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Abstract: Ti-Al-Ta-N coatings are characterized by attractive mechanical properties, thermal stability
and oxidation resistance, which are superior to ternary compositions, such as Ti-Al-N. However,
because of their open columnar microstructure, the Ti-Al-Ta-N coatings deposited by conventional
direct current magnetron sputtering (DCMS) exhibit insufficient wear resistance. This work is focused
on obtaining the Ti-Al-Ta-N coatings with improved microstructure and mechanical and tribological
properties by middle-frequency magnetron sputtering (MFMS). The coatings are deposited by the
co-sputtering of two separate targets (Ti-Al and Ta) using pure DCMS and MFMS modes as well
as hybrid modes. It is found that the MFMS coating has a denser microstructure consisting of
fragmented columnar grains interspersed with equiaxed grains and a smaller grain size than the
DCMS coating, which is characterized by a fully columnar microstructure. The modification of
the microstructure of the MFMS coating results in the simultaneous enhancement of its hardness,
toughness and adhesion. As a result, the wear rate of the MFMS coating is less than half of that of the
DCMS coating.

Keywords: middle-frequency magnetron sputtering; Ti-Al-Ta-N coatings; structure; mechanical
properties; tribological behavior

1. Introduction

The wear of tools and components operating under high frictional loads remains an
urgent problem in materials science. One of the main ways to enhance the resistance of
metals and alloys against wear, corrosion and oxidation is their surface modification by
the deposition of hard protective coatings [1–5]. Among a large variety of different used
compositions, the Ti-Al-N system has been widely adopted to produce protective coatings.
Ti-Al-N coatings are characterized by high hardness and wear resistance, thermal stability
and excellent oxidation resistance at temperatures up to 800–850 ◦C [6–9]. However, the
coatings suffer from inherent brittleness because of the strong ionic character of Al-N
bonds [10,11], and recent calculations predicted that Ti-Al-N solid solutions could be even
less ductile than TiN [12,13]. Hard, brittle coatings are susceptible to cracking, chipping
and delamination, which can dramatically deteriorate their protective properties [14,15].
Furthermore, through-thickness cracks serve as diffusion paths for oxygen atoms, which
can easily reach the substrate, causing its oxidation [16].

A promising approach to solve the problem of the toughness improvement of Ti-Al-N
coatings is their alloying with additional chemical elements. It has been shown by first-
principles calculations and experimental studies that alloying the coatings with transition
metals of III-VI groups can significantly improve their mechanical performance [10–13,17].
Atoms of the transition metals substitute Ti and Al at the metal sublattice, resulting in a huge
variety of different electronic configurations (valence electron number, additional d- and
f-states), and therefore in the variation of the bonding type, which affects key properties of
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the coatings. Particularly, Ti-Al-Ta-N quaternaries exhibited improved toughness, thermal
stability and oxidation resistance over the ternary coatings [17–24]. However, it has been
shown that, while at high temperatures the Ti-Al-Ta-N coatings exhibit enhanced wear
resistance compared with the Ti-Al-N ones, they fail to provide it under room-temperature
conditions [25–27]. It is known that the microstructure of materials obtained by using
different manufacturing routes has an important influence on their mechanical, oxidation,
wear and corrosion behavior [28–32]. Therefore, the reduced room-temperature wear
resistance can be partially attributed to the fact that commonly used deposition techniques
such as cathodic arc evaporation [19,33,34] and DC magnetron sputtering (DCMS) [35–37]
usually produce the Ti-Al-Ta-N coatings with columnar structure. At low temperatures,
when ceramic coatings are susceptible to brittle fracture, the column boundaries serve
as easy crack propagation paths, leading to their chipping and spallation under cyclic
loading, thereby reducing wear resistance. Thus, a modification of the microstructure of
the Ti-Al-Ta-N coatings is necessary to improve their tribological performance.

It has been found that reducing defect density, inhibiting the formation of columnar
structures and the densification of transition metal nitride coatings can be achieved through
their low-energy ion irradiation during growth [38,39]. Since, unlike neutral atoms, ions
can be accelerated by applying a negative bias to the substrate, the ion bombardment of a
growing coating supplies adatoms with additional energy, which increases their mobility
and modifies the nucleation processes. As a result, the forming microstructure provides
improvement of mechanical and tribological properties of the coatings [40–42]. The ion
irradiation in physical vapor deposition processes can be realized by using an additional
ion source [43] or by increasing the ratio of ions to neutral atoms in the flux of sputtered
species arriving at the substrate [44].

In sputtering deposition processes, the ions of a sputtering inert gas (argon, krypton,
etc.) or a reactive gas (e.g., nitrogen or oxygen) are often used to perform the ion irradiation
of growing coatings [39–44]. However, the bombardment of the coatings by ions of the inert
gases can result in their entrapment at interstitial sites [45,46] and even the formation of gas
bubbles [47], which favor coating failure. In addition, they often generate point defects [48].
Moreover, the ions of the reactive gases have a lower mass than most metals, which results
in a low probability of momentum transfer to adatoms [49]. Therefore, irradiation by the
ions of the reactive gases has a rather poor effect on the structure modification of transition
metal nitride coatings.

Irradiation of the growing coatings by metal ions, which are present in the flux of
the sputtered particles, is more effective in improving their microstructure due to the
close mass match of the ions and adatoms, which provides better momentum and energy
transfer, as well as the incorporation of ionized species, primarily at lattice sites [50,51].
However, conventional DCMS processes use rather low target power densities (typically
5–15 W/cm2) in order to prevent overheating of the magnetron systems [52–54]. Therefore,
they produce a low plasma density and a low ionization degree in the sputtered species
(1–3%) [55,56]. In contrast, high ionization levels of the sputtered particles can be obtained
through pulsed magnetron sputtering. In particular, high-power impulse magnetron
sputtering (HiPIMS), which utilizes short high-power pulses with a frequency of less
than 2 kHz and a peak power density of several kW/cm2, can provide an extremely
high fraction of ions in the sputtered flux, which can reach 90% [57,58]. However, due
to short duty cycles (less than 10%), deposition rates in HiPIMS are significantly lower
than in DCMS, which requires the use of hybrid techniques (e.g., combining HiPIMS
and DCMS) to obtain coatings that are thick enough. Fager et al. used such a hybrid
co-sputtering (HIPIMS/DCMS) technique to improve the microstructure and mechanical
characteristics of Ti0.41Al0.51Ta0.08N coatings [50]. They showed that the hybrid technique
provides significant densification of the coating and its enhanced hardness of 28 GPa
compared to 15.3 GPa for the coating with the same chemical composition grown in the
DCMS mode.
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The drawbacks related to the low deposition rate of HiPIMS can be overcome by
using middle-frequency (or pulsed DC) magnetron sputtering (MFMS). Due to significantly
longer duty cycles (50–90%) compared with HiPIMS and substantially higher peak power
densities than DCMS (up to ~900 W/cm2 with pulse frequencies usually lying in the range
5–350 kHz) [49,59,60], this technique provides a deposition rate comparable to DCMS.
At the same time, the peak target power density in MFMS is sufficiently high to ensure
the ionization of a larger fraction of the sputtered species [61]. It has been shown that
different transition metal nitride coatings (TiN, CrN, HfN, TiAlSiN, etc.) with improved
microstructure and mechanical properties can be obtained using MFMS [59,60,62–65].
However, there is a lack of studies considering the effect of this sputtering technique on
the properties of the Ti-Al-Ta-N coatings. Therefore, the present work is focused on the
study of the structure and mechanical and tribological properties of Ti-Al-Ta-N coatings
deposited by MFMS and hybrid MFMS/DCMS co-sputtering techniques as well as their
comparison with conventional DCMS Ti-Al-Ta-N coatings.

2. Materials and Methods

The Ti-Al-Ta-N coatings were deposited onto AISI 321 steel and Si (100) substrates.
The steel substrates were used to study the elemental and phase composition as well as
the adhesion, mechanical and tribological properties of the coatings. They were obtained
by electric-discharge machining in the form of rectangular plates (15 × 10 × 1.5 mm3)
and exposed to preliminary mechanical grinding and polishing. The Si square plates
(10 × 10 × 0.38 mm3) were used to perform the examination of residual stresses and the
cross-sectional microstructure of the coatings. Immediately before the coating deposition,
all of the substrates were cleaned in alcohol for 20 min using an ultrasonic bath, followed
by Ar+ ion bombardment in a vacuum chamber for 20 min. A 30 ± 5 nm-thick Ti-Al layer
was deposited between the coating and the substrate to improve adhesion. The deposition
of the Ti-Al-Ta-N coatings was performed using a two-magnetron sputtering system, which
consisted of two planar circular magnetrons equipped with a Ti-Al target (50/50 at.%)
125 mm in diameter and a Ta target (99.99%) 100 mm in diameter. The average power
density at the Ti/Al target was 11.4 W/cm2, while at the Ta target, it was 3.8 W/cm2. The
magnetrons were tilted at an angle of 100◦ so that the center of a substrate holder was in
the intersection point of the magnetron axes at a distance of 90 mm to the centers of the
targets. The magnetrons were supplied with individual power sources, which made it
possible to set the operating mode separately for each magnetron. The Ti-Al-Ta-N coatings
were deposited in 4 different magnetron sputtering modes. In mode 1 the coatings were
deposited by DCMS. Modes 2 and 3 were hybrid techniques combining DCMS and MFMS.
In mode 2, a direct current was applied to the Ti-Al target, while the Ta target was sputtered
in the bipolar pulsed mode with a frequency f of 50 kHz and a duty-cycle n of 60%. In
mode 3, the Ti-Al target was sputtered in the pulsed mode with the same parameters,
and a direct current was applied to the Ta target. Finally, the MFMS deposition of the
coatings was carried out in mode 4. The sputtering was performed in an Ar + N2 gas
mixture at a constant pressure of 0.30 ± 0.01 Pa, while the partial pressure of nitrogen was
kept at 0.06 Pa. The substrate temperature was 425 ◦C. The thickness of the coatings was
3.00 ± 0.05 µm.

The chemical composition of the coatings was determined using energy-dispersive
X-ray spectroscopy (EDS) with an LEO EVO 50 scanning electron microscope (Carl Zeiss,
Jena, Germany) using an INCA X-act EDS detector. The structure and phase composition
of the coatings were investigated using X-ray diffraction (XRD) in the Bragg–Brentano
configuration using an XRD-7000 diffractometer (Shimadzu, Kyoto, Japan). CuKα radiation
with a wavelength of λ = 1.5406 Å was used. The microstructure of coating cross-sections
was studied using scanning electron microscopy (SEM). Hardness H and Young’s modulus
E* were determined by nanoindentation with a NanoTest system (Micro Materials Ltd.,
Wrexham, UK). Two samples of each type of coating were studied. A set of 20 imprints was
made for each sample with a distance between the imprints of 100 µm. The measurements
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were carried out using a Berkovich diamond in the load-controlled mode. The maximum
applied load was set at 20 mN. At this load, the maximum penetration of the indenter into
the coatings did not exceed 5% of their thickness, which made it possible to exclude the
influence of soft steel substrates on the measured characteristics. The residual stresses σ in
the coatings were determined using the Stoney formula based on the measurements of the
surface curvature of silicon substrates before and after deposition of the coating using an
Alpha-Step IQ contact profilometer (KLA-Tencor, San Jose, CA, USA). Two samples of each
type of coating were used for the measurements.

The effect of the deposition modes on the mechanisms of crack resistance and the
adhesion of the coatings was evaluated through scratch testing using a Revetest instrument
(CSM instruments, Peseux, Switzerland) equipped with a conical Rockwell stylus, which
had an angle at the apex of 120◦ and a tip curvature radius of 200 µm. Two samples of
each type of coating were tested. Three scratch tests were carried out for each sample. The
scratches were made 7 mm long with a sliding speed of 2 mm/min. The loading speed was
11.4 N/min, and the maximum applied load was 40 N.

The wear tests of the Ti-Al-Ta-N coatings were performed at room temperature under
dry friction conditions in the pin-on-disk geometry using a CSEM CH2000 tribometer
(CSM Instruments, Peseux, Switzerland). A WC ball 6 mm in diameter was used as a
counterbody. The ball was pressed against the samples with a normal load of 5 N. The wear
tests were performed at room temperature with a sliding speed of 25 mm/s. The diameter
of the wear tracks was 2 mm, and the path covered by the counterpart to stop the tests was
100 m. Two samples of each type of coating were tested. Two wear tracks were made for
each sample. The friction coefficient and wear rate of the coatings were extracted from the
wear tests. The wear rate Wr was determined by measuring the cross-section profiles of
the wear tracks with an Alpha-Step IQ contact profilometer (KLA-Tencor, USA) using the
following equation [66]:

Wr =
2πr

(
3d2 + 4b2)
6bFnl

(1)

where r is the radius of the wear track, d and b are the depth and width of the wear track,
respectively, Fn is the normal load and l is the sliding distance. Ten measurements of the
wear volume were performed at different points of each wear tracks and averaged.

3. Results
3.1. Chemical Composition

The chemical compositions of the Ti-Al-Ta-N coatings deposited in different sputter-
ing modes determined by EDS are listed in Table 1. It can be seen that, despite similar
average cathode power densities, the composition of the coatings varies significantly. This
effect is mainly caused by two origins. The first is concerned with different sputtering
yields of the target materials in the different sputtering modes. The estimation of the
sputtering yield of the chemical elements constituting the targets was performed using the
following equation [67]:

S =
3·α·M1·M2·E

π2·(M1 + M2)
2·Us

, (2)

where α is the dimensionless coefficient dependent on the M2/M1 ratio, M1 is the molar
mass of the incident ion, M2 is the molar mass of the sputtered atom, E is the energy of the
incident ion, and Us is the bonding energy of the target materials. It has been found that
the sputtering yield considerably increases in the DSMS mode because of the higher peak
cathode power and, consequently, the higher energy of bombarding ions (see Figure 1).
For example, in mode 2, where the Ti-Al target was sputtered in the DC mode, and the
Ta target in the pulsed mode, the sputtering yield of Ta was only ~25% lower than that of
Ti. In contrast, in mode 3, where the sputtering of the Ti-Al target was performed in the
MFMS mode and the Ta target was sputtered by applying direct current, the sputtering
yield of Ta was ~1.9 times lower than that of Ti. Therefore, the Ta concentration in the metal
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constituent of the coatings decreased from 19.0 at.% in mode 2 to 11.6 at.% in mode 3. The
second origin is concerned with reactions of the atoms of target materials with nitrogen
ions present in the flux of bombarding species, which lead to “poisoning” of the targets,
i.e., the formation of dielectric nitride layers on their surface. These layers substantially
decrease the sputtering yield since they favor the accumulation of positive charge on the
target surface, which shields it from the bombarding ions. In addition, the sputtering yield
of nitrides is considerably lower than that of pure metals.

Table 1. Chemical composition, lattice constant, average size of coherently diffracting domains and
residual stresses in the Ti-Al-Ta-N coatings.

Sputtering
Mode

Sputtering
Mode of Ti-Al

Target

Sputtering
Mode of Ta

Target
Ti, at.% Al, at.% Ta, at. % a, nm d, nm σ, GPa

1 DCMS DCMS 39.3 ± 0.9 45.5 ± 0.9 15.2 ± 0.6 0.425 ± 0.001 22 ± 2 −4.2 ± 0.3
2 DCMS MFMS 42.8 ± 1.1 38.2 ± 1.1 19.0 ± 0.9 0.429 ± 0.002 9 ± 1 −4.1 ± 0.2
3 MFMS DCMS 43.7 ± 1.0 44.7 ± 1.0 11.6 ± 0.5 0.424 ± 0.001 9 ± 1 −3.8 ± 0.2
4 MFMS MFMS 46.5 ± 0.9 37.0 ± 0.9 16.5 ± 0.7 0.426 ± 0.001 8 ± 1 −3.1 ± 0.1
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Standard Gibbs free energy of formation of TiN (−308.3 kJ/mol) is more negative than
those of AlN (−287.0 kJ/mol) and TaN (−187 kJ/mol) [68,69]. Therefore, it can be supposed
that the Ti-Al target was most strongly “poisoned” in the Ti-enriched areas during the
sputtering process. This led to a rapid drop in the number of Ti atoms in the flux of the
sputtered species compared with the Al and Ta atoms, which were still predominantly
sputtered in the metallic mode. This effect was earlier revealed in magnetron-sputtered
Ti-Al-N coatings, where pronounced changes in the Al/Ti ratio were observed under a
varying partial pressure of nitrogen [70]. Evidently, the “poisoning” was substantially more
pronounced in the DCMS mode since, in this case, the charging of the dielectric nitride lay-
ers on the target surface occurred continuously. In the case of the pulsed bipolar magnetron
sputtering, the nitride layers discharged during the period when a positive potential was
applied to the target due to an electron current from the deionizing plasma. This resulted
in a weaker shielding of the Ti-enriched areas of the Ti-Al target and, consequently, in an
increase in the fraction of Ti atoms in the sputtered flux. Therefore, the Ti content in the
coatings increased from 39.3% in mode 1 to 43.7% in mode 3 and 46.5% in mode 4.



Metals 2023, 13, 512 6 of 15

The Al and Ta contents in the Ti-Al-Ta-N coatings change in an even more complex
manner than the Ti content. In the coatings sputtered in mode 2, the Al content dropped
by 19% compared with the coatings obtained in mode 1, whereas the Ta content increased
by 25%. The increase in the Ta content is concerned with the higher sputtering yield of
Ta in the MFMS mode, which was used for the sputtering of the Ta target in mode 2. The
decrease in the Al content is supposed to be due to the intensive scattering of light Al
atoms owing to their collisions with heavy Ta atoms. Considering that the co-sputtering
was performed with crossed fluxes of the particles sputtered from the Ti-Al and Ta targets,
the increase in the flux of Ta atoms resulted in an increase in the amount of the scattered
Al atoms, and, therefore, in a decrease in their fraction in the flux of species forming the
coating. In the coatings deposited in mode 3 the Al content increased again, while the Ta
content was reduced due to a decrease in the flux of the Ta atoms, which were sputtered in
the DCMS mode. Nevertheless, the Al content in mode 3 was lower than in mode 1 since
the pulsed sputtering of the Ti-Al target provided a higher number of sputtered Ti atoms,
as discussed above. Finally, in mode 4, where both targets were sputtered in the MFMS
mode, the Al content drops to a minimum value because of a simultaneous increase in the
amount of sputtered Ti and Ta atoms.

3.2. Structure

Despite the different chemical compositions of the Ti-Al-Ta-N coatings obtained in the
different sputtering modes, the XRD studies did not reveal significant differences in their
phase compositions. As shown in Figure 2, which displays the XRD patterns of the samples,
all of the coatings are comprised of the Ti-Al-Ta-N solid solution with a single-phase FCC
(B1) structure, where crystallites are preferentially grown along the [111] direction. The
changes in the chemical composition of the coatings result in shifts of the XRD peaks, which
indicate variations of the lattice constant a of the solid solution. The values of the lattice
constant extracted from the XRD patterns are listed in Table 1, which makes it evident that
a increases with increasing the Ta/Al content ratio. Since the lattice constant of cubic AlN
(0.412 nm) is smaller than that of TiN (0.424), and the lattice constant of cubic TaN (0.434),
on the contrary, is larger, an increase in the Al content in the coatings leads to decreasing
a, whereas an increase in the Ta content results in its increase. Therefore, the increasing
Ta/Al content increases a, and consequently, to the shift of the Ti-Al-Ta-N peaks toward
lower diffraction angles. In addition, the coatings sputtered in modes 2–4 are characterized
by a considerable broadening of the XRD peaks, which can be attributed to large lattice
distortions and the small size of the coherently diffracting domains d. The values of d were
estimated using the Debye–Scherrer equation [71]

d =
Kλ

β cos θ
(3)

where K is the Scherer’s constant, λ is the X-ray wavelength, and β is the full width
at half the maximum of the diffraction peak. They are listed in Table 1. It should be
noted that the crystallite size determined through XRD analysis is often smaller than the
grain or subgrain size obtained from direct observations of the material microstructure
using scanning electron microscopy or transmission electron microscopy. In addition to
the differences in orientation between grains or subgrains, this has also been attributed
to the presence of dipolar dislocation walls, which break down the coherency of X-ray
scattering [72]. It can be seen that the coatings obtained in modes 2–4 are characterized by
close sizes of the coherently diffracting domains, which are less than half the size of those
in the coating sputtered in mode 1. Thus, the use of MFMS mode provides the refinement
of the crystal structure of the Ti-Al-Ta-N coatings.
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Figure 3 shows typical SEM micrographs of fracture cross-sections of the coatings
deposited in different sputtering modes. The coatings obtained in modes 1–3 are seen to
have a columnar microstructure. In contrast, the coating prepared in mode 4, which utilized
the pulsed sputtering of both targets, is characterized by a denser mixed microstructure
comprised of fragmented columnar grains and equiaxed grains.
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3.3. Mechanical Properties

It has been found that all of the Ti-Al-Ta-N coatings studied are characterized by
compressive residual stresses; their values are listed in Table 1. It should be noted that
the coatings deposited in the modes where at least one of the targets was sputtered in
the MFMS mode demonstrate lower stresses compared with the DCMS coating (mode 1).
Moreover, the lowest residual stress was found in the coating deposited in mode 4 when
both targets were sputtered in the MFMS mode.

The hardness and reduced Young’s modulus of the coatings determined through the
instrumented nanoindentation are shown in Figure 4. The presented results indicate that
the middle-frequency magnetron sputtering provides an increase in H and E*. The hardness
of the coatings sputtered in modes 2–4 is 1–2 GPa higher compared with that deposited in
mode 1, with the coating obtained in pure MFMS mode having the highest hardness. The
observed increase in the hardness can be attributed to the reduced average crystallite size
of the coatings deposited in modes 2–4, as it was evidenced by the XRD investigations. It is
known that the decrease in the crystallite size down to 10–20 nm enhances the hardness of
polycrystalline materials due to hindering the dislocation motions because of the increasing
boundary areas and the formation of dislocation pile-ups (Hall–Petch effect) [73,74]. The
Young’s modulus of the coatings deposited in modes 2–4 increases by 10% compared with
that sputtered in mode 1, which can be attributed to the densification of their structure.
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3.4. Scratch Behavior

Scratch testing of the coatings has revealed that the moving stylus induces plastic
ploughing of the material of the steel substrate from the bottom of the scratch groove
toward its flanks. This results in the formation of pile-ups along the scratch flanks, which
is accompanied by coherent bending of the coatings. As shown in Figure 5, the coating
failure starts from the formation of conformal cracks inside the scratch grooves. They are
semicircular forward cracks caused by compressive stresses arising ahead of the moving
stylus, resulting in the formation of the pile-up in this area. Due to the rigid bonding
between the coating and the substrate, the former bends in the pile-up area, leading to
rising tensile stresses in its surface layer, resulting in coating cracking at the periphery of
the contact area. Tensile backward cracks also form at higher loads inside the scratch tracks,
which are induced by the total effect of the friction force and the bending of the coatings
around the contact area.
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as well as optical micrographs of scratch tracks on the surface of the Ti-Al-Ta-N coatings obtained in
different sputtering modes: (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4.

The formation of the first cracks in the scratch grooves during scratching was registered
by the appearance of sudden AE peaks, which were caused by abrupt local relaxation
of stresses and propagation of the corresponding elastic waves. The critical load Lc1
corresponding to the first registered crack event in the coatings corresponds to the beginning
of their cohesive fracture, and therefore it can be used to characterize their toughness. The
measured Lc1 values indicated in Figure 5 make it clear that the DCMS Ti-Al-Ta-N coating
has the lowest toughness. In contrast, the MFMS coating is characterized by the highest
Lc1 value. The increase in the applied load above the Lc1 value eventually leads to the
local delamination and spallation of the coatings fragments. These events determine the
critical load Lc2, which characterizes coating adhesion. It can be seen from Figure 5 that
the DCMS coating has the poorest adhesion, while the MFMS coating is characterized by
the strongest adhesion. Thus, the scratch testing reveals that the MFMS technique allows
enhancing both the toughness and adhesion of the Ti-Al-Ta-N coatings compared with
conventional DCMS.

3.5. Wear

Figure 6 exhibits the friction coefficient of the Ti-Al-Ta-N coatings obtained in different
sputtering modes as a function of the sliding distance under conditions of dry friction.
It is seen that the friction coefficient of all coatings increases rapidly at the running-in
stage, reaching stable values in the range from 0.49 to 0.57 during the steady-state wear
stage. The DCMS coating has the highest friction coefficient, whereas the MFMS coating is
characterized by its lowest value.

Abrasive wear was found to be the main wear mechanism of the Ti-Al-Ta-N coatings,
which is typical for TiN-based coatings [75,76]. The wear debris formed due to the chipping
of the coatings was transferred along the wear tracks and partially adhered to the wear
surface. The adhered layers were partially oxidized during the tests resulting in the
formation of tribofilms consisting of Ti, Al and Ta oxides at some areas of the wear tracks.
Such oxide tribofilms can act as a solid lubricant, reducing the friction coefficient of the
coatings and thereby increasing their wear resistance [77]. However, the tribofilms did not
completely cover the wear tracks and could be quite easily removed by abrasion during the
following testing. Therefore, it can be supposed that the oxide tribofilms do not significantly
contribute to the wear resistance of the coatings studied.
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Figure 7 shows the wear rate of the Ti-Al-Ta-N coatings sputtered in different modes.
It is seen that the coatings deposited in MFMS and hybrid modes (modes 2–4) are char-
acterized by improved wear performance compared with the DCMS coating. The MFMS
coating has the lowest wear rate, which is 2.4 times lower than that of the DCMS coating.
Considering the above-described results, the improved wear performance of the MFMS
Ti-Al-Ta-N coating can be primarily attributed to the modification of its microstructure.
Hindering the formation of columnar grains with low-density boundaries and reducing
the crystallite size resulted in the densification of the MFMS coating, which provided its
increased hardness in combination with improved toughness. In addition, the absence of
the through-thickness boundaries between columns significantly suppressed the propa-
gation of cracks toward the substrate, enhancing the resistance of the coating to chipping
and delamination. All of these factors contribute to its increased resistance to scratching
and abrasion.
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4. Conclusions

A comparative study of the chemical composition and the structure, mechanical, and
tribological properties of the Ti-Al-Ta-N coatings deposited by DC magnetron sputtering,
middle-frequency magnetron sputtering as well as using hybrid techniques, where one
target was sputtered in the DCMS mode, and another in the MFMS mode, was performed.
It was shown that the middle-frequency co-sputtering of both Ti-Al and Ta targets hindered
the formation of columnar grains extending throughout the whole coating thickness, which
resulted in its denser mixed microstructure, consisting of fragmented columnar grains and
equiaxed grains. Hindering the growth of columnar grains and decreasing the crystallite
size of the MFMS coating resulted in a simultaneous increase in its hardness and toughness
as well as the suppression of the propagation of through-thickness cracks. All of these
factors provided a synergetic effect in improving wear resistance. As a result, the wear
resistance of the MFMS coating was more than twice as much as that of the DCMS coating.
Thus, the study has shown that middle-frequency magnetron sputtering is a promising
technique for obtaining Ti-Al-Ta-N coatings with improved properties.
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