2007.09 
software was used. Pseudoatoms that delineate putative receptor 
atom positions were projected around ligand interaction sites 
(potential pharmacophoric points). Three such pharmacophoric 
features (hydrogen-bond acceptor, hydrogen-bond donor, � stacking 
[aromatic]) were considered. Compounds from the SPECS database 
(202 681 compounds), Asinex gold (229 398 compounds) and 
platinum (125 231 compounds) were used for screening. Single low 
energy conformer of the compounds was generated using the 
CORINA 3.2 software. Then the structures were prepared for 
pseudoreceptor descriptor calculation using the so-called “washing” 
routine (deletion of salts and de/protonation of strong acids and 
bases) of the (MOE) software. The compounds were screened using 
the pseudoreceptor model generated. Compounds with a common 
physicochemical profile were identified and 14 compounds with 
different heteroaromatic scaffolds were manually selected. These 
compounds were ordered and subsequently tested for 5-LOX 
inhibition. Of the 14 compounds tested, 11 were able to inhibit 5-
LOX at 10 �M, and of these 11, eight did so with an IC50 value 
equal or less than 10 �M. The most potent compound (Mol-23), a 
fused heterocycle derived from benzo[a]phenazine showed an IC50 

of 0.96 �M. These results encourage the use of pseudoreceptor 
modeling for virtual screening studies. 
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Limitations of the Current Drug Design Approaches Towards 

5-LOX 

As pointed out by Rödl et al. [158] the crystal structure of 5-
LOX reported recently represents an apoprotein structure without a 
bound ligand. Hence, this structure may have its limitations in 
structure based inhibitor design approaches. Advanced, structure 
refinement like molecular dynamic (MD) simulations should be 
employed to 5-LOX-inhibitor complexes to get reliable results. For 
the time being, hybrid approaches like pseudoreceptor modeling are 
being employed to bridge structure based and ligand based 
approaches, but they have their limitations. The lack of 
experimental evidence of binding modes of different types of LOX 
inhibitors i.e. redox, non-redox and non-specific make CADD 
approaches more challenging.  

The accuracy of the current CADD approaches for 5-LOX can 
be improved enormously by the study of protein flexibility, 
induced-fit adaptations, the role of water insolvation, desolvation 
and ligand binding. One of the major limitations in drug design 
process is the inability of the existing docking programs to 
accurately estimate binding affinities. Combination of docking 
protocol and scoring function to be employed requires validation 
before their application in a drug discovery project. In virtual 
screening processes, it is noticeable that some of the high scoring 
ligands miss interactions that are known to be important for the 
target receptor [159]. Improving the predictive accuracy of scoring 
functions in various docking programs is a major challenge to 
computational chemists and it would help these methods to enable a 
greater impact in lead identification and optimization stage of drug 
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discovery. Better understanding of details of the electrostatics at 5-
LOX binding site and changes in protonation states at the iron 
binding site will help in better planning of SBDD experiments 
[160]. Quantum chemistry methods could be helpful in 
understanding these molecular details.  

The most important challenge for pharmacophore based virtual 
screening is the percentage of virtual hits that are really bioactive. 
Usually the screening results bear a higher false positive and false 
negative rate. Many factors can contribute to this problem, 
including the quality and composition of the pharmacophore model 
and the available information of 5-LOX structure. The increase in 
number of potential inhibitors of 5-LOX, with activities derived 
from a uniform assay method would surely enhance the quality of 
these methods. 

From the case studies discussed in the review it is evident that 
the main focus has been on the development or identification of 
potential 5-LOX inhibitors. There has been limited attention on the 
development of isozyme specific 5-LOX inhibitors. As discussed, 
most of the potent inhibitors of 5-LOX identified from in vitro 
studies showed toxic side effects in animal studies or human 
clinical trials. This may be due to non-specific binding to other 
LOX isoforms, 12-LOX and 15-LOX. LOXs have a conserved 
structural pattern, mainly at the catalytic site hence non-specific 
binding will remain a major issue. CADD approaches should be 
applied to understand the molecular details of the binding sites of 
LOX isoforms and salient features/patterns should be illustrated to 
further exploit in specific inhibitor design. With the availability of 
crystal structures of 5-LOX [85], 12-LOX and 15-LOX [138], 
methods like receptor based pharmacophore can provide more 
structural insights into isoform specific LOX activity. The main 
application of CADD is not only direct identification/development 
of drugs but also providing information like these in parts which 
would provide rationality to the drug development process, 
especially in fields like structure based virtual screening. With more 
information on binding site features important for selectivity of 
these LOX isoforms, inhibitors that are specific and effective can be 
developed and these may cause fewer or no side effects. 

CONCLUSION 

5-LOX is the key enzyme involved in the biosynthesis of 
leukotrienes, the mediators of allergy, asthma, GERD, Crohn's 
disease and other inflammatory disorders. 5-LOX is also associated 
with various cancers. As 5-LOX is implicated in many diseases, 
there is growing emphasis by many pharmaceutical companies and 
academic research groups on the development of effective 5-LOX 
inhibitors. Structure based and ligand based drug design approaches 
are being employed in 5-LOX drug development strategies. Lack of 
crystal structure information of 5-LOX, however, has been an 
obstacle for the application of structure based drug design 
strategies. Homology models of lipoxygenase enzymes have been 
used in several previous studies but there are fewer reports on their 
usage for inhibitor discovery. Specifically, homology models were 
sometimes used effectively to understand SAR of novel class of 
inhibitors by docking methods. There are few reports where 
homology model of 5-LOX has been used further in designing 
novel inhibitors. These studies resulted in the design of novel 
inhibitors with �M range activity. The recent elucidation of the 
crystal structure of 5-LOX should advance the 5-LOX inhibitor 
design in the coming years. It can be a working tool for more 
precise predictions of function and binding affinities of inhibitors.  

Ligand based drug design strategies have been widely 
employed to quantitatively explore common chemical 
characteristics among a considerable number of known 5-LOX 
inhibitors with great diversity. Results of pharmacophore modeling 
studies clearly suggest the importance of hydrogen bond acceptor, 
hydrophobic and aromatic interactions for 5-LOX inhibitory 

activity. Successful application of these pharmacophore models as a 
query for searching chemical databases and identification of new 
chemical entities supports their possible use in the assessment of 
binding affinities. The application of pseudoreceptor models and 
scaffold hopping in computer aided 5-LOX inhibitor design is also 
well demonstrated. Scaffold hopping will aid in finding new classes 
of compounds against 5-LOX and should be a main focus. CADD 
approaches have been so far applied in the development of specific 
5-LOX inhibitors, however, in future more emphasis should be on 
the design of isozyme specific inhibitors which may have fewer or 
negligible side effects. 
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